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Abstract: A real-time head pose and gaze estimation (HPGE) algorithm has excellent potential for
technological advancements either in human–machine or human–robot interactions. For example,
in high-accuracy advent applications such as Driver’s Assistance System (DAS), HPGE plays a
crucial role in omitting accidents and road hazards. In this paper, the authors propose a new
hybrid framework for improved estimation by combining both the appearance and geometric-
based conventional methods to extract local and global features. Therefore, the Zernike moments
algorithm has been prominent in extracting rotation, scale, and illumination invariant features.
Later, conventional discriminant algorithms were used to classify the head poses and gaze direction.
Furthermore, the experiments were performed on standard datasets and real-time images to analyze
the accuracy of the proposed algorithm. As a result, the proposed framework has immediately
estimated the range of direction changes under different illumination conditions. We obtained an
accuracy of ~85%; the average response time was 21.52 and 7.483 ms for estimating head poses and
gaze, respectively, independent of illumination, background, and occlusion. The proposed method is
promising for future developments of a robust system that is invariant even to blurring conditions
and thus reaching much more significant performance enhancement.

Keywords: head pose and gaze estimation (HPGE); feature extraction; Zernike moments; principal
component analysis; linear discriminant analysis

1. Introduction

The head pose and gaze estimation (HPGE) algorithm plays a vital role in identifying
a person’s direction of observation and attention while driving. Safe driving is a complex
task that needs a wide range of abilities and skills in cognitive, physics, and sensory data [1].
Driving does not always occur in ideal conditions, such as being well rested, well trained,
and not engaged with non-driving-related activities. According to road accident statistics,
the estimation of driver distraction can help improve the country’s economic status [2], and
HPGE plays a very crucial step in developing Advanced Driver Assistance System (ADAS).

Distraction is considered as the diversion state of the person concentrating on a
situation and object unrelated to the primary task, which leads to risky decisions in the
real-time environment. The head pose estimation calculates the spatial location of the
human head along with the position or rotation angle (front or side poses) in an image.
Gaze estimation measures eyeball direction to predict the human attention level and better

Sensors 2022, 22, 8449. https://doi.org/10.3390/s22218449 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22218449
https://doi.org/10.3390/s22218449
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-0825-4211
https://orcid.org/0000-0002-2855-9071
https://orcid.org/0000-0002-8443-736X
https://orcid.org/0000-0003-0773-9476
https://doi.org/10.3390/s22218449
https://www.mdpi.com/journal/sensors
http://www.mdpi.com/1424-8220/22/21/8449?type=check_update&version=4


Sensors 2022, 22, 8449 2 of 12

understand human activities. Head pose always coincides with gaze directions to know the
focus of attention. It also successfully provides robust and accurate perception to interact
with humans [1]. It is mainly used for analyzing complex meaningful gestures such as head
nodding or pointing gestures. Gaze direction is achieved by capturing and analyzing the
appearance of human eye images. The eye is one of the major sensory organs that conveys
reliable information to the brain to perform tasks.

The main objective of this work is to develop a framework for monitoring the atten-
tiveness and behavior of the person by estimating the head pose and gaze directions. This
information is used to analyze and understand the attitude (behavior) of the person [3].
Therefore, we need to adopt a technique that is not intrusive and should not cause in-
convenience to the person for developing an inexpensive automatic Head Pose and Gaze
Estimation system, which is essential to understand the attention and behavior of the
person. The automatic behavior identification system is crucial in real-time applications
such as psychology, biometrics, surveillance, and safety surveillance systems. The HPGE
system’s performance is analyzed using the elapsed time and recognition accuracy.

This paper involves and analyzes the various head pose and gaze estimation tech-
niques that exist in the literature. We have analyzed the parameters and constraints in
the existing HPGE systems and propose a hybrid Zernike moment-based framework to
overcome the drawbacks. It also includes a detailed methodology with the experimental
results on standard databases and images acquired in real time (which consist of facial
images with different sizes and illumination conditions).

2. Related Work

This section analyzes the state of the art in estimating attentiveness by focusing on
conventional appearance-based methods to recent advanced deep learning algorithms for:
(1) head pose estimation (2) gaze estimation, and (3) an integrated HPGE system on images
in constrained and unconstrained environments.

