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ABSTRACT In Wi-Fi fingerprint positioning, what we should most care about is the distance relation-

ship between the user and the reference points (RP). However, most of the existing weighted k-nearest

neighbor (WKNN) algorithms use the Euclidean distance of received signal strengths (RSS) as distance

measure for fingerprint matching, and the RSS Euclidean distance is not consistent with the position

distance. To address this issue, this paper analyzes the relationship between RSS similarity and position

distance, propose a novel WKNN based on signal similarity and spatial position. Firstly, we obtain the

weighted Euclidean distance (WED) by balancing the size between the RSS difference and the signal

propagation distance difference according to the attenuation law of the spatial signal. Then, we obtain

the approximate position distance (APD) by making full use of the position distances and WEDs between

RPs. Finally, the nearest RPs can be selected more accurately based on the APDs between the user and

different RPs, and the position of user can be estimated by the proposed WKNN based on the APD

(APD-WKNN) algorithm. In order to fully evaluate the proposed algorithm, we use three fingerprint

databases for comparison experiments with eight fingerprint positioning algorithms. The results show that

the proposed algorithm can significantly improve the positioning accuracy of WKNN algorithm.

INDEX TERMS Fingerprint positioning, weighted k-nearest neighbor, RSS similarity, position distance.

I. INTRODUCTION

With the rapid development of Location-based Services

(LBS), many positioning technologies and signal processing

methods [1]–[5] have been proposed. Due to the obstruction

of the building, the usability of indoor navigation satellite

signals is poor. This makes the Global Navigation Satellite

System (GNSS) unable to guarantee satisfactory position-

ing performance in the indoor environment [6]. Therefore,

various indoor positioning technologies have been proposed,

among which the Wi-Fi fingerprint positioning is widely

used because it can achieve positioning using only existing

network facilities.

The basic idea of Wi-Fi fingerprint positioning is to

use the received signal strength (RSS) of Wi-Fi signal to

The associate editor coordinating the review of this manuscript and

approving it for publication was Liangtian Wan .

characterize the spatial position. The positioning process can

be divided into the offline and online stages. In the offline

stage, the surveyors select some points with known coordi-

nates as reference points (RP), collect RSS from different

access points (APs) at each RP, and use all RPs’ RSS and

coordinates to establish a fingerprint database. In the online

stage, the RSS received by the user will be matched in the

fingerprint database, and the user’s position can be estimated

based on the best matching RPs. In positioning experiments,

some points with known coordinates are usually selected as

test points (TP), so the positioning accuracy can be evaluated

according to the estimated and actual positions of these TPs.

The method based on the nearest neighbor mechanism is

most widely used in fingerprint positioning, the Weighted

K-Nearest Neighbor (WKNN) [7] is the representative one.

The existing WKNN algorithms generally use the Euclidean

distance between RSS as the distance measure of fingerprint
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matching, which is called as Euclidean-WKNN in this paper.

However, the RSS similarity is not equal to the closeness of

the position, it is inaccurate to use RSS Euclidean distance to

measure the position distance between points in space, which

is mainly reflected in the following aspects:

(1) In Wi-Fi fingerprint positioning, what we should most

care about is the position distance between the TP and differ-

ent RPs. However, for an ideal signal environment, the dif-

ferences in RSS at different positions actually reflect the

difference in signal propagation distance.

(2) The free-space signal attenuation model [8] shows that

the RSS attenuation and the variation of propagation distance

are not a simple linear relationship.

(3) The propagation path of indoor signals is very com-

plicated, using only RSS information to estimate the position

distance will cause large positioning error. Therefore, in order

to accurately describe the position distance between points,

we must utilize the known position information in the posi-

tioning environment.

Therefore, this paper designs a new distance measure

based on the RSS similarity and spatial position distance,

and the WKNN based on approximate position distance

(APD-WKNN) algorithm is proposed.

II. RELATED WORKS

In actual positioning, the RSS value will present strong fluc-

tuations, the general approach is to collect raw RSS data dur-

ing a certain time at each position, then use the average value

as the offline or online RSS for fingerprint positioning. For

the Euclidean-WKNN algorithm, the RSS Euclidean distance

between the RP and the TP is calculated by:

EDi,∗ =

√

√

√

√

M
∑

u=1

(

RSSui − RSSu∗
)2

(1)

where EDi,∗ represents the RSS Euclidean distance between

the i-th RP and the TP. The RSSui and RSSu∗ are the average

value of the RSS collected at the i-th RP and the TP, where

the upper corner u indicates that the RSS came from the u-th

AP. M is the number of APs.

