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Abstract—This paper addresses the problem of RGBD-based
detection and categorization of waste objects for nuclear de-
commissioning. To enable autonomous robotic manipulation for
nuclear decommissioning, nuclear waste objects must be detected
and categorized. However, as a novel industrial application, large
amounts of annotated waste object data are currently unavail-
able. To overcome this problem, we propose a weakly-supervised
learning approach which is able to learn a deep convolutional
neural network (DCNN) from unlabelled RGBD videos while
requiring very few annotations. The proposed method also has
the potential to be applied to other household or industrial
applications. We evaluate our approach on the Washington RGB-
D object recognition benchmark, achieving the state-of-the-art
performance among semi-supervised methods. More importantly,
we introduce a novel dataset, i.e. Birmingham nuclear waste
simulants dataset, and evaluate our proposed approach on this
novel industrial object recognition challenge. We further propose
a complete real-time pipeline for RGBD-based detection and
categorization of nuclear waste simulants. Our weakly-supervised
approach has demonstrated to be highly effective in solving a
novel RGB-D object detection and recognition application with
limited human annotations.

Index Terms—nuclear waste detection and categorization,
nuclear waste decommissioning, autonomous waste sorting and
segregation

I. INTRODUCTION

Cleaning up the past half-century of nuclear waste in the UK

alone represents the largest environmental remediation project

in the whole of Europe. The nuclear waste is radioactive and

comprises relatively common objects such as plastic bottles,

cloth, etc., while compared to general domestic objects, there

are more industrial objects such as wooden blocks, metal

cans, chains, gloves, pipes, other metal objects, etc. (shown in

Fig. 5). In nuclear decommissioning, the waste objects should

be detected, categorized, sorted and segregated. In order to

sort and segregate nuclear waste objects autonomously [1], a

real-time detection and recognition approach is required.

DCNN-based methods are state-of-the-art approaches for

object detection and recognition. Unfortunately, most of the

existing DCNN methods rely on the large-scale annotation

of training data, which may be unavailable when trying to

rapidly train such methods for new applications. Our work is

motivated by the problem of training an RGB-D object detec-

tion and recognition system for guiding a robot manipulator
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Fig. 1. In this figure, a robot is sorting nuclear waste (metal strings and
chains) into a segregation bin through teleoperation.

in handling of hazardous nuclear waste (see Fig. 1), which

may contain a vast array of different kinds of objects and

materials, where massive acquisition and human-annotation

of training data is not practical. To overcome this problem,

we first employ a model-free 3D detector to detect objectness

proposals in 3D, and transfer the 3D proposals to 2D for

object category recognition. Once an objectness proposal is

categorized, we project the 2D classified proposal back to 3D

to get a boundary-aware detection result. In our approach,

bounding-box annotations are not required and boundary-

aware detection is achieved. This is achieved through weakly-

supervised deep learning for RGBD-based object detection.

The weakly-supervised deep learning problem has a high-

dimentional feature space but sparse training examples. In

order to interpolate the sparse feature points in the high-

dimensional space, our neural network architecture (DCNN-

GPC) combines parametric models (a multi-modal DCNN

for RGB and D modalities) with non-parametric Gaussian

Process Classification (GPC). Our system is trained initially

using a small amount of labeled data (about 0.3%), and then

automatically propagates labels to large-scale unlabeled data.

More specifically, we first run 3D-based objectness detection

on RGB-D videos to acquire many unlabeled object proposals,

and then employ DCNN-GPC to label them. As a result, our

multi-modal DCNN can be trained end-to-end using only a

small number of human annotations. In this paper, a real-

time detection and recognition pipeline is thus implemented

for nuclear waste simulant detection and recognition.

The main contributions of this paper are threefold.

• Firstly, we propose a novel vision-based approach for
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detection and recognition of real-world RGB-D nuclear

waste simulants. The previous research [2] is only able

to detect and recognize known nuclear waste objects,

however, our proposed approach is the first deep learning-

based visual perception solution for nuclear waste decom-

missioning, which can detect and categorize unknown

waste objects in real-time. A video demonstration of the

approach is available at https://youtu.be/7w6oqfvkub0

• Secondly, our approach is weakly-supervised, in which

a non-parametric GPC is used for the label propagation

in order to enhance robustness to the sparsity of training

data. In particular, our approach does not require bound-

ing box object annotations and boundary-aware detections

can be obtained.

• Thirdly, we introduce a new industrial dataset, i.e. Birm-

ingham nuclear waste simulants dataset1 to be used by the

research community, which comprises a series of RGB-D

videos of realistic nuclear waste-like objects.

The remainder of this paper is organized as follows: Sec-

tion II gives an overview of the related literature; Section III

introduces Gaussian Process Classification (GPC) as the pre-

liminary knowledge; Section IV presents the pipeline of the

proposed method; Section V presents the experimental results

on two real-world datasets; and the paper is concluded with

contributions and suggestions for future research.

II. RELATED WORK

In this section, we firstly review RGB and RGB-D object

detection in Section II-A, and RGB-D object recognition in

II-B. Then the existing achievements of weakly-supervised

deep learning are introduced in Section II-C. We also review

the existing research on nuclear waste detection and recogni-

tion in Section II-D. Finally, we give our discussion in Section

II-E.

A. Objectness and object detection

Most object detection literature addresses only 2D RGB

images, e.g. [3], [4]. Region-based CNN (R-CNN) [5] frame-

works comprise: objectness detection, then pre-trained-CNN-

based feature extraction, followed by SVM classifiers for

object category recognition. More recent work, [6], [7], [8],

achieves greater speed by using DCNNs, in which both detec-

tion and recognition can be learned jointly and deployed in a

single shot. However, DCNNs depend on large-scale human-

annotated training data, which are often unavailable in real-

world applications. Furthermore, these methods are based on

bounding-box detection and cannot achieve boundary-aware

detection.

Comparatively little literature has addressed the use of

3D data, which can greatly facilitate objectness detection

by providing more salient boundaries between foreground

objects and background regions. Gupta et al. [9] adapted a

2D mechanism to RGB-D without consideration of the real

3D distance metric. [10] detected 3D objects in a point cloud

by applying a cuboid-shaped sliding window. [11] extended

1https://sites.google.com/site/romansbirmingham/

the region proposal networks of [12] to achieve faster object

detection than sliding-shape approaches. However, these meth-

ods typically generate thousands of objectness proposals for

each image, making subsequent object category recognition

difficult to achieve in real-time.

Alternatively, unsupervised 3D segmentation (clustering)

[13], [14] can be used for RGB-D objectness detection,

and can also achieve boundary-aware detection. Folkesson et

al. [15] proposed a multi-view object segmentation approach

with RGB-D data, where Statistical Inlier Estimation (SIE) is

used to enhance the robustness of object segmentation. Such

methods engender a trade-off between segmentation accuracy

and speed. In our approach, we simplify the 3D clustering

connectivity, using only three cues, to enable real-time perfor-

mance while still achieving boundary-aware detection.

