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Abstract. Motivated by recent interest in group-symmetry in the area of semidefinite program-
ming, we propose a numerical method for finding a finest simultaneous block-diagonalization of a
finite number of symmetric matrices, or equivalently the irreducible decomposition of the matrix
∗-algebra generated by symmetric matrices. The method does not require any algebraic structure to
be known in advance, whereas its validity relies on matrix ∗-algebra theory. The method is composed
of numerical-linear algebraic computations such as eigenvalue computation, and automatically makes
the full use of the underlying algebraic structure, which is often an outcome of physical or geomet-
rical symmetry, sparsity, and structural or numerical degeneracy in the given matrices. Numerical
examples of truss and frame designs are also presented.
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1. Introduction. This paper is motivated by recent studies on group symme-
tries in semidefinite programs (SDPs) and sum of squares (SOS) and SDP relaxations
[1, 5, 7, 12, 14]. A common and essential problem in these studies can be stated as fol-
lows: Given a finite set of n×n real symmetric matrices A1, A2, . . . , Am, find an n×n
orthogonal matrix P that provides them with a simultaneous block-diagonal decom-
position, i.e., such that PTA1P, PTA2P, . . . , PTAmP become block-diagonal matrices
with a common block-diagonal structure. Here A1, A2, . . . , Am correspond to data ma-
trices associated with an SDP. We say that the set of given matrices A1, A2, . . . , Am

is decomposed into a set of block-diagonal matrices or that the SDP is decomposed
into an SDP with the block-diagonal data matrices. Such a block-diagonal decompo-
sition is not unique in general; for example, any symmetric matrix may trivially be
regarded as a one-block matrix. As diagonal-blocks of the decomposed matrices get
smaller, the transformed SDP could be solved more efficiently by existing software
packages developed for SDPs [3, 28, 29, 34]. Naturally we are interested in a finest
decomposition. A more specific account of the decomposition of SDPs will be given
in Section 2.1.

There are two different but closely related theoretical frameworks with which
we can address our problem of finding a block-diagonal decomposition for a finite
set of given n × n real symmetric matrices. The one is group representation theory
[23, 27] and the other matrix ∗-algebra [32]. They are not only necessary to answer
the fundamental theoretical question of the existence of such a finest block-diagonal
decomposition but also useful in its computation. Both frameworks have been utilized
in the literature [1, 5, 7, 12, 14] cited above.

Kanno et al. [14] introduced a class of group symmetric SDPs, which arise from
topology optimization problems of trusses, and derived symmetry of central paths
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which play a fundamental role in the primal-dual interior-point method [33] for solving
them. Gatermann and Parrilo [7] investigated the problem of minimizing a group
symmetric polynomial. They proposed to reduce the size of SOS–SDP relaxations for
the problem by exploiting the group symmetry and decomposing the SDP. On the
other hand, de Klerk et al. [4] applied the theory of matrix ∗-algebra to reduce the size
of a class of group symmetric SDPs. Instead of decomposing a given SDP into a block-
diagonal form by using its group symmetry, their method transforms the problem to
an equivalent SDP through a ∗-algebra isomorphism. We also refer to Kojima et al.
[16] as a paper where matrix ∗-algebra was studied in connection with SDPs. Jansson
et al. [12] brought group symmetries into equality-inequality constrained polynomial
optimization problems and their SDP relaxation. More recently, de Klerk and Sotirov
[5] dealt with quadratic assignment problems, and showed how to exploit their group
symmetries to reduce the size of their SDP relaxations (see Remark 4.6 for more
details).

All existing studies [1, 5, 7, 12] on group symmetric SDPs mentioned above assume
that the algebraic structure such as group symmetry and matrix ∗-algebra behind a
given SDP is known in advance before computing a decomposition of the SDP. Such
an algebraic structure arises naturally from the physical or geometrical structure
underlying the SDP, and so the assumption is certainly practical and reasonable.
When we assume symmetry of an SDP (or the data matrices A1, A2, . . . , Am) with
reference to a group G, to be specific, we are in fact considering the class of SDPs
that enjoy the same group symmetry. As a consequence, the resulting transformation
matrix P is universal in the sense that it is valid for the decomposition of all SDPs
belonging to the class. This universality is often useful, but at the same time we should
note that the given SDP is just a specific instance in the class. A further decomposition
may possibly be obtained by exploiting an additional algebraic structure, if any, which
is not captured by the assumed group symmetry but possessed by the given problem.
Such an additional algebraic structure is often induced from sparsity of the data
matrices of the SDP, as we see in the topology optimization problem of trusses in
Section 5. The possibility of a further decomposition due to sparsity will be illustrated
in Sections 2.2 and 5.1.