Then select the RPs with the minimum RSS Euclidean

distances from the TP as the nearest RPs and calculate the

coordinate weights of nearest RPs. Finally, the position of

the TP can be estimated by weighting the coordinates of the

nearest RPs, as shown in (2) and (3).

wi =
1
/

EDi,∗

K
∑

i=1

(

1
/

EDi,∗
)

(2)

(x, y) =

K
∑

i=1

wi · (xi, yi) (3)

where K is the number of the nearest RPs, wi and (xi, yi) are

the weight and the coordinate of the i-th RP, respectively.

Obviously, Euclidean-WKNN considers that a smaller RSS

Euclidean distance means that the RP is closer to the TP, so it

is assigned a larger weight to improve its contribution to the

TP position estimation.

Niu et al. [9] points out that different distance measures

have a significant impact on the nearest neighbor-based algo-

rithm. Kaemarungsi and Krishnamurthy [10] also points out

that using a simple RSS Euclidean distance for position esti-

mation may cause poor positioning performance. To address

this issue, many improved positioning algorithms are pro-

posed. In [9], the experimental results show that the WKNN

with Manhattan distance has better positioning performance.

In [11], to deal with the noise in the Euclidean distance cal-

culation, different weights are assigned to RSS according to

their importance. Ma et al. [12] improves Euclidean distance

by introducing the standard deviation of RSS to smooth the

signal fluctuation. Niu et al. [13] proposes a weighted KNN

method to assign different weights by defining the correlation

coefficient between APs and achieve room-level positioning

accuracy. Xue et al. [14] proposes the concept of the uneven

spatial resolution of RSS and designs a weighted algorithm

based on the signal attenuation model. However, the indoor

Wi-Fi signal propagation is very complicated, this algorithm

relies too much on the signal attenuation model and an accu-

rate path loss exponent is difficult to obtain [15], whichmakes

it have poor adaptability to various signal environments in

practice. Bi et al. [16] proposes a cluster-filtered WKNN

algorithm. It uses affinity propagation clustering algorithm to

cluster the nearest RPs according to their position distances

from each other, and the outliers are filtered out to reserve the

subset with a larger number of RPs. However, the selection

of RPs by this method is not based on the position distance

between the RP and the TP. Therefore, some RPs close to the

TPmay be discarded as outliers, resulting in large positioning

errors.

However, the methods mentioned above have not

addressed the problem of the inconsistency between the RSS

similarity and the position distance.

III. THE PROPOSED ALGORITHM

A. ANALYSIS OF THE RELATIONSHIP BETWEEN

DIFFERENT DISTANCES

Taking the Euclidean distance-based WKNN as an example,

the core idea of algorithm is to find the RPswith theminimum

Euclidean distances of RSS, and convert the coordinates of

RPs into the estimated position of the TP. We can see that

the purpose of calculating the RSS Euclidean distances is to

measure the position relationship between points. However,

to evaluate these position distances, we can only rely on the

RSS information. To make it easier to understand, we show a

situation where there is a TP, two RPs and an AP. As shown

in Fig.1, TP,RPi and RPj (the black points) represent the

test point, the i-th RP and the j-th RP, respectively. PD∗,PDi
and PDj (the black dotted lines) represent their corresponding

signal propagation distances. θi and θj represent the angle

between different signal propagation paths, which range from

0◦ to 180◦. RDi and RDj (the black solid lines) represent the
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FIGURE 1. The schematic diagram of the relationship between the real
position distance and the signal propagation distance.

real position distance from the TP to RPs. It should be noted

that the propagation paths of indoor signal are very complex,

the signal propagation distances mentioned in this paper only

refer to the distances represented by linear propagation path.

We can approximately regard the real position distance

and signal propagation distance as a triangular relationship.

We use the triangle cosine theorem to express the position

distance in terms of the propagation distance:

RDi,∗ =

√

PD2
i+PD

2
∗−2PDi ·PD∗ ·cos θi,∗

=

√

(PDi−PD∗)
2+2PDi ·PD∗ ·

(

1−cos θi,∗
)

(4)

RDj,∗ =

√

PD2
j +PD

2
∗−2PDj ·PD∗ ·cos θj,∗

=

√

(

PDj−PD∗

)2
+2PDj ·PD∗ ·

(

1−cos θj,∗
)

(5)

RDi,∗

RDj,∗
=

√

(PDi−PD∗)
2+2PDi ·PD∗ ·

(

1−cos θi,∗
)

√

(

PDj−PD∗

)2
+2PDj ·PD∗ ·

(

1−cos θj,∗
)

(6)

The θi,∗ ranges from 0◦ to 180◦, and (1 − cos θi) is

greater than 0. Both (PDi − PD∗)
2 and 2PDiPD∗ (1 − cos θi)

are the second-order function of the propagation distance.

