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Abstract. Keyword spotting refers to the process of retrieving all in-
stances of a given key word in a document. In the present paper, a novel
keyword spotting system for handwritten documents is described. It is
derived from a neural network based system for unconstrained handwrit-
ing recognition. As such it performs template-free spotting, i.e. it is not
necessary for a keyword to appear in the training set. The keyword spot-
ting is done using a modification of the CTC Token Passing algorithm.
We demonstrate that such a system has the potential for high perfor-
mance. For example, a precision of 95% at 50% recall is reached for the
4,000 most frequent words on the IAM offline handwriting database.

1 Introduction

The automatic recognition of handwritten text – such as letters, manuscripts or
entire books – has been a focus of intensive research for several decades [1,2]. Yet
the problem is far from being solved. Particularly in the field of unconstrained
handwriting recognition where the writing styles of various writers must be dealt
with, severe difficulties are encountered.

Making handwritten texts available for searching and browsing is of tremen-
dous value. For example, one might be interested in finding all occurrences of
the word “complain” in the letters a company receives. As another example,
libraries all over the world store huge numbers of handwritten books that are
of crucial importance for preserving the world’s cultural heritage. Making these
books available for searching and browsing would greatly help researchers and
the public alike. Finally, it is worth mentioning that Google and Yahoo have
announced to make handwritten books accessible through their search engines
as well [3].

Transcribing the entire text of a handwritten document for searching is not
only inefficient as far as computational costs are concerned, but it may also
result in poor performance, since misrecognized words cannot be found. There-
fore, techniques especially designed for the task of keyword spotting have been
developed.

Current approaches to word spotting can be split into two categories, viz.
query-by-example (QBE) and query-by string (QBS). With the former approach,
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all instances of the search word in the training set are compared with all word im-
ages in the test set. Among the most popular approaches in this category are dy-
namic time warping (DTW) [4,5,6] and classification using global features [7,8].
Word shape methods using Gradient, Structural and Concavity features (GSC)
have been shown to outperform DTW in [9,10]. Algorithms based on QBE suffer
from the drawback that they can only find words appearing in the training set.
The latter approach of QBS models the key words according to single characters
in the training set and searches for sequences of these characters in the test set.
The approach proposed in [11,12] requires a character-position based ground
truth for the training set. Consequently, not only bounding boxes around each
word are required, but around each single character. In addition to expensive
manual preprocessing, this imposes a problem since in cursive handwriting it is
often not clear how to segment a word into individual characters.

The approach proposed in this paper uses a neural network based handwrit-
ing recognition system which has several advantages compared to the above
mentioned approaches. First, by treating an entire text line at a time, it is not
necessary to split the text lines of the test set into separate words. Secondly,
being derived from a general neural network based handwritten text recognition
system, any arbitrary string can be searched for, not just the words appearing
in the training set. Thirdly, it is not required to have the bounding box of each
word or character included in the training set. The ASCII transcription of the
text lines in the training set is sufficient to train the neural network.

The rest of this paper is organized as follows. In Section 2, document prepro-
cessing procedures and a neural network for handwritten text recognition are
introduced. In Section 3, we describe how the proposed system can be adopted
to the task of word spotting. An experimental evaluation of this system is pre-
sented in Section 4, and conclusions are drawn in Section 5.

2 Neural Network Based Handwritten Text Recognizer

2.1 Preprocessing

We follow the common approach to offline handwriting recognition by first au-
tomatically segmenting an input document into individual text lines. From each
line, a sequence of feature vectors is extracted, which is then submitted to the
neural network.

The words used in the experiments described in this paper come from the IAM
database [13]. They are extracted from pages of handwritten texts, which were
scanned and separated into individual text lines. After binarizing an image with
a suitable threshold on the gray scale value, the slant and skew of each textline
is corrected and the width and height of the handwriting are normalized [14].

Given the image of a single word, a horizontally sliding window with a width
of one pixel is used to extract nine geometric features at each position from left to
right, three global and six local ones. The global features are the 0th, 1st and 2nd

moment of the black pixels’ distribution within the window. The local features
are the position of the top-most and bottom-most black pixel, the inclination of
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Fig. 1. The schematics of the BLSTM Neural Network. LSTM memory cells (a) in two
distinct recurrent layers process the text line from different directions.

the top and bottom contour of the word at that position, the number of vertical
black/white transitions, and the average gray scale value between the top-most
and bottom-most black pixel. For details on these steps, we refer to [14].

