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Abstract: Wavelet transform is a widespread and effective method in seismic waveform analysis
and processing. Choosing a suitable wavelet has also aroused many scholars’ research interest and
produced many effective strategies. However, with the convenience of seismic data acquisition, the
existing wavelet selection methods are unsuitable for the big dataset. Therefore, we proposed a
novel wavelet selection method considering the big dataset for seismic signal intelligent processing.
The relevance r is calculated using the seismic waveform’s correlation coefficient and variance
contribution rate. Then values of r are calculated from all seismic signals in the dataset to form a set.
Furthermore, with a mean value µ and variance value σ2 of that set, we define the decomposition
stability w as µ/σ2. Then, the wavelet that maximizes w for this dataset is considered to be the
optimal wavelet. We applied this method in automatic mining-induced seismic signal classification
and automatic seismic P arrival picking. In classification experiments, the mean accuracy is 93.13%
using the selected wavelet, 2.22% more accurate than other wavelets generated. Additionally, in the
picking experiments, the mean picking error is 0.59 s using the selected wavelet, but is 0.71 s using
others. Moreover, the wavelet packet decomposition level does not affect the selection of wavelets.
These results indicate that our method can really enhance the intelligent processing of seismic signals.

Keywords: seismic signal; wavelet transform; wavelet selection; CNN; RNN

1. Introduction

Seismic signals are the most important data source for humans to be able to understand
seismic activity. However, the seismic signal is a non-linear, non-stationary, and noisy signal.
If seismologists want to obtain more information from the seismic signal, they must process
it, such as through event detection, phase picking, and noise filtering [1]. The proposal of
wavelet transform (or a more nuanced approach called wavelet packet transform) gives a
better solution and is extensively applied in seismic signal processing [2,3]. Nevertheless,
the selection of wavelets has become a new research problem.

In the past few decades, wavelets have already been a powerful tool used for many
applications [4]. In their application for the processing of data, wavelets can be used for
signal processing, data compression, and data smoothing and denoising. Zhao et al. [5]
proposed the improved empirical wavelet transform (EWT) to process vibration signals
and to realize fault diagnosis in motor bearings. Álvarez-Cortés et al. [6] proposed a near-
lossless compression method for remote sensing data utilizing regression wavelet analysis
(RWA). Feng et al. [7] combined a wavelet with deep learning to reconstruct and denoise
remote sensing images. In bioinformatic analysis, wavelets are widely used in fingerprint
verification, biology for cell membrane recognition, protein analysis, electrocardiogram
analysis, and so on. F.W. Onifade et al. [8] developed an algorithm using a circular Gabor
wavelet to enhance fingerprint verification. Gao et al. [9] realized subcellular localization
classification based on wavelet decomposition. Tian et al. [10] predicted protein–protein
interactions using the wavelet denoising approach. Rajani Kumari et al. [11] utilized the
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pattern-adapted wavelet technique for R-peak identification in electrocardiogram signal
analysis. It seems that wavelet has nothing to do with finance, but in the financial field,
wavelet has also been widely used. For example, Choi [12] used wavelet correlation analysis
to study the relationship between coronavirus (COVID-19) and economic uncertainty.
Wavelets are also widely used in computer science, such as for Internet traffic description,
speech recognition, computer graphic and multifractal analysis, etc. Liang et al. [13]
combined wavelet transform and a convolutional neural network for content recognition
of Internet traffic. Wavelet is also used to denoise speech during speech recognition [14].
Wavelets and multifractal systems have also been widely used in recent years. For example,
Palanivel et al. [15] applied them in retinal vessel segmentation, Wirsing et al. [16] applied
them in geomagnetically induced currents, and Pourgholam et al. [17] applied them in the
detection of geochemical anomalies. There are many similar applications of wavelets in
various fields.