Therefore, we assume that their contributions to RDi are basi-

cally consistent. Moreover, in nearest neighbor-based algo-

rithms, the proportion of the distances from different RPs to a

TP, that is RDi,∗
/

RDj,∗, should be what we care about, not the

specific values of distances (the values of RDi,∗ and RDj,∗).

In other words, based on the proportion of different position

distances, we can determine the contribution of different RPs

to the position estimation. Motivated by these considerations,

under the condition that the proportion of position distance

does not deviate greatly, we make approximations to (6).

The proportionate relationship of position distances can be

described by:

RDi,∗

RDj,∗
≈

√

(PDi − PD∗)
2

√

(

PDj − PD∗

)2
·

√

2PDi · PD∗ ·
(

1 − cos θi,∗
)

√

2PDj · PD∗ ·
(

1 − cos θj,∗
)

=
△PDi

△PDj
·

√

2PDi ·
(

1 − cos θi,∗
)

√

2PDj ·
(

1 − cos θj,∗
)

(7)

△PDi =

√

(PDi − PD∗)
2 (8)

△PDj =

√

(

PDj − PD∗

)2
(9)

where △PD represents the propagation distance difference.

The above analyses indicate that the proportion of real

position distance is related to the proportion of signal prop-

agation distance difference, and they have a non-linear rela-

tionship. Therefore, this paper considers two relationships:

the relationship between the RSS and signal propagation

distance difference; the relationship between the real position

distance and signal propagation distance difference.

B. WEIGHTED EUCLIDEAN DISTANCE OF RSS

Now, let us analyze the relationship between the RSS

and signal propagation distance difference theoretically.

In Wi-Fi positioning systems, the information we can easily

get from the receiver is the RSS, name and position address of

the AP. Therefore, the RSS is necessary information for esti-

mating the signal propagation distance. Many signal atten-

uation models are summarized in previous work [17]. For

convenience, the log-distance model is adopted in this paper.

As indicated in [8], it can be described by:

PL
(

PDui
)

= PL (PD0) − 10ηlog10

(

PDui
PD0

)

(10)

where PDui represents the signal propagation distance from

the u-thAP to the i-thRP.PD0 is the reference signal propaga-

tion distance and usually set to 1 m. PL
(

PDui
)

represents the

RSS value of the u-thAP at the i-thRP. η is the path loss expo-

nent, which varies with different signal propagation paths

and generally ranges from 1 to 6 in indoor environment [18].

According to (10), the RSS difference can be described by:

△RSSui,∗ = RSSui − RSSu∗

=

(

PL (PD0) − 10ηlog10

(

PDui
PD0

))

−

(

PL (PD0) − 10ηlog10

(

PDu∗

PD0

))

= −10ηlog10

(

PDui
PD0

)

+ 10ηlog10

(

PDu∗

PD0

)

= −10η
(

log10
(

PDui
)

− log10
(

PDu∗
))

(11)

where △RSSui,∗ is the difference between RSSui and RSSu∗ .

We can see that the RSS difference has a logarithm relation-

ship with the propagation distance.

Table 1 lists the simulated values of RSS and propagation

distance calculated by the signal attenuation model. The path

loss exponent η is 3, the reference distance PD0 is 1 m and

PL (PD0) is –35 dBm. We can see that for the same size of

RSS difference, the sizes of propagation distance difference

under different RSS values are different. In other words,

given the same size of 1RSS, a pair of small RSS values

produces a large 1PD. This phenomenon is called as the

uneven spatial resolution of RSS in [14]. As indicated in (1),

the size of Euclidean distance depends only on the difference
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TABLE 1. RSS value and signal propagation distance based on simulation
data.

value of RSS, without considering the overall value of RSS.

Therefore, the Euclidean distance cannot accurately measure

the signal propagation distance difference.

