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Spatial precision positioning devices are often based on parallel robots, but when it comes to planar

positioning, the well-known serial architecture is virtually the only solution available to industry.

Problems with parallel robots are that most are coupled, more difficult to control than serial robots, and

have a small workspace. In this paper, new parallel robot is proposed, which can deliver accurate

movements, is partially decoupled and has a relatively large workspace. The novelty of this parallel

robot lies in its ability to achieve the decoupled state by employing legs of a different kinematic

structure. The robot repeatability is evaluated using a CMM and so are the actual lead errors of its

actuators. A simple geometric method is proposed for directly identifying the actual base and mobile

reference frames, two actuator’s offsets and one distance parameter, using a measurement arm from

FARO Technologies. While this method is certainly not the most efficient one, it yields a satisfactory

improvement of the robot accuracy without the need for any background in robot calibration.

An experimental validation shows that the position accuracy achieved after calibration is better than

0.339 mm within a workspace of approximately 150 mm�200 mm.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Parallel robots are often said to be more precise than serial
robots because they do not suffer from error accumulation. While
this might be true in theory [1], the real reason is that parallel
robots can be built to be stiffer without being bulkier.

Spatial precision positioning devices are often based on
hexapods (e.g., those manufactured by PI and ALIO Industries)
or tripods (e.g., the SpaceFAB manufactured by MICOS). However,
when it comes to planar three-degree-of-freedom (3-DOF) posi-
tioning, virtually all commercial so-called XY-Theta positioning

tables are based on the well-known sandwich setup illustrated in
Fig. 1. This serial configuration has the advantage of simple
motion control. However, being ‘‘serial’’ means that the first
actuator has to support the weight of all the other actuators.
As a result, the device would have to be large enough not only to
support itself, but to absorb any vibrations caused by the motors.
This means that such a device would be relatively large and
sluggish as well.

Planar parallel robots have received considerable attention
(see [2] and the references therein), yet very few of them are used
in industry. Most precision positioning prototypes based on
planar parallel robots rely on the use of flexures (e.g., [3,4]).
ll rights reserved.

).
Yet, such robots have a very limited workspace-to-footprint ratio,
and are not an alternative to the XY-Theta stage in Fig. 1.

Among the few existing planar 3-DOF parallel robot prototypes
that do not employ flexures, one is based on a symmetric 3-PRP1

architecture [5], where the base actuators form an equilateral
triangle and the platform linear guides form a star. This robot
has a very limited workspace though. In contrast, the 3-RRP robot
first disclosed in [6], then studied in [7], and of which a first
prototype was reported in [8], offers unlimited rotation in addition
to excellent stiffness in the vertical direction. However, the
achievable accuracy of such a robot is questionable, since it relies
on the use of a perfectly circular rail.

The only commercially available parallel XY-Theta positioning
table, manufactured by Hephaist Seiko and at least two other
Japanese companies, is the one shown in Fig. 2. This robot is also
based on the 3-PRP architecture, but its design is asymmetric.
The resulting positioning table is very rigid, since its mobile
platform glides directly on top of three linear guides. Unfortu-
nately, this design is highly coupled, meaning that to move in
certain directions all three actuators must work in conjunction
with one another. Furthermore, its workspace is severely limited,
as illustrated in [9].
1 It is customary to refer to parallel robots using the symbols P and R, which

stand for prismatic and revolute joints, respectively. When a joint is actuated,

its symbol is underlined.
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Fig. 1. A serial XY-Theta positioning table (courtesy of Newport Corp.).

Fig. 2. NAF3 alignment stage (courtesy of Hephaist Seiko Co., Ltd.).
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Fig. 3. Schematic diagram of the PreXYT.
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This paper presents for the first time the prototype of a novel
patented XY-Theta parallel architecture [10], dubbed the PreXYT,
that is both partially decoupled, rigid in all directions, and having
a relatively large workspace, and proposes a geometric procedure
for the kinematic calibration of the robot. In particular, Section 2
briefly recalls from [9] the kinematic analyses of the PreXYT, but in
a slightly more general fashion. Section 3 discusses the actual
prototype and Section 4 presents the results on the repeatability of
that prototype, as assessed using a CMM (a Coordinate Measuring
Machine). Section 5 briefly presents the identification of the lead
errors for all three actuators, using the same CMM. Section 6
describes the proposed calibration procedure based on the use of a
measurement arm and Section 7 presents the results on the
improved accuracy. Finally, conclusions are provided in Section 8.
2. Kinematic analyses