B. RGB-D object recognition

Multimodal DCNNs [16], [17], [18], [19], [20] are now

widely used in RGB-D object recognition. These multimodal

architectures comprise two nets (for RGB and D modalities)

which are fused in the last fully-connected layers and trained

jointly. These methods pre-trained both DCNNs on ImageNet,

since no large-scale labeled depth dataset was available for

pre-training. Unfortunately, network parameters pre-trained

on RGB images (i.e. ImageNet) do not work well for raw

depth data. Most methods transfer the depth modality to

RGB through color-mapping [16], [17], [21], or to low-level

features [19], [20], [22], to fit into a DCNN pre-trained on

RGB data (ImageNet). These methods need extra computation

for color-mapping and feature extraction, and the raw depth

data is not fully leveraged. In contrast to previous work, our

DCNN is directly trained on raw depth maps. No costly data

conversions (from depth to RGB) are required, and depth

information is fully exploited.

C. Weakly-supervised deep learning

Following the success of highly data-driven DCNN meth-

ods, the problem of reducing annotation effort has attracted

increasing attention. [20] proposed semi-supervised learning

approaches for RGB-D object recognition, in which co-

training methods are used to incrementally label the unlabeled

data. [23] proposed a weakly-supervised DCNN to learn pixel-

wise semantic segmentation from bounding-box annotations.

In their method, a dense CRF is used to obtain segmentation

estimations for training the DCNN.

[24] used the temporal correlation in driving videos to

learn path proposals for autonomous driving. In their method,

the path in future frames is projected to the current frame

through vehicle odometry and annotated as ground truth for

learning. [25] proposed a self-supervised approach to learn

fully-convolutional networks for object segmentation in the

Amazon picking challenge.

The key step in semi-supervised or weakly-supervised

learning for object recognition is to model the predictive

probability. In [20], the DCNN trained from labeled examples

is used as the classifiers for co-training. However, small-scale

training examples open up the possibility of over-fitting, and

https://youtu.be/7w6oqfvkub0
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as a consequence, a good predictive probability cannot be

guaranteed. In contrast to the existing methods, we adapt

non-parametric GP classification with fusion of multi-modal

kernels, which is more robust to the scale of training data.

We reduce the required label percentage from 5% [20] to

0.3% (at the same frame rate). More importantly, the previous

research [20] focuses on recognition trained by bounding-box

annotations, whereas our research is weakly-supervised with

the integration of objectness detection, learned by detected

objectness proposals.

D. Nuclear Simulant Detection and Categorization

Compared to existing approaches for detection and recog-

nition of domestic objects, nuclear waste object detection has

limited literature. Shaukat et al. [2] first applied computer

vision methods to detect and recognize nuclear waste objects.

Their approach is based on the grayscale image, in which

shape-based histogram thresholding is employed to segment

the waste object from the table. Then invariant moments are

used for the feature extraction, and a random forest is trained

for classification. The existing research focuses on recognizing

specific waste objects rather than object categorization.

E. Discussion

Compared to 2D-based detection methods [3], [12], [6],

[7], [8], [12], 3D-segmentation-based detectors can reduce

the number of object proposals from thousands to less than

a hundred per image. More importantly, boundary-aware de-

tection can be obtained. In our approach, we propose a 3D

segmentation method which is multi-cue, but more efficient

than [13], for real-time objectness detection in RGB-D data.

Multi-modal DCNNs achieve state-of-the-art performance

in RGB-D object recognition. However, how to fully leverage

the depth modality remains a problem. Recent work [17], [19],

[20], [22] assumes that raw depth images cannot be directly

used to train a DCNN, because no large-scale depth dataset is

available for pre-training. In contrast, we show how raw depth

data can be fully leveraged, by using 3D CAD models (e.g.

ModelNet dataset) to generate large numbers of automatically

annotated depth images for pre-training. As a consequence,

color-mapping methods and low-level depth features are not

required in our approach.

Most DCNN-based detection and recognition methods are

fully supervised, trained by massively annotated datasets. In

contrast, weakly-supervised deep learning has, so far, only

achieved success in very few applications, including path

planing [24] and the Amazon picking challenge [25]. In

contrast, this paper shows how weakly supervised deep learn-

ing can achieve very strong performance in RGB-D object

detection and recognition, at real-time frame rates, on real-

world industrial image data, for which only a tiny amount

(0.3%) of labeled data is available for training.

III. PRELIMINARIES

A. Gaussian Process Classification (GPC)

Unlike popular classifiers, e.g. SVM, GPC is fully Bayesian

and can generate predictions within the same distribution

for multi-class cases. Our use of GPC is as follows [26].

Given a classification problem with training instances X ,

training labels y, testing instance x∗, testing label y∗, and

latent variables for training and test instances f and f∗, the

GPC infers the conditional predictive probability of the test

instance’s label y∗ given X and y:

P (y∗|x∗, X, y) =

∫∫
P (y∗|f∗)p(f∗|f, x∗, X)p(f |X,Y ) df∗df.

(1)

where P (y∗|f∗) is the likelihood function for classification

(which can be the logistic function for binary classifica-

tion or softmax function for multi-class classification), and

p(f∗|f, x∗, X) is a standard noise-free regression. The key

problem of GPC is to estimate the posterior p(f |X, y):

p(f |X, y) =
P (f |X)P (y|f)∫
P (f |X)P (y|f)df

(2)

where P (f |X) is the prior and P (y|f) is the likelihood. Here,

the prior is Gaussian, whereas the likelihood is non-Gaussian,

which makes Eq. 2 analytically intractable. Researchers have

proposed different ways to solve this non-conjunction prob-

lems, including Laplace Approximation, Expectation Propa-

gation, etc. [26]

IV. METHODOLOGY

Fig. 2. Flow chart of our proposed weakly supervised DCNN method. In this
chart, the training process is shown in orange and deployment in blue.

Our proposed pipeline has three steps: (1) a real-time 3D-

based object detection approach is proposed to generate high-

quality objectness proposals in RGB-D video streams; (2)

DCNN-GPC is proposed to propagate small-scale labeled data,

i.e. 1-2 examples for each training object, to moderate-scale in

order to train the multi-modal DCNN end-to-end; (3) a real-

time detection and recognition system is integrated.

A. Real-time 3D Objectness Detection

Our object detection approach is 3D-based and unsuper-

vised, employing point cloud segmentation to obtain salient

objectness (regions) proposals. We first detect large planes

(using RANSAC) in point clouds and remove them, as we are

interested in table-top or ground-top objects. Inspired by the

multi-cues idea of [13], we propose a more efficient condi-

tional clustering approach based on color, shape and spatial

cues to acquire objectness proposals. Given two voxels p1
and p2, the connectivity between them C(p1, p2) is defined by

distance connectivity Cd(p1, p2), color connectivity Cc(p1, p2)
and shape connectivity Cs(p1, p2):
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Fig. 3. Detection and recognition pipeline of our system. RGB-D point cloud (left) yields objectness proposals (middle). For each such proposal, the
multi-modal DCNN performs category recognition. The pixel-wise recognition result is projected to obtain a 3D semantic point cloud.
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where np1
, np2

are the surface normals, Ip1
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refer to the

intensity values of p1, p2, and σd, σc, σs are the connectivity

thresholds. The neighboring voxels will be clustered iteratively

through this connectivity criteria until all clusters become

constant. Parameter values σd, σc, σs are set as 2 cm, 8.0

and 10◦, which perform well for our application.