To describe the difference between difference propaga-

tion distance using the RSS more accurately, we present the

weighted Euclidean distance (WED). The specific approach

is as follows:

For each pair of TP and RP, we use the average value

to represent the overall RSS value associated with each AP,

denoted by:

MRSSui,∗ =
1

2

(

RSSui + RSSu∗
)

(12)

where MRSSui,∗ is the average RSS of the i-th RP and the

TP, and u denotes the u-th AP. Then, we balance the size of

RSS difference and that of Euclidean distance by assigning

weights to the RSS from different APs. This weight is called

as the signal weight (SW) and denoted by λ. For the i-th RP,

the SW associated with the u-th AP is calculated by:

λui,∗ =

(

MRSSui,∗

)2

M
∑

u=1

(

MRSSui,∗

)2
(13)

In this paper, the RSS readings from the receiving device

are in dBm and negative. Therefore, a pair of small MRSS

can produce a large SW. According to the previous analysis,

we know that for the same RSS difference value, a pair

of small (large) RSS values will produce a large (small)

propagation distance difference. Therefore, considering the

contribution of RSS differences from each AP to the size of

propagation distance difference, the WED is calculated by:

WEDi,∗ =

√

√

√

√

1

M

M
∑

u=1

λui,∗

(

RSSui − RSSu∗
)2

(14)

where WEDi,∗ represents the WED between the i-th RP and

the TP. M denotes the number of the same APs detected

at the RP and TP. Since the value of M is not constant at

different points, to ensure the fairness of distance comparison,

the WED is averaged by M . It can be concluded that the

introduction of the SW can well balance the relationship

between RSS and the signal distance. In other words, com-

pared with Euclidean distance, the WED can be more accu-

rate in describing the signal propagation distance difference.

C. THE WKNN ALGORITHM BASED ON APPROXIMATE

POSITION DISTANCE

Let us continue to analyze the non-linear relationship

between the real position distance and signal propagation

distance difference. To our knowledge, the angle θ in (6) is

difficult to obtain under the current Wi-Fi positioning sys-

tems. In addition, due to the complexity of indoor signal prop-

agation, we cannot get a unified expression of this non-linear

relationship. Therefore, the non-linear relationship should be

described specifically for each pair of points. The distance

weight (DW), denoted by γ , is introduced and the complex

non-linear relationship of (6) is simplified into a proportional

relation:

RDi,∗

RDj,∗
=

△PDi

△PDj
· γi,j (15)

where γi,j denotes the DW associated with the i-thRP, the j-th

RP and the TP, which represents the non-linear relationship

between the real position distance and the signal propagation

distance difference.

Firstly, we calculate the WEDs between the TP and all

RPs, and C RPs with the shortest WED are selected, called

initial RPs. Then, we continue to calculate theWEDs and real

position distances between initial RPs.

The WED between the i-th and j-th RPs is calculated by:

WEDi,j =

√

√

√

√

1

M

M
∑

u=1

λui,j

(

RSSui − RSSuj

)2
(16)

The real position distance is calculated by:

RDi,j =

√

(

xi − xj
)2

+
(

yi − yj
)2

(17)

Now, the DW of the i-th RP, can be obtained by:

γi =
1

C − 1

∑

j∈{1,...,C},j 6=i

RDi,j

WEDi,j
(18)

where γi describes the proportional relation of the real posi-

tion distance to the WED between the i-th RP and the other

initial RPs. It can be concluded that for each initial RP,

the position distance between it and the TP can be approx-

imately estimated by its DW and the corresponding WED.

Therefore, we design a new distance measure, called approx-

imate position distance (APD), to describe the real position

distance between points and enhance the WKNN algorithm.

The APD between the i-th RP and the TP can be calculated

by:

APDi,∗ = γi ·WEDi,∗

= γi

√

√

√

√

1

M

M
∑

u=1

λui,∗

(

RSSui − RSSu∗
)2

(19)
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We further select K RPs with the shortest APDs in the

initial RP set, which are called as the nearest RPs. The

coordinate weight (CW) of the nearest RPs, denoted by ω,

can be calculated by:

ωi =

1

APDi,∗
K
∑

i=1

1

APDi,∗

(20)

where ωi is the CW of the i-th RP. Finally, the position of the

TP can be estimated by:

(x, y) =

K
∑

i=1

ωi · (xi, yi) (21)

The flow chart of the proposed algorithm is shown in Fig.2,

and the symbol expression and definition of the main vari-

ables in this paper are also listed in Table 2.

FIGURE 2. Flow chart of the proposed algorithm.

TABLE 2. The symbol and definition of main variables.

