
 

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/ licenses/by/4.0), which 
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

2022, Vol.27 No.1, 026-034 
 

Article ID 1007-1202(2022)01-0026-09 

DOI  https://doi.org/10.1051/wujns/2022271026 

 

A Numerical Algorithm for Arbitrary 
Real-Order Hankel Transform 

 
 
 
□ YANG Yonglin, LI Xing, DING Shenghu,  

WANG Wenshuai† 
School of Mathematics and Statistics, Ningxia University, 

Yinchuan 750021, Ningxia, China 

© Wuhan University 2022 

 

Abstract: The Hankel transform is widely used to solve various 
engineering and physics problems, such as the representation of 
electromagnetic field components in the medium, the representa-
tion of dynamic stress intensity factors, vibration of axisymmetric 
infinite membrane and displacement intensity factors which all 
involve this type of integration. However, traditional numerical 
integration algorithms cannot be used due to the high oscillation 
characteristics of the Bessel function, so it is particularly important 
to propose a high precision and efficient numerical algorithm for 
calculating the integral of high oscillation. In this paper, the im-
proved Gaver-Stehfest (G-S) inverse Laplace transform method 
for arbitrary real-order Bessel function integration is presented by 
using the asymptotic characteristics of the Bessel function and the 
accumulation of integration, and the optimized G-S coefficients 
are given. The effectiveness of the algorithm is verified by nu-
merical examples. Compared with the linear transformation accel-
erated convergence algorithm, it shows that the G-S inverse Laplace 
transform method is suitable for arbitrary real order Hankel trans-
form, and the time consumption is relatively stable and short, which 
provides a reliable calculation method for the study of electromag-
netic mechanics, wave propagation, and fracture dynamics. 
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0  Introduction 

The integration of high oscillation function gener-
ally exists in the application fields of aeronautics, seis-
mic imaging, electromagnetic mechanics, and so on. The 
integral with Bessel function is widely used in geological 
exploration, nuclear magnetic physics, hydrodynamics, 
electromagnetic response, signal processing, acoustic 
scattering, droplet wetting, and fracture mechanics [1-7]. 
This kind of integral is becoming one of the core prob-
lems of high oscillation integrals, thus its efficient nu-
merical solution has been a core research topic. In addi-
tion, higher-order Bessel beams, higher-order Bessel 
vortex electromagnetic wave, application of multiple 
Bessel Gaussian beams in turbulent transmission and 
communication, higher-order Hankel transform and its 
application in beams transmission involve higher-order 
Bessel integration [8-11]. Therefore, it is meaningful and 
valuable in engineering practice to study efficient algo-
rithms of arbitrary real-order Hankel transform. 

The method of dividing an oscillatory integral at its 
zeros, forming a sequence of partial sums, and using ex-
trapolation to accelerate convergence have been found to 
be the most efficient technique available[12-15]. Chave[13] 
used the accumulation of integration interval to write the 
integral to be calculated as the sum of the integrals be-
tween the intercell, and the integral at each intercell was 
written in the form of continued fractions to speed up the 
convergence. The continued fraction method is only 
slightly effective for rapidly convergent integrals, but for 
slowly convergent integrals the summation behavior is 
dramatic. Lucas et al[15] compared various extrapolation 
techniques as well as the choice of endpoints in dividing 
the integral, and established the efficient method for 
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evaluating infinite integrals including Bessel functions of 
arbitrary order. However, this method requires that the 
non-oscillating term must be monotonic, and its accuracy 
is related to the segmentation interval, which is not effi-
cient. Two zero-order Hankel transform filters (61-point 
and 120-point operators) and two first-order Hankel 
transform filters (47-point and 140-point operators) have 
been designed[16]. For these transforms, the error of new 
filters is much lower compared with all other known fil-
ters. However, the numerical approximation algorithm 
for arbitrary order Hankel transform is not given. Filon[17] 
proposed a Filon-type method to solve the high oscilla-
tion function integral in a finite interval. However, it is 
very difficult to calculate the integral of the highly oscil-
lating function in the infinite interval with the Filon-type 
method. Yu[18] modified the Filon-type method based on 
special functions and gave a high-precision solution of 

