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A novel WS2 nanowire-nanoflake 
hybrid material synthesized from 
WO3 nanowires in sulfur vapor
Georgies Alene Asres1, Aron Dombovari1, Teemu Sipola1, Robert Puskás2, Akos Kukovecz2,3, 

Zoltán Kónya2,4, Alexey Popov5, Jhih-Fong Lin1, Gabriela S. Lorite1, Melinda Mohl1, 

Geza Toth1, Anita Lloyd Spetz1,6 & Krisztian Kordas1

In this work, WS2 nanowire-nanoflake hybrids are synthesized by the sulfurization of hydrothermally 
grown WO3 nanowires. The influence of temperature on the formation of products is optimized to grow 
WS2 nanowires covered with nanoflakes. Current-voltage and resistance-temperature measurements 
carried out on random networks of the nanostructures show nonlinear characteristics and negative 
temperature coefficient of resistance indicating that the hybrids are of semiconducting nature. Bottom 
gated field effect transistor structures based on random networks of the hybrids show only minor 
modulation of the channel conductance upon applied gate voltage, which indicates poor electrical 
transport between the nanowires in the random films. On the other hand, the photo response of 
channel current holds promise for cost-efficient solution process fabrication of photodetector devices 
working in the visible spectral range.

Metal chalcogenides have opened unexpected opportunities for novel multifunctional materials with potential 
application in nano and optoelectronics. In particular, nanostructures of group 4–6 transition metal dichalco-
genides (TMDCs) are recently getting an enormous attention due to the their two-dimensional graphene-like 
layered structure and semiconducting behavior1–3. �e band gap of dichalcogenides shows a systematic decrease 
with the increasing metallic nature of the chalcogen following the series in the main group 6 elements as S, Se 
and Te. However, when decreasing the number of layers in TMDCs, the band gap increases, e.g. 1.4 eV (bulk) to 
2.1 eV (single layer) for WS2. Since the band gap values of TMDCs are comparable to that of Si (1.1 eV), transistor 
structures with similar low voltage operation are expected. As demonstrated lately, extremely high on/o� channel 
current ratios (e.g. 105 for �akes of WS2

4, 107 for WS2 �akes sandwiched between h-BN sheets5, and 108 for MoS2 
monolayers6) can be achieved without impurity doping or any particular band gap engineering, unlike in gapless 
graphene. Another interesting feature of several TMDCs is the switch from indirect band-to-band transition of 
multi-layered materials to direct gap when dealing with single-layer sheets. Accordingly, single-layer TMDCs may 
show photoluminescence7, which is particularly interesting for novel devices in optoelectronics8,9 and sensing10.

Chemical11–13 and mechanical14,15 exfoliation methods are the two most commonly used techniques to pro-
duce single or few-layered dichalcogenides. Chemical exfoliation is based on an insertion of ions (typically Li+) 
in the layered material to make the adjacent sul�de layers more separated or expanded (chemical intercalation) 
by which the van der Waals interaction is weakened. �en a mechanical force is applied (e.g. sonication) to sep-
arate the intercalated layers that become suspended in the solvent in the form of mono or few-layered �akes16,17. 
Mechanical exfoliation proceeds in a similar vein as �rst described for graphene synthesis18, i.e. by peel-o� from 
bulk or multi-layered crystals. �e TMDC crystal is repeatedly cleaved using e.g. scotch tape until a very thin 
layer of the materials remains on the surface of the tape, from which the atomically thin �lms are transferred to 
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a target substrate19. �e synthesis of other types of dichalcogenides is described in detail elsewhere for interested 
readers20,21.

Both mechanical and chemical exfoliation methods are tedious, and the immobilization of individual single 
TMDC �akes on chips for testing or to produce devices for commercial purposes is cumbersome. Accordingly, 
robust methods to fabricate nano�akes of TMDCs would help in the practical exploitation of these fascinating 
materials. In this work, we discuss the synthesis of WS2 nanowires and nanowire-nano�ake hybrid materials by 
a simple single-step sulfurization from hydrothermally grown WO3 nanowires. �e geometry of the prepared 
nanostructure is novel, as the �akes reside directly on the surface of nanowires and are a direct continuation 
of the nanowire crystal structure. �is direct crystallographic interconnection between two dimensional and 
one dimensional structures hold the possibility to exhibit new optical and electrical properties. �e obtained 
semiconducting hybrid nanomaterials display semiconducting behavior with direct band-to-band transition 
suggesting applications in �eld-e�ect transistors and particularly in photodetector devices without the need for 
manipulating individual nanoparticles.