To evaluate the performance of the designed distance mea-

sure APD in the ideal signal environment, we get the sim-

ulation data from the signal attenuation model and make

the comparison with the Euclidean distance. For conve-

nience, two APs, three RPs and six TPs are considered in

a two-dimensional coordinate system. Table 3 lists the coor-

dinates and RSS used for the comparison. Table 4 lists the

ratios of the distances from the TP to three RPs, and the sum

of the ratios equal to 1 for each TP. It should be noted that

no matter which distance measure is used to measure the real

position distance between location points, there will still be

deviations, which is inevitable. We can see that compared

with the Euclidean distance, the ratio error between APD

and real position distance is less than Euclidean distance,

that is, the distance ratio with APD is closer to the real

position distance. The designed distance measure has better

performance in measuring the position distance, which is

favorable for position estimation.

IV. EXPERIMENTS AND ANALYSIS OF RESULTS

In this section, we adopt three fingerprint databases (namely

Database1, Database2, Database3) and introduce eight algo-

rithms to fully evaluate the performance of our proposed

algorithm. The databases represent different RP distributions

and data sizes in real indoor environments, the algorithms

used for comparison can be divided into two types: the nearest

neighbor-based algorithms and the machine learning-based

algorithms.

A. EXPERIMENTAL DATA

For the Database1 and Database2, the Wi-Fi fingerprints are

both collected on the second floor of the laboratory building

in Harbin Engineering University, and the collection device

is Xiaomi MIX2 Android smartphone with the Wi-Fi signal

sampling frequency of 1 Hz. During the RSS collection of

all RPs and TPs, the smartphone is pointing north. As shown

in Fig. 3, for Database1, 10 APs are deployed, 197 points

(denoted by the black solid dots) are selected as the RPs,

and 109 points (denoted by the green squares) are selected

as the TPs. The distance between adjacent RPs is 1.2 m,

which can be considered as an intensive RP distribution. The

collecting durations of each RP and TP durations of each RP

and TP are 120s and 60s, respectively. For the positioning

using the machine learning-based algorithms, the RPs and

TPs are recorded as the training dataset and testing dataset,

respectively.

To evaluate the proposed algorithm under different RP

densities, we reduce the number of RPs in the Database 1

to get the Database 2. In Database2, the number of APs

and the collecting duration of each point are the same as

the Database1. As shown in Fig. 4, there are 100 RPs and

109 TPs in Database2. The number of RPs is nearly half

that of Database 1, and the distance between RPs is also

increased, which is considered as a sparse RP distribution

in this paper. It should be noted that the RSS value can be

influenced by the multipath effect caused by signal reflection,

refraction and diffraction, as well as the signal occlusion by

body [19]. Therefore, to reduce these influences, the RSS

preprocessing method in [20] is adopted in the establishment
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TABLE 3. The coordinates and RSS calculated by the signal attenuation model.

TABLE 4. The distance measurement comparison based on simulation data.

FIGURE 3. The sampling positions of Database1 with an intensive distribution of RPs.

of the Database1 and Database2. In the offline and online

stages, the strongest RSS observations of each point are

averaged as the RSS measurement for positioning. In this

way, the processed RSS values are smoother, which can help

achieve better positioning performance.

Many works have been done to solve the Wi-Fi fingerprint

positioning problem. However, each method uses its own

database to display the positioning results, which makes it

difficult to objectively compare the performance of these

methods. Therefore, to evaluate our proposed algorithm with

other algorithms more fairly, the public fingerprint database

UJIIndoorLoc [21] is used in the comparison experiments and

called as Database3. UJIIndoorLoc was used by participants

in the Evaluating Ambient Assisted Living (EvAAL) compe-

tition at IPIN 2015 [22], where the participants subjected their

Wi-Fi fingerprinting solutions to a competitive benchmarking

test. The database is a multi-building and multi-floor indoor

fingerprint database, the data are collected by 25 different

Android devices and 20 different participants in the buildings

of University of Jaume I (UJI), Spain. The database consists

of 19937 training samples and 1111 testing samples, which

can be considered as a large database. The testing samples

are taken four months later than the training ones, thus the

obtained positioning error with the UJIIndoorLoc can be

more realistic.

B. INFLUENCE OF THE C-VALUE ON THE PROPOSED

ALGORITHM

In our proposed APD-WKNN algorithm, we select the initial

RPs based on the WSD. Therefore, it is necessary to analyze

the influence of the number of the initial RPs (C-value) on

the performance of the proposed algorithm. To ensure the

objectivity of the results, we compare the effects of different

C-values given K -values on the results. It should be noted
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FIGURE 4. The sampling positions of Database2 with a sparse distribution of RPs.

