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A novel wideband circularly polarized antenna array using sequential rotation feeding network is presented in this paper. The
proposed antenna array has a relative bandwidth of 38.7% at frequencies from 5.05GHz to 7.45GHz with a highest gain of
12 dBi at 6GHz. A corresponding left-handed metamaterial is designed in order to increase antenna gain without significantly
affecting its polarization characteristics. The wideband circularly polarized antenna with 2.4GHz of bandwidth is a promising
solution for wireless communication system such as tracking or wireless energy harvesting from Wi-Fi signal based on IEEE
802.11ac standard or future 5G cellular. A potential application of this antenna as a receiving antenna for RF-DC device to
obtain DC power for a wireless sensor node from Wi-Fi signal is shown.

1. Introduction

In the recent years, wireless sensor network (WSN) has
attracted the attention in wireless communication domain
for monitoring, medical observation, military surveillance,
localization, smart home, smart building, and smart city
[1]. A common WSN consists of two main parts: (i) a system
of wireless sensor nodes attached to nonrechargeable batte-
ries and (ii) a base station. The life cycle of primary batteries
becomes the main drawback for wireless sensor nodes where
the cost for maintenance and replacement of the batteries is
unavoidable. RF energy harvesting or wireless power transfer
(WPT) is proposed as a durable power source in WSN [2].

This paper presents an efficient RF energy harvesting
solution. The RF energy harvesting cell is often integrated
in each self-powered sensor node to convert surrounding
RF power into DC power source. Traditional RF harvester
includes a receiving antenna, a RF band-pass filter, a

matching network, a rectifier with low-pass filter, and a ter-
minal load. The received RF power at the output of antenna
is delivered to rectifier through band-pass filter and
impedance-matching circuit to be converted into high-
efficient DC power as discussed later. The rectenna, some-
times known as rectifying antenna, plays the central role in
converting RF power into DC power in RF energy harvesting
as well as WPT system, and it has attracted significant atten-
tion in the past few years.

Solutions to high conversion efficiency rectenna were
reported in [3–8] where the influence of receiving antenna
on system performance (in term of conversion efficiency
and working distance) has been systematically investigated
in [6, 9]. A high-gain antenna is preferred for the longest
distance applications while a wideband operation antenna
allows multiple frequency channels in order to reduce
inter-channel-interference and to receive random RF signals
in ambient environment such as GSM 900, GSM 1800,
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UMTS, Wi-Fi, andWiMAX. Furthermore, a circularly polar-
ized (CP) antenna is desirable to receive electromagnetic
energy from different polarizations to improve the total
conversion efficiency. Therefore, a wideband and high-
gain CP antenna is a good candidate to collect energy from
random polarization at different operating frequencies for
RF energy harvesting.

Circularly polarized antennas can be achieved using
single-feed or multiple-feed structures. Several antennas for
RF energy harvesting have been reported in [10–15]. A
multilayer patch antenna with CP performance is presented
for energy harvesting application in [10]. The omnidirec-
tional circularly polarized antenna is achieved using the trun-
cation corner topology and multilayer structure antenna.
This antenna has 3.6% bandwidth at center frequency of
2.41GHz (from 2.43GHz to 2.45GHz). When this antenna
is used as receiving antenna in RF energy harvester, the out-
put voltage at frequency of 2.40GHz is 255mV. In [11], an E-
shaped slot is investigated along the orthogonal axis of the
circular patch to generate CP performance and to improve
antenna gain. This antenna has wide-angle CP radiation of
140o with a bandwidth of 3.2% and a gain of more than
5.0 dBic at 2.38GHz. Four stubs are integrated at four corn
of a square patch antenna to have CP performance in [12].
A maximum 10dB bandwidth of 4.8% at 2.5GHz is obtained
for the asymmetric gap case. The corresponding maximum
gain is 4.5 dBic and the average output voltage of 1.5mV is
achieved at different rotation angles. The narrow bandwidth
is the disadvantage of CP antennas reported in literature
[10–12]. A wideband and high-gain CP antenna is reported
in [13]. Circular polarization is generated by cutting a
Teo-shaped slot at the square patch radiator while an aper-
ture coupling is used to broaden the bandwidth. A 10 dB
bandwidth of 33% (1.89–2.66GHz) with 3 dB axial ratio
(AR) bandwidth of 100MHz (2.4–2.5GHz) and maximum
gain of 6.8 dBic are achieved at 2.28GHz and 2.5GHz,
respectively. This antenna has a good performance in term
of size, bandwidth, and gain. However, the aperture coupling
is a disadvantage in fabrication point of view. In [14], a pair
of cross bowtie antennas is used to have wideband CP perfor-
mance while the antenna gain is improved by a reflector. The
obtained 10dB bandwidth is 38.2% (1.357–1.997GHz) and
total gain is greater than 7.5 dB in operating bandwidth.
This 3D structure is complex in fabrication point of view.
Substrate integrated waveguide (SIW) technology was
reported to realize a very high performance cavity-backed
planar antenna array in [15]. Two pairs of rectangular slots
are used to have CP while the cavity defines operating band-
width. A maximum gain of 20.1 dBi at 6.6GHz and a 10 dB
bandwidth of 3.2% (6.52–6.73GHz) are obtained for a 4× 4
antenna array.