2.1. Direct and inverse kinematic analysis

PreXYT is a parallel robot with one PPR leg and two PRP legs, as
shown in Fig. 3. The directions of the actuators in legs 2 and 3 are
parallel to the y axis of a base reference frame, while the direction
of the actuator in leg 1 is parallel to the x axis. The two passive
prismatic joints on the mobile platform are parallel and the
axes of the three revolute joints are parallel and coplanar.
The directions of the two prismatic joints in leg 1 are normal.
Consequently, if the two parallel actuators move in conjunction
with one another at the same rate, the mobile platform is only
translated along the y axis. If the two move in opposite directions,
a pure rotation about the z axis could occur. Finally, the other
actuator directly controls the x coordinate of the platform’s
center.

Referring to Fig. 3, the base reference frame Oxy is fixed at the
base so that the axis of the revolute joint of leg 2 always intersects
the y axis, and a mobile reference frame Cx0y0 is fixed to the
mobile platform so that the axes of the revolute joints of
legs 2 and 3 always intersect the x0 axis. The origin C lies on the
axis of the revolute joint of leg 1. Finally, y is the angle between
the x and x0 axes, measured counterclockwise.

Furthermore, r1 is the active-joint variable associated with
leg 1 and is defined as the distance between the y axis and (the
axis of) the revolute joint of leg 1 minus an offset d1 as illustrated
in Fig. 3. Similarly, r3 is the active-joint variable associated with
leg 3 and is defined as the distance between the x axis and the
revolute joint of leg 3 minus an offset d3. The active-joint variable
r2 is defined as the distance between the x axis and the revolute
joint of leg 2, i.e., the offset d1¼0. These offsets represent the
relative positions of the mechanical limit switches. Finally, s is the
distance between the y axis and the axis of the revolute joint
of leg 3.

Given the active-joint variables, we are able to uniquely define
the position and orientation of the mobile platform (i.e., of the
mobile reference frame). The orientation angle is easily obtained as

y¼ tan�1 r3þd3�r2

s

� �
, ð1Þ

While the position of the mobile platform is given by

x¼ r1þd1, ð2Þ

y¼ r2þðr1þd1Þ
r3þd3�r2

s

� �
: ð3Þ

As can be observed, the direct kinematic equations of the
PreXYT are relatively simple, and the platform’s x coordinate is
directly defined by actuator 1, which is why our parallel robot is
partially decoupled.

The inverse kinematics are also simple. Given the position and
orientation of the platform, the active-joint variables are defined by

r1 ¼ x�d1, ð4Þ

r2 ¼ y�xtany, ð5Þ
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Fig. 4. Constant-orientation workspace of the PreXYT.

Fig. 5. Experimental setup for measuring the repeatability of the PreXYT

with a CMM.
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r3 ¼ yþðs�xÞtany�d3: ð6Þ

Finally, it is evident that the PreXYT has no singularities
whatsoever.

2.2. Workspace analysis

The so-called constant-orientation workspace is the set of posi-
tions attainable by the platform’s center C for a fixed orientation of
the platform, given the actuator limits (r1,max, r2,max, r3,max), as
illustrated in Fig. 4, where the constant-orientation workspace for a
given orientation is the hatched region. The constant-orientation
workspace of the PreXYT is delimited by two lines parallel to the x0

axis and passing through the limits of actuators 2 and 3, and by
two lines parallel to the y axis and passing through the limits of
actuator 1. Obviously, the greater the orientation, the smaller is the
constant-orientation workspace.