Wavelet transform and wavelet packet transform have been extensively applied in
various fields [18–22]. Researchers have proposed many wavelet selection strategies in
the wavelet transform process [23]. R. Yan [24] proposed a measurement method using
the statistical theory: energy–Shannon entropy ratio. Li et al. [25] presented a scale-
dependent wavelet selection strategy based on the energy of the signal. This approach
generated minor waveform distortion and denoised the partial discharge signal magnitude
errors. Chompusri et al. [26] selected the appropriate wavelet to process the electrocardio-
gram by comparing the efficiency of the compression algorithm using different wavelets.
S. Z. Mohd Tumari [27] made the final selection by calculating the minimum mean square
error (MSE) between the original and constructed signals. Adamo et al. [28] utilized two
quantitative indicators: the classic peak signal-to-noise ratio and the edge preservation
of the filtered image to evaluate each wavelet, and they used this method to process real
high-quality ultrasound images to verify reliability. J. Saraswathy et al. [29] used three
criteria to find the optimal wavelet: the degree of similarity, regularity, and accuracy of
correct recognition during classification processes. N.K. Al-Qazzaz [30,31] applied four
evaluation criteria, signal-to-noise ratio (SNR), peak signal-to-noise ratio (PSNR), MSE,
and the cross-correlation method for wavelet selection. U. Seljuq et al. [32] proposed a
wavelet selection scheme by evaluating MSE, SNR, and correlation. Caio F.F.C. Cunha
et al. [33] proposed a selection method for the wavelet and scale using digital signal energy
spectral density. Considering the decomposition ability of a wavelet and the similarity of
decomposition coefficients and analysis signals in information, the Ecom criterion proposed
by H. He et al. [34] integrates parameters such as entropy, energy, mutual information,
joint entropy, relative entropy, and conditional entropy. D.R. Wijaya et al. [35] proposed
the Information Quality Ratio (IQR) as a new metric for wavelet selection in beef quality.
IQR has a better capability to quantify the modifications of signal structure than MSE
and correlation coefficients. Z.A.A. Alyasseri et al. [36] proposed the selected wavelet
evaluation utilizing five metrics: SNR, SNR improvement, MSE, root mean square error
(RMSE), and percentage root mean square difference (PRD). N. Ji et al. [37] found that
time-error minimization and F1-score maximization can offer the relevant wavelet selection
for gait event detection. R. Atangana et al. [38] proposed the selection metrics based on
the percentage root mean square difference (PRD), the SNR, and the simulated frequencies
to find the best and suitable wavelet for assessing normal, seizure-free, and EEG signals
showing seizures.

The abovementioned researches provide many methods and strategies for wavelet
selection. These wavelet selection methods can extract representative features for specific
signal types, laying a foundation for further analysis. However, these methods are proposed
for particular types and ranges of signals and are often unsuitable for large amounts of
seismic waveforms. On the other hand, with the development of data acquisition, especially
in earthquakes, the amount of data is becoming larger and larger. Therefore, the intelligent
processing method of seismic data based on deep learning technology has also been
commonly studied. In these intelligent data processing methods, the requirements for the
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prominent role of the signal after wavelet transformation are reduced because the deep
learning methods can mine the deep features of the data. Based on the above changes, the
demand for wavelet selection is more to stably characterize a particular type of signal after
wavelet transformation. Therefore, we propose a novel wavelet selection method, mainly
used in seismic data intelligent processing, to perform stable wavelet transform on big
seismic data to improve intelligent processing.

2. Materials and Methods
2.1. Dataset

We used mining-induced microseismic data and seismic data to verify our proposed
method. Our mining-induced microseismic data came from the Huangtupo Copper and
Zinc Mine, located in Hami City, China. For the specific conditions of this mine refer to
the existing literature [39–41]. A mining-induced microseismic monitoring system was
installed to monitor the safety of goaves in the mine. The system and goaves are described
in Figure 1. Because natural seismic events and mining-induced microseismic events
have apparent differences in frequency band and magnitude, the existing microseismic
monitoring system only collects mining-induced microseismic events. However, as shown
in Figure 2, due to the similarity between non-seismic vibration signals (such as blasting
and mechanical vibration signals) and microseismic signals, some automatic methods
must be used to distinguish them. We collected a dataset including 5400 mining-induced
microseismic signals, 5400 blasting signals, and 5400 mechanical vibration signals.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 3 of 16 
 

intelligent processing method of seismic data based on deep learning technology has also 
been commonly studied. In these intelligent data processing methods, the requirements 
for the prominent role of the signal after wavelet transformation are reduced because the 
deep learning methods can mine the deep features of the data. Based on the above 
changes, the demand for wavelet selection is more to stably characterize a particular type 
of signal after wavelet transformation. Therefore, we propose a novel wavelet selection 
method, mainly used in seismic data intelligent processing, to perform stable wavelet 
transform on big seismic data to improve intelligent processing. 