2.1. Appearance and Template-Based Methods

In appearance-based methods, each train and test image is projected into the high
dimensional feature space, and the distance between the features is calculated to find the
best match. These methods extract the local features from the input image, invariant to
varying illuminations [4]. An extension to these methods is template matching, which can
be adapted and trained based on our application at varying environmental conditions. The
performance of these methods depends on the size of the training data, occlusions, and
the redundancy of input data [5,6]. Most of these methods calculate the best match using
a minimum distance metric to find head pose and gaze orientations or movements. The
minimum distance metric classifier is based on either Euclidean distance or Mahalanobis
distances. Euclidean distance is the distance between two points x and y, represented as
Equation (1)

dist(x, y) = sqrt
(
(x− y)(x− y)T

)
(or)

dist(x, y) = sqrt(
2

∑
i=1

(|xi| − |yi|)
2) (1)

Mahalanobis distance is calculated as Equation (2)

||x− y||2(∑ i) = (x− y)T(∑ i
)−1

(x− y) (2)

To overcome the training data size and redundancy drawback, dimensionality reduc-
tion techniques are performed on the extracted feature vector. Dimensionality reduction
techniques are mainly classified into (i) principal component analysis (PCA), (ii) Kernel
PCA, (iii) local discriminant analysis (LDA), (iv) canonical correlation Analysis (CCA),
(iv) independent component analysis (ICA), (v) Isomaps, (vi) diffusion maps, etc.
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According to the literature, appearance-based methods use an entire eye image as a
high dimensional input feature vector and map them to a low dimensional gaze directional
space vector. Therefore, these methods do not require extracting the eye features and giving
accurate results, and the performance depends on the number of training samples [4,7].

2.2. Geometric and Model-Based Methods

These methods extract facial key points as the global features such as eyes, nose,
mouth, etc. The intra-ocular distance is used to find the head pose and gaze of the person.
It is desirable to consider the trade-off between the number of key points and accuracy [8].
Active Shape model and Active Appearance model are used to find the landmarks and
create a deformable face shape model. These techniques are used to generate 3D face
models [9]. High-accuracy applications require the extraction of a more significant num-
ber of landmarks, which increases the algorithm’s complexity at changing illumination
conditions, and occlusions degrade the system’s performance further [3]. These methods
determine the gaze direction by obtaining mapping functions from the features of 2D eye
images [10]. These methods are quite simple but are unsuitable for many real-world appli-
cations because they have difficulty finding head movements [11]. Model-based approaches
use three-dimensional geometrical relationships among the eyes, infrared light sources,
and camera positions. The optical axis is estimated by connecting the line between the
cornea and pupil center from which the visual axis is obtained from user-dependent offset
angles [12,13]. The visual axis is more sensitive to focal length, relative positions among
the camera, display screen, and offset angles, and it is still a challenging task to obtain
gaze direction estimation accurately by using custom-made devices with one camera and
a small display screen. Most existing gaze estimation techniques include model-based or
feature-based techniques [14–16]. The geometric models of the eyeball and its environment
extract eye features (corneal infrared reflections, pupil center and iris contours) to fit the
model. However, these methods are challenging to build and calibrate. Researchers classify
the existing geometric characteristics-based gaze estimation techniques into shape-based
(centroid points and primitive geometric shapes such as ellipse, rectangle, circle) and
motion-based (tracked features of objects in videos) techniques [3].

2.3. Deep Learning-Based Methods

Researchers used deep learning techniques for both feature extraction and classifica-
tion. One of the most popular deep learning techniques is Convolutional Neural Network
(CNN). CNN is used for pose estimation, but the accuracy is not up to the mark in real
time. The technique was improved by extracting the local features from the image, and
then, CNN was applied for classification [9,17,18].

Table 1 shows the general description of the existing HPGE techniques. These non-
intrusive head and eyelid movements observation systems fit very well to the requirements
of the objectives of this research work. Novel extensions are related to a better analysis of
the facial dynamics and to their correlation with different mood and emotion states.