the integral ( ) ( )d ,va
f J r  



  but more stringent re-

strictions for ( )f   and its derivative are required in the 

algorithm. Chen[19] divided the infinite interval into two 
intervals for discussion, as the Filon-type method was 
used on the finite interval, and the asymptotic method 
was constructed on the infinite interval, which overcame 
the defects of the Filon-type method, where oscillation 
factor 1r  , and the larger the r, the higher the accu-

racy. Chen[20] analyzed the integral ( ) ( )d ,va
f J r  



  
( 0)a≥  and its analytical extension, where v is an arbi-

trary positive real number and r is large enough. Then 
the integral was transformed into a form that the inte-
grand does not oscillate and decay exponentially quickly 
on [0, ) , which could be efficiently computed by us-

ing the Gauss-Laguerre quadrature rule. Zhang et al[21] 
added a new basis function in the interpolation process 
and proposed an improved algorithm of the Pravin 
method based on Hankel transform. The improved 
method is of high precision, high efficiency, and good 
adaptability to kernel function. However, the order range 
of this method is small, i.e., it is only applicable to the 
zero-order and first-order Hankel transformations. Niu[22] 
gave an efficient numerical algorithm for the integration 
with Bessel kernel based on the idea of the Filon-type 
method and the steepest descent method[23]. Cohen et 
al[24] proposed a linear transformation accelerated con-
vergence algorithm (LTACA) to solve the alternating 
series. Wang et al[25] applied the LTACA to the numerical 
solution of the Hankel transform. The algorithm is sim-
ple to implement and can achieve high-accuracy, but it 

can only be used to solve non-negative integer order 
Hankel transform, and the efficiency of solving 
high-order Hankel transform is not high. Based on the 
variable upper bound integrals, the asymptotic quadra-
ture rule of high frequency Hankel transform was de-
rived[26]. However, the order of Bessel function is re-
quired to be non-negative, and the accuracy is low. Kis-
selev[27] proved the Hankel transform can be expressed 
by the absolutely and uniformly convergent series in re-
ciprocal powers of parameter r, and can be used to obtain 
analytic expressions for the Hankel transform of an arbi-
trary integer order with the positive parameter r. But the 
conditions for the non-oscillating item are very stringent. 

The G-S inverse Laplace transform method 
(G-SILTM) uses a pure real number operation, and only 
a small number of Laplace transform variable values 
need to be calculated, so the efficiency of the algorithm 
is relatively high. However, the precision of the G-S al-
gorithm is closely related to the finite word length of the 
computer. Therefore, this algorithm has higher require-
ments for computer hardware and software[28,29]. 

The above numerical algorithms of the Hankel 
transform have disadvantages such as complex process-
ing, low computational efficiency, higher requirements 
for the integrand function (excluding the Bessel factor), 
and a small range of application of the Hankel transform 
order. However, the G-SILTM has the advantages of high 
efficiency, simplicity, wide application range, and low 
requirements for the integrand function (excluding Bes-
sel factor), so we develop an algorithm to calculate the 
arbitrary real-order Hankel transform. 

1  Numerical Analysis of Hankel  
Transform 

For  -order Hankel transform 

 
0

( ) ( )dH F J     


            (1) 

where 0 ∨ , ( )J 
 

is a Bessel function of the first 

kind of
 

( 1 / 2) ≥ -order. This article only discusses 

the case that
 

 F 
 

is a real function. If ( )F   is a 

complex function, the real and imaginary parts can be 
reduced to the form of equation (1), respectively[30]. 

The integral interval [0, )  is divided as 

[0, ] [ , )   , where   is a positive integer, and   

makes   satisfy the large argument approximate con-

dition of the Hankel function, i.e. 
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1m ≥
               

 (2) 

where the selection of m should be as small as possible 
on the premise of satisfying the large argument approxi-
mate condition. 