In this paper, a novel wideband CP patch antenna
using a wideband left-handed metamaterial (WBLHM)
substrate to improve the antenna gain is proposed. Both
simulated and measured verifications are investigated to
highlight its performance. The paper is organized as follows.
WBLHM unit cell analytical model is presented in Section 2.
Section 3 applies this LHM substrate on a wideband CP
antenna array as a high-gain and wideband solution. The

demonstration of the complete RF energy harvesting system
is presented in Section 4.

2. Novel WBLHM Structure: Modelling
and Analysis

2.1. WBLHM Modelling. Left-handed metamaterials are
unnatural structures with double negative permittivity and
negative permeability (DNG). LHM substrate acts like an
electromagnetic lens, thus it is placed above a reference
antenna to concentrate the wave out of reference antenna into
the perpendicular direction of LHM substrate for increasing
antenna gain. In this section, a LHM unit cell is analysed to
investigate the operation of the whole periodical structure.

It is known that the negative permeability results from
the magnetic response to an external magnetic field while
the negative permittivity is due to either a low-frequency
plasma behaviour or an electric resonance response [16].
Once the frequency range of negative permittivity and
negative permeability overlaps, we can achieve a negative
refractive region. This consideration is valid only if the meta-
material (MTM) can be approximated as an effectively
homogeneous medium, which means the size of MTM unit
cells p must be sufficiently smaller than the guided wave-
length λg. In most cases, p should be smaller than λg/4 [17].
Smith and coworkers proposed a well-known structure,
namely square split ring resonator (SSRR), with dimensions
of 8× 8mm2 (p~λ0/7 5) in x and y directions, where λ0 is
the wavelength in free space [18, 19]. In their structure, the
square split ring leads the negative permeability while the
continuous wire causes the negative permittivity [20].
However, the double negative range of this structure and
then the negative refractive band are narrow. The WBLHM
is obtained by a geometrical transformation from SSRR
structure with four top quasi-opened rings and two bot-
tom cross wires. Figure 1 illustrates the proposed WBLHM
with defined parameters and its equivalent circuit. The
meander line is used for miniaturization purpose in x
and y directions. Unit cell is designed with dimensions of
W×L=5.5× 5.5mm2 (p~λ0/9 4), 20% smaller than a SSRR
unit cell. The copper material of strip line is chosen with
a thickness of 0 035mm while the thickness of Rogers
RO4003 substrate is hs = 0 8mm with the relative permittiv-
ity, εr = 3 55 and tan δ = 0 0027.