A more meaningful workspace subset would be the set of
positions attainable by the platform’s center C with all possible
orientations within a given interval [�ym, ym,]. In the PreXYT, this
workspace has a hexagonal form and can be easily computed by
finding the intersection of the constant-orientation workspaces at
�ym and at ym.
3. Prototype

A prototype of the PreXYT, shown in Fig. 5, has been con-
structed at the École de technologie supérieure. It comprises three
screw-driven linear guides from LinTech: two from the 130 series
and one from the 100 series. Each of the two 130 series linear
guides has a pivoting block attached to the carriage through a
deep-groove single-row bearing. A steel shaft is rigidly attached
to one of the two pivoting blocks and, through a simple linear ball
bearing, to the other pivoting block. This important modification
from the original design in Fig. 3, while having no impact on the
kinematic model of the PreXYT, is not only simpler to implement,
but also eliminates the presence of a reciprocating rod at one side
of the robot, which leads to a more compact device. The mobile
platform slides along the rod through a pair of the same linear
ball bearings. The carriage of a roller monorail guide is attached to
the carriage of the LinTech 100 series linear guide, so that the two
guides are perpendicular. The monorail guide is fixed to the
tapered block, which holds a large deep-groove double-row ball
bearing that is attached to the mobile platform.

The LinTech 100 series linear guide has a wider carriage and a
much higher loading capacity (a 576 Nm roll moment, compared
to 38 Nm for the 130 series), minimizing the deflection that
would occur when the mobile platform is at the extreme ends
of the monorail guide (the passive prismatic joint in leg 1).
Overall, this mechanical design provides high rigidity in all
directions, and particularly in the z direction, which yields a large
payload capacity.

The 100 series and the two 130 series linear guides have travel
lengths limited through mechanical limit switches to about
170 and 300 mm, respectively. The distance s (Fig. 3) is about
394 mm. As a result, the mobile platform can rotate up to 7351
and translate inside a rectangle 170 mm�300 mm, when at 01.
Or, referring to the more practical workspace subset defined in the
previous section, the set of positions attainable with any orienta-
tion between �171 and 171 is at least a disk of diameter 170 mm.
For comparison, the mobile platform is about 160 mm�160 mm
and the base plate is 470 mm�510 mm.

The motors of the linear guides are CMC BNL 2310 brushless
servo motors, yielding a maximum continuous torque of less than
0.7 Nm. No gear boxes are used, since the linear guides use Acme
precision ball screws of 5.080 mm (0.2 in) lead, with a specified
maximum lead error of 50 mm per 300 mm, zero backlash, and
bidirectional repeatability of 5 mm.

We use no linear absolute encoders but only incremental
encoders integrated into the motors. Their resolution is 8000
pulses per revolution, which translates to about 0.6 mm of linear
resolution. Obviously, this is more than sufficient, since the
repeatability of the linear guides is 5 mm. Furthermore, when
homing each actuator, we use both the mechanical limit switch
and the index pulse.

Finally, we used an AMP-20540 four-axis drive module and a
DMC-2133 four-axis controller from Galil. We interfaced these
with a UniOp HMI device with a touch screen and put all these
components in the table top rack cabinet (not shown in Fig. 5).

The cost of the off-the-shelf components was about $15,000.
The cost of machining, assembly, cabling, and programming, all
carried out in-house, cannot be estimated.
4. Assessment of the position repeatability

We were concerned that average repeatability would be
compromised as a result of using relatively low-cost components.
Nevertheless, we performed all measurements using the best
equipment available, at a constant temperature of 24 1C, fixing
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four tooling balls at the corners of the mobile platform (but using
only one). There are no data on the sphericity of these balls, but
their manufacturer specifies a diameter of 6.35 mm75 mm
(0.2570.0002 in.). We used a Mitutoyo Bright-STRATO 7106
CMM, as shown in Fig. 5. Its recent certificate indicates a total
measurement uncertainty of 2.7 mm at 2s. Furthermore, we
tested the repeatability of the CMM by measuring three of the
tooling balls on the (stationary) mobile platform thirty times. The
worst repeatability, calculated using Eqs. (7–10), was better than
1.4 mm (at 3s).

There is no standard procedure for measuring the repeatability
of a parallel robot. The best procedure will be the one that reveals
the worst repeatability. In [12,13], the authors used laser inter-
ferometers to measure the positioning error of their parallel
kinematic machines according to the procedures outlined in the
machine tool performance testing standards [14]. However, since
our device will rather be used as a robot, we decided to use the
following procedure, inspired by the ISO 9283 norm [15]
(for industrial robots), which consists of a trajectory connecting
five measurement poses (P1, P2, y, P5) and repeated 30 times, as
illustrated in Fig. 6. This procedure induces a hysteresis effect at
measurement pose P1.