2. Materials and Methods 
2.1. Dataset 

We used mining-induced microseismic data and seismic data to verify our proposed 
method. Our mining-induced microseismic data came from the Huangtupo Copper and 
Zinc Mine, located in Hami City, China. For the specific conditions of this mine refer to 
the existing literature [39–41]. A mining-induced microseismic monitoring system was in-
stalled to monitor the safety of goaves in the mine. The system and goaves are described 
in Figure 1. Because natural seismic events and mining-induced microseismic events have 
apparent differences in frequency band and magnitude, the existing microseismic moni-
toring system only collects mining-induced microseismic events. However, as shown in 
Figure 2, due to the similarity between non-seismic vibration signals (such as blasting and 
mechanical vibration signals) and microseismic signals, some automatic methods must be 
used to distinguish them. We collected a dataset including 5400 mining-induced micro-
seismic signals, 5400 blasting signals, and 5400 mechanical vibration signals. 

 

Figure 1. A mining-induced microseismic monitoring system was installed to monitor the safety of
goaves in the Huangtupo Copper and Zinc Mine.



Appl. Sci. 2022, 12, 6470 4 of 16

Appl. Sci. 2022, 12, x FOR PEER REVIEW 4 of 16 
 

Figure 1. A mining-induced microseismic monitoring system was installed to monitor the safety of 
goaves in the Huangtupo Copper and Zinc Mine. 

 
Figure 2. Records collected by mining-induced microseismic monitoring system in Huangtupo Cop-
per and Zinc Mine. 

The seismic dataset contains 9963 seismic records, and these records came from seis-
mic activity around the world. The seismic data came from the Center for Engineering 
Strong Motion Data (CESMD) and the Northern California Earthquake Data Center 
(NCEDC). Each seismic record has 1500 sampling points, and the sampling rate is 200 Hz. 
Figure 3 shows the amplitude distribution of all used seismic records. 

 
Figure 3. The amplitude distribution of all used seismic records. 

2.2. Wavelet Packet Transform 
J. Morlet first proposed wavelet transform in 1974. However, it was not until 1986 

that the first wavelet basis was inadvertently constructed by Y. Meyer [42]. Compared 
with traditional signal analysis methods, wavelet transform has the ability of a digital mi-
croscope, which can effectively perform detailed time–frequency analysis of signals and 
extract more characteristic information [43,44]. 

Figure 2. Records collected by mining-induced microseismic monitoring system in Huangtupo
Copper and Zinc Mine.

The seismic dataset contains 9963 seismic records, and these records came from seismic
activity around the world. The seismic data came from the Center for Engineering Strong
Motion Data (CESMD) and the Northern California Earthquake Data Center (NCEDC).
Each seismic record has 1500 sampling points, and the sampling rate is 200 Hz. Figure 3
shows the amplitude distribution of all used seismic records.
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2.2. Wavelet Packet Transform

J. Morlet first proposed wavelet transform in 1974. However, it was not until 1986
that the first wavelet basis was inadvertently constructed by Y. Meyer [42]. Compared
with traditional signal analysis methods, wavelet transform has the ability of a digital
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microscope, which can effectively perform detailed time–frequency analysis of signals and
extract more characteristic information [43,44].

The time–frequency analysis procedure using wavelet transform is comparable to the
description of the windowed Fourier transform, but the two are essentially different. First,
the expression of wavelet transform is as follows

Twav
f (a, b) =< f , ψa,b >= |a|−1/2

∫ +∞

−∞
f (t)ψ

(
t− b

a

)
dt, (1)

where <, > represents the inner product in L2, ψa,b(t) = |a|−1/2ψ
(

t−b
a

)
, ψa,b(t) is called

wavelet, and ψ is called mother wavelet.
The mother wavelet needs to meet the following conditions:

1 Absolutely integrable and squarely integrable, as ψ ∈ L1(R) ∩ L2(R);
2 Offset between positives and negatives, as

∫ +∞
−∞ ψ(x)dx = 0 and ψ̂(0) = 0, where ψ̂ is

the Fourier transform of ψ;

3 Meet the allowable conditions:
∫ +∞
−∞
|ψ̂(w)|2

w dw < ∞.