Using the accumulation of integral, equation (1) is 
rewritten as 

1 2( )H H H                (3)
 

with 

 1

0
( ) dH F J



              (4) 

and 

 2 ( ) dH F J 
   


 

 
      (5) 

where 1H  is a normal integral, and it can be solved by 

any general numerical algorithm. The Simpson algorithm 

is used in the numerical examples of Section 4. For 2H , 

the large argument approximate expression of Bessel func-
tion of real variable is [31,32] 

2 π 1
( ) cos + , 1

π 2 2
J x x x

x         


  
 (6) 

Substituting equation (6) into (5) leads to 

2 2 π 1
( )cos d

π 2 2
H F 

    


         


   
(7) 

where 
π 1 π 1

cos + cos( )cos +
2 2 2 2

π 1
sin( )sin +

2 2

   

 

                   
       

   

 (8)

 

Substituting equation (8) into (7) leads to 

 

 

2 1 π 1
cos[ ( + )] ( )cos d

2 2π
π 1

sin[ ( + )] ( )sin d
2 2

H F

F

 



    


    











    

 

(9) 

At this time, equation (9) is the following Fourier sine 
and cosine transform forms, 

c 0

s 0

( ) ( )cos( )d

( ) ( )sin( )d

f k F x kx x

f k F x kx x










            

(10) 

2  Linear Transformation  
Accelerated Convergence Algorithm 

For the alternating series 
0

( 1)k
k

k

S a




  , the linear 

transformation accelerates the convergence of the alter-
nating series as follows [24,25]: 

Input:  number of sum terms N; 
Initialize: 

 

(3 8) ;

( 1 ) 2;

1; ; 0;

Nd

d d d

b c d s

 
 
     

Loop: 
for 0 : 1

;

;

( )( ) (( 1 2)( 1));

;

end

k

k N

c b c

s s c a

b k N k N k k

s d

 
 
  
      

Output: S s d . 

The algorithm is simple to implement and has high 
accuracy, and it is still effective to apply this method to 
the numerical calculation of the integer-order Hankel 
transform[25]. For equation (1), let 

0

( )
N

n m
m

H S p


 
  

          (11) 

with 
1

( ) ( )d
m

m

z

m z
p F J      

       
(12) 

where mz  is the value of the mth non-negative zero 
point of the  -order Bessel function ( )J   of the 
first-kind normalized by the spatial distance  , and the 
first non-negative zero point is 0. 

When ( )F   is continuous and monotonic, due to 
the oscillation property of the Bessel function, equation 
(11) is the alternating series of the interval integral term, 
and equation (1) can be solved by applying the LTACA 
to equation (11). However, the application range of 
Hankel transformation order is relatively small, seeing 
the numerical examples for details. 

3  G-S Inverse Laplace Transform 
Method 

The expression of the G-SILTM is [33] 

L
1

ln 2 ln 2
( ) ( , )

N

j

f t d j N F j
t t

   
 


        

(13) 

with 

 

2

2min( , 2)

( 1) 2

( , ) ( 1)

(2 )!

( 2 )! !( 1)!( )!(2 )!

j N

Nj N

k j

d j N

k k

N k k k j k k j



 

 


   

   
(14)

 

where LF
 is the Laplace transform of f , ( , )d j N  are 
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the filtering coefficients of the G-SILTM, [( 1) 2]j   is 
the integer part of ( 1) 2j  , and min( , 2)j N  is the 
minimum value of j and 2N . The G-SILTM is mainly 
used to solve the transient sounding forward problem, 
and here we introduce it to solve arbitrary real-order 
Hankel transform. 