Pose repeatability expresses the closeness of agreement between
the poses attained after n repeat visits to the same command

pose [15]. Our procedure will measure both unidirectional repeat-

ability (at P2, P3, P4, and P5,) and multidirectional repeatability (at P1).
Finally, since we measure the coordinates of only one point from
the mobile platform (the center of a tooling ball), we actually
evaluate position repeatability and not pose repeatability. Also, the
orientation of the mobile platform is kept at 01, all displacements
are made at a constant speed of 0.4 m/s, and there is no payload.
We performed similar tests at different orientations of the mobile
platform, and we also measured the orientation repeatability at
several positions. However, the analyses of the results from these
measurements did not reveal any further insights and will not be
presented in this paper.

There are two approaches for evaluating position repeatability, e,
from a set of n points. The most natural one is to find the radius of
the smallest sphere (or, in the planar case, circle) that encloses all
points. The other measure for evaluating position repeatability is to
1
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Fig. 6. Sequence for measuring position repeatability (not to scale).
calculate the mean position error with respect to the barycentre
ðx,y,zÞ of the cluster of n points ðxi, yi,ziÞ and add three times the
standard deviation [15]

e¼ rþ3sr , ð7Þ

where

r¼
1

n
ri, ð8Þ

sr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i ¼ 1 ðri�rÞ2

n�1

s
, ð9Þ

ri ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi�xÞ2þðyi�yÞ2þðzi�zÞ2

q
: ð10Þ

Table 1 shows the final results. Note that, even though we have
measured the position at P1 120 times, we only consider the first
30 measurements. Considering all 120 measurements yields
nearly identical results.

The first observation is that the worst repeatability, naturally
occurring at P1, is about 30 mm. For comparison, the bidirectional
repeatability of an xy serial arrangement of two of our linear
guides would be at least about 7 mm (since the bidirectional
repeatability of our guides is 5 mm). Indeed, it is obvious that the
repeatability of a parallel robot would be worse than that of an
‘‘equivalent’’ serial robot, since it is affected by the mechanical
imperfections (backlash, elasticity, etc.) of many additional com-
ponents, primarily passive joints.

A plot of all {x, y} measurements at P1 and P2 is shown in Fig. 7
(the x and y coordinates in these figures are those of the tooling
ball measured, and not of the platform’s center). Note that the
upper cluster of points in Fig. 7a corresponds to arrivals at P1 from
‘‘above’’ (i.e., from P2 and P3), while the lower cluster of points
corresponds to arrivals from ‘‘below’’ (i.e., from P4 and P5). Thus,
there is an obvious hysteresis effect, which we believe is in large
part due to clearances in the INA KX12 linear bearings through
which the steel shaft reciprocates. These linear bearings allow
axis misalignment of up to 40 arcmin, which translates to a
clearance of about 24 mm (given their length of 41.27 mm).
However, this clearance alone cannot be the reason why the
repeatability at P2 and P3 is much worse than that at P4 and P5.
Therefore, we believe that another error is responsible, which is
the warping of the mechanism due to the non-coplanarity of the
two parallel guides.

The position repeatability along the y axis is much worse than
that along the x axis for all five measurement poses, despite the
fact that the arrival direction at four of the poses is always the
same, as seen in Fig. 7b, for P2. The clearance in the INA KX12
linear bearings and the warping of the mechanism should be the
reason once again. Indeed, the x positioning at the zero orienta-
tion is influenced almost exclusively by leg 1. Since both the
passive linear guide and the bearing of leg 1 are very stiff, the
x positioning is very repeatable.
Table 1
Positioning repeatability (in mm).