Experimental
Synthesis of WO3 nanowires and their conversion to WS2 nanohybrids. WO3 nanowires were 
synthesized by the hydrothermal method as described in our earlier work22. In a typical process, 18.74 g of 
Na2WO4·2H2O (Sigma-Aldrich, ACS reagent 99%) and 22.49 g of Na2SO4 (Sigma-Aldrich, ACS reagent ≥ 99.0%) 
were dissolved in 600 mL distilled water and the pH =  1.5 was adjusted using 3 M HCl solution. A�er 10 min 
stirring, the solution was transferred to an autoclave (Parr Series 4520 Bench Top Reactor with PTFE lining) and 
stirred (35 rpm) for 48 h at 180 °C under autogenic pressure. �e product suspension was collected, centrifuged 
(Hettich, Universal 320, 20 min, 3000 rpm), washed with distilled water and ethanol and then dried at 60 °C for 
24 h.

WS2 nanomaterials were obtained by a sulfurization of the WO3 nanowires. Sulfur powder (1.0 g, reagent 
grade, puri�ed by sublimation) and WO3 nanowires (0.1 g) were placed in two di�erent alumina boats at the 
center of a tubular reactor (quartz tube of 2″  diameter mounted in a 12″  single zone �ermolyne, split furnace). 
Before sulfurization, the reactor was evacuated to a base pressure of ~1 Torr and �lled up with N2 at 1 bar. �e 
evacuation and �ushing steps were repeated three times to minimize O2 in the reactor. Sulfurization is performed 
for a period of 10 min at 500, 600, 700 or 800 °C in a �ow of 400 sccm N2. Structural characterization. �e crys-
tal phase and microstructure of the obtained material is studied by the means of X-ray di�raction (Bruker D8 
Discovery, Cu Kα), micro-Raman spectroscopy (Horiba Jobin-Yvon Labram HR800 at λ  =  488 nm), as well as 
scanning (FESEM, Zeiss Ultra Plus) and transmission electron microscopy (FEI Tecnai G2 20 X-Twin at 200 kV 
acceleration) techniques.

Electrical and optical characterization. WS2 nanowire-nano�ake hybrid �eld-e�ect devices were fabri-
cated on Si/SiO2 substrate (thermal oxide thickness 300 nm on p+-Si). �e source and drain Au microelectrodes 
(300 nm thick Au sputtered on 45 nm Ti adhesion layer) were de�ned by photolithography. �e WS2 nanowire 
and nano�ake hybrids were dispersed in acetone and deposited on the electrodes by drop casting. Temperature 
dependent current-voltage analysis was performed by probing the chips in a Linkam TMS 94 heating stage in 
air atmosphere using a computer-controlled Keithley 2636A source meter. �e transfer characteristics were 
measured in a bottom-gated FET arrangement, while the optical properties were analyzed by illuminating the 
channel of the transistor devices using a standard collimated RGB light-emitting diode (emission centered at 
623 nm, 517.5 nm and 466 nm with corresponding luminosity values of 800, 4000 and 900 mcd, respectively; 
chip-to-diode distance of 5 cm at an illumination angle of ~45°).

Results and Discussion
The cleaned product of the hydrothermally synthesized nanowires (Fig. 1a) shows a diameter distribution 
between 270 and 390 nm, while the length of the nanowires varies between 1 and 3 µ m. Annealing of the nano-
wires in the vapor of sulfur does not induce considerable changes of the product morphology except for tem-
peratures 700 °C or above when tiny �akes appear on the surface of the nanowires (Fig. 1b–e). �e elemental 
composition obtained by energy-dispersive X-ray spectroscopy (EDS, Table S1) con�rms that the product is 
transformed into WS2.�e �akes are linked to the nanowires and look like being partially peeled o� from the 
surface rather than subsequently attached to the nanowires. Although the growth mechanism for WO3 nanowires 
is now well understood and has been discussed in literature, the formation of WS2 nanowire-nano�ake hybrid is 
not yet clear. Shortly, one dimensional WO3 forms as follows: Initially a WO3 crystal nucleus is formed, which is 
then followed by WO3 primary prism particle formation due to the presence of Na+ and/or K+, which is present 
due to the formation of NaCl as byproduct23. Further crystal growth then happens along the [001] direction as it 
is energetically more preferential. �e e�ect of NaCl and sulfate were studied in separate papers also, and both of 
them were found to serve as directing agent in the growth of one dimensional structures24,25. WS2 nano�ake for-
mation however is less clear. It is believed that any minor mechanical stress caused by the transformation of oxide 
to sul�de might induce easy sliding and fragmentation of the layered WS2 sheets. As demonstrated earlier, similar 
but nanomechanical cleavage of MoS2 layers from a single crystal using an ultra-sharp W tip may be achieved26.