As it can be seen in Figure 1(a), Ct, Cs, and Cm represent
the capacitance caused by the asymmetric gap of each unit
cell, the capacitance between two layers, and the mutual cou-
pling between two continuous unit cells, respectively. Lt and
Lb are the total inductance of the folded line on top layer
and the cross line on bottom layer, respectively. The induced
electric energy is mostly concentrated between the two gaps
spacing by dg on top layer. The induced magnetic energy

is mainly located at the meander line of width dm. These
electromagnetic distributions are shown in Figures 1(a)
and 1(b). The capacitance Ct controls the electrical reso-
nance and negative permittivity while the meander line size
dm controls the negative permeability. The effect of dg and

dm on the epsilon negative bandwidth (ENB) and the mu
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negative bandwidth (MNB) are described in Tables 1 and 2.
The proposed unit cell has dimensions dg = 0 25mm and

dm=0.25mm for wideband DNG. The geometrical parame-
ters of proposed WBLHM unit cell are shown in Figure 1.

2.2. Wideband Negative Effective Permittivity and Permeability.
The permittivity and permeability of a homogeneous
medium can be found using the field-averaging method
[21–23] or the retrieval scattering parameters [24–26]. In
this study, we applied the method proposed by Chen
and coworkers. Firstly, the refractive index n and the
impedance z are obtained. Then, the effective permittivity
and permeability of LHM are directly calculated by using

these equations: μ = nz and ε = n/z. This method has been
widely used for determining effective permittivity and per-
meability. The proposed WBLHM unit cell dimension is
smaller than λ0/4. Therefore, as mentioned above, the
WBLHM can be effectively considered as a homogeneous
material at the studied frequencies, and the presented
method in [26] is suitable to retrieve the effective permittivity
and permeability. The obtained effective permittivity and
permeability are negative in a very wide band as in
Figure 2. The ENB of 3.34GHz from 5.27GHz to 8.61GHz
together with the MNB of 6.47GHz from 5.34GHz to
11.81GHz are obtained for our WBLHM unit cell. This unit
cell has wideband DNG from 5.34GHz to 8.61GHz.

Table 1: Effect OF dg on ENB AND M.

Value of dg (mm) ENB (GHz) MNB (GHz)

0.2 3.41 6.3

0.25 3.34 6.47

0.3 3.33 6.22

Table 2: Effect of dm on MNB and ENB.

Value of dm (mm) MNB (GHz) ENB (GHz)

0.2 6.51 3.36

0.25 6.47 3.34

0.3 6.26 3.38

Lt

Lb

Cs

Ct

dy

dx

W

L

dm

do
dg

dchs

z x

y

Cm

Cm Cm

Cs/2

Cs/2

Ct

Lt

Lb

(a)

z
x

y

z
x

y
−5.59

−12

−18.3

−24.7

−31

−37.4

−43.8

−50.1

−56.5

−62.9

−69.2

−75.6

0

−3.64

−7.27

−10.9

−14.5

−18.2

−21.8

−25.5

−29.1

−32.7

−36.4

−40

dB (max V/m) dB (max A/m)

(b)

Figure 1: (a) WBLHM geometry and equivalent circuit W= L= 5.5mm, dx= dy= 5mm, do= 0.25mm, dg = 0 25mm, dc= 0.25mm,

dm= 0.25mm. (b) Electric field (left) and magnetic field (right) distribution in cross-section view.
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3. WBLHM for Antenna Gain Enhancement:
Results and Discussion

3.1. Wideband Circularly Polarized Patch Antenna. The array
of 2× 2 patch elements based on sequential rotation tech-
nique that generates an excellent CP over a relatively wide
frequency bandwidth is designed as the reference antenna.
Figure 3 shows the configuration of four patches with feed
phase arranged in 0°, 90°, 180°, and 270°. In sequential

rotation technique, the excited amplitudes and phases play
an important role to the CP property of the antenna. The
excited amplitudes to four elements must be the same power
(around −6.7 dB) while the excited phase must be arranged in
0°, 90°, 180°, and 270° at the 5.8GHz as in Figure 4. The pro-
posed feeding network using Wilkinson power divider [27]
excites equal amplitude and phase arranged in 0°, 90°, 180°,
and 270° to four patch elements in order to obtain a good
axial ratio (AR) over the frequency from 5.52GHz to
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Figure 2: (a) The extracted effective permittivity. (b) The extracted effective permeability.