Given 3D objectness proposals detected in 3D world co-

ordinates, each point in the proposal p(xw, yw, zw) can be

back-projected to its 2D image coordinates (u, v) and depth

d:
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where C is the camera intrinsic matrix, and R and t are the

rotation matrix and translation vector, respectively. In this case,

a 2D bounding box with boundary-aware segmentation can be

formed for each 3D objectness proposal, which is used for

learning in the following section.

B. Weakly-Supervised Multi-Modal DCNN for RGB-D Object

Recognition

Similar to popular DCNN-based methods [16], [17], [18],

[19], [20], our recognition DCNN is also of multi-modal

architecture (RGB-Net and Depth-Net for RGB and depth

modalities, respectively). However, we propose a different

DCNN architecture and a novel weakly-supervised method

to train it, comprising three stages. First, the DCNNs are

pre-trained on public large-scale datasets (ImageNet dataset

for the RGB-Net and ModelNet dataset for the Depth-Net).

Second, the DCNN-GPC is trained and then employed to

classify large-scale unlabeled objectness proposals according

to the predictive probabilities of the GPC. Third, the multi-

modal DCNN, used in the DCNN-GPC, is fine-tuned jointly

end-to-end using moderate-scale automatically labeled RGB-D

data.

1) Network Architecture: In contrast to Caffe-Net[27] (used

in [16], [17], [18], [19], [20]), we use a deeper architecture

for RGB-modality recognition. That is, the VGG 16-layer

architecture [28] is used for our RGB-Net with the removal

of the soft-max layer. For Depth-Net, we devised an 8-layer

DCNN. Compared to the widely-used Caffe-Net, our Depth-

Net adapts smaller filter sizes and larger numbers of filters.

The Local Response Normalization (LRN) layers [29] are

applied to the first two convolutional layers’ features in order

to capture the local 3D shape of the object from the relative

range difference. In other words, we use LRN to transform

the absolute depth to relative depth, which prevents the DCNN

from over-fitting to a specific range of depth. All convolutional

layers and fully connected layers are initialized by Xavier

initialization [30]. The parameters of this architecture are set

according to experimental experience (shown in Fig. 4 and

Table I).

2) Pre-training of Multi-modal DCNN: In order to elim-

inate over-fitting, pre-training is necessary. Our RGB-Net is

pre-trained on ImageNet [31]. In well-known methods [16],

[17], [18], [19], the DCNN for depth-modality recognition is

also pre-trained on ImageNet, requiring color-mapping or low-

level features to transform the raw depth data into the RGB

domain. In contrast, our proposed Depth-Net is pre-trained on

the Model-Net dataset [32] from scratch, by projecting many

synthetic depth maps. As a result, no extra pre-processing

(color-mapping or low-level features) is needed.

In our approach, we use 40 class subsets of Model-Net

(in total 9.8K models) for training. For each 3D model, we

sample 4×104 points uniformly on the object surface and

apply white noise on those 3D points. Then for the point

cloud of each object, we generate 30 camera poses, distributed

on a hemisphere, and capture depth maps from each camera

pose2. After 6DOF camera poses are obtained, for each camera

the inverse transform is applied to the original point cloud to

transfer 3D points from world to camera coordinate systems.

Hidden points removal [33] is then applied on the 3D points,

2More specifically, the poses of virtual cameras are obtained by discretizing
Euler angles: roll are 270◦, 240◦, 210◦, pitch is fixed at 0◦, and yaw are
ranging from 0◦ to 360◦ with interval of 36◦.
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Fig. 4. The architecture of proposed multi-modal DCNN-GPC. The inputs of the DCNNs are the raw RGB and depth images of the object proposal. Our
architecture consists of three components: RGB-Net (shown in yellow), Depth-Net (shown in Blue) and non-parametric GPC (shown in Green).

and a depth image is generated by projecting visible 3D points

to the image plane via Eq. 4 3. Finally, 290K depth maps are

obtained from the training models.

TABLE I
THE NEURAL NETWORK ARCHITECTURE OF OUR DEPTH-NET.

layer
name

filter size number of
output

other parameters

conv1D 5 × 5 128 stride=2, pad=2, group=1
pool1 3 × 3 – type=max, stride=2, pad=1

norm1 5 × 5 – alpha=5×10
−4 beta=0.75

conv2D 5 × 5 256 stride=1, pad=2 , group=1
pool2 3 × 3 – type=max, stride=2, pad=2

norm2 5 × 5 – alpha=5×10
−4 beta=0.75

conv3D 3 × 3 384 stride=1, pad=1, group=2
pool3 3 × 3 – type=max, stride=2, pad=2
conv4D 3 × 3 512 stride=1, pad=1, group=1
conv5D 3 × 3 512 stride=1, pad=1, group=1
pool4 3 × 3 – type=max, stride=2, pad=2
fc6D – 4096 dropout = 0.5
fc7D – 4096 dropout = 0.5
fc8D – c –

3) Label Propagation through DCNN-GPC: As shown in

Fig. 4, DCNN-GPC incorporates pre-trained DCNNs (with

softmax layer removed) and non-parametric GP classification.

That is, the outputs of the DCNNs (i.e. fc7I ∈ R
4096 and

fc7D ∈ R
4096) are concatenated as the input X (∈ R

8192) to

the GPC. In this stage, we label a small number of cropped

images from detected objectness proposals, and train GPC on

them.

More specifically, the training data of our proposed method

are unlabeled RGB-D videos. We capture the videos in a con-

trolled environment, i.e. only one object category is recorded

in each video. By deploying the proposed detector to the

training videos, for each category, a large-scale unlabeled

objectness proposals set {SU} can be obtained. We then

manually label a very small sub-set {SL
m} of objectness

proposals and train GPC on {SL
m}.

3In our implementation, the optical center of our virtual camera is set as
(250, 250), and focal length is 500. Consequently, a depth map of 500×500
resolution is obtained. We resize the depth maps to (224,224) for training.

In our approach, the binary GPC is adapted, and can easily

be extended to multi-class GPC if the environment is not

controllable. More specifically, the prior P (f |X) is modeled

as Gaussian N (0,K), where K is the covariance matrix of

all training examples X . In order to interpret features from

different modalities, we treat the kernel as the product of

kernels of different data domains:

More specifically, the prior P (f |X) is modeled as Gaussian

N (0,K), where K is the covariance matrix of all training

examples X . In order to interpret features from different

modalities, we treat the kernel as the product of kernels of

different data domains:

k(x, x′) = kI(xI , x
′
I) ∗ kD(xD, x′

D) (5)

where x
(,)
I is the first 4096-dimensional feature vector pro-

duced by fc7I of RGB-Net and x
(′)
D refers to the last 4096-

dimensional feature vector produced by fc7D of Depth-Net,

x = [x
(′)
I , x

(′)
D ]. In our approach, an RBF kernel is used for

k1 and k2:

kRBF (x, x
′) = α2 exp

−
‖x−x′‖

2β2 , (6)

The scale parameter α and deviation parameter β are hyper-

parameters of the kernel. Consequently, k has four hyper-

parameters.