The principle of wavelet transform can be understood as a continuous translation of
the mother wavelet. It can also enlarge and shrink the mother wavelet and adapt to various
frequency bands by changing its scale. When the parameters a and b in Formula (1) are
continuous values, it is called continuous wavelet transform (CWT). It is often necessary to
discretize the expansion factor a and translation factor b, that is, a = am

0 , and b = nb0am
0 ,

where m and n are integers, a0 is a constant greater than 1, and b0 is a constant greater than
0. The corresponding discrete wavelet function is expressed as

ψm,n(t) = |am
0 |
−1/2ψ

(
t− nb0am

0
am

0

)
= |am

0 |
−1/2ψ(a−m

0 t− nb0). (2)

As a result, the discrete wavelet transform (DWT) is

Twav
m,n ( f ) = a−m/2

0

∫
dt f (t)ψ(a−m

0 t− nb0). (3)

Wavelet transform is used to analyze seismic signals, which can effectively sepa-
rate high-frequency and low-frequency signals, and further analyze and process the low-
frequency signals. In the actual analysis, the high-frequency signal in seismic events is also
a crucial component. Therefore, wavelet transform will lose more detailed information. The
wavelet packet transform can simultaneously decompose the signal into different frequency
bands so that both the high-frequency and low-frequency parts of the signal are analyzed,
analyzing the signal more precisely [45]. The wavelet packet transform can also select the
frequency band most consistent with the signal characteristics.

Suppose {Hn} and {Ln} are orthogonal high and low pass filters corresponding to
orthogonal wavelet function α(t) and orthogonal scaling function β(t), respectively, then

β(t) =
√

2∑
k

Lkβ(2t− k),

α(t) =
√

2∑
k

Hkβ(2t− k).
(4)

We use ξ0(t) to represent β(t) and ξ1(t) to represent α(t), and Formula (4) is trans-
formed into

ξ0(t) =
√

2∑
k

Lkξ0(2t− k),

ξ1(t) =
√

2∑
k

Hkξ0(2t− k).
(5)
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Therefore, the function ξn can be obtained by iteration

ξ2n(t) =
√

2∑
k

Lkξn(2t− k),

ξ2n+1(t) =
√

2∑
k

Hkξn(2t− k).
(6)

The function ξn(t) obtained by iteration is the wavelet packet determined by β(t). As
shown in Figure 4, the difference between wavelet transform and wavelet packet transform
lies in the process of high-frequency components of the signal.
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Figure 4. The difference between wavelet transform and wavelet packet transform. A means the
wavelet coefficient of the low-frequency component in the signal. D means the wavelet coefficient of
the high-frequency component in the signal.

2.3. Wavelet Selection Method

Wavelet packet transform provides good tools for seismic signal analysis. However,
the use of wavelet packet transform involves the selection of wavelets. Some commonly
used wavelets and their characteristics are listed in Table 1. Therefore, we propose a novel
wavelet selection method that considers the stability of wavelet transform or wavelet base
transform. This method is suitable for wavelet selection in the intelligent processing of
seismic data. Figure 5 shows the specific implementation process of our method.

Table 1. Some commonly used wavelets and their characteristics.

Wavelet Repres-
entation

Orthog-
onality

Biortho-
gonality

Support
Length Symmetry Global

Moment

Haar Haar yes yes 1 symmetry 1
Daubechies db N yes yes 2N − 1 approximate N

Symlets sym N yes yes 2N − 1 approximate N
Coiflets coif N yes yes 6N − 1 approximate 2N

BiorSplines bior Nr.Nd no yes

reconstruction:
2Nr + 1

decomposition:
2Nd + 1

asymmetry Nr − 1

ReverseBior rbio Nr.Nd no yes

reconstruction:
2Nr + 1

decomposition:
2Nd + 1

symmetry Nr − 1
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Figure 5. The calculation approach of the stability w of wavelet packet transform. For a wavelet,
perform wavelet packet decomposition on each signal in the dataset, and then use each wavelet
packet coefficient to reconstruct the signal. Correlation coefficients co and variance contribution rates
vcr were calculated between the reconstructed and original signals. The co and vcr can calculate
the relevance between a wavelet and a signal. Therefore, the stability obtained from the mean and
variance calculations of the variance can be used for wavelet selection, and the wavelet with the
highest stability is the most appropriate.

In recent years, intelligent processing methods driven by seismic data have been
widely used. Such methods are often based on a sizeable seismic dataset. Intelligent pro-
cessing techniques, such as deep learning, no longer require us to extract features accurately.
In contrast, deep neural networks require that our input data are stable and can reliably
represent that type of signal. Therefore, our method is to calculate the decomposition sta-
bility of each wavelet on the dataset and select the wavelet with the highest decomposition
stability as the best wavelet. Suppose the dataset contains I seismic signals, Xi is a signal in
this dataset, i = 1, 2, . . . , I. For a wavelet, its decomposition stability is calculated according
to the following steps.