2.2 BLSTM Neural Network

The recognizer used in this paper is a recently developed recurrent neural net-
work, termed bidirectional long short-term memory (BLSTM) neural network [15].
In general, recurrent NN offer a natural way for neural networks to process se-
quential data by reading the sequence one step at a time. Due to recurrent con-
nections within the hidden layer, information from previous times steps can be
accessed. Unfortunately, recurrent neural networks suffer from the vanishing gra-
dient problem, which describes the exponential increase or decay of values as they
cycle through recurrent network layers.

A way to circumvent this problem is the introduction of so-called long short-
term memory blocks. In Fig. 1(a) such a LSTM node is displayed. At the core
of the node, a simple cell, which is connected to itself with a recurrence multi-
plication factor of 1.0 stores the information. New information via the Net Input
enters only if the Input Gate opens and leaves the cell into the network when
the Output Gate is open. The activation of the Forget Gate resets the cell’s
value to 0. The gates and the Net Input are conventional nodes using an arctan
activation function. This architecture admits changes to the cell’s memory only
when one of the gates is open and is therefore able to carry information across
arbitrarily long sequence positions. Thus, at any point in the sequence, the usage
of contextual information is not restricted to the direct neighborhood.

The input layer contains one node for each of the nine geometrical features
and is connected with two distinct recurrent hidden layers. The hidden layers are
both connected to the output layer. The network is bidirectional, i.e. a sequence
of feature vectors is fed into the network in both forward and backward modes.
One hidden layer deals with the forward sequence, and the other layer with the
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Fig. 2. The activation level for all nodes in the output layer. The activation is close to
0 most of the time for normal letters and peaks only at distinct position. In contrast,
the activation level of the ε node is nearly constantly 1.

backward sequence. An illustration of the network can be seen in Fig. 1(b). At
each position k of the input sequence of length t, the output layer sums up the
values coming from the hidden layer that has processed positions 1 to k and the
hidden layer that has processed positions t down to k. The output layer contains
one node for each possible character in the sequence plus a special ε node, to
indicate “no character”. At each position, the output activations of the nodes
are normalized so that they sum up to 1, and are treated as probabilities that
the node’s corresponding character occurs at this position. A visualization of the
output activations along a text line can be seen in Fig. 2. For more details about
BLSTM networks, we refer to [15,16].

The neural network produces a sequence of probabilities for each letter and
each position in the text line. This sequence can be efficiently used for word
and text line recognition as well as for word spotting as shown in the present
paper, where the Connectionist Temporal Classification (CTC) Token Passing
algorithm is utilized for the latter task.

3 Word Spotting Using BLSTM

The neural network described in the previous section produces a sequence of
probabilities for each letter and each position in the text line. This sequence
can be efficiently used for word and text line recognition [15] as well as for
word spotting as shown in the present paper, where the Connectionist Temporal
Classification (CTC) Token Passing algorithm is adapted to the latter task. To
the knowledge of the authors, this is the first attempt to spot keywords using
the CTC algorithm in conjunction with BLSTM neural networks.

3.1 CTC Token Passing Algorithm

The CTC Token Passing algorithm for single words expects a sequence of letter
probabilities of length t as output by the neural network, together with a word
w as a sequence of ASCII characters, and returns a matching score, i.e. the
probability that the input to the neural network was indeed the given word
(Algorithm 1).
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Let n(l, k) denote the probability of the letter l occurring at position k ac-
cording to the neural network output1 and let w = l1l2 . . . ln denote the word to
be matched. The algorithm first expands w into a sequence

w′ = εl1εl2 . . . εlnε = c1c2c3 . . . c2n+1

and creates for every character ci (i = 1, . . . , 2n + 1) and every position j =
1, . . . , t in the text line a token ϑ(i, j) to store the probability that character ci

is present at position j together with the probability of the best path from the
beginning to position j. The tokens are initialized so that their probability is 0
except for the first ε (c1) and the first letter (c2), which are initialized to hold
the value of ε and the probability value of c1 at the first position of the sequence,
respectively (Lines 3–5).