Meas. pose Radius of minimum

boundary sphere/circle

Mean position repeatability

x, y, z x, y x, y, z x, y x y z

P1 28.8 27.1 32.4 30.4 7.3 30.1 11.3

P2 12.3 12.1 15.5 15.2 2.7 15.2 5.0

P3 8.5 8.3 11.4 11.3 2.9 11.4 4.5

P4 3.2 3.0 4.4 4.2 2.1 4.0 2.7

P5 4.9 4.9 6.2 6.0 2.3 6.2 3.1
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The mechanism does indeed undergo slight warping, which
can be seen from analyzing the coplanarity of the positions in
P2, P3, P4, and P5. If we take the centers of the bounding spheres
for the measurements at these four poses, then we can calculate
that the distance from any of these centers to the plane formed by
the other three centers is 52 mm.

Finally, note that the measurements shown in Table 1 were
performed after a single homing. However, we also tested the
repeatability of our homing procedure by measuring the position
of our tooling ball after ten successive homing sequences, at the
home position. This repeatability is better than 2 mm (at 3s).
Fig. 8. Experimental setup for calibrating the PreXYT with a FaroArm.
5. Determination of lead errors

As already mentioned, the maximum lead error of our linear
guides is 50 mm per 300 mm and we do not use absolute linear
encoders. Therefore, to improve the accuracy of the PreXYT, we
measured the actual lead error on the CMM using the following
procedure. A precision ball of diameter 9.525 mm (3/8 in.) was
solidly attached to the carriage of each of the three linear guides
using magnetic nests and hot glue. The range of motion of each
actuator was divided into six segments, i.e., seven consecutive
positions at which measurements were taken. Each fist position
corresponded to when the actuator is homed and was considered
at the reference position. Each actuator is then moved to each of
the subsequent six positions, and at each position the precision
ball is measured using the CMM. The measurement sequence for
each actuator is repeated ten times (i.e., measurements are done
at positions 1-2-3-4-5-6-1-2y). A linear regression is
then applied for each actuator and the actual lead is determined.
The actual screw errors were thus determined to be
�0.690�10�3r1, �0.454�10�3r2, and �0.358�10�3r3

(i.e., the actual lead for actuator 1 is 5.0764948 mm instead of
5.080 mm, etc.) or as much as 200 mm per 300 mm.
6. Kinematic calibration

While the repeatability of the PreXYT was assessed using a
CMM and so were the actual lead errors, we decided to use our
own FaroArm Platinum measurement arm for the robot calibra-
tion. This choice was made mainly because not only is our
FaroArm accessible to us at all times and much easier to use,
but also because the FaroArm has a volumetric accuracy that is
sufficiently good for the calibration of the PreXYT. Indeed, the 3D
point-to-point accuracy of our 4 ft FaroArm Platinum is specified
at 718 mm. Of course, unlike the CMM where triggering is
automatic, the accuracy of measurements with the FaroArm is
highly dependent on the experience of the operator and on the
rigid mounting of the FaroArm.

Fig. 8 shows the setup used for calibrating the PreXYT and for
assessing the point-to-point accuracy of the FaroArm. Both the
PreXYT and the FaroArm are solidly attached to a heavy steel
table. The FaroArm is equipped with its standard 3 mm probe and
is used by probing the same tooling balls (attached to the mobile
platform) described in Section 4 and the same precision balls
described in Section 5.

We assessed the point-to-point accuracy of our FaroArm using
a 300 mm scale bar (actually, the calibration kit of our Renishaw
telescoping ballbar). The scale bar was positioned in two config-
urations: the one shown in Fig. 8 and another one obtained by
rotating the bar at 901. At each configuration, each of the two high
precision balls of the scale bar was measured ten times using the
PolyWorks software. In the scale-bar configuration shown in
Fig. 8, the mean distance error was �6 mm and the standard
deviation was 4 mm, while in the second configuration, the mean
distance error was 12 mm and the standard deviation was 5 mm.
We also measured ten times the center of one of the tooling balls
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on the mobile platform (while the robot controller was turned off)
and repeatability, calculated using Eqs. (7–10), was better than
7.3 mm (at 3s). Therefore, we believe that the FaroArm can be
used for calibrating the PreXYT, since the multidirectional repeat-
ability of our robot is more than 30 mm and the volumetric
accuracy that we aim at is certainly not less than 100 mm.