This work focuses on the hybrid approach, which combines appearance-based and
geometric-based pose and gaze estimation methods. First, the Viola–Jones algorithm
extracts the global features such as eyes, and then Zernike moments are used to extract the
local features from the face image and eyes for HPGE.
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Table 1. Description of existing techniques.

Technique Description

Head and facial movement analysis

Example 1: An infrared active sensor is used to detect both pupil and head
motions in variable light conditions. By using the Kalman filter, facial features are
tracked, and a smoothening of the motion of the features is ensured. The Gabor

wavelets are used for fast feature detection [19].
Example 2: First, the face and eyes are detected using the Adaboost classifier and

then passed through a Gabor filter. The output is normalized and passed to a
data-driven classifier, a support vector machine (SVM) [20,21].

Example 3: Human face and facial features are detected using Haar Wavelets with
Adaboost cascade algorithm. Then, eye closing is measured by analyzing the

optical flows in the particular region [13,22].

Eye closure, blink rates

Example 1: The PERCLOS video-based system calculates the number of eyelid
closures. It measures this within 1 to 3 min intervals. A special algorithm uses this
number to estimate the person’s drowsiness. A person under drowsiness generally
has a longer eye closure than an alert person. This system has been validated in

real on-road driving and with the Psychomotor Vigilance test (PVT) [23–25].
Example 2: Kinect cameras (passive stereo pair) are used to capture video of the

human’s head to generate the 3D pose in real time. The persons face (±1 mm,
±1 deg) as well as the eye gaze direction (±3 deg), blink rates and eye closure are

measured [23,26].

Eye blink detection approach
S multi-sensor system was developed to integrate eye lid camera (measure eye
blinks) and other monitoring parameters (a steering grip sensor, a lane tracker).

All signals are integrated to perform the task [27–30]

Multiple measures approach

An example of alertness-monitoring technologies comprises the MINDS system
and eye-gaze system to estimate the head position and gaze, two potential

fitness-for-duty systems (Safety Scope and Mayo Pupillometry system). Using this
system, one can measure various parameters such as physiological, behavioral and
subjective sleepiness measures. Moreover, all these parameters were integrated

using a neural-fuzzy hybrid scheme [31,32].

3. Methodology

The overall flowchart of the proposed automatic head poses and gaze direction esti-
mation system is shown in Figure 1. The proposed approach consists of the training phase
and the testing phase. The preprocessing, feature extraction using Zernike moments, and
dimensionality reduction steps are typical for the train and test phases. The minimum
distance metric classifier is used to find the head pose and gaze direction estimation.

3.1. Preprocessing and Eye Pair Detection

The input images considered for this work are color (RGB) images. RGB color-based
image has high-intensity value pixels versus the gray color image. To improve the compu-
tation speed and reduce the processing time, the color images are converted to grayscale
images. For head pose estimation, there is no need to perform the face detection algorithm
and pass the preprocessed image directly as the input to the feature extraction step because
the Viola–Jones algorithm cannot detect faces in extreme poses. The image is resized to
256 × 256. In gaze direction estimation, the Viola–Jones algorithm detects the eye pairs
of the face image [33,34]. The Viola–Jones algorithm detects the eye pairs very fast and
accurately. The detected eye pairs are resized to 100 × 100.

3.2. Feature Extraction

For any successful recognition system, the representation of facial features is essential.
The facial features are extracted using Zernike Moments (ZM) computation, and imple-
mentation is straightforward. First, the detected face features are extracted using the ZM
feature extraction technique. It is defined as a unit disk space, determining the disk center
by calculating the centroid of an image. The main advantage of using these moments
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is simple translational and scale-invariant techniques, which give high accuracy for the
detailed shapes. From this, the system obtains a high dimensional feature vector.
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3.2.1. Zernike Moments Feature Computation

Zernike moments was initially introduced in the 1930s by Fritz Zernike. Later, it was
adapted to images in the 1980s by Teague. Previously, hue moments were used as shape
descriptors. These Zernike moments are based on orthogonality functions. ZM gives the
shape information along with the pixel intensities, which improves the performance.