WBLHM layer

Reference antenna

Unit cell total size

d

z
x

y

P4

P2

P3

P1

P5

270° 0°

180° 90°

Reference antenna

x

y

Figure 3: Wideband CP LHM antenna prototype.

−6

−6.3

−6.6

−6.9

−7.2

−7.5
5 5.5 6 6.5

Frequency (GHz)

7 7.5 8

Port 2
Port 4

Port 3
Port 5

S 
p

ar
am

et
er

s 
(d

B
)

(a)

200

0

−200

−400

−600

−800

−1000

−1200
5 5.5 6 6.5

Frequency (GHz)

7 7.5 8

Port 2
Port 4

Port 3
Port 5

P
h

as
e 

(d
eg

re
es

)

5.8

S2,1: −0.87
S3,1: −88.63
S4,1: −178.74
S5,1: −270.13

(b)

Figure 4: Amplitude (a) and phase (b) distribution of proposed feeding network.
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6.50GHz as presented in Figure 5(b). The reference antenna
has a bandwidth of 2.4GHz (from 5.05GHz to 7.45GHz)
with the reflection coefficient |S11| illustrated in Figure 5(c)
and the antenna gain is shown in Figure 5(a).

3.2. Antenna Gain Enhancement. The WBLHM substrate
is placed above the wideband CP patch antenna at a dis-
tance of d as topology in Figure 3 to enhance the antenna
gain. This high-gain and wideband CP LHM antenna gain
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and axial ratio (AR) at different values of d are presented
in Figures 5(a) and 5(b).

Some points must be noticed to design a high-gain and
wideband CP antenna using WBLHM substrate. Firstly, the
distance d between WBLHM layer and the reference antenna
is the most affected parameter to AR [28]. In order to reduce
the total size of this 3D structure in z direction (as shown in
Figure 3), the WBLHM layer needs to be maintained as
closely as possible to the reference antenna for a gain
enhancement while a good AR is maintained. The optimum
value obtained by simulation is d = 0 56λ0, which is equiva-
lent to the focal length of WBLHM layer at 5.8GHz. Sec-
ondly, the total size of WBLHM layer (the number of unit
cell on WBLHM layer) must be considered to get a homoge-
neous structure. The radiated electromagnetic of the refer-
ence antenna is a power source for WBLHM layer, which is
why the proposed WBLHM must cover the radiation beam
width of CP reference antenna to get a higher performance.
In the experiment, the size is large enough to cover all of radi-
ator patch, not always including the feed line. The distance d
is varied at several values around 0 56λ0 as in Figures 5(a)
and 5(b). The bigger total size is, the narrower bandwidth
becomes. After considering both gain peak, AR and band-
width, a distance of d=29mm, and a total size of 9∗ 9, unit
cells are chosen to obtain higher gain and wideband AR. As
can be seen in Figure 6, the wideband behaviour is almost
unchanged after covering the reference antenna with this
WBLHM layer. These effects of the WBLHM are explained
in the electric field distribution presented in Figure 7.

The electric field out of wideband LHM layer (Eo) dif-
fers from Ei because of the reduction and the phase shift
of electric fields according to the distance d and the asym-
metric of WBLHM structure. Eo can be represented by Eox

and Eoy in x and y directions:

Eox = Eix rxe
jφox

Eoy = Eiy rye
jφoy

1

for rx, ry are the reduction and φox, φoy are the phase shifts of

electric fields in x and y directions, respectively. In result, we
have the magnitude of electric field are represented as:

Mag Eox = Ex rx

Mag Eoy = Ey ry
2

and the phase shift of electric field:

Δφ = φix − φiy + φox − φoy 3

Because of the asymmetric of WBLHM structure as
mentioned in Section 2.1, the electric field passing
through this layer has different shifts for both magnitude
and phase in x and y directions. For this reason, the CP
performance of reference antenna is changed, and the
main beam of reference antenna is squinted. However, these
changes are not significant, and these results are shown in
Figure 8(a). The antenna gain reaches the maximal value of
11.58 dBi (in simulation) and 12dBi (in measurement) at
6GHz and is enhanced for the maximal value of 7.02 dBi at
6.15GHz.