The G-SILTM of sine and cosine transforms are 

c Lc
1

2

0 2 21

ln 2 ln 2
( ) ( , ) ( )

ln 2 ( )d
( , )

ln 2
( )

N

j

N

j

f t d j N F j
t t

F s s
jd j N

t s j
t









   
  



 

   

 (15) 

s Ls
1

0 2 21

ln 2 ln 2
( ) ( , ) ( )

ln 2 ( )d
( , )

ln 2
( )

N

j

N

j

f t d j N F j
t t

sF s s
d j N

t s j
t














 
         

(16) 

Let ( )F s  make the integral 
20

( )d
,

sF s s

s C



  

20

( )dF s s

s C



  
 

convergent, where C is an arbitrary con-

stant.  
Substituting equations (15) and (16) into equation 

(9), the G-SILTM of 2H  is 
 

2 2

0 0
2 21

0 0
2 21

1 π 1 ln 2 ( )d
cos[ ( + )] ( ) ( , ) ( ) cos( )d

ln 22 2π ( )

1 π 1 ln 2 ( )d
sin[ ( + )] ( , ) ( ) sin( )d

ln 22 2π ( )

N

j

N

j

sF s s
H jd j N F

s j

s sF s s
d j N F

s j







    




    












 


 


 
 
 
 
 
 
 
 
 
 

  

              (17)

 

 

The number of coefficient points of the G-SILTM is 
closely related to the word length of the computer. As far 
as the current general computer, we find that the 18-point 
coefficients are the best. 

4  Numerical Examples 

The numerical examples are from Refs. [16,21,34]. 
The influence of the value of the partition point   on 
the numerical results is shown in Ref. [31]. The follow-
ing numerical examples are calculated with the interval 
partition point 10  , and 18N  for the G-SILTM. At 
present, the LTACA has high accuracy in solving the 
Hankel transform, especially when the order of the 
Hankel transform is small. In order to illustrate the supe-
riority of our algorithm, a detailed comparison is made in 
example 3. 

Example 1 
2

2
00

1
( ) exp( ) ( )d exp( )

2 4

b
f a a J b

a a
   


     

The calculation results are shown as Fig.1 and Table 1. 
Figure 1 shows the comparisons between the nu-

merical solutions and the analytical solutions, and gives 
the relative errors at 0.01,0.1,1b  . It can be seen that 
the relative error increases with the increase of b. 

 

Fig. 1  Comparisons and relative errors between the analytical 

and the numerical solutions of the G-SILTM at b=0.01, 0.1, 1 
   
Table 1  The time consumption of the main body of the algo-

rithm with 10   and N=18 
 

Parameter t / s 

b =0.01 
1.913 1 

b=0.1 
1.984 4 

b=1 1.977 3 
    

Example 2 

1 2 2 3 20
( ) exp( ) ( )d

( )

b
f b a J b

a b
   


  


 

Let 2a  , the calculation results are as Fig.2. 
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Fig. 2  Comparison and relative error between the analytical 

and the numerical solutions of the G-SILTM 
 

Figure 2 illustrates the comparison between the 
numerical solution and the analytical solution of the 
G-SILTM, as well as its relative error. The numerical 
solution of the example is consistent with the analytical 
solution, and the relative error is in the range of 410 .  

Example 3 

0

2 2 2 2

( ) exp( ) ( )d

1

n

n

f a J a

a

a a

  

  


 

 
 
    


 

where n is an arbitrary real. 

Let =2 , =0,1,2,3,4,5n , the comparison results of 
the G-SILTM and the LTACA are as shown in Figs. 3-6. 
 

   
Fig. 3  Comparisons and relative errors between the analyti-

cal and the numerical solutions of the LTACA at n=0,1,2 
  

   
Fig. 4  Comparisons and relative errors between the analyti-

cal and the numerical solutions of the G-SILTM at n=0,1,2 

 
 
Fig. 5  Comparisons and relative errors between the analyti-

cal and the numerical solutions of the LTACA at n=3,4,5 
 

 
 

Fig. 6  Comparisons and relative errors between the analyti-

cal and the numerical solutions of the G-SILTM at n=3,4,5 
 

It can be seen from Figs. 3-6 that the LTACA has a 
small relative error for the non-negative integer order 
Hankel transform. For 0,1,2,3,4,5n  , the relative error 
is 14(10 )  , and the relative error of the G-SILTM is 
larger and basically stable at 5(10 )  . 