The Zernike moments are obtained from the transformed unit disk space for the extrac-
tion of shape descriptors invariant to translation, rotation, and scale, along with skew and
stretch used for the feature extraction process to preserve more shape information [35,36].
These moments are the set of complex polynomials that form a complex orthogonal set over
the interior of the unit circle, i.e., p2 + q2 ≤ 1. ZM are the projection of the image function
on some orthogonal basis function introduced [37].
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Let I(p,q) be the input image of size P X Q. By decomposing I(p,q) into the ZM basis
function, the set of polynomials is denoted by {Vnm(p,q)}. These polynomials can be
represented in Equations (3) and (4) [24].

Vnm(p, q) = Vnm(rho, theta) = Rnm(rho) ∗ e(j∗m∗theta), theta ≤ 1 (3)

rho(p, q) =
√
(p2 + q2), theta(p, q) = tan−1

(
q
p

)
(4)

where n specifies the polynomial order used to control the number of coefficients. The
value of n should be a positive integer or zero represents the number of iterations. The
value of m should be taken as positive or negative integers. n and m values should satisfy
the conditions in Equation (5).

(a) n ε Z+

(b) n− |m| is even, and
(c)|m| ≤ n

(5)

The Rnm(rho) is the Zernike/Radial basis polynomial, which is defined as Equation (6)

Rnm(rho) =

 (n−|m|)
2

∑
s=0

(−1s) ∗ rhon−2s ∗ (n− s)!

s! ∗
(

n+|m|
2 − s

)
! ∗
(

n−|m|
2 − s

)
!

 (6)

where rho represents the length of the vector from the origin to the pixel (p,q) (image pixel
radial vector). Theta represents the angle between the X-axis and the vector rho in the
counter-clockwise direction.

3.2.2. Zernike Moments Calculation

1. Take an entire image I(p,q) of size 256 × 256 as input.
2. Determine the center of the image.
3. Create a square window of minimum size (100 × 100 for gaze estimation, 64 × 64 for

pose estimation) to focus the head region without distortion.
4. Place a square window in the original input image so that the image center should be

the center of the square window.
5. Determine the order (n, m values) by satisfying the condition in Equation (5).
6. Calculate ZM basis function to generate the polynomials by using Equations (4) and (6).
7. Calculate complex Zernike moments from the image as Equation (7) using the ba-

sis function.

Vnm(p, q) = Vnm(rho, theta) = Rnm(rho) ∗ e(j∗m∗theta), theta ≤ 1 (7)

8. Reconstruct the shape using the basis function and complex Zernike moments.

Here, input image is resized to 256 × 256. For pose estimation, divide the input
image into 16 sub-images, each of size 64 × 64. Create a disk with radius as 64 and
center at (32,32). Features are extracted using the 8th order Zernike moments (orthogonal
polynomial), and they produce 25 descriptors/features from each sub-image. Higher-order
moments are numerically unstable, sensitive to noise and will obtain a ringing effect at
the edges. Therefore, there are a total of 16 × 25 = 400 descriptors that are uncorrelated,
scale, translation, and rotation-invariant features in the image. For gaze estimation, after
the Viola–Jones algorithm, eye images are resized to 100 × 100. In this case, a disk of
radius 100 center at (50,50) is created. Total features extracted from the 8th order ZM are
25 features from each eye image.
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3.3. Dimensionality Reduction

After the feature extraction step, 400 features for pose estimation and 50 features for
gaze estimation are extracted using 8th order Zernike moments. To improve the system
performance, principal component analysis (PCA) and linear discriminant analysis (LDA)
are used for dimensionality reduction. These two methods are appearance-based methods
that use minimum distance classifier (Euclidean distance) for classification. In this work,
Mahalanobis distance is used to improve the accuracy for multivariant data (different
variations in the data) [25].

The main difference between PCA and LDA is that PCA dimensionality reduction
will take place based on the selection of eigen values. We must choose the top eigen
values/eigen vectors. The data compression and performance depend on the number of
eigenvectors chosen. LDA orders the dimensions according to class separability. PCA takes
more time to recognize the expressions, and the classification rate is also less than LDA.