In this paper we propose a numerical method for finding a finest simultaneous
block-diagonal decomposition of a finite number of n × n real symmetric matrices
A1, A2, . . . , Am. The method does not require any algebraic structure to be known in
advance, and is based on numerical linear algebraic computations such as eigenvalue
computation. It is free from group representation theory or matrix ∗-algebra during
its execution, although its validity relies on matrix ∗-algebra theory. This main feature
of our method makes it possible to compute a finest block-diagonal decomposition by
taking into account the underlying physical or geometrical symmetry, the sparsity of
the given matrices, and some other implicit or overlooked symmetry.

Our method is based on the following ideas. We consider the matrix ∗-algebra T
generated by A1, A2, . . . , Am with the identity matrix, and make use of a well-known
fundamental fact (see Theorem 3.1) about the decomposition of T into simple compo-
nents and irreducible components. The key observation is that the decomposition into
simple components can be computed from the eigenvalue (or spectral) decomposition
of a randomly chosen symmetric matrix in T , where it is mentioned that a similar
technique is employed by Eberly and Giesbrecht [6]; see Remark 4.7 for details. Once
the simple components are identified, the decomposition into irreducible components
can be obtained by “local” coordinate changes within each eigenspace, to be explained
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in Section 3. In this paper we focus on the case where each irreducible component is
isomorphic to a full matrix algebra of some order, whereas the other cases, technically
more involved, are treated in [22].

This paper is organized as follows. Section 2 illustrates our motivation of simulta-
neous block-diagonalization and the notion of the finest block-diagonal decomposition.
Section 3 describes the theoretical background of our algorithm based on matrix ∗-
algebra. In Section 4, we present an algorithm for computing the finest simultaneous
block-diagonalization, as well as a suggested practical variant thereof. Numerical re-
sults are shown in Section 5; Section 5.1 gives illustrative small examples, Section 5.2
shows SDP problems arising from topology optimization of symmetric trusses, and
Section 5.3 deals with a quadratic SDP problem arising from topology optimization
of symmetric frames.

2. Motivation.

2.1. Decomposition of semidefinite programs. In this section it is ex-
plained how simultaneous block diagonalization can be utilized in semidefinite pro-
gramming.

Let Ap ∈ Sn (p = 0, 1, . . . ,m) and b = (bp)m
p=1 ∈ Rm be given matrices and

a given vector, where Sn denotes the set of n × n symmetric real matrices. The
standard form of a primal-dual pair of semidefinite programming (SDP) problems
can be formulated as

min A0 • X
s.t. Ap • X = bp, p = 1, . . . ,m,

Sn 3 X º O;

 (2.1)

max bTy

s.t. Z +
m∑

p=1

Apyp = A0,

Sn 3 Z º O.

 (2.2)

Here X is the decision (or optimization) variable in (2.1), Z and yp (p = 1, . . . ,m)
are the decision variables in (2.2), A •X = tr(AX) for symmetric matrices A and X,
X º O means that X is positive semidefinite, and T denotes the transpose of a vector
or a matrix.

Suppose that A0, A1, . . . , Am are transformed into block-diagonal matrices by an
n × n orthogonal matrix P as

PTApP =

(
A

(1)
p O

O A
(2)
p

)
, p = 0, 1, . . . ,m,

where A
(1)
p ∈ Sn1 , A

(2)
p ∈ Sn2 , and n1 + n2 = n. The problems (2.1) and (2.2) can be
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reduced to

min A
(1)
0 • X1 + A

(2)
0 • X2

s.t. A(1)
p • X1 + A(2)

p • X2 = bp, p = 1, . . . ,m,
Sn1 3 X1 º O, Sn2 3 X2 º O;

 (2.3)

max bTy

s.t. Z1 +
m∑

p=1

A(1)
p yp = A

(1)
0 ,

Z2 +
m∑

p=1

A(2)
p yp = A

(2)
0 ,

Sn1 3 Z1 º O, Sn2 3 Z2 º O.


(2.4)

Note that the number of variables of (2.3) is smaller than that of (2.1). The constraint
on the n×n symmetric matrix in (2.2) is reduced to the constraints on the two matrices
in (2.4) with smaller sizes.