It can be seen from Table 2 that the time consump-
tion of the LTACA increases significantly with the in-
crease of the order of the Hankel function, while the time 
consumption of the G-SILTM basically remains un-
changed with the increase of n. When the Hankel trans-
form order reaches 4, the latter algorithm takes less time. 
 

Table 2  The time consumption of the two algorithms with 

10  , N=18 and = 2               s  

n 
Algorithm

0 1 2 3 4 5 

LTACA 0.516 1 0.711 3 1.000 3 1.204 2 1.351 0 1.564 8

G-SILTM 1.250 9 1.250 3 1.249 3 1.239 2 1.245 6 1.244 2

 
Figures 7 and 8 show the comparisons and relative 

errors between the numerical solutions and the analytical 
solutions of the G-SILTM and the LTACA of the exam-
ple at 20,30n  . It can be obtained that when the order 
of the Bessel function increases to a certain extent, the 
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error decreases with the increase of variable a. That is, 
when n and a are larger, the relative error is smaller. As 
can be seen from Figs. 3-8, the LTACA has higher accu-
racy than the G-SILTM. It can be seen from Tables 2 and 
3 that the time consumption of the LTACA increases sig-
nificantly with the increase of order, but the time-con-
sumption of the G-SILTM is more stable and will not 
increase significantly with the increase of n. 
 

 
 

Fig. 7  Comparisons and relative errors between the analyti-

cal and the numerical solutions of the LTACA at n=20, 30 
 

  
Fig. 8  Comparisons and relative errors between the analyti-

cal and the numerical solutions of the G-SILTM at n=20, 30 
 

Table 3  The time consumption of the two algorithms 
s  

Algorithm n=20 n=30 

LTACA 1.838 1 2.533 7 

G-SILTM 1.352 2 1.413 6 

 

In addition, the LTACA needs to calculate the zero 
point of the Bessel function, and it is hard to obtain the 
zero of a fractional Bessel function at present, so it is not 
clear whether the algorithm is suitable for solving the 
fractional Hankel transform. Therefore, the LTACA can 
only be used to solve non-negative integer Hankel trans-
form at present. However, the G-SILTM can be used to 
fractional Hankel transform, as described below.  

Let =2 , 1 1 1 4 16 15 2 7 2
= , , , , , , , , ,

2 2 4 5 3 2 4 7 3
n    

 
46 , the calculation results of the G-SILTM are shown 

as Figs.9-13. 
 

  
Fig. 9  Comparisons and relative errors between the analyti-

cal and the numerical solutions at n=-1/2, 1/2 
 

 
 

Fig. 10  Comparisons and relative errors between the ana-

lytical and the numerical solutions at n=-1/4, 4/5 
 

 
 

Fig. 11  Comparisons and relative errors between the ana-
lytical and the numerical solutions at n=16/3, 15/2 

 

  
Fig. 12  Comparisons and relative errors between the  

analytical and the numerical solutions at n  ,
 2 7

4 7
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Fig. 13  Comparison and relative error between the analyti-

cal and the numerical solutions at n  2
, 46

3
 

 
As we can see from Figs. 9-13, the G-SILTM can 

solve not only the Hankel transform with order of ra-
tional number, but also the Hankel transform with order 
of irrational number. Therefore, the algorithm is suitable 
for the case of arbitrary real-order Hankel transform. The 
relative error decreases with the increase of the order.  

 

It can be seen from Tables 1-4 that the G-SILTM 
can be used to solve the arbitrary real-order Hankel 
transform and the time consumption of the algorithm is 
relatively stable and short. 

Figure 14 (a) and (b) show the variations of relative 
error with the order of Hankel transform and the oscilla-
tion factor of the G-SILTM. It can be seen that the rela-
tive error is the largest when the order is the largest and 
the oscillation factor is the smallest. The relative errors at 
other positions are smaller. When the relative error is 
constant and the oscillation factor increases, the order of 
the Hankel transform will increase. 