In order to solve this non-conjugate problem in the posterior

estimation of the GPC, Laplace Approximation [26] is used

in our approach. The posterior P (f |X, y) in Eq. 2 can be

modeled as a multi-variant Gaussian and we approximate

the mean and Hessian of this Gaussian distribution through

the Gaussian-Newton method. More details of the Laplace

Approximation are given in Section VI.

Moreover, the hyper-parameters mentioned above are opti-

mized through maximizing the log marginal likelihood (the

log of the denominator of Eq. 2). As investigated in our

previous research [34], this step is of significant importance,

as the predictive probability can be well-spread after hyper-

parameter optimization. In this paper, the Broyden-Fletcher-
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Goldfarb-Shanno algorithm (BFGS) [35] is employed for the

optimization. BFGS is a first order derivative-based optimiza-

tion method in which the partial derivative of the marginal

likelihood with respect to the hyper-parameters is required

(calculated by Eq. 20). More details on the estimation of

hyper-parameters can be found in Section VI.

After the GPC is trained and hyper-parameters optimized,

we employ GPC to propagate labels to the large-scale unla-

beled dataset {SU}. We model the prediction confidence as

the predictive probability of GPC:

confidence = P (y∗|x∗, X, y) (7)

We set a confidence interval ∈ [τ, 1] and assign an object

label to those examples whose prediction confidence lies in

this interval, yielding a moderate-scale of labeled data {SL
GP }.

4) End-to-End Training using DCNN-GPC Labeled Data:

Having large-scale unlabeled data automatically labeled by

DCNN-GPC, sufficient training examples, i.e. {SL
m} and

{SL
GP }, are obtained to train RGB-Net and Depth-Net from-

end-to-end. At this stage, we replace GPC with a softmax loss

layer, connected with fully-connected layer fc8. We extend

the conventional multi-modal softmax loss (i.e. negative log

likelihood) [17] to the weakly-supervised case:

loss = −
∑
i∈SL

m

logL(softmax(ffc8([Ofc7I
i , O

fc7D
i ], θfc8)), yi)

−η
∑

j∈SL
GP

logL(softmax(ffc8([Ofc7I
j , O

fc7D
j ], θfc8)), yj)

(8)

where O
fc7I(D)
∗ is the output of fc7I(D), L is the likelihood

function, θ is the weight vector of fc8, and yi(j) refers to the

training label. η ∈ [0, 1] is the penalty factor of the DCNN-

GPC automatically labeled training data, set according to the

automatic annotation quality. In our implementation, the loss

of DCNN-GPC-labeled examples is treated equivalently to that

of manually-labeled examples (η=1.0), as our DCNN-GPC

yields satisfactory annotations.

It is worth noting that our DCNN-GPC is end-to-end

trainable as the DCNN and GPC can be implemented as

tensors. While from our experiments, we find that, via min-

imizing negative log likelihood of the GPC, the end-to-end

training suffers from local minima. A more practical way is

to freeze the DCNN and train the GPC when very small-

scale training examples are available. Once the moderate-

scale examples are annotated, we find that GPC cannot further

advance the classification result but slows down the forward-

propagation inference (because the computation of the non-

parametric models positively propagates to the number of

training examples). In this paper, GPC is only used for label

propagation in the weakly-supervised learning and we directly

use the softmax layer output for straight-forward deployment.

V. EXPERIMENTS

We report the following two sets of experimental results.

It is worth noting that our proposed detection pipeline is

weakly-supervised as image-level annotations (i.e. cropped im-

ages) rather than bounding-box annotations are required. The

proposed DCNN-GPC can be used standalone (without 3D

objectness detection) for semi-supervised object recognition.

In Section V-B, we first evaluate the performance of our

semi-supervised DCNN-GPC for RGB-D object recognition

using the Washington RGB-D object recognition benchmark4

[36]. We further evaluate the effectiveness of our proposed

weakly-supervised RGB-D object detection pipeline for a

novel real-world application, using our new dataset of indus-

trial objects (nuclear waste simulants) in Section V-C.

A. Pre-training

Before the two experiments, for initialization, the weights of

RGB-Net and Depth-Net are pre-trained on the ImageNet and

ModelNet datasets, respectively. More specifically, we directly

transplant the weights of the standard VGG16 ImageNet model

to RGB-Net. Then, we pre-train the proposed Depth-Net on

the 40-class subset of the Princeton Model-Net dataset5. There

are 12.4K 3D CAD models in total (9.8K for training, 2.4K

for validation). Following the procedure illustrated in Section

IV-B2, 290K depth maps are obtained from the training

models.

Since our goal is to utilize Model-Net dataset to pre-train

our Depth-Net (not to optimise 3D model classification to

maximise performance on the Model-Net challenge), in our

approach, we minimize the average negative log likelihood of

all 2.5D views. A mini-batch of 128 is used for learning with

Stochastic Gradient Descent (SGD). The learning rate is set

to 0.01 with a reduction of 10 times every 10K iterations.

Training converges after 30K iterations. The momentum is

fixed to 0.9 and weight decay is 5×10−4.

B. Washington RGB-D Object Recognition Dataset

TABLE II
COMPARISON WITH TOP-RANKING METHODS ON THE WASHINGTON

RGB-D DATASET. THE ACCURACY IN THIS TABLE IS OF %.

Supervised Methods RGB Depth RGB-D

CNN-RNN[37] 80.8 ± 4.2 78.9 ± 3.8 86.8 ± 3.3

Upgraded HMP[38] 82.4 ± 3.1 81.2 ± 2.3 87.5 ± 2.9

Multi-Modal[17] 84.1 ± 2.7 83.8 ± 2.7 91.3 ± 1.4

Hypercube Pyramid[39] 87.6 ± 2.2 85.0 ± 2.1 91.1 ± 1.4

STEM-CaRFs[14] 88.8 ± 2.0 80.8 ± 2.1 92.2 ± 1.3

(DE)2CO [40] 89.5 ± 1.6 84.0 ± 2.3 93.6± 0.9

RCFusion[41] 89.6±2.2 85.9±2.7 93.9±1.0

Semi-supervised Method RGB Depth RGB-D

Semi-CNN-RNN [42] 77.1 ± 2.3 71.8 ± 0.8 81.6 ± 1.4

Semi-CNN-SPM-RNN [43] 78.7 ± 1.4 75.4 ± 2.4 83.7± 1.3

Semi-DCNN [20] 85.5 ± 2.0 82.6 ± 2.3 89.2 ± 1.3

Ours 86.2 ±2.6 76.3± 2.5 90.2 ± 1.7

The Washington RGB-D object dataset comprises 300

objects organized in 51 categories. In this experiment, the

evaluation set (a subset of every 5 frames, giving a total of

41,877 RGB-D images) reported in Lai et al. [44] is used. We

follow the original training/validation splits. It is worth noting

that objectness-detection is not included in the Washington

dataset, hence only semi-supervised recognition i.e. DCNN-

GPC is evaluated in this experiment.