During the following loop over all input sequence positions j, the tokens ϑ(·, j)
are updated, so that a) the token’s corresponding letter l occurs at position j,
b) in the best path, all letters of the word occur in the given order, c) between
two subsequent letters of the word, only ε-node activations are considered and
d) if two subsequent letters of a given word are the same (e.g. positions 3 and 4
in “Hello”), at least one ε node must lie between them. To compute the value of
the token ϑ(i, j), a set Tbest is created in which all valid tokens are stored that
can act as predecessor to the token ϑ(i, j) according to the above mentioned
constraints. If at sequence position j the letter ci is considered (which might
be a real letter or ε), the token corresponding to the same letter ci at sequence
position j − 1 is valid (Line 9). The token corresponding to the letter ci−1 (ε if
ci is a real letter and a real letter if ci = ε) at sequence position j−1 is valid for
each but the first letter (Line 10 and 11). Since two different letters might follow
each other without an ε-node activation, the token corresponding to the letter
ci−2 is valid for these cases, too (Line 12 and 13). Afterwards, the probability of
the best token in Tbest is multiplied with n(i, j) to give the probability of ϑ(i, j).
Algorithm 1 is a slightly simplified version of the one given in [15] and only
suitable for single word recognition, but it is sufficient for our task of keyword
spotting.

The main contribution of this paper is the modification of Algorithm 1 to
search for any given word in a text line s of arbitrary length. First, we add a
virtual node to the output nodes, called the any- or ∗-node and set ∀j n(∗, j) = 1.
Then, assuming that the considered word actually occurs in the given text line,
we distinguish three different cases: a) the word to be searched occurs at the
beginning of the sequence, b) the word occurs at the end of the sequence, and
c) the word occurs in the given text line, but neither at the end nor at the
beginning. This distinction is important in view of whitespace characters ′ ′

following or preceding the word to be searched.
Consider again the given word w = l1l2 . . . ln. To cope with case a), we append

a whitespace character to the word, followed by the any-character. For case b)
1 Due to our normalization procedure, the following statement holds ∀k :

∑
l n(l, k)=1.

Therefore, the output values of the neural network can be indeed considered as prob-
abilities.
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Algorithm 1. The CTC Token Passing Algorithm for single word recognition
Require: input word w = l1l2 . . . ln
Require: sequence of letter probabilities, accessible via n(·, ·)
1: Initialization:
2: expand w to w′ = εl1εl2ε . . . εlnε = c1c2 . . . c2n+1

3: ϑ(1, 1) = n(ε, 1)
4: ϑ(2, 1) = n(l1, 1)
5:
6: Main Loop:
7: for all sequence positions 2 ≤ j ≤ t do
8: for all positions i of the extended word 1 ≤ i ≤ 2n + 1 do
9: Tbest = {ϑ(i, j − 1)}

10: if i > 1 then
11: Tbest = Tbest ∪ ϑ(i − 1, j − 1)
12: if ci �= ε and ci �= ci−2 then
13: Tbest = Tbest ∪ ϑ(i − 2, j − 1)
14: end if
15: end if
16: ϑ(i, j) = max(Tbest) · n(i, j) � multiply the best token’s probability with

the letter probability
17: end for
18: end for

return max {ϑ(2n + 1, t), ϑ(2n, t)} � The word can either end on the last ε
(c2n+1) or on the last regular letter (c2n)

we prefix the word with the any-character and a whitespace. Finally, for case c),
we prefix and append a whitespace and an any-character:

wa = l1l2 . . . ln ∗
wb = ∗ l1l2 . . . ln

wc = ∗ l1l2 . . . ln ∗

If we now use the CTC-Algorithm for single word recognition to compute the
probability of the word being wa, we compute in fact the probability that the
text line starts with the first letter of the word w, followed by the second letter,
and so on until the word’s last letter, followed by a whitespace and then by any
character. Obviously, the size and content of the text following the whitespace
after word w is irrelevant, since n(‘∗′, j) = 1. Similarly, if we run the CTC-
Algorithm with the word wb, we compute the probability that the textline ends
with word w. If the CTC Token Passing algorithm is run with wc, we get the
probability that the word w occurs somewhere in the middle. We can now easily
combine the output of the three runs of the algorithm with wa, wb and wc by
using the maximum

pCTC(w|s) = max {pCTC(wa|s), pCTC(wb|s), pCTC(wc|s)} .
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(a) Returned log Likelihood: -1.7125

(b) Returned log Likelihood: -8.4097

(c) Returned log Likelihood: -9.0727

(d) Returned log Likelihood: -11.0900

(e) Returned log Likelihood: -11.6082

Fig. 3. Search results for the word “found”

Of course, the returned probability of a word still depends upon the word’s
length. To receive a normalized value which can then be thresholded, we divide
pCTC(w|s) by the search word’s length2

p′CTC(w|s) =
pCTC(w|s)

|w| .