Based on the comparisons between the numerical so-
lutions and the analytical solutions of the above examples, 
it can be seen that the G-SILTM can be employed to cal-
culate the integral with arbitrary order Bessel function, and 
the algorithm is efficient. In addition, the algorithm can be 
used to calculate non-integer order Hankel transform. 

Table 4  The time consumption of the main body of the G-SILTM 

n -1/2 1/2 -1/4 4/5 16/3 15/2 2

4

  7

7

  2

3
 46  

Time / s 2.056 8 1.973 5 2.102 9 2.019 4 2.093 6 2.052 2 2.110 8 2.092 6 2.055 3 2.021 9

 

  
Fig. 14  Variations of relative error with n and a 

 
 

5  Application in Vibration of  
Axisymmetric Infinite Membrane 

Circular membranes are important parts of drums, 
pumps, microphones, and other devices. This accounts 
for their great importance in engineering. When the cir-
cular membrane is plane and its material is elastic and 
offers no resistance to bending (this excludes thin metal-

lic membranes), the vibrations of the circular membrane 
is given in the form of two-dimensional wave equation in 
cylindrical coordinate system, ( , , )r z , i.e.[35] 

2 2

2 2 2 2

1 1 1
( ) ,

(0, ), 0, [0,2π]

u u u
r

r r r r a t
r t




    
   

  ∨  

Let the membrane initially be the bell shape, the axi-
symmetric infinite vibration problem can be simplified  
as 
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2

2 2

1 1
( ) , (0, ), 0

u u
r r t

r r r a t

    
   ∨

   
(18) 

The boundary conditions are 

0 12

1 ( ,0)
( ,0) ( ) , ( ) 0

1

u r
u r u r u r

tr

   


   (19) 

Using zero order Hankel transform for equations (18) 
and (19), we can obtain a linear ordinary differential 
equation  

2
2 2

2
0

u
a u

t
  


 

                
(20) 

with boundary conditions  

0 1

1
( ) exp( ), ( ) 0u r u r


    

       
(21) 

where 00
( , ) ( ) ( , )du t rJ r u r t r 


  . 

General solution of equation (20) is 

1 2

1 2

( , ) cos( ) sin( )

( , ) sin( ) cos( )

u t c a t c a t

u t a c a t a c a t
t

  

    

 

    

   (22) 

Substituting equation (21) into (22) leads to 

1
1 0 2

( )
( ),

u r
c u r c

a
   

The solution of equation (20) is 

1
( , ) exp( )cos( )u t a t  


   

       
(23) 

Using inverse Hankel transform for equation (23), the 
solution of the problem is 

00
( , ) ( )exp( )cos( )du r t J r a t   


 

    
(24) 

There is the integral result in Ref. [36] as follows: 

00

2 2 2 2 2 2 2 2 2 1 2

2 2 2 2 2 2

( )exp( )cos( )d

[ ( ) 4 ]

2 ( ) 4

J c b a

b c a a b b c a

b c a a b

   




     


  


 

Let , 1,a at b r c   , the analytical solution of the 

problem is  
2 2 2 2 2 2 2 2 2 1 2

2 2 2 2 2 2

[ (1 ) 4 1 ]
( , )

2 (1 ) 4

r a t a t r a t
u r t

r a t a t

     


  
 

(25)
 Equation (25) and the numerical solution of equa-

tion (24) are compared as Fig. 15. 
It can be seen from Fig. 15 that the G-SILTM used 

to solve the vibration of axisymmetric infinite membrane 
is effective, and the relative error is 5(10 )  . 

 
 
Fig. 15  Comparisons and relative errors between the analyti-

cal and the numerical solutions at , , [ . , ]a t r1 1 0 01 150    
 

6  Conclusion 

In this paper, the numerical algorithm for the 
nth-order Hankel transform is studied and the G-SILTM 
algorithm is given. The numerical solutions of the exam-
ples are in good agreement with the analytical solutions, 
which fully demonstrates the correctness of the algo-
rithm, but the algorithm requires convergence of the in-

tegrals 
20

( )dsF s s

s C



  and 
20

( )dF s s

s C



 . 