3.4. Head Pose and Gaze Direction Estimation

After assigning labels in the training phase, the low dimensional feature vectors of the
trained images are stored in the database. Then, the system estimates the head pose using
the minimum distance metric (Euclidean distance) based on these features. Minimum
distance class is considered as a result of reducing the false-positive rate.

4. Results and Discussion

The experiment was conducted on collected images with the proposed Zernike
moment-based framework applied to different sizes, invariant illuminations, and occlu-
sions [38]. The images were taken from Aberdeen, MIT-CBCL (Massachusetts Institute of
Technology and to the Center for Biological and Computational Learning), Iranian, and
IMM (Informatics and Mathematical Modelling) databases and real-time images (eight sub-
ject images are captured randomly with a low-cost and low-resolution camera with different
environmental conditions in real time). First, the head pose is estimated by pan angle
ranging from −90 to +90 degrees, and the values were discretized with 45 degrees step.

To find the efficiency of the proposed pose estimation technique, experiments were con-
ducted on the listed database and real-time images. The details of the images and class are
shown in Table 2. Real-time images are used to experiment on the gaze estimation technique.

Table 2. Pose information on each dataset.

Database Name Total No of Images Left_90 Left_45 Front_0 Right_45 Right_90

Aberdeen 687 16 15 656 - -

MIT-CBCL 59 10 12 16 10 11

Iranian 369 106 41 78 72 72

IMM-Data 240 - 47 151 42 -

Real-Time 120 12 40 20 35 13

A total of 1475 images were selected for pose estimation, out of which 740 images were
considered for the training phase, and 735 images were considered for the testing phase
randomly without any repetition of images. Experiments were conducted by considering all
the database images together. Images were categorized into five classes (Left_90, Left _45,
Front, Right_45, Right_90). The proposed system was evaluated based on performance
accuracy and computation time.

4.1. Data Collection

In the Aberdeen database, each image varies in illumination, pose, facial expression
and occlusion [39]. The MIT-CBCL database contains 10 subjects and 6 images per sub-
ject, one for each representing pose variation [38]. In contrast, the Iranian Face database
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contains 369 images of 34 human faces [40]. Each human face has 10 images representing
different pose variations. Each image in the IMM face database represents poses or illumi-
nation [38,41]. The input images of different sizes and invariant illumination conditions
were considered in real time, as shown in Figure 2. The details of the different pose images
in the database and real time are mentioned in Table 2.
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Figure 2. Sample head pose and gaze images.

For gaze estimation, images are either taken from the frontal face databases, which
differ in gaze or real-time images taken from the real-time video (divide the images into
frames) captured from camera. The details of the different eye gaze directions estimated in
the proposed technique are shown in Table 3.

Table 3. Eye gaze directions estimated in proposed system.

Different Gaze Directions

Lower left Lower middle Lower right
Middle left Middle (Front) Middle right
Upper left Upper middle Upper right

Eyes Not Open Half eyes open One eye open

4.2. Performance Evaluation for Zernike Moments Feature Extraction

The performance evaluation was performed on the listed database and real-time
images. Figure 3 shows the correctly estimated head poses for unknown real-time images.

Sensors 2022, 22, x FOR PEER REVIEW 9 of 12 
 

 

Table 3. Eye gaze directions estimated in proposed system. 

Different Gaze Directions 

Lower left Lower middle Lower right 

Middle left Middle (Front) Middle right 

Upper left Upper middle Upper right 

Eyes Not Open Half eyes open One eye open 

4.2. Performance Evaluation for Zernike Moments Feature Extraction 

The performance evaluation was performed on the listed database and real-time im-

ages. Figure 3 shows the correctly estimated head poses for unknown real-time images.  

   
Right side 90° Left side 90° Front pose 

Figure 3. Estimation of the head pose for unknown images for different illumination conditions. 

The proposed approach gives better results in terms of accuracy and response time 

even at different lighting conditions, as shown in Figure 3. 

It also works well even in occlusion conditions. Figure 4 shows that the proposed 

system correctly estimates the head poses with occlusions. 