How the results of such a search may look like can be seen in Fig. 3. Note
that the system just returns a likelihood of the word being found. Afterwards,
this likelihood can be compared to a threshold to decide whether or not this is
a true match.

4 Experimental Evaluation

4.1 Setup

For testing the proposed keyword spotting method, we used the IAM offline
database3. This database consists of 1,539 pages of handwritten English text,
written by 657 writers. From this database, we used 6,161 lines as a training set,
920 lines as a writer independent validation set, and an additional 920 lines as
2 We define the length according to the number of letters.
3 http://www.iam.unibe.ch/fki/databases/iam-handwriting-database

http://www.iam.unibe.ch/fki/databases/iam-handwriting-database
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a test set. Using the training set, we trained seven randomly initialized neural
networks and used the validation set to stop the back propagation iterations in
the training process. See [15] for details on the neural network training algorithm.
Then we selected the 4,000 most frequent words from all three sets and performed
keyword spotting using these words. Note that by far not all the keywords used
in the test occur in every set.

4.2 Results

Every word w tested on each text line s returns a probability p′CTC(w|s). The
word spotting algorithm compares this probability against a global threshold to
decide whether or not it is a match. We used all returned values p′CTC(w|s) as
a global threshold in oder to make the results as precise as possible. For each of
these thresholds, we computed the number true positives (TP ), true negatives
(TN), false positives (FP ), and false negatives (FN). These number were then
used to plot a precision-recall curve for each neural network (see Fig. 4(a)).
Precision is defined as number of relevant objects found by the algorithm divided
by the number of all objects found TP

TP+FP , while recall is defined as the number
of relevant objects found divided by the number of all relevant objects in the
test set TP

TP+FN .
A precision-recall curve therefore gives us an idea about the noise in the

returned results, given the percentage of how many true elements are found. It
can be seen that the performance of the different networks varies greatly. The
network that performed best on the validation set achieves an average precision
rate of 87.6%. At a recall rate of 50%, the precision is 97.3%.

Based on the validation set, it is possible to pick good networks from the
ensemble of all networks. The network that performed best (Network 6) was
further analyzed. Its precision-recall curve on the independent test set is shown
in Fig. 4(b). The average precision rate is 82.8% and its precision at a recall rate
of 50% is 95.5%. This performance rivals those of the best existing systems, e.g.
[9,8], although on a different, but not harder data set.

In Fig. 5, a rank plot is shown. A rank plot visualizes the quality of the search
results. Each row corresponds to one keyword and dots correspond to positions
of the right occurrences of keywords in the rank. Keywords are sorted according
to the number of occurrences in the test set. Consequently, an optimal rank plot
would have all the black dots on the left hand side of the plot, more black dots
in the lower left hand corner than in the upper left hand corner, while the rest
of the plot should be white.

The rank plot using all search words actually occurring in the test set can be
seen in Fig 5. Although there are few black dots spread over the entire plot, it
can be seen that it comes quite close to the ideal form. Since rank plots cannot
easily be converted into a single number, it is not straight forward to compare
different rank plots. However, they give a good impression about a system’s
performance. The keyword spotting ability of the proposed approach seems to
be independent of the frequency of search word. Both common and uncommon
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(a) Precision-Recall curves for seven different neural networks on the validation set.
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Fig. 5. The best network’s rank plot for all search words that appear in the test set

words can be spotted since the black dots are aligned on the left side in the lower
and upper part of the rank plot.

5 Conclusion

I this paper, we developed a word spotting algorithm that is derived from a
recurrent neural network based handwriting recognition system. We were able
to demonstrate that it not only performs very well with respect to the word
spotting task, but it also overcomes some of the drawbacks of existing system.
Not only words that appear in the training set can be searched for as in the
query-by-example approach, but any character string. Secondly, to train the
neural network, it is not necessary to have a bounding box for each character in
the training set; just the correct transcription is needed. The performance varies
greatly from one individual neural network to the other; however, an independent
validation set can be used to identify the best performing network.

A future line of research will evaluate the proposed form of keyword spotting
on historical documents. Desirable is also a direct experimental comparison to
other available methods. Combining different neural networks to build one single
improved system as well as modifying different handwriting recognition systems,
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such as HMM based recognizers for the task of keyword spotting, are further
aspects worth to be considered in future research.
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