4https://rgbd-dataset.cs.washington.edu/
5http://modelnet.cs.princeton.edu/
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Following the experimental evaluation reported for existing

semi-supervised methods [43], [20], we also randomly select

5% (approximately 1,750) of the training examples as labeled

and the rest as unlabeled. We train our proposed DCNN-

GPC with the labeled examples and automatically annotate the

remaining 95% of unlabeled examples. Then the DCNN can be

trained end-to-end with a moderate number of automatically

annotated examples.

More specifically, we initialize the DCNN and train the

GPC on the 5% labeled data and then employ the trained

system to classify the remaining 95% unlabeled data. The

examples with high predictive probability are moved from

the unlabeled set {SU} to the GP-labeled set {SL
GP }. After

the label propagation, approximately 60K of 166K unlabeled

examples are automatically annotated. In this step, we found

that the recognition performance is robust to the confidence

interval (∈ [τ, 1]) parameter τ in the range between 0.5 and

0.8. We chose τ as 0.7 for the best performance. Moreover,

we also evaluated a different label propagation strategy, that is,

incrementally propagating the labels to instances with highest

predictive probability, however, there was little improvement

but significantly higher time consumption with this approach.

Therefore, a single batch label propagation strategy is used as

a trade-off between effectiveness and efficiency.

Having unlabeled instances automatically annotated, our

multi-modal DCNN can be trained end-to-end in three steps.

Firstly, we freeze the RGB-Net layers and fusion layers

(disable softmaxfusion), and finetune the Depth-Net with

mini-batch of 64, fixed learning rate 10−2 and weight de-

cay 5 × 10−4. This training converges after 20K iterations.

Secondly, we fine-tune both RGB-Net and Depth-Net (still

disabling softmaxfusion) with mini-batch of 32 and fixed

learning rate 10−3 for another 10K iterations. Finally, similar

to [17], we freeze the RGB-Net and Depth-Net layers and train

the fusion layer. A mini-batch of 32 and fixed learning rate

5 × 10−4 are used, and training converges quickly after 5K

iterations. We repeat this experiment ten times following the

original training/validation splits and the mean accuracy and

standard deviation are calculated.

As shown in Table II, our semi-supervised DCNN-GPC

achieves an average recognition accuracy of 86.2% for RGB,

76.3% for depth and 90.2% for RGB-D among 51 categories of

objects, which outperforms all compared state-of-the-art semi-

supervised approaches [42], [43], [20]. In contrast to these

parametric model based methods, non-parametric Gaussian

Process Classification is used in our approach, which has the

potential to be learned from fewer labeled training examples.

Moreover, we also train our DCNN in a fully supervised

form on all the examples, and the performance (average

accuracy) is 88.4% for RGB, 80.8% for depth and 91.8%

for RGB-D. Compared to fully-supervised DCNN (91.8%),

our weakly-supervised DCNN-GPC achieves a slightly lower

result (90.2%) using only 5% of training examples. This result

demonstrates the effectiveness of our DCNN-GPC for label

propagation.

Compared to other DCNN methods [16], [17], [18], [19],

[20], we use a deeper architecture for the RGB modality,

thereby achieving better RGB recognition performance. More-

Fig. 5. Some examples from the Birmingham nuclear waste simulants dataset.

over, unlike other methods, our Depth-Net uses raw depth data

for training, i.e. real end-to-end learning between raw sensor

data and the learning objective. Inference of the depth modal-

ity is more straightforward as no extra computation (color

mapping or low-level features) is required. For comparison,

dense surface normal extraction6 takes 1.5-3.0 seconds per

depth image after down-sampling to 0.5 cm voxel size and 0.3-

0.7 second with 1 cm voxel size. HHA encoding has higher

computation complexity as it is based on surface normals.

Our approach does not require depth data pre-processing,

which makes the real-time application possible. Moreover,

our multi-modal DCNN is pre-trained on different types of

data, and more distinctive classification views are trained for

different modalities. Though the performance of our depth-Net

is lower than the state-of-the-art, substantial improvement is

then obtained by fusing multi-modal DCNNs.

C. Real-world Nuclear Waste Simulants Recognition using

Weakly Supervised Learning

In this experiment, we evaluate the whole RGB-D object

detection/recognition pipeline in contrast with RGB-D ob-

ject classification. In today’s real-world applications such as

nuclear waste object detection and recognition, large-scale

bounding-box annotations are not practical. The state-of-the-

art semi-supervised RGB-D recognition method [20] does not

6Our implementation is based on PCL using 8-cores i7 CPU.
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TABLE III
STATISTICS OF OUR NUCLEAR STIMULANT OBJECT DATASET, TRAINING EXAMPLES, AND QUANTITATIVE RESULTS OF OUR PROPOSED DETECTION/RECOGNITION SYSTEM.

DETECTION PRECISION RATE, RECALL RATE AND F-SCORE OF EACH CATEGORY ARE GIVEN. T.E. STANDS FOR TRAINING EXAMPLES, PRESCI. FOR PRECISION, INST.W. FOR

INSTANCE-WISE, PIX.W. FOR PIXEL-WISE, OVE. FOR OVERALL AND AVE. FOR AVERAGE.

Category bottles cans chains cloth gloves metal obj. pipe join. plas. pipe sponges wood bloc. Ove./Ave.

Instance Amount 28/12 22/15 8/3 6/3 16/5 22/10 9/5 10/4 12/6 14/7 147/70

Videos 4 2 2 4 4 4 2 2 2 3 23

Unlabelled T.E. 20.5K 32.5K 18.3K 13.3K 8.6K 22.1K 21.9K 8.0K 9.0K 14.0K 163K

Labelled T.E. 48 56 26 45 35 48 28 20 32 32 524

GP Labelled T.E. 11436 15525 2322 4606 5298 6101 2287 1037 3223 4734 56.5K

Preci. of 3D R-CNN (inst.w.) 68.1 72.6 69.8 62.3 48.9 60.0 44.6 72.2 62.3 67.9 64.6

Recall of 3D R-CNN (inst.w.) 53.0 71.0 79.0 70.2 41.8 50.9 45.2 46.4 53.5 17.0 52.3

F-Score of 3D R-CNN 59.6 71.8 74.1 66.0 45.1 55.1 45.0 56.5 57.6 27.1 57.8

Preci. of YoloV3 (inst.w.) 38.7 52.1 100.0 76.5 90.9 100.0 100.0 100.0 73.3 95.8 55.1