It is expected that the computational time required by the primal-dual interior-
point method is reduced significantly if the problems (2.1) and (2.2) can be reformu-
lated as (2.3) and (2.4). This motivates us to investigate a numerical technique for
computing a simultaneous block diagonalization in the form of

PTApP = diag(A(1)
p , A(2)

p , . . . , A(t)
p ) =

t⊕
j=1

A(j)
p , A(j)

p ∈ Snj , (2.5)

where Ap ∈ Sn (p = 0, 1, . . . ,m) are given symmetric matrices. Here
⊕

designates
a direct sum of the summand matrices, which contains the summands as diagonal
blocks.

2.2. Group symmetry and additional structure due to sparsity. With
reference to a concrete example, we illustrate the use of group symmetry and also the
possibility of a finer decomposition based on an additional algebraic structure due to
sparsity.

Consider an n × n matrix of the form

A =


B E E C
E B E C
E E B C
CT CT CT D

 (2.6)

with an nB × nB symmetric matrix B ∈ SnB and an nD × nD symmetric matrix
D ∈ SnD . Obviously we have A = A1 + A2 + A3 + A4 with

A1 =


B O O O
O B O O
O O B O
O O O O

 , A2 =


O O O C
O O O C
O O O C
CT CT CT O

 , (2.7)

A3 =


O O O O
O O O O
O O O O
O O O D

 , A4 =


O E E O
E O E O
E E O O
O O O O

 . (2.8)
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Let P be an n × n orthogonal matrix defined by

P =


InB/

√
3 O InB/

√
2 InB/

√
6

InB/
√

3 O −InB/
√

2 InB/
√

6
InB/

√
3 O O −2InB/

√
6

O InD O O

 , (2.9)

where InB and InD denote identity matrices of orders nB and nD, respectively. With
this P the matrices Ap are transformed to block-diagonal matrices as

PTA1P =


B O O O
O O O O
O O B O
O O O B

 =
[

B O
O O

]
⊕ B ⊕ B, (2.10)

PTA2P =


O

√
3C O O√

3CT O O O
O O O O
O O O O

 =
[

O
√

3C√
3CT O

]
⊕ O ⊕ O, (2.11)

PTA3P =


O O O O
O D O O
O O O O
O O O O

 =
[

O O
O D

]
⊕ O ⊕ O, (2.12)

PTA4P =


2E O O O
O O O O
O O −E O
O O O −E

 =
[

2E O
O O

]
⊕ (−E) ⊕ (−E). (2.13)

Note that the partition of P is not symmetric for rows and columns; we have (nB, nB, nB, nD)
for row-block sizes and (nB, nD, nB, nB) for column-block sizes. As is shown in (2.10)–
(2.13), A1, A2, A3 and A4 are decomposed simultaneously in the form of (2.5) with
t = 3, n1 = nB + nD, and n2 = n3 = nB. Moreover, the second and third blocks
coincide, i.e., A

(2)
p = A

(3)
p , for each p.

The decomposition described above coincides with the standard decomposition
[23, 27] for systems with group symmetry. The matrices Ap above are symmetric
with respect to S3, the symmetric group of order 3! = 6, in that

T (g)TApT (g) = Ap, ∀g ∈ G, p = 1, . . . ,m (2.14)

holds for G = S3 and m = 4. Here the family of matrices T (g), indexed by elements
of G, is an orthogonal matrix representation of G in general. In the present example,
the S3-symmetry formulated in (2.14) is equivalent to

TT
i ApTi = Ap, i = 1, 2, p = 1, 2, 3, 4

with

T1 =


O InB O O

InB O O O
O O InB O
O O O InD

 , T2 =


O InB O O
O O InB O

InB O O O
O O O InD

 .
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According to group representation theory, a simultaneous block-diagonal decomposi-
tion of Ap is obtained through the decomposition of the representation T into irre-
ducible representations. In the present example, we have

PTT1P =


InB O O O
O InD O O
O O −InB O
O O O InB

 , (2.15)

PTT2P =


InB O O O
O InD O O

O O −InB/2
√

3InB/2
O O −

√
3InB/2 −InB/2

 , (2.16)

where the first two blocks correspond to the unit (or trivial) representation (with
multiplicity nB + nD) and the last two blocks to the two-dimensional irreducible
representation (with multiplicity nB).

The transformation matrix P in (2.9) is universal in the sense that it brings any
matrix A satisfying TT

i ATi = A for i = 1, 2 into the same block-diagonal form. Put
otherwise, the decomposition given in (2.10)–(2.13) is the finest possible decomposi-
tion that is valid for the class of matrices having the S3-symmetry. It is noted in this
connection that the underlying group G, as well as its representation T (g), is often
evident in practice, reflecting the geometrical or physical symmetry of the problem in
question.