1. Based on this wavelet performing n levels wavelet packet decomposition of signal Xi,

2n wavelet packet coefficients
{

ak
i

∣∣∣k ∈ [1, 2n], i ∈ [1, I]
}

are obtained.

2. Each wavelet packet coefficient is reconstructed separately to obtain 2n reconstructed

signals
{

Rk
i

∣∣∣k ∈ [1, 2n], i ∈ [1, I]
}

, and the correlation coefficients and variance con-
tribution rates are calculated for each of the reconstructed signals and the original
seismic signals, respectively. The formula for calculating the correlation coefficient

coi(k) =

S
∑

s=1
(Xi(s)− Xi)(Rk

i (s)− Rk
i )√

S
∑

s=1
(Xi(s)− Xi)

2 S
∑

s=1
(Rk

i (s)− Rk
i )

2
, (7)
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where coi(k) represents the correlation coefficient between Xi and Rk
i , S represents

the total number of signal sampling points. The formula for calculating the variance
contribution rate

vcri(k) =

1
NS

NS
∑

ns=1
ak

i (ns)2 − ( 1
NS

NS
∑

ns=1
ak

i (ns))
2

2n

∑
k=1

[
1

NS

NS
∑

ns=1
ak

i (ns)2 − ( 1
NS

NS
∑

ns=1
ak

i (ns))
2
] , (8)

where vcri(k) is the variance contribution rate of ak
i , NS is the total number of ak

i
sampling points.

3. Calculation of relevance {ri|i ∈ [1, I]} from correlation coefficient and variance contri-
bution rate

ri =

2n

∑
k=1

(coi(k)− coij)(vcri(k)− vcri)√
2n

∑
k=1

(coi(k)− coi)
2 2n

∑
k=1

(vcri(k)− vcri)
2

, (9)

4. Calculate the decomposition stability of this wavelet by the mean µ and variance σ2

of {ri|i ∈ [1, I]}
w = µ/σ2 (10)

Finally, the above operation is performed on all wavelets to be selected, and the
decomposition stability w of each wavelet is obtained separately, and the wavelet that
makes w maximum under this dataset is selected as the optimal wavelet.

3. Results

To verify the feasibility of our method, we used it in an automated classification study
of mining-induced microseismic data and a P arrival picking research of seismic data.

3.1. Application in Automated Mining-Induced Microseismic Events Classification

Mining-induced microseismic events’ monitoring is crucial for predicting rock mass
hazards [46,47]. Mining-induced microseismic events tend to be small in magnitude and
require sensitive sensors to acquire. However, in addition to collecting microseismic signals,
sensitive sensors will also collect all kinds of interference signals, such as blasting signals,
mechanical vibration signals, etc. Picking out accurate microseismic signals is necessary
to process mining-induced microseismic events further. At the same time, the mining-
induced microseismic data collected in a day are enormous, so the monitoring effect must
be improved by using intelligent processing methods [48]. Based on this engineering
background, we designed an experiment to verify the reliability of our wavelet selection
method.

This method was employed to train a convolutional neural network fora dataset that
includes 5400 mining-induced microseismic signals, 5400 blasting signals, and 5400 me-
chanical vibration signals. According to the method proposed in this paper, we combined
these data into one large dataset, denoted as M1. Based on the commonly used wavelets
listed in Tables 1 and 2, the decomposition stability w of each wavelet concerning M1 was
calculated separately, and the calculation results are recorded in Table 2. As shown in Table 2,
for dataset M1, the wavelet is rbio3.1, which maximizes the decomposition stability w.

As shown in Figure 6, to verify the suitability of using our method, we used the
selected wavelet rbio3.1 for the automatic classification of microseismic signals. Moreover,
we also randomly selected five wavelets for comparison experiments, including haar, db2,
sym2, coif3, and bior3.1. Then, the original microseismic signal contains 2000 sampling
points, which are decomposed into three levels of wavelet packet decomposition to obtain
eight wavelet packet coefficients of the signal, each containing 250 sampling points (in
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fact, there may be more than 250 sampling points, but these are uniformly cropped to just
250 sampling points for the convenience of calculation). Eight wavelet packet coefficients
composed of a matrix are used as the feature matrix for deep learning. The deep learning
model used in this paper contains two convolutional layers with a 3 × 3 convolutional
kernel, a max-pooling layer, and two fully connected layers. It is necessary to state that we
used a simple deep learning model here, whose purpose is to highlight the effectiveness
of wavelet selection methods. Therefore, a simple deep learning model can downplay the
impact of the model on the experimental results. After all, it is not the accuracy of the
classification problem that is pursued in this paper.