Recall. of YoloV3 (inst.w.) 47.5 51.0 17.1 28.9 17.9 9.8 6.3 20.3 34.4 20.0 30.5

F-score of 3D RCNN (pix.w.) 42.7 51.5 29.2 42.0 29.9 17.9 11.9 33.7 46.8 33.1 39.3

Preci. of ours (inst.w.) 89.2 81.8 79.2 93.3 68.3 75.0 66.7 63.2 92.5 87.8 80.9

Recall of ours (inst.w.) 83.2 91.8 95.0 80.0 91.5 64.0 90.2 50.0 87.5 87.8 83.5

F-Score of ours (inst.w.) 86.1 86.6 86.4 86.2 78.2 69.1 76.7 55.8 89.9 87.8 82.2

Preci. of 3D R-CNN (pix.w.) 66.8 63.6 68.1 58.0 55.2 45.4 57.3 43.8 55.1 59.4 59.5

Recall of 3D R-CNN (pix.w.) 47.5 58.9 48.6 56.8 35.0 36.3 53.0 10.2 45.2 13.4 42.1

F-score of 3D RCNN (pix.w.) 55.5 61.1 56.7 57.4 42.8 40.4 55.1 16.6 49.7 21.9 49.3

Preci. of ours (pix.w.) 83.2 70.2 76.0 89.6 67.0 70.0 62.0 60.6 84.3 86.9 75.5

Recall of ours (pix.w.) 75.4 70.9 66.2 70.8 75.1 48.6 85.4 37.1 68.4 72.7 70.4

F-Score of ours (pix.w.) 79.1 70.6 70.8 79.1 70.8 57.3 71.8 46.0 75.5 79.1 72.9

provide the detection pipeline, and reproducing and optimizing

the training process on our dataset is unlikely to be possible

(source code is not published for [20]). Therefore, we only

compare with [20] on the Washington benchmark.

1) Baseline Methods: In this experiment, we implement

two baseline methods for comparison. In order to investigate

the advances of our proposed method, we compared our

method with both two-stage and end-to-end methods.

• 3D R-CNN. R-CNN [5] is a classic two-stage detection

approach which has fair performance but low frame

rate. In R-CNN, a 2D-based object proposal method is

used for objectness detection, with a pre-trained VGG-

16 Net for feature extraction and SVM for classification.

In our implementation, we upgrade the 2D-based object

proposal method to our proposed 3D objectness detection.

As a result, the running time of the whole detection

pipeline can be significantly boosted.

• Yolo v3 [45]. Compared to the previous end-to-end

detection methods, e.g. Yolo [7] and SSD [8], Yolo v3

is faster and stronger. We use the Darknet-53 model

with 416×416 images for this experiment. The base

network is pre-trained on the ImageNet dataset. For a

better performance, we use a ratio of 1:3 to feed positive

and negative bounding boxes in the training procedure.

We use a confidence of 0.25 to filter the detected objects.

All above parameters are set according to our practical

experience.

The two baseline methods are trained by using manually

labeled objectness proposals. This comparison aims to show

the advances of our proposed weakly-supervised DCNN over

supervised approaches, e.g. 3D R-CNN and Yolo v3, when

very few labeled data are available.

It is worth noting that we did not compare with instance

segmentation methods such as Mask-RCNN [46]. The reason

is two-fold: first, the mechanism of our proposed method is

an RGB-D based detection pipeline, and the boundary-aware

results can be obtained by 3D-based objectness detection

rather than image-based semantic segmentation; second, our

dataset provides image-level annotation and bounding-box an-

notation for training, however, the pixel-wise boundary-aware

annotation is not available. Therefore, we only compared with

detection methods, i.e. 3D R-CNN and Yolo v3.

2) Dataset: In order to evaluate our proposed weakly-

supervised deep learning approach for nuclear waste object de-

tection and recognition, we created a novel dataset comprising

videos and models of nuclear waste simulants7. In contrast to

most other RGB-D recognition challenges (typically involving

household or office objects), our application focuses on the

major societal problem of robotic decommissioning and clean-

up of nuclear waste, which involves an enormous variety of

contaminated objects and materials. In our dataset, there are

217 objects of 10 categories of objects which are common in

legacy nuclear waste repositories: plastic bottles, cans, chains,

cleaning cloths, gloves, metal objects, plastic pipes, pipe joints,

sponges, and wooden blocks. We randomly split all instances

into a training set (147 instances) and a testing set (60

instances), and all testing objects were previously unseen. Our

training data are mainly RGB-D video clips in which training

objects are placed on a table. In this experiment, the videos

are captured by a Kinect v2 in QHD resolution (540×960). In

each video, the camera trajectory covers approximately 180◦

field of view of the objects and the camera poses range from

30◦ to 60◦ above the horizon.

3) Implementation and Running Time: Our computer has an

i7 8-cores CPU and a NVIDIA TITAN X GPU (12G). In our

implementation, the IAI Kinect2 package8 is used to interface

with ROS and calibrate the RGB and depth cameras. Our

DCNN is based on the Caffe toolbox[27]. Our entire pipeline

is integrated into ROS9. The running time of our proposed

detection and recognition method is 2-3HZ for a QHD point

7The dataset is available online: https://sites.google.com/site/ romansbirm-
ingham

8https://github.com/code-iai/iai kinect2/
9http://www.ros.org/
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RGB image Our method (2D) Ground truth Our method (3D)

Fig. 6. The qualitative results. From left to right: RGB images, 2D semantic map of our method, ground truth, 3D semantic map of our method.

Yolo v3 3D R-CNN Our method Ground truth

Fig. 7. The qualitative results of the comparison experiment. From left to right: Yolo v3, 3D R-CNN, our method and the ground truth.
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metal objects (training) bottles (training) pipe joints (training)

testing scene 1 testing scene 2 testing scene 3

Fig. 8. A deeper analysis of the results of Yolo v3. The first row shows selected results on the training images and the second row selected results on
the testing data. We found that Yolo v3 suffers from over-fitting when large-scale training data is not available. As shown in the lower-middle figure, the
objects with novel background are not detected. In the lower-left figure, the objects of coarse scale are not detected and objects with similar appearance are
misclassified. In the lower-right figure, the cluttered objects and small objects are not detected.

cloud. The detection time is monotonically increasing with

the number of 3D points. Moreover, we also devised a lighter

DCNN architecture, which can run 3 times faster with only

slightly lower performance. Our pipeline can be boosted to

5HZ with point cloud down-sampling and the lighter DCNN

architecture. In comparison to previous state-of-the-art RGB-D

object detection methods, 4 seconds per frame (0.25HZ) was

achieved by [47] and 16 seconds per frame (0.0625HZ) by

[11]. The performance of our method is an order magnitude

greater, and can reasonably be described as near-real-time.