X-ray di�raction indicates the hydrothermally synthesized WO3 nanowires are of the WO3 hexagonal crystal 
phase [PDF 01-075-2187]. In the course of sulfurization however, the di�raction pattern changes particularly 
when the reaction temperature is increased suggesting the conversion of WO3 to WS2. Comparing the relative 
intensities of the most intensive re�ections, it may be concluded that the WO3 phase dominates until 500 °C, while 
at 600 °C and above the hexagonal WS2 [PDF#841398] phase appears as the major constituent of the samples, 
with a complete oxide to sul�de transformation occurring at 800 °C. In the course of the reaction, oxygen in the 
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anionic sites of the WO3 crystal is replaced by sulfur resulting in the formation of WS3, which then decomposes 
to WS2 as WS3 →  WS2 +  1/8 S8

27.
Since complete transformation of the oxide to sul�de takes place only for the samples treated at 800 °C, the 

discussion will focus only on this product. High-resolution transmission electron microscopy was performed to 
observe the morphology and the layer separation in detail (Fig. 2a,b). �e measured distance between the fringes 
in the lattice is approximately 0.62 nm Fig. 2(b), inset), which matches well the (002) d-spacing for the layered 
WS2 structure. Structures were also examined by SAED technique (Fig. 2d), where di�raction patterns revealed 
crystal structures corresponding to hexagonal WS2, which are in good agreement with XRD results. �e layered 
�akes are partially wrapping the nanowires around, demonstrating a kind of exfoliation of the bulk structure. 
�e typical thickness of the �akes is below 10 nm, i.e. the nanostructures consist of up to ~15 layers of WS2. XRD 
(Fig. 1f) and EDS (Table S1) techniques have been used to con�rm the formation of the WS2 nanostructures. 
First, the sulfur powder turns into vapor carried by the nitrogen and deposited on the surface of the WO3 nano-
wire. �e high temperature assists the reaction and conversion of the WO3 nanowire to WS2 nanowire/nano�ake 
(substitution of oxygen by sulfur).

Peaks in the micro-Raman spectrum of the sample synthesized at 800 °C (Fig. 2c) can be assigned to the 
in-plane E2g mode (at ~352 cm−1) and to the out-of-plane A1g mode (at ~420 cm−1) of crystalline WS2. As reported 
recently, the intensity ratios and peak frequencies of the WS2 Raman modes can give information about the num-
ber of layers3,28,29. In the case of multilayer (>5 layers) WS2 �akes though, the peak ratios of Raman spectra do 
not allow the exact determination of layer numbers, as the most prominent change in peak ratios happens at 
structures having 4 layers or less, as it was discussed by earlier papers. As a result of this, the determined intensity 
ratio of 0.5 of the peaks for the in-plane E2g

1 and out-of-plane A1g phonon modes can merely con�rm that the 
prepared WS2 structure is indeed multilayer, which result is also in good agreement with our TEM observations.