TABLE 5. The positioning result under different K-values and C-values on Database1 and Database2.

TABLE 6. The positioning result under different K-values and C-values on Database3.

that for our proposed algorithm, only when C-value is not

less than K -value and 2, the DWs can affect the position-

ing results. Considering the densities of RPs in different

databases, for the Database1 and Database2, the C-values

ranging from 3 to 10 are tested with the K -values from 3 to 4.

For the Database3, the C-values ranging from 3 to 20 are

tested with the K -values from 3 to 6. Tables 5 and 6 list

the mean error and root mean square error (RMSE) under’

different K -values and C-values in the Database1, Database2

and Database3. The positioning error is the straight-line dis-

tance between the real position and estimated position.

As shown in Table 5, on the condition of the K -values are

3 and 4, the average positioning error reaches the minimum

of 2.32 m and 2.24 m when the C-values are 8 and 7, respec-

tively. Because of the intensive RP distribution in Database1,

a largeC-value within a certain space range can provide more
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accurate measurement of the numerical relation between the

WED and the position distance. If setting an excessively

small C-value, some valid RPs near the TP may be lost.

For the Database2, we can see that the average positioning

error reaches the minimum of 3.08 m and 3.27 m when the

C-values are 4 and 6, respectively. The distances between

RPs in Database2 are larger than Database1, which can be

regarded as a sparse RP distribution. If setting an oversize

C-value, the coverage of initial RPs increases accordingly.

This will cause that, for a TP and its nearest RPs, the calcu-

lated DWs may not reflect the relation between their WEDs

and position distances well.

As shown in Table 6, for the Database3, when the K -value

ranges from 3 to 6, the best positioning results are obtained

with the C-values of 9, 13, 11 and 14, respectively. We know

that the RSS in Database3 come from different devices and

have not been preprocessed, which cause that for each pair

of initial RPs, the proportions of their real position distance

to the WED will vary more. Therefore, adding or subtracting

an initial RP can have a greater impact on the calculation of

APD and hence the positioning results.

Based on the experimental results in three databases,

we can find that the effect ofC-value on the positioning result

is insignificant when theC-value is within a certain range. For

a constantK -value, the standard deviations of the mean errors

under different C-values are between 0.33 m and 0.57 m with

Database1 and Database2, between 0.54 m and 0.91 m with

Database3. A suitableC-value should be determined based on

the site size and the RP distribution. In this paper, we provide

an empirical method to set the C-value: For the intensive

distribution of RPs, the C-value can be selected in the range

of 1 to 3 timesK -value; For the sparse distribution of RPs, the

C-value can be selected in the range of 1 to 2 times K -value.

C. POSITIONING PERFORMANCE COMPARISON WITH

NEAREST NEIGHBOR-BASED ALGORITHMS

In this section, we compare the positioning accuracy of

the proposed APD-WKNN algorithm with four nearest

neighbor-based algorithms (Euclidean-WKNN, Manhattan-

WKNN, Xue et al. [14] and Bi et al. [16]) on three

Databases. The Euclidean-WKNN and Manhattan-WKNN

are the WKNN algorithms that use the Euclidean distance

andManhattan distance as the distance measure, respectively.

Xue proposed a physical distance of RSS for indoor position-

ing, and the path loss exponent used in Xue’s algorithm is

set to 3 in the comparison experiments. Bi used the affinity

propagation clustering (APC) algorithm to cluster the nearest

RPs based on their position distances, and the most probable

sub-cluster is reserved for position estimation by comparing

the number of RPs. The positioning error in terms of the

cumulative distribution function (CDF) on three databases is

shown in Fig. 5, 6 and 7, respectively. Tables 7, 8 and 9 list

the error statistics of these algorithms.

On Database1, the K -value is set to 3 for all algorithm, and

the C-value of the proposed algorithm is set to 8. As shown

in Fig. 5, the proposed algorithm obtains the best positioning

FIGURE 5. Comparison of CDF positioning errors between the proposed
algorithm and related nearest neighbor-based algorithms on Database1.

accuracy. For instance, when the error threshold is 3 m and

5 m, the CDF of the proposed algorithm is 75.26% and

91.35%, which is higher than the 53.34% and 73.98% of

Euclidean-WKNN, the 48.90% and 73.05% of Manhattan-

WKNN, the 63.29% and 88.12% of Xue, and the 69.56% and

89.84% of Bi. As shown in Table 7, compared with other

four algorithms, the mean positioning error improvements

of APD-WKNN are 45.28%, 27.27%, 39.74% and 20.82%,

the RMSE improvements are 48.33%, 20.80%, 36.09% and

15.24%, respectively.