There exist two major families of calibration methods [16]:
kinematic and non-kinematic. A kinematic calibration approach
considers that the robot’s links are perfectly rigid. Therefore, the
calibration is to introduce corrections only to the kinematic
model of the robot. On the other hand, a non-kinematic calibra-
tion takes into account that the robot is affected by some non-
geometric errors, such as the elasticity of joints, the transmission
errors of gears and their backlash, the effects of temperature [17]
and speed. This calibration implies that the model of the robot
must take into account various non-geometric parameters, which
makes the model very complex, and renders the direct and
inverse kinematics of the robot more difficult to solve.

Our work considers only a basic kinematic calibration although
we also determine the lead errors. Several researches use this
approach to calibrate parallel robots, by performing measurements
on the actuators [18] or on the end-effector [19–22]. Both approaches
are used to find the parameters that minimize the residuals of either
the inverse or direct kinematic model. Some methods add mechanical
constraints to the robot, to limit some of its movements during the
calibration procedure. This can be achieved by blocking the position
or orientation of the end-effector to a known value [23], or by forcing
it to make a specific movement such as linear trajectory or to move
along a predefined plan [24]. For more details about parallel robot
calibration methods, the reader is referred to [25].

A calibration approach can use position data from the internal
sensors of a robot [24] and, possibly, from an external 3D measure-
ment device such as a CMM [26], a CCD camera [27,28], a laser
tracker [17], or other 2D or even 1D measurement devices such as an
inclinometer [29], a theodolite [30,31], a triad of dial gages [32] or a
telescopic ballbar [33]. In most cases, the calibration is based on an
optimization method that finds the parameters improving the robot’s
accuracy. While it is generally accepted that such approaches yield
better results than when trying to directly measure the robot
geometry (an approach known as screw-axis measurement in the
case of serial robots [34]), there are virtually no reported works on
such direct methods in the case of parallel robots. The only excep-
tions are references [35,36], both describing direct geometric meth-
ods for calibrating spatial parallel robots with cylindrical legs. In
comparison to the present work, the first work [35] was too super-
ficial, while the second work [36] used a single CCD camera.
However, none of the methods proposed in these two works is
directly applicable to the PreXYT.

In this paper, we will use a geometric approach for obtaining
the actual robot kinematic parameters. Furthermore, we will
determine only those kinematic parameters that do not render
the kinematic equations of the PreXYT more coupled. In other
words, we will determine only the base and mobile reference
frames, the actuator offsets d1 and d3, and the distance s, and keep
all other parameters at their nominal values. We already know
that while the direction of actuator 1 is precisely orthogonal to
the directions of actuators 2 and 3 (the assembly of the robot was
done with the help of the CMM), the orthogonality between the
directions of the two prismatic joints in leg 1 is relatively poor
and there are certainly many other geometric errors that we
neglect. However, in this paper, our aim is not to achieve the best
robot accuracy possible, but to analyze the limits of directly
measuring the main robot parameters only (thus keeping the
kinematic model as simple as possible). The idea is to propose a
method that can be understood and implemented by a technician
with no expertise in robot calibration.
6.1. Determination of the base reference frame

The procedure for determining the base reference frame is
illustrated in Fig. 9. Firstly, two points on the rail of actuator 2 and
one point on the rail of actuator 3 are measured and used to
define the xy plane of our robot. All further measurements will be
projected in this plane. Next, the PreXYT is sent to its home
position. A 3/8-in. precision ball, referred to as ball N, is attached
at the free end of the steel shaft. Actuator 3 is then displaced in
equal increments until the platform makes an angle of approxi-
mately 351. At each increment, the position of (the center of) ball
N is measured. A total of 36 positions are measured and they are
supposed to lie on a 351 circular arc. The center of this arc,
projected on the xy plane, gives us the origin O of the base
reference frame.

We used the Gauss–Newton least-squares fitting method [37],
to find the center of the circular arc. Of course, we are well aware
of the fact that a 351 circular arc is not optimal for precisely
determining the center of the circle. However, the maximum
radius residual for the 36 positions was only 20 mm, and the norm
of all residuals was 47 mm. Furthermore, since all other para-
meters are determined with respect to the base reference frame at
this origin, this 351 limitation does not seem to be a major
problem.