4) Training: 23 video clips were captured for training and

3 for testing. In each training video, training objects of a

specific category were placed on a table. Each object was

captured in different poses and from different viewpoints. Our

proposed objectness detection approach generated 163K un-

labeled object proposals. We manually labeled 524 examples

(i.e. bounding boxes) in total, and trained a binary DCNN-GPC

for each category. Statistics of our training data are detailed in

Table III. Having a DCNN-GPC trained by manually labeled

examples, the confidence (i.e. predictive probabilities) of the

163K unlabeled examples can be estimated by Eq. 7. If the

predictive probability of an example is larger than τ , then

the prediction is treated as confident and this example is

assigned the label of the corresponding category, otherwise

it is abandoned. In our implementation, we set τ to 0.7 for

all categories. A grid search (τ ∈ [0.1, 0.9]) is used to find

the optimal parameters. A stable performance can be achieved

with a wide range of τ ([0.5, 0.8]). In this procedure, 56.5K

of 163K unlabeled examples are automatically labeled by

DCNN-GPC. Then we fine-tune our multi-modal DCNN using

both GP-labeled and manually-labeled examples. For Yolo v3,

we use the original DarkNet implementation 10 and the training

follows the standard PASCAL VOC runtime.

10https://pjreddie.com/darknet/yolo/

5) Evaluation: As the parameters of our detector are

fixed, a ROC curve is not available. Instead, precision, recall

and F-score are used for evaluation. Unlike conventional

bounding-box-based detection methods, our approach gener-

ates boundary-aware (i.e. pixel-wise) detection results. Hence,

we evaluate these three metrics for both instance-wise and

pixel-wise cases. For evaluation, we first acquire keyframes

from the four testing videos according to visual odometry. For

each video, we uniformly select 10 frames from all keyframes.

In total, 40 testing frames are obtained. We densely annotated

all the objects in these 40 frames (approximately 1K objects).

In the instance-wise evaluation, detections are considered as

true or false positives if the overlap area between prediction

and ground truth exceeds 50%. In the pixel-wise evaluation,

true or false positives are counted between corresponding pix-

els. Quantitative results are shown in Table III and qualitative

results are shown in Fig. 6.

As shown in Table III, our approach achieves 80.9% average

precision, 83.5% recall, 82.2% F-score in the instance-wise de-

tection test, and 75.5% average precision, 70.4% recall, 72.9%

F-score in the pixel-wise detection test. We observe that the

difference between instance-wise and pixel-wise performance

can be attributed to 3D clustering error, i.e. an object may be

segmented as more than one cluster, and the small clusters are

ignored because of their small physical dimension. Moreover,

the boundary-aware detection is susceptible to point cloud

down-sampling, resulting in decreased precision of object

boundaries.

It is worth noting that we also implemented the cosine

distance on RGB values as the color connectivity Cc(p1, p2)
in Eq. 3 and we got very similar object-wise detection perfor-

mance and slightly lower pixel-wise detection performance.

That is, 74.7% precision, 68.1% recall, 71.2% F-score in

pixel-wise using RGB with cosine distance. Therefore, we
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use intensity (grayscale) value as the appearance clustering

condition in our 3D detector.

From deeper analysis, the categories of shiny objects, e.g.

metal objects and pipes, experience a lower precision and re-

call (approximately 70%/55%) compared to non-shiny objects,

e.g. bottles, sponges and wooden blocks (above 85%/85%).

This is because the missing depth data on the shiny surface

results in the reduced ability of our 3D-based detector. And

those missing depth values lead to a more significant reduction

in performance for pixel-wise evaluation. Moreover, a large

proportion of the voxels on flat or tiny objects is likely to be

misclassified as background in the plane removal step of the

object detection. As a consequence, the recall rates of small

or flat object categories (i.e. metal objects, cloth, gloves) are

lower than for regular size objects.

6) Comparison with Baseline Methods: The results sug-

gest that our weakly-supervised DCNN performs substantially

better than the fully supervised 3D R-CNN and Yolo v3,

when few labeled training examples are available (more than

20% above 3D R-CNN and 40% above Yolo v3 in F-Score).

Compared to 3D R-CNN and Yolo v3, our weakly-supervised

DCNN is more robust to scale-changes, the variance of poses

and complexity of background. This is because the moderate

number of automatically labeled data optimizes the DCNN

end-to-end.

The 3D R-CNN achieved a lower performance than our

proposed method with a precision of 64.6%, recall of 52.3%,

F-score of 57.8% at the instance level, and a precision of

59.5%, recall of 42.1%, F-score of 49.3% at the pixel level.

This significant reduction in performance can be attributed

to the limited training examples. Without weakly-supervised

label propagation, the classifier is unlikely to learn robustness

to pose variance. Moreover, without end-to-end learning, the

flat classifier, i.e. SVM, is unlikely to learn a good decision

boundary for objects with a similar appearance. For example,

as shown in Fig. 7, some wooden blocks, white plastic pipes

and yellow gloves are misclassified as background.

Compared to two-stage methods, the end-to-end methods

suffer from serious over-fitting when limited training examples

are available. To be more specific, Yolo v3 achieves on

average 55.1% precision, 30.5% recall and 39.3% F-score.

This performance is significantly lower than 3D R-CNN and

our proposed methods. From the failure cases shown in Fig.

8, we can find the following weakness of Yolo v3 in this

experiment. First, the detection is likely to fail when the

background is complex or unknown. This is because the

objectness localization needs much more data to generalize,

and 2D based detection is more sensitive to variance in the

background than 3D-based detection. Second, Yolo v3 is more

sensitive to the change of scale, while our proposed method

is invariant to the image scales. Third, Yolo v3 shows lower

capability in detecting small objects as an inherent limitation

of its network architecture. That is, the background will be

involved in the semantic feature if the size of the object is

smaller than the size of the feature grid. Lastly, RGB-based

categorization experiences difficulty in classifying objects with

similar appearances, e.g. cans and metal objects, while our

RGBD-based categorization is more robust in these cases.

VI. CONCLUSIONS

This paper proposed a novel weakly-supervised deep learn-

ing approach (DCNN-GPC) for detection and recognition of

nuclear waste objects. Compared to the previous research [2],

our approach is based on deep learning and is able to detect

and categorize unknown waste objects. In particular, our ap-

proach leverages the merits of parametric and non-parametric

models. That is, the parametric DCNN learns the discrimi-

native features as the deep kernel of a non-parametric GPC,

and the GPC can infer the multi-class predictive probabilities

within the same distribution for weakly-supervised learning.

The method, i.e. DCNN-GPC, is end-to-end, scalable and

Bayes-based. From a practical perspective, our approach is

trained using minimal annotated data (approximately 50 exam-

ples for each category) by propagating minimal labels to large-

scale unlabeled data. From the experiments, our proposed

DCNN-GPC shows its effectiveness in handling extremely

sparse training examples in the label propagation. We also

proposed a novel way to pre-train a DCNN for the depth

modality, by using large-scale virtual CAD data, enabling full

leveraging of depth data without color-mapping or low-level

features. Good adaptation from virtual data to real-world depth

data has been demonstrated.