Table 2. The decomposition stability w of each wavelet concerning M1.

Wavelet w Wavelet w Wavelet w Wavelet w wavelet W

haar −4.78 db10 −5.56 coif5 −5.51 bior3.5 −9.72 rbio2.8 −2.25
db1 −4.78 sym2 −5.19 bior1.1 −4.77 bior3.7 −9.22 rbio3.1 −0.03
db2 −5.19 sym3 −5.38 bior1.3 −4.83 bior3.9 −9.16 rbio3.3 −0.86
db3 −5.38 sym4 −5.40 bior1.5 −4.87 bior4.4 −6.50 rbio3.5 −0.98
db4 −5.39 sym5 −5.41 bior2.2 −9.64 bior5.5 −3.51 rbio3.7 −1.04
db5 −5.44 sym6 −5.40 bior2.4 −8.47 bior6.8 −6.54 rbio3.9 −1.09
db6 −5.52 sym7 −5.62 bior2.6 −8.19 rbio1.5 −5.65 rbio4.4 −4.31
db7 −5.46 sym8 −5.46 bior2.8 −8.20 rbio2.2 −1.70 rbio5.5 −6.66
db8 −5.48 coif3 −5.43 bior3.1 −33.48 rbio2.4 −2.06 rbio6.8 −4.47
db9 −5.61 coif4 −5.48 bior3.3 −11.46 rbio2.6 −2.18
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Figure 6. Automatic classification of microseismic signals using wavelet packet decomposition and
deep learning. After performing a 3-level wavelet packet decomposition, the eight wavelet coefficients
can be obtained from the mining-induced microseismic waveform. These wavelet coefficients are
formed into a feature matrix adopted as input for training the convolutional neural network.

We divided the dataset M1 into a training set and a test set. The training set was
used to train the deep learning model in Figure 6 to classify signals. The training set
contains 5000 mining-induced microseismic signals, 5000 blasting signals, and 5000 me-
chanical vibration signals, and the test set contains 400 mining-induced microseismic
signals, 400 blasting signals, and 400 mechanical vibration signals. We conducted three
sets of comparison experiments for different wavelet-generated datasets, and for each
dataset, the deep learning model was trained with 50 epochs. After the model was trained,
it was tested using the test set, and the experimental results are shown in Table 3. The
classification accuracies of the wavelet rbio3.1 are 93.55%, 92.75%, and 93.08%, with an
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average accuracy of 93.13%. However, the average classification accuracy of the other
wavelets can only reach 90.89%, 89.81%, 91.53%, 90.86%, and 91.44%. The comparison
reveals that feature extraction using wavelets selected by our method is beneficial for the
subsequent analysis. Therefore, it can be considered that our method is effective.

Table 3. Experimental results of signal classification under the use of different wavelets.

Wavelet rbio3.1 haar db2 sym2 coif3 bior3.1

Test accuracy 93.55% 90.92% 91.33% 91.83% 89.75% 91.42%
Test accuracy 92.75% 91.25% 90.67% 91.83% 90.58% 91.33%
Test accuracy 93.08% 90.50% 87.42% 90.92% 92.25% 91.58%

3.2. Application in Automated P Arrival Picking

Seismic P arrival picking is essential for calculating seismic source parameters [49–51].
Effective and fast P arrival picking is an important study in seismology. Therefore, scholars
have proposed many P arrival picking methods, such as STA/LTA (short- and long-time
average ratio) [52], AIC (Akaike information criterion) [53], and so on. Moreover, deep
learning has become a practical approach in many research fields with computer science
development. Furthermore, some intelligent automatic P arrival picking methods based on
deep learning have been proposed recently [54]. These methods can combine with wavelet
transform, so a wavelet selection approach should be used. Therefore, we can test our
wavelet selection approach in automatic P arrival picking.