Current-voltage curves measured by 2 and 4-probe setups display slightly nonlinear current-voltage char-
acteristics (Fig. 3a). Since the 4-point analysis eliminates any barriers caused by the Au-WS2 interface, the con-
tacts between the nanohybrids in the random network are also contributing to the contact barriers. Resistance 
versus temperature measurements (2-probe) carried out in air between 22 °C and 150 °C (Fig. 3b) show a 
decreasing resistance with temperature indicating a semiconducting behavior of WS2 nanohybrid �lms. �e 
two commonly used models to describe the temperature dependence of the resistance of the semiconduc-
tors are the thermal-activation and variable range hopping models12. In the thermal-activation model, the 
temperature-dependent resistance can be written as R (T) =  R0·e

(E/kT), where E is the activation energy and k is 
the Boltzmann constant. �e linearized plot (i.e. ln (R) vs. T−1) gives an excellent �t for our dataset with a reason-
able barrier of 0.29 eV obtained from the slope of the �tting parameter, thus thermally activated conduction is a 
plausible mechanism. Note, the variable range hopping model for 3-dimensional conduction (in which ln (σ) is 
linearly proportional to T−1/4, where σ is the conductivity)30,31 �ts also very well (not displayed here) to our data. 
However the extracted values for localization length as well as density of electronic states are unphysical thus this 
latter model for the conduction mechanism may be ruled out.

Although the properties of more common chalcogenides have already been extensively investigated32–34, WS2 
nanohybrid materials to or knowledge have not been studied yet. In order to investigate the electrical character-
istics of the nanohybrid networks, bottom-gated �eld-e�ect devices are prepared on a Si chip of both high and 
lower synthesis temperature materials. By sweeping the source-drain voltage (Vds) between the Au electrodes the 
current is measured in the WS2 channel, while a gate voltage (Vg) through the conductive Si/Al/Au substrate is 

Figure 1. Structural change of WO3 during sulfurization. (a) Scanning electron micrograph of WO3 
nanowires. Panels (b–e) display the corresponding products a�er sulfurization at 500 °C, 600 °C, 700 °C and 
800 °C, respectively. (f) X-ray di�raction patterns of the corresponding products. Note: the re�ection located 
around 24° corresponds to elemental sulfur on the surface of the WS2.
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applied. Materials prepared at lower temperatures (500 and 600 °C) exhibited no �eld e�ect behavior (Fig. S1), 
while �lms made of samples prepared at 800 °C showed a rather weak but measurable �eld e�ect. �is may be 
attributed to trapped carriers at the contacts of the nanohybrid particles in the �lms and also at the interface of the 
particles and substrate, thus reducing carrier mobility35. �e �eld-e�ect mobility estimated from the conventional 

two-probe expression36 µ =
L

WC V

dI

dVox SD

SD

G

 is about ~0.02 cm2V−1s−1 (where L and W are the channel length and 

width, = ∈ ∈c d/ox r0  is the gate capacitance (d =  300 nm and εr =  3.9) and dISD/dVG is the transconductance 
(~2.2 ×  10−10 A/V) estimated from the I–V slopes measured at di�erent gate voltages (Fig. 4a).

�e measured value is comparable with results found for MoS2 and WS2 based FETs applying sulfurized metal 
�lms (0.004–0.04 cm2V−1s−1)37,38 and CVD grown MoS2 from MoO3 and S precursors (0.02 cm2V−1s−1)39 or CVD 
grown WS2 from WO3 and S precursors (0.01 cm2V−1s−1)40. Some other types of WS2 materials exhibit higher 
carrier mobilities due to the smaller number of crystal interconnections as opposed to the smaller nanowire 
materials where charge needs to pass through a higher number of junctions. Such examples are single crystal 
WS2 with d ≈  20 µ m crystal size (100 cm2V−1s−1)41, WS2 �lms (9–15 cm2V−1s−1)42, exfoliated single layer WS2 
(80 cm2V−1s−1)43 or WS2 nanotubes (50 cm2V−1s−1)44. Taking this into consideration, we speculate that the mobil-
ity may be increased by improving the semiconductor-metal contact as well as by using individual (or only a few) 
WS2 nanoparticles instead of thick high density random networks between the electrodes, which will result in a 
smaller number of crystal interconnections between the electrodes.

To verify this assumption, transistors having only a few nanowire-nano�ake hybrid particles connecting 
the source and drain electrodes were fabricated. �e corresponding current-voltage characteristics as shown in 
Fig. 4(b) are highly nonlinear and have pronounced gate e�ect owing to the lesser amount of nanohybrid to 

Figure 2. Structure of WS2 hybrid materials. (a) Low magni�cation transmission electron micrograph 
of WS2 nanowire-nano�ake hybrids synthesized at 800 °C. (b) High-resolution micrograph of a �ake with 
layered crystal structure. Inset shows the d-spacing of the layers. (c) Raman spectrum of the corresponding 
WS2 nanowire/nano�ake hybrid material. (d) SAED pattern of WS2 nanowire-nano�ake hybrid synthesized at 
800 °C.