Next, we attach another 3/8-in. precision ball, referred to as
ball R, on the carriage of actuator 2. We measure its position at
the home position of actuator 2 and at its upper limit, some
300 mm farther away. The line that passes through both positions
defines the direction of the base y axis. Finally, the x axis is
orthogonal to the y axis, in the xy plane and pointing towards
actuator 3.

6.2. Determination of mobile reference frame

The method for determining the origin C of the mobile refer-
ence frame is similar to the one for determining the origin O.
We attach one precision ball, referred to as I, to the tapered block
and use two of the four tooling balls attached to the platform,
referred to as K and L, as shown in Fig. 9. As already mentioned in
Section 3, the mobile platform is fixed to the tapered block through
a large deep-groove double-row ball bearing. Thus, the origin C

that we look for lies on the axis of rotation of this ball bearing. The
procedure, therefore, involves sending the mobile platform in the
center of the workspace and rotating it from �351 to 351 in
increments of 21. At each orientation, we measure the centers of
balls K, L, and I, project them to the Oxy plane and transform the
coordinates of I to a reference frame with origin at K and with its x00
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axis passing through L (Fig. 9). The transformed coordinates of the
36 measurements of I are then fitted to a circle with the Gauss–
Newton least-squares fitting method [37]. The maximum radius
residual for the 36 positions was only 10 mm, and the norm of all
residuals was 23 mm. With respect to the Kx00y00 reference frame,
that position was found to be {�73.932 mm, 72.947 mm}, while
the nominal position is {�73.000 mm, 73.000 mm}.

The next step should be defining the x’ axis of the mobile
reference frame. This was done by displacing in several incre-
ments only actuator 1 from the configuration shown in Fig. 9, and
measuring the positions of balls K and L. It was found out that
balls K and L follow nearly the same path. Therefore, for simpli-
city, we neglected the slight offset and defined axis x0 to be
parallel to axis x00.
Fig. 11. Procedure for determining the offsets d1 and d3.

6.3. Determination of the distance s

Fig. 10 illustrates the idea behind the method used for deter-
mining the distance s (Fig. 3). The PreXYT is brought to the one of
the configurations shown in Fig. 10 and then to the other by only
displacing actuator 2. In each configuration, the steel shaft is
probed and the measurements fitted to a cylinder, the axis of
which is projected to the Oxy plane (all done in PolyWorks V13).
The parameter s is the distance between the Oy axis and the point
of intersection of the two projected axes. Note that the steel shaft
(INA WZ3/4) is specified to have a diameter of 19.050 mm (3/4 in.),
a parallelism of 9 mm, and a roundness of 6 mm. The procedure was
repeated several times, and the mean value for the distance s was
found to be 393.517 mm (with a standard deviation of 9 mm),
while the nominal value is 394.000 mm.
6.4. Determination of the offsets d1 and d3

Fig. 11 illustrates the method used for determining the offsets
d1 and d3. We home the PreXYT, and from its home configuration,
we displace actuators 2 and 3 exactly 150 mm (half their range).
This is done in order to eliminate the effect of the error in the
orthogonality between the two prismatic joints in leg 1. Then, we
measure the positions of balls K and L in order to obtain the
position of C with respect to the base reference frame Oxy. The x

coordinate of the position of C is the offset d1. Next, we displace
actuator 1 to the end of its range and measure the coordinates of
ball K. Let the relative displacement of the center of ball K with
respect to the base reference frame Oxy be denoted by {Dx, Dy}.
 s 
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Fig. 10. Procedure for determining the distance s.
Then the offset d3 is defined by the following formula:

d3 ¼ s
Dy

Dx
: ð11Þ

The above procedure was repeated several times (each time
homing the robot) and the average values obtained were d1¼

116.007 mm (with a standard deviation of 2 mm) and d3¼0.704 mm
(with a standard deviation of 4 mm). The nominal values were
d1¼115.000 mm and d3¼0.000 mm.
7. Experimental validation