Furthermore, a real-time (several frames per second) detec-

tion and recognition pipeline has been integrated and demon-

strated. Unlike previous methods, bounding-box annotations

are not required in training, but boundary-aware detection is

achieved. For evaluation, we created a novel industrial object

dataset, i.e. Birmingham nuclear waste simulants dataset,

and demonstrated that DCNNs can be weakly-supervised to

effectively solve novel real-world applications.

For future works, we will investigate the possibility of

proposing a more robust detection in consecutive RGB-D

stream with visual odometry [48]. We will further apply the

proposed object detection method to visually-guided manipu-

lation [49], [50], [51] and investigate the possibility to adapt

this approach to other types of data, e.g. 3D Lidar [52], [53],

[54].

APPENDIX 1: LAPLACE APPROXIMATION

Following Eq. 2, from Bayes’s rule, the posterior over latent

variables can be inferred by:

p(f |X, y) = p(y|f)p(f |X)/p(y|X)

∝ p(y|f)p(f |X)
(9)

Writing into log format, we can obtain the log posterior:

Ψ(f) = log p(f |X, y) ∝ log p(f |X) + log p(y|f) (10)

, where the prior of latent variable is a Gaussian f |X ∼
N (0,K):

log p(f |X) = −
1

2
fTK−1f −

1

2
log |K| −

Cn

2
log 2π (11)

, and p(y|f) is modelled by the soft-max function:

p(yci |fi) = πc
i = exp(f c

i )/

C
∑

c′=1

exp(f c′

i ). (12)
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In Laplace approximation, we compute the first order dif-

ferential of log posterior p(f |X, y):

∇ log p(f |X, y) , ∇ log p(f |X) +∇ log p(y|f)

= −K−1f + y − π
(13)

where, ∇ log p(f |X) = −K−1f and ∇ log p(y|f) = y − π.

π is the vector with the length of Cn, containing soft-max

probabilities of every latent variable πc
i . Then, the second order

differential can be obtained by:

∇∇ log p(f |X, y) = −K−1 −W, (14)

where W is a Cn × Cn matrix containing the ∂2

∂fc′
j

∂fc′′

k

log p(yci |fi), which can be calculated by:

∂2

∂f c′

j ∂f c′′

k

log p(yc
′

j |fj) =







πc′

j − πc′

j πc′′

k , if j = k, c′ = c′′

−πc′

j πc′′

k , if j = k, c′ 6= c′′

0, otherwise ,
(15)

In the implementation, W can be obtained by calculating

diag(π)−ΠΠT , in which Π is obtained by vertically stacking

diagonal matrices of diag(πc), and πc is a sub-vector of π
w.r.t category c. After the first and second order differentials

are computed, the Newtown’s method is applied to find the

maximum of latent variable:

fnew = (K−1 +W )−1(Wf + y − π). (16)

APPENDIX 2: HYPER-PARAMETERS OPTIMIZATION

From Laplace Approximation, the second order Taylor

expansion of the posterior p(f |X, y) is:

Ψ(f) ≈ Ψ(f̂)+
1

2
(f−f̂)T∇Ψ(f̂)+

1

2
(f−f̂)T∇∇Ψ(f̂)(f−f̂)

(17)

, where ∇Ψ(f̂ ) is zero. Then, substituting approximated

∇∇Ψ(f̂) (calculated by Eq.14) into the marginal likelihood,

we can obtain the Laplace approximation of marginal likeli-

hood:

p(y|X, θ) =

∫

p(y|f)p(f |X, θ)df =

∫

exp(Ψ(f))df

= exp(Ψ(f̂))

∫

exp(−
1

2
(f − f̂)T (K−1 +W )(f − f̂))df

(18)

The Gaussian integral can be solved analytically, then the log

marginal likelihood can be conducted as [26]:

log q(y|X, θ) ≃ −
1

2
f̂TK−1f̂ + yT f̂ −

n
∑

i=1

log(

C
∑

c=1

expf̂ c
i )

−
1

2
log |ICn +W

1

2KW
1

2 |

(19)

In Eq. 19, since f̂ and W has implicit relationship with

hyper-parameters θ, we can compute the partial derivative of

log q(y|X, θ) w.r.t. θ into explicit and implicit parts.

∂ log q(y|X, θ)

∂θj
≃

∂ log q(y|X, θ)

∂θj
|explict+

Cn
∑

i=1

∂ log q(y|X, θ)

∂f̂ c
i

∂f̂

∂θj
(20)

Then the explicit part can be solve by:

∂ log q(y|X, θ)

∂θj
|explict =

1

2
f̂TK−1 ∂K

∂θj
K−1f̂

−
1

2
tr((W−1 +K)−1 ∂K

∂θj
)

(21)

For the second term of Eq. 20, has:

∂ log q(y|X, θ)

∂f̂ c
i

= −Kf̂ c
i +

∂ log p(y|f̂)

∂f̂ c
i

−
1

2

∂ log |B|

∂f̂ c
i

(22)

We can utilize
∂q(f |X,y)

∂f
= 0 when f = f̂ , hence −Kf̂ c

i +

∇ log p(y|f̂ c
i ) = 0, yielding:

∂ log q(y|X, θ)

∂f̂ c
i

= −
1

2

∂ log |B|

f̂ c
i

= −
1

2
tr((W−1 +K)−1 ∂W

∂f̂ c
i

)

(23)

, in which W is the Cn × Cn matrix calculated by Eq.15.

Then we differentiate each element of Wj,k (in jth row and

kth column) w.r.t. a specific scalar f c
i . The elements of

∂Wj,k

∂f̂c
i

if j = k = i can be calculated as follows:



























(1− 2πc′

j )(πc′

j − πc′

j πc′′

k ), if c′ = c′′ = c

(1− 2πc′

j )(−πc′

j πc
i ), if(c′ = c′′) 6= c

−((πc′

j − (πc′

j )2)πc′′

k + πc′

j (−πc′′

k πc
i ), if , c′ 6= c′′, c = c′

−((−πc′

j πc
i )πk

c′′ + πc′

j (πc′′

k − πc′′

k πc
i ), if c′ 6= c′′, c = c′′

−((−πc′

j πc
i )πk

c′′ + πc′

j (−πc′′

k πc
i ), if c′ 6= c′′, c′′ 6= c

,

(24)

and the rest are zeros.

In Eq. 13, ∇ log p(f |X, y) should be 0 when f is at the max-

imum point. As a result, we can get, −K−1f̂+∇ log p(y|f) =
0, therefore, yielding f̂ = K(∇ log p(y|f)).

∂f̂

∂θj
=

∂K

∂θj
∇logp(y|f) +K

∇ logp(y|f)

∂f̂

∂f̂

∂θj
(25)

Substituting:
∇ log p(y|f)

∂f̂
= ∇∇ log p(y|f) = W ,

∇ log p(y|f) = y − π, and solving Eq. 25, we can get:

∂f̂

∂θj
= (I +KW )−1 ∂K

∂θj
(y − π) (26)

After obtaining ∂ log q(y|X, θ)/∂f̂ c
i and ∂f̂/∂θj by Eq. 22

and substituting them into Eq. 20, the derivative of Laplace

approximated distribution can be obtained.
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