A seismic dataset, denoted as M2, containing 9963 seismic records, was collected
from the Center for Engineering Strong Motion Data (CESMD). Each seismic record has
1500 sampling points, and the sampling rate is 200 Hz. We used this dataset to train and
test an LSTM (long short-term memory) network for P arrival picking, and the wavelet
transform was used for input data preparation. Firstly, the decomposition stability w was
calculated for each wavelet listed in Tables 1, 2 and 4 based on our seismic dataset M2. The
results of the w calculation are listed in Table 4, and rbio3.1 is the wavelet that makes the
maximum w. Therefore, for M2, rbio3.1 is the best wavelet for data processing. Secondly,
we used the rbio3.1 wavelet and randomly selected five wavelets (including haar, db2,
sym2, coif3, and bior3.1) to perform a three-level wavelet packet decomposition, and the
wavelet packet coefficients obtained after decomposing each seismic signal were adopted
as the input of the LSTM network. Finally, we trained and tested the LSTM network for
each selected wavelet and compared their picking accuracy. Thus, the reliability of our
method was validated and analyzed.

Table 4. The decomposition stability w of each wavelet concerning M2.

Wavelet w Wavelet w Wavelet w Wavelet w Wavelet w

haar −1.207 db10 −1.536 coif5 −1.533 bior3.5 −5.547 rbio2.8 0.213
db1 −1.207 sym2 −1.411 bior1.1 −1.207 bior3.7 −5.010 rbio3.1 10.422
db2 −1.411 sym3 −1.480 bior1.3 −1.139 bior3.9 −4.912 rbio3.3 2.776
db3 −1.480 sym4 −1.486 bior1.5 −1.144 bior4.4 −2.080 rbio3.5 1.858
db4 −1.496 sym5 −1.505 bior2.2 −4.874 bior5.5 −0.337 rbio3.7 1.497
db5 −1.497 sym6 −1.515 bior2.4 −3.961 bior6.8 −2.152 rbio3.9 1.323
db6 −1.519 sym7 −1.511 bior2.6 −3.752 rbio1.5 −1.648 rbio4.4 −0.982
db7 −1.515 sym8 −1.543 bior2.8 −3.622 rbio2.2 0.824 rbio5.5 −2.652
db8 −1.528 coif3 −1.517 bior3.1 −25.742 rbio2.4 0.388 rbio6.8 −0.965
db9 −1.520 coif4 −1.541 bior3.3 −7.114 rbio2.6 0.269

As shown in Figure 7, we built a simple LSTM network containing an LSTM module
and two fully connected layers. Similarly, the network was simple enough to ensure that
the differences in the experimental results were due to different wavelets and to reduce
the interference of the deep learning model. The dataset M2 was divided into the training
set (containing 9000 seismic records) and the test set (containing 963 seismic records). The
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LSTM network for each wavelet was trained 50 times for each comparison experiment. In
total, three comparison experiments were conducted. Moreover, to numerically assess the
performance, we adopted the arrival picking error metric, which is described as [55]

Error =
∣∣Tp − Tt

∣∣, (11)

where Tp is the arrival picking and Tt is the ground truth.
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Figure 7. Automatic seismic P arrival picking using wavelet packet decomposition and deep learning.
After performing a 3-level wavelet packet decomposition, the eight wavelet coefficients can be
obtained from the seismic waveform. These wavelet coefficients are adopted as input for the training
of the LSTM network.

After the model was trained, it was tested using the test set, and the experimental
results are shown in Figure 8. Figure 8a shows the results of the first round of comparison
experiments. In Figure 8a, the total picking error using selected wavelet rbio3.1 is 612.62 s,
and the errors for the other five wavelets are 680.53 s, 621.57 s, 758.52 s, 653.21 s, and
589.80 s, respectively, and the mean of the picking error using rbio3.1 is 0.683 s, and the
errors for the other five wavelets are 0.705 s, 0.645 s, 0.788 s, 0.675 s, and 0.615 s, respectively.
In Figure 8b, the total picking error using selected wavelet rbio3.1 is 547.63 s, and the errors
for the other five wavelets are 633.24 s, 903.34 s, 657.66 s, 684.88 s, and 568.23 s, respectively,
and the mean of the picking error using rbio3.1 is 0.570 s, and the means for the other five
wavelets are 0.653 s, 0.938 s, 0.683 s, 0.713 s, and 0.593 s, respectively. In Figure 8c, the total
picking error using selected wavelet rbio3.1 is 546.85 s, and the errors for the other five
wavelets are 685.13 s, 712.30 s, 710.35 s, 654.67 s, and 669.47 s, respectively, and the mean
of the picking error using rbio3.1 is 0.570 s, and the errors for the other five wavelets are
0.713 s, 0.743 s, 0.735 s, 0.683 s, and 0.698 s, respectively. Therefore, the wavelet selected
using our method make the automatic P arrival picking better than the other randomly
selected wavelets. Moreover, in the three-round experiments, the variances of the picking
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error using rbio3.1 are 0.2138, 0.2981, and 0.2475, respectively. As shown in Figure 8, the
variance of the picking error using rbio3.1 is the smallest, i.e., the results of picking using
rbio3.1 are the most stable. In summary, the wavelet selected using our method can make
the seismic P arrival picking both accurate and stable, proving that our wavelet selection
method is indeed effective.
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Figure 8. The automatic seismic P arrival picking results using wavelet packet decomposition and
deep learning. (a) The first round of comparison experiments. (b) The second round of compar-
ison experiments. (c) The third round of comparison experiments. Each round of comparison
experiments contains the rbio3.1 wavelet selected by our method (blue) and five randomly selected
wavelets (yellow).