To validate the efficiency of our calibration method, we
performed measurements at five positions (the corners of a
rectangle and its center [15]) for two different orientations, as
well as for the central position and a range of orientations. We
performed the same measurements, before calibration (using the
nominal screw leads and the nominal values for the position of
the origin C and for s, d1 and d3) and after calibration (using the
new values for the screw leads, for the position of the origin C,
and for s, d1 and d3). Of course, we first defined the base reference
frame using the procedure described in Section 6.1, and used the
same base frame for all measurements. Finally, all measurements
were done with the FaroArm, in the same setup used for the
calibration of the PreXYT and shown in Fig. 8, by measuring the
centers of tooling balls K and L (and thus determining the
coordinate of the platform center C). The whole procedure was
repeated five times and the errors shown in this section are the
mean values. Because of lack of space, the standard deviation for
each measured position is not given, but even the worst one was
only 13 mm.

The results are shown in Tables 2–4. In summary, the max-
imum position and orientation errors before calibration were
1.514 mm and 0.1311, respectively. The maximum position and
orientation errors after calibration were reduced to 0.339 mm and
0.0371, respectively.
8. Conclusions

Despite the low-cost off-the-shelf components, we were able
to build a first prototype of a novel 3-DOF planar parallel robot,
dubbed PreXYT, with good positioning repeatability and pose
accuracy. Videos of the PreXYT are available at http://www.
youtube.com/CoRoETS.

We also proposed a calibration method that is simple to
understand and perform, and that relies on the same trivial
kinematic model as the nominal one. It was clearly demonstrated

http://www.youtube.com/CoRoETS
http://www.youtube.com/CoRoETS


Table 3

Pose accuracy at the orientation y¼101.

Command position (in mm) Mean position errors (in mm) and mean orientation errors (in degrees)

Before calibration After calibration

x y x, y y x y x, y y

{201.000, 137.500} 1.011 0.679 1.218 0.120 �0.023 0.239 0.240 0.013

{266.000, 220.000} 1.093 0.807 1.359 0.123 0.102 0.256 0.275 0.013

{136.000, 220.000} 1.189 0.630 1.346 0.117 0.099 0.305 0.321 0.010

{136.000, 55.000} 0.946 0.611 1.126 0.127 �0.154 0.237 0.282 0.021

{266.000, 55.000} 0.834 0.791 1.150 0.128 �0.160 0.193 0.251 0.021

Table 4
Pose accuracy at the position {201.000 mm, 137.500 mm}.

Command

orientation

(degrees)

Mean position errors (in mm) and mean orientation errors

(in degrees)

Before calibration After calibration

x y x, y y x y x, y y

�29 1.020 �0.263 1.054 0.099 0.021 0.224 0.225 0.037

�19 1.022 �0.001 1.022 0.113 0.012 0.223 0.224 0.036

�9 1.024 0.243 1.052 0.126 �0.003 0.229 0.229 0.031

0 1.022 0.452 1.117 0.129 �0.014 0.234 0.234 0.023

9 1.017 0.653 1.208 0.124 �0.024 0.234 0.235 0.015

19 1.011 0.876 1.338 0.113 �0.032 0.227 0.229 0.006

29 1.004 1.134 1.514 0.100 �0.044 0.221 0.225 �0.002

Table 2

Pose accuracy at the orientation y¼01.

Command position (in mm) Mean position errors (in mm) and mean orientation errors (in degrees)

Before calibration After calibration

x y x, y y x y x, y y

{201.000, 137.500} 1.013 0.468 1.116 0.125 �0.017 0.238 0.238 0.022

{276.000, 250.000} 1.134 0.573 1.271 0.130 0.155 0.254 0.297 0.023

{126.000, 250.000} 1.247 0.355 1.296 0.125 0.159 0.299 0.339 0.020

{126.000, 25.000} 0.893 0.390 0.975 0.129 �0.193 0.241 0.309 0.030

{276.000, 25.000} 0.776 0.625 0.996 0.131 �0.208 0.231 0.311 0.031
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that such a calibration method can lead to greatly improving the
accuracy of the robot (by a factor of almost five). To further
improve the accuracy of the robot, we need to identify additional
design parameters, the most important being the angle between
the two passive joints in leg 1. While this could have been easily
done using our geometric approach, taking this error into con-
sideration would have inevitably led to more complex kinematic
equations, which is why we deliberately ignored it.
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