Figure 3. Electrical characteristics of WS2 hybrid �lms. (a) Current vs. voltage curves measured by 2 and 
4-probe setups. (b) Temperature-dependent resistance and the corresponding Arrhenius plot for the thermally 
activated conduction.
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nanohybrid contacts in the transistor channel. Unlike in the high-density networks, here the channel has a neg-
ative character, as it opens at positive gate voltages. �e estimated apparent carrier mobility (0.18 cm2V−1s−1) of 
WS2 in the channel is at least an order of magnitude higher than in the devices with high-density WS2 nanohybrid 
networks supporting our hypothesis regarding the performance-limiting e�ect of excessive numbers of contacts 
in the �lms.

Optical measurements of powder samples were carried out to analyze further the properties of the samples. 
By using a spectrophotometer system (Optronic Laboratories, USA) equipped with an integrating sphere, we 
measured total re�ectance within the 400–1100 nm spectral range from the scattering powders mounted on a 
microscope slide with double-sided Scotch tape. �en we calculated the optical absorption, from which the band 
gap of the materials synthesized at various conditions was derived. From the Tauc plot for direct interband tran-
sitions (Fig. 5a) we found that the sulfurization results in a clear decrease of the band gap from ~2.6 eV to ~1.4 eV 
due to the chemical transformation of tungsten oxide to sul�de. �e obtained values are in good agreement with 
literature values of the band gap for WO3 a�er sulfurization45.

�e photoelectric response of high density network FET devices is studied by illuminating the chips with 
light-emitting diodes (LEDs) of di�erent color. As displayed in Fig. 5(b), the channel current is found to be 
increased under illumination using any of the LEDs. However, the e�ect is somewhat more pronounced when 
exposing the channel to photons of shorter wavelength due to the better optical absorption and more e�cient 
photogeneration of carriers in the semiconductor. Interestingly, the chip illuminated with the green LED, which 
is ~4-times brighter than the blue or red source does not cause any extraordinary change in the channel current 
compared to the other two LEDs. �is indicates again that the large contact resistance between the nanowires 
limits the current and adversely a�ects the device performance. Anyhow, the magnitude of change in the channel 
conductance is comparable with those measured for individual single-layer nano�akes46.

Conclusions
We have synthesized layered semiconducting WS2 nanowire-nano�ake hybrid materials by a simple sulfurization 
of WO3 nanowires at elevated temperatures. Field-e�ect transistors are demonstrated using bottom gated chips 
with channel made of random networks of the hybrid material drop casted between source-drain electrodes. 

Figure 4. Output characteristics of the WS2 nanowire nano�ake hybrid based FET devices. Current-voltage 
curves for (a) high and (b) low density random networks of the hybrid nanowires between the source and drain 
electrodes. Inset in panel (a) displays a magni�ed plot for the outlined regime between 4.4 and 4.5 V for better 
visibility of the current values at di�erent gate voltages. Inset in panel (b) shows a dark �eld optical micrograph 
of a device.

Figure 5. Optical properties of WS2 nanohybrids. (a) Tauc plot for direct band-to-band transition derived 
from total re�ectance measurements on the original and sulfurized powders. Dashed lines represent �tting of 
the linear sections of each curve. Intersections of the dashed lines with the horizontal axis de�ne the band gap. 
(b) Current-voltage characteristics of a high density FET under di�erent LED illumination conditions (red, 
green and blue centered at 623 nm, 517.5 nm and 466 nm, respectively).
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�e same structures were also applied as light detectors with good response to visible photons. �e performance 
of both FET and photodetector devices is limited by the large contact resistance between the hybrid nanomate-
rials in the random network, which may be overcome by using optimized device structures having only a few 
nanowire-nano�ake hybrid particles in the channel. �e work presented here suggests that nanowire-nano�ake 
hybrids of WS2, which can be synthesized by using simple chemical methods in large quantities, are competitive 
counterparts of few layer chalcogenides in electrical and optoelectronic applications.
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