 
(a) (b) (c) (d) (e) 

Figure 4. Estimation of head pose for occluded images. (a) Right pose; (b) Right pose with 45°; (c) 

Front pose; (d) Left pose with glasses; (e) Left pose. 

The gaze direction estimation is also performed with good accuracy in different illu-

mination and occlusion conditions as shown in Figure 5. 

 
Left eye closed Eyes closed Half eyes open 

Figure 5. Estimation of gaze direction for varying illumination and occlusion conditions. 

The system’s response time is calculated from the images of the database, as shown 

in Table 4. 

  

Figure 3. Estimation of the head pose for unknown images for different illumination conditions.

The proposed approach gives better results in terms of accuracy and response time
even at different lighting conditions, as shown in Figure 3.
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It also works well even in occlusion conditions. Figure 4 shows that the proposed
system correctly estimates the head poses with occlusions.
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Figure 4. Estimation of head pose for occluded images. (a) Right pose; (b) Right pose with 45◦;
(c) Front pose; (d) Left pose with glasses; (e) Left pose.

The gaze direction estimation is also performed with good accuracy in different
illumination and occlusion conditions as shown in Figure 5.
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Figure 5. Estimation of gaze direction for varying illumination and occlusion conditions.

The system’s response time is calculated from the images of the database, as shown in
Table 4.

Table 4. Elapsed time to estimate each head pose using PCA and LDA.

Elapsed Time
(ms) PCA LDA

Left_90 22.5 21.6

Left_45 22 21.5

Front_0 21.9 21.5

Right_45 21.4 21.4

Right_90 21.8 21.6

The dimensionality reduction techniques (PCA and LDA) are performed on the feature
vector to obtain accurate information and increase the operational speed. LDA takes less
time to estimate when compared to PCA. The time required for estimating each gaze
direction using PCA and LDA is shown in Table 5.

Table 5. Elapsed time to estimate the gaze direction using PCA and LDA.

Elapsed Time (ms) PCA LDA

Eyes Open 7.7 7.5

Eyes Closed 7.61 7.45

Half Eyes Open 7.43 7.37

One Eye Open 7.66 7.48

Right 7.7 7.7

Left 7.8 7.4
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Tables 4 and 5 show the performance of both PCA and LDA techniques. LDA gives
better classification results compared to PCA. The accuracy is performed on images of the
database or unknown images using PCA and LDA, as shown in Table 6.

Table 6. Performance analysis of proposed system using PCA and LDA.

Accuracy PCA LDA

Proposed Head Pose Estimation 79% 87%

Proposed Gaze Direction Estimation 77% 85%

Real-time head poses and gaze direction estimation plays a key role in many real-time
applications. In this approach, the eye pair is detected using the Viola–Jones algorithms.
Here, the Viola–Jones technique is not used for face detection because it cannot detect
extreme pose conditions. Thus, the entire face image is passed as an input to the feature
extraction technique. The Zernike moment technique is used for feature extraction, scale,
translation-invariant and illumination-invariant features. For dimensionality reduction,
both LDA and PCA are used. Compared to both, LDA gives better results in less response
time. The minimum distance metric method estimates the pose and gaze direction. How-
ever, it will not estimate the correct results when blurring the images. The performance is
evaluated by taking the images from the public databases or real-time images.

The proposed approach attains an accuracy of 87% using LDA and 79% using PCA
for estimating the head pose and 85% using LDA and 77% using PCA for gaze direction
estimation, as shown in Table 6. These experimental results show that pose and gaze
direction is estimated with less response time and more accuracy on real-time images even
if there is a change in illumination conditions, background, and occlusion.

5. Conclusions

We successfully estimated the head pose and gaze direction from the proposed Zernike
moment-based approach with an accuracy of 85% after using LDA. While the existing sys-
tem cannot estimate the results correctly in low-resolution blurred camera conditions, our
proposed method still seems promising. Furthermore, even the most accuracy-significant
real-time applications, such as driver assistance or interactive system, are operable at an
accuracy of 90%. In this situation, our findings closely approach those benchmarks. Fur-
thermore, it reveals that the proposed method can be suitable for implementing the system
invariant to scale, translation, illumination and blurring conditions for performance en-
hancement.
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