4. Discussion

This paper proposes a novel wavelet selection method for the big seismic dataset based
on decomposition stability w. We tested our method in two field application experiments
and achieved some valuable and positive results.

These results show that the effect can be different by using different wavelets for the
intelligent processing of automatic classification and P arrival picking of the seismic wave-
form. Moreover, the wavelets selected by our method can optimize the results when other
influencing factors are excluded. In contrast to existing wavelet selection methods, our ap-
proach focuses for the first time on the selection criteria that optimize feature extraction for
the entire big dataset. This provides a state-of-the-art quantitative wavelet selection method
for many new techniques based on data-driven intelligent signal processing and analysis.

Furthermore, by analyzing and comparing the results between the classification and P
arrival picking, we find that the selected wavelets are both rbio3.1. There are three main
reasons for this result. Firstly, although mining-induced microseismic and natural seismic
events are different, they generally belong to the same broad class of signals. Secondly,
in our experiment, the time length is ignored when the waveform is used as input, and
the sampling point length is adopted, which makes the waveform of the two similar in
time sequence. Finally, the amplitude units used by the two signals are different, so the
amplitude differences between the two signals with significant magnitude differences are
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minor. However, although the selected wavelets are all rbio3.1, the w obtained by calcula-
tion has an enormous difference, indicating that this method is differentiated. Additionally,
we briefly discuss the effect of the number of wavelet packet decomposition levels on
the results of wavelet selection. As shown in Figure 9, as the number of decomposition
levels changes, the value of w changes, but the distribution of the results is still similar for
each layer and does not affect the wavelet selection. Therefore, it can be assumed that the
number of levels of wavelet packet decomposition has no effect on our method, and it can
be disregarded while being used. In addition, this paper only tested the application of this
method in seismology, and no experiments were conducted for other fields.
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5. Conclusions

The selection of wavelet quantization has always been a subject to be studied. There-
fore, we proposed a wavelet selection method based on decomposition stability for the
actual needs of seismic data processing. For a specific wavelet, we performed wavelet
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packet decomposition based on the wavelet, reconstructed the signal with each wavelet
packet coefficient separately, calculated the correlation coefficient with the original wave-
form, and calculated the variance contribution rate between the wavelet packet coefficients.
The relevance was calculated by a signal’s correlation coefficient and variance contribution
rate. Finally, the mean and variance of relevance were calculated on a dataset, and then the
decomposition stability w was calculated according to Formula (10). Among the wavelets
to be selected, the wavelet that maximizes the decomposition stability w of the dataset is
the optimal wavelet.

To verify the feasibility of our method, we conducted experiments on automatic
mining-induced microseismic events’ classification and automatic P arrival picking. In
both types of experiments, we used the wavelet packet coefficients obtained after wavelet
packet transformation as the input of the deep learning network. The wavelet rbio3.1
selected by our method was compared with other randomly selected wavelets in these
experiments. The experimental results show that the selection of wavelets can affect the
results’ accuracy, and rbio3.1 makes the optimal accuracy. In the classification experiments,
the mean accuracy is 93.13% using rbio3.1, 2.22% more accurate than other wavelets
generated, and in the picking experiments, the mean picking error is 0.59 s using rbio3.1,
but this is 0.71 s using others. In addition, we also analyzed the effect of the wavelet packet
decomposition level on the results, showing that the level does not affect the selection
of wavelets. In general, for the current development status of seismology, we propose a
wavelet selection method suitable for intelligent seismic data processing, and we have
proved our method’s effectiveness through experiments.
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