The comparisons of the numerical examples show 
that the LTACA has high accuracy, but it only works for 
non-negative integer Hankel transformations and the 
time consumption increases with n. The G-SILTM can 
overcome these drawbacks and compute arbitrary 
real-order Hankel transformations. The time consump-
tion is relatively stable and short, but the accuracy is 
slightly lower. In addition, we use the G-SILTM to solve 
the vibration of axisymmetric infinite membrane. 

 

[1] Kaufman A A, Keller G V. Frequency and Transient Sound-

ings [M]. Beijing: Geological Publishing House, 1987.  

[2] Fang W Z, Li Y G, Li X. Theory of TEM Sounding [M]. Xian: 

Press of North-west Industry University, 1993(Ch). 

[3] Wen A H, Wang X Q. Utilizing direct integration to enhance 

calculation accuracy of 1D electromagnetic response for cur-

rent dipole source [J]. Northwestern Seismological Journal, 

2003, 25(3): 193-197(Ch). 

[4] Ji G, Zhang W K, Lu X P. Numerical integration on Green 

source function with free water surface [J]. Journal of Naval 

University of Engineering, 2004, 16(6): 89-92(Ch).  

[5] He J S, Bao L Z. EM field of vertical wire electric source and 

its practical meaning [J]. Journal of Central South Univer-

References 
 



Wuhan University Journal of Natural Sciences 2022, Vol.27 No.1 

 

34 

sity (Science and Technology), 2011, 42(01): 130-135(Ch). 

[6] Singh B M, Rokne J, Dhaliwal R S. Diffraction of antiplane 

shear waves by a finite crack in a piezoelectric material [J]. 

ZAMM-Journal of Applied Mathematics and Mechanics 

/Zeitschrift Für Angewandte Mathematik Und Mechanik, 

2011, 91(11): 866-874. 

[7] Yang Y L, Li X, Wang W S. Wettability of semispherical 

droplets on layered elastic gradient soft substrates [J]. Scien-

tific Reports, 2021, 11(1): 2236.  

[8] Zhang Q A, Wu F T, Zheng W T, et al. Self-reconstructing 

properties of high-order Besssel-Gauss beam [J]. Scientia 

Sinica Physica, Mechanica & Astronomica, 2011, 41(10): 

1131-1137. 

[9] You K M, Lin Y L, Wang Y W, et al. High order Hankel trans-

form based on Dini expansion and its applications in beam 

propagation [J]. Acta Physica Sinica, 2013, 62(14): 30-35. 

[10] Wang W J. Propagation of the Bessel Gaussian Beam in 

Turbulence and Application [D]. Xi’an: Xidian University, 

2019(Ch). 

[11] Meng X S. Electromagnetic Vortex Wave Generation and 

Target Near-Field Scattering Based on Artificial Electromag-

netic Metasurface [D]. Xi’an: Xidian University, 2019(Ch). 

[12] Blakemore M, Evans G, Hyslop J. Comparison of some 

methods for evaluating infinite range oscillatory integrals [J]. 

Journal of Computational Physics, 1976, 22(3): 352-376.  

[13] Chave A D. Numerical integration of related Hankel trans-

forms by quadrature and continued fraction expansion [J]. 

Geophysics, 1983, 48(12): 1671-1686. 

[14] Cree M J, Bones P J. Algorithms to numerically evaluate the 

Hankel transform [J]. Computers & Mathematics with Ap-

plications, 1993, 26(1): 1-12.   

[15] Lucas S K, Stone H A. Evaluating infinite integrals involving 

Bessel functions of arbitrary order [J]. Journal of Computa-

tional and Applied Mathematics, 1995, 64(3): 217-231.  