The total efficiency e0 is a product of three factors:
e0 = ereced, where er is the reflection efficiency, ec is the con-
duction efficiency, and ed is the dielectric efficiency [29]. Fur-
thermore, ecd = eced is the antenna radiation efficiency, which
relates to the antenna gain and directivity. Because of the
effect of WBLHM layer on antenna impedance matching
and the variation of electromagnetic field passing through
this layer, the total efficiency is a frequency dependent. The
total efficiency of reference antenna with WBLHM layer is
enhanced over the bandwidth from 5.9GHz to 7.1GHz
(Figure 8(b)). The simulated and measured radiation pat-
terns of this proposed antenna at 5.82GHz are illustrated
in Figure 9(a) with 10.7 dBi of gain peak and 1dB of AR
showing a good circular polarization.
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4. Wideband CP LHM Antenna for RF
Energy Harvesting

This proposed antenna is used as the receiving antenna for
Wi-Fi energy harvester as shown in Figure 10.

The Schottky diode HSMS2860 from Avago is selected
for the voltage doubler circuit. The configuration and proto-
type of this rectifier circuit is illustrated in Figure 10. The DC
filter uses three radial stubs to reject the first-, second-, and
third-order harmonic in order to improve conversion effi-
ciency. The RF power transmitted by Wi-Fi modem based

on IEEE 802.11ac standard is received by wideband CP
LHM antenna and then converted into 1.5DC voltage by
the rectifier using the load of 3.9 kΩ. The simulated and
measured |S11| of rectifier circuit are well match together
(cf. Figure 11). The |S11| of rectifier is lower than −10dB
between 5.6GHz to 5.9GHz (in simulation) and between
5.55GHz to 6.0GHz (in measurement).

Figure 12(a) presents the conversion efficiency at differ-
ent input power levels. The output voltage of RF-DC device
is shown in Figure 12(b). The maximum conversion effi-
ciency and corresponding input power level of RF-DC is
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Figure 10: Wi-Fi energy harvesting system using WB CP LHM antenna.
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61% at 4 dBm with output voltage of 2.5V. It can be seen that
the output voltage is increasing with the increase of input
power level. However, for the ambient RF energy harvesting

application, the input power level is low, from 5dBm or
0 dBm and less (−20 dBm), dependence on the RF sources
(2G/3G/4G orWi-Fi). The RF-DC device has conversion effi-
ciency of 56% and output voltage of 1.5V with input power
level of 0 dBm using receiving antenna gain of 10.8 dBi at
5.82GHz. In other experimentations, the RF-DC device uses
the same rectifier circuit as presented in Figure 10 and a
quasi-omnidirectional antenna with gain peak of 4 dBi as
the receiving antenna. With input power level of 0 dBm, at
the same frequency of Wi-Fi based on IEEE 802.11ac, the
output voltage of 1.25V is obtained instead of 1.5V when
using wideband CP LHM antenna. This result shows the
advantages of proposed antenna in RF-DC application.

5. Conclusions

A novel WBLHM structure is proposed to enhance
antenna performance in this paper. The behaviours of
WBLHM layer are discussed using simulated S-parameters.
The performances of this WBLHM are verified in simulation
and measurement by applying on a wideband CP patch
antenna operating from 5.05GHz to 7.45GHz. A maximum
gain enhancement of 7.02 dBi is obtained at 6.15GHz. A
good performance for gain, AR, bandwidth, and total radia-
tion efficiency is obtained from 5.8GHz to 6.8GHz using this
wideband CP LHM antenna.

The application of wideband CP LHM antenna for Wi-Fi
energy harvester presents 61% of conversion efficiency and
2.5V of DC output voltage. This WBLHM substrate can be
beneficial for broadband RF energy harvesting or wireless
power transfer applications and implemented in the future
wireless sensor networks.
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