TABLE 7. Positioning error statistics between the proposed algorithm
and related nearest neighbor-based algorithms on Database1.

On Database2, the K -value is set to 3 for all algorithm, and

the C-value of the proposed algorithm is set to 4. As shown

in Fig. 6, the proposed algorithm obtains the best positioning

accuracy. When the error threshold is 3 m and 5 m, the CDF

of the proposed algorithm is 70.53% and 87.12%, which is

higher than the 46.92% and 77.82% of Euclidean-WKNN,

the 43.85% and 74.43% of Manhattan-WKNN, the 62.56%

and 82.15% of Xue, and the 58.41% and 83.90% of Bi.

As shown in Table 8, the mean positioning error improve-

ments of APD-WKNN are 33.04%, 38.03%, 14.68% and

18.52%, and the RMSE improvements are 36.46%, 40.14%,

21.60% and 28.16%, respectively.

On Database3, theK -value andC-value are set to 5 and 11,

respectively. As shown in Fig. 7, when the error threshold

is 4 m and 6 m, the CDF of APD-WKNN is 53.94% and

70.03%, which are higher than the 42.11% and 61.25% of

Euclidean-WKNN, the 34.58% and 49. 05% of Manhattan-

WKNN, the 30.08% and 43.57% of Xue, and the 48.14%
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FIGURE 6. Comparison of CDF positioning errors between the proposed
algorithm and related nearest neighbor-based algorithms on Database2.

TABLE 8. Positioning error statistics between the proposed algorithm
and related nearest neighbor-based algorithms on Database2.

FIGURE 7. Comparison of CDF positioning errors between the proposed
algorithm and related nearest neighbor-based algorithms on Database3.

and 65.31% of Bi. Xue uses the signal propagation model

with fixed path loss exponent to estimate the space distance

between points, while the database3 has a very large cover-

age, so the difference of signal propagation environment in

different positions is more intense, which makes the algo-

rithm have the worst positioning accuracy on Database3. For

APD-WKNN and Bi, these two algorithms both select the

RPs twice, and use the position distance between the RPs in

the second selection of the nearest RPs, which can reduce the

deviation of distance measurement caused by only using RSS

in a large database. Therefore, we can find that the perfor-

mance of APD-WKNN is slightly better than Bi, and both

TABLE 9. Positioning error statistics between the proposed algorithm
and related nearest neighbor-based algorithms on Database3.

two algorithms outperform the others. As shown in Table 9,

the mean error improvements of APD-WKNN are 20.60%,

39.67%, 44.12% and 7.40%, and the RMSE improvements

are 6.61%, 35.25%, 33.86% and 3.81%, respectively.

D. POSITIONING PERFORMANCE COMPARISON WITH

MACHINE LEARNING-BASED ALGORITHMS

In addition to the classical deterministic algorithms based

on the nearest neighbor mechanism, many Wi-Fi finger-

print positioning algorithms have been proposed using

various machine learning methods. Therefore, to evaluate

the proposed algorithm more fully, we compare the pro-

posed algorithm with four machine learning-based algo-

rithms (Wang et al. [23], Khatab et al. [24], Xu et al. [25]

and Yu et al. [26]). Wang implemented a tree fusion-based

regression model for fingerprint positioning. Khatab intro-

duced the autoencoder (AE) to extract Wi-Fi features and

used the Extreme Learning Machine (ELM) for fingerprint

positioning. Xu adopted the AE for feature extraction and

used the Multi-Layer Perceptron (MLP) for position estima-

tion. Yu utilized the Radial Basis Function-based Support

Vector Machine (RBF-SVM) for fingerprint positioning and

achieved high accuracy. The parameters of these algorithms

are set to the same as them in the literatures, and no changes

are made in this paper. The K -values and C-values are also

the same as the previous section. The positioning error in

terms of CDF is shown in Fig. 8, 9 and 10, respectively.

Tables 10, 11 and 12 list the positioning error statistics.