[16] Guptasarma D, Singh B. New digital linear filters for Hankel 

J0 and J1 transforms [J]. Geophysical Prospecting, 1997, 

45(5): 745-762. 

[17] Filon L N G. On a quadrature formula trigonometric integrals 

[J]. Proceedings of the Royal Society of Edinburgh Section A: 

Mathematics, 1928, 49: 38-47. 

[18] Yu R. Two Types of Bessel Transform Its Numerical Integration 

Methods [D]. Changsha: Central South University, 2007(Ch).  

[19] Chen R Y. Numerical analysis on a class of integrals involv-

ing Bessel function [J]. Journal of Chongqing Institute of 

Technology (Natural Science), 2008, 22(11): 83-88(Ch).  

[20] Chen R Y. Numerical approximations to integrals with a 

highly oscillatory Bessel kernel [J]. Applied Numerical 

Mathematics, 2012, 62(5): 636-648(Ch). 

[21] Zhang H Q, Chen Y, Nie X. Fast Hankel transforms algorithm 

based on kernel function interpolation with exponential func-

tions [J]. Journal of Applied Mathematics, 2014, 2014: 1-7. 

[22] Niu F F. A Numerical Method for Computing Highly Oscil-

latory Integrals with a Bessel Kernel [D]. Wuhan: Huazhong 

University of Science &Technology, 2015(Ch).  

[23] Majidian H. Numerical approximation of highly oscillatory 

integrals on semi-finite intervals by steepest descent method 

[J]. Numerical Algorithms, 2012, 63(3): 537-548. 

[24] Cohen H, Villegas F R, Zagier D. Convergence acceleration 

of alternating series [J]. Experimental Mathematics, 2000, 

9(1): 3-12. 

[25] Wang H J, Li G. Hankel transform to accelerate the convergence 

of the numerical integration algorithm [J]. Technological 

Development of Enterprise, 2012, 31(16): 8-9+44(Ch).  

[26] Gao J Z, Chen R Y. On computation of high frequency 

Hankel transforms [J]. Alexandria Engineering Journal, 

2019, 58(3): 1033-1037. 

[27] Kisselev A V. Exact expansions of Hankel transforms and re-

lated integrals [J]. The Ramanujan Journal, 2020, 55: 349-367. 

[28] Raiche A P. Transient electromagnetic field computations for 

polygonal loops on layered earth [J]. Geophysics, 1987, 526: 

785-793. 

[29] Villinger H. Solving cylindrical geothermal problems using 

Gaver-Stehfest inverse Laplace transform [J]. Geophysics, 

1985, 50(10): 1581-1587. 

[30] Li D Z, Yang Z Q, Liang Z. Numerical computation of Bessel 

function for complex arguments [J]. Journal of University of 

Electronic Science and Technology of China, 1996, 25(7): 

125-128(Ch). 

[31] Hua J, Jiang Y S, Wang W B. The numerical integration of 

dual Hankel transformation [J]. Coalgeology and Explora-

tion, 2001, 29(3): 58-62.  

[32] Zeidler E. Teubner-Taschenbuch der Mathematik [M]. Berlin: 

Vieweg+Teubner Verlag, 2012. 

[33] Luo H G. The Study about 1D Forward Modeling of 

Large-Fixed Loop TEM [D]. Beijing: China University of 

Geosciences (Beijing), 2012(Ch) . 

[34] Anderson W L. Fast Hankel transforms using related and 

lagged convolutions [J]. ACM Transactions on Mathematical 

Software, 1982, 8(4): 344-368. 

[35] Kasemsuwan J, Sabau S V, Somboon U. Differential trans-

formation method for circular membrane vibrations [J]. Bul-

letin of the Transilvania University of Brasov, Series III: 

Mathematics, Informatics, Physics, 2020, 61(12): 333-350 

[36] Gradshteyn I S, Ryzhik I M. Table of Integrals, Series, and 

Products [M]. Seventh Edition. Amsterdam: Elsevier, 2007: 

743. 
 

□ 