FIGURE 8. Comparison of CDF positioning errors between the proposed
algorithm and machine learning-based algorithms on Database1.
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The positioning error on Database1 is shown in Fig. 8 and

Table 10. The 50%, 75% and mean error of the APD-WKNN

are 1.58m, 3.06m and 2.32m, which are smaller than 1.79m,

3.34 m and 2.74 m of Wang, 1.70 m, 3.83 m and 2.98 m of

Khatab, 2.15 m, 4.09 m and 3.35 m of Xu, 2.75 m, 4.59 m and

3.89 m of Yu. Compared with the listed neighbor-based algo-

rithms, the mean error improvements of the APD-WKNN on

Database1 are 15.33%, 22.15%, 30.75% and 40.36%, and

the RMSE improvements are 9.15%, 18.71%, 26.65% and

34.74%, respectively.

TABLE 10. Positioning error statistics between the proposed algorithm
and machine learning-based algorithms on Database1.

The positioning error on Database2 is shown in Fig. 9 and

Table 11. The 50%, 75% and mean error of the APD-WKNN

are 1.97m, 3.37m and 3.08m, which are smaller than 2.40m,

3.90 m and 3.53 m of Wang, 2.29 m, 4.16 m and 3.96 m of

Khatab, 2.78 m, 4.49 m and 4.33 m of Xu, 2.71 m, 5.19 m and

4.74 m of Yu. Compared with the listed neighbor-based algo-

rithms, the mean error improvements of the APD-WKNN on

Database2 are 12.75%, 22.23%, 28.87% and 35.02%, and

FIGURE 9. Comparison of CDF positioning errors between the proposed
algorithm and machine learning-based algorithms on Database2.

TABLE 11. Positioning error statistics between the proposed algorithm
and machine learning-based algorithms on Database2.

the RMSE improvements are 9.51%, 19.08%, 28.74% and

32.44%, respectively.

FIGURE 10. Comparison of CDF positioning errors between the proposed
algorithm and machine learning-based algorithms on Database3.

TABLE 12. Positioning error statistics between the proposed algorithm
and machine learning-based algorithms on Database3.

The positioning error on Database3 is shown in Fig. 10 and

Table 12. We can find that our proposed algorithm, Wang’s

and Khatab’s algorithms obtain similar positioning accuracy.

The 50% errors of the three algorithms are 4.30 m, 3.93 m,

4.85 m, and the 75% errors are 8.22 m, 7.81 m, 8.89 m. Their

mean errors are 7.05 m, 6.32 m and 7.23 m, respectively.

Among them,Wang’s algorithm has the highest average posi-

tioning accuracy. The method with the lowest accuracy is still

Yu’s, and its average positioning error is only 10.64m.We can

see that the positioning accuracywith Database3 is lower than

Database1 and Database2, this is because the sampling data

of Database3 are the original data without averaging or other

preprocessing, collected by 25 different devices and 20 differ-

ent participants, this data feature makes it more challenging

to use nearest neighbor-based algorithm for positioning. For

machine learning-based algorithms, the fingerprint feature

extraction can reduce the influence of heterogeneous devices’

RSS inconsistency on positioning. Besides, the powerful clas-

sification and fitting capabilities of machine learning enable

them to cope with such large database. Nevertheless, we can

see that, by using the more effective distance measure and

accurate weigh, the mean positioning error of the proposed

algorithm is still at a low level, which is 10.19% less than Xu

and 33.74% less than Yu.

Moreover, compared with the positioning methods based

on machine learning, our proposed algorithm has no training

process and does not need adjusting numerous parameters.
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Therefore, the complexity of the proposed algorithm is lower

than that of machine learning-based algorithms, which is very

important for indoor positioning based on mobile devices

such as smartphones.

V. CONCLUSION

This paper proposes a novel WKNN algorithm based on

a new distance measure for Wi-Fi fingerprint positioning.

We first analyze the relationship between RSS similarity

and signal propagation distance difference, and present the

weighted Euclidean distance based on the attenuation law

of the spatial signal. Then, by combining the weighted

Euclidean distance with the known position information of

RPs, the approximate position distance is designed and used

for improving the WKNN algorithm. The positioning exper-

iments are conducted with three databases, and the pro-

posed algorithm is compared with eight different types of

algorithms to evaluate the performance. The results show

that the designed approximate position distance outperforms

other distance measures in describing the position relation

of points. The mean positioning accuracy of the proposed

algorithm outperforms the Euclidean-WKNN by 45.28%,

38.41% and 20.60%, outperforms the SVM-based algorithm

by 40.36%, 37.94% and 33.74% in three databases, respec-

tively. In addition to the K-value and C-value, the algorithm

does not need to set additional parameters, and the effect of

C-value on the positioning result is insignificant when the

C-value is within a certain range. In future work, we will

focus on the automatic construction and update of database

to reduce the work of offline field survey.
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