The universality of the decomposition explained above is certainly a nice feature of
the group-theoretic method, but what we need is the decomposition of a single specific
instance of a set of matrices. For example suppose that E = O in (2.6). Then the
decomposition in (2.10)–(2.13) is not the finest possible, but the last two identical
blocks, i.e., A

(2)
p and A

(3)
p , can be decomposed further into diagonal matrices by the

eigenvalue (or spectral) decomposition of B. Although this example is too simple
to be convincing, it is sufficient to suggest the possibility that a finer decomposition
may possibly be obtained from an additional algebraic structure that is not ascribed
to the assumed group symmetry. Such an additional algebraic structure often stems
from sparsity, as is the case with the topology optimization problem of trusses treated
in Section 5.2.

Mathematically, such an additional algebraic structure could also be described as
a group symmetry by introducing a larger group. This larger group may possibly be
identified by some symbolic methods, but would be difficult to identify in practice,
since it is determined as a result of the interaction between the underlying geometrical
or physical symmetry and other factors, such as sparsity and parameter dependence.
The method of block-diagonalization proposed in this paper will automatically exploit
such algebraic structure in the course of numerical computation. Numerical examples
in Section 5.1 will demonstrate that the proposed method can cope with different
kinds of additional algebraic structures for the matrix (2.6).

3. Mathematical basis. We introduce some mathematical facts that will serve
as a basis for our algorithm to be described in Section 4.

3.1. Matrix ∗-algebras. Let Mn denote the set of n × n real matrices. A
subset T of Mn is said to be a ∗-subalgebra (or a matrix ∗-algebra) over R if In ∈ T
and

A, B ∈ T ;α, β ∈ R =⇒ αA + βB,AB,AT ∈ T . (3.1)
6



We say that T is simple if T has no ideal other than {O} and T itself, where an ideal
of T means a ∗-subalgebra I of T such that

A ∈ T , B ∈ I =⇒ AB ∈ I.

A linear subspace W of Rn is said to be invariant with respect to T , or T -invariant ,
if AW ⊆ W for every A ∈ T . We say that T is irreducible if no T -invariant subspace
other than {0} and Rn exists. If T is irreducible, it is simple.

From a standard result of the theory of matrix ∗-algebra (e.g., [32, Chapter X])
we can see the following structure theorem for a matrix ∗-subalgebra over R. This
theorem is stated in [16, Theorem 5.4] with a proof, but, in view of its fundamental
role in this paper, we give an alternative streamlined proof in Appendix. Note that,
for an orthogonal matrix P , the set of transformed matrices

PTT P = {PTAP | A ∈ T }

forms another ∗-subalgebra.
Theorem 3.1. Let T be a ∗-subalgebra of Mn over R.
(A) There exist an orthogonal matrix Q̂ ∈ Mn and simple ∗-subalgebras Tj of

Mn̂j for some n̂j (j = 1, 2, . . . , `) such that

Q̂TT Q̂ = {diag(S1, S2, . . . , S`) : Sj ∈ Tj (j = 1, 2, . . . , `)}.

(B) If T is simple, there exist an orthogonal matrix P ∈ Mn and an irreducible
∗-subalgebra T ′ of Mn̄ for some n̄ such that

PTT P = {diag(B,B, . . . , B) : B ∈ T ′}.

(C) If T is irreducible, we have one of the following three cases.
(i) T = Mn.
(ii) There exists an orthogonal matrix P ∈ Mn such that

PTT P =


 C(v11, w11) · · · C(v1ň, w1ň)

...
. . .

...
C(vň1wň1) · · · C(vňň, wňň)


 ,

where vij and wij run over R for i, j = 1, . . . , ň = n/2, and

C(v, w) =
[

v w
−w v

]
for v, w ∈ R.

(iii) There exists an orthogonal matrix P ∈ Mn such that

PTT P =


 H(v11, w11, x11, y11) · · · H(v1ň, w1ň, x1ň, y1ň)

...
. . .

...
H(vň1, wň1, xň1, yň1) · · · H(vňň, wňň, xňň, yňň)


 ,

where vij , wij , xij and yij run over R for i, j = 1, . . . , ň = n/4 and

H(v, w, x, y) =


v −w −x −y
w v −y x
x y v −w
y −x w v

 for v, w, x, y ∈ R.
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It follows from the above theorem that, with a single orthogonal matrix P , all
the matrices in T can be transformed simultaneously to a block-diagonal form as

PTAP =
⊕̀
j=1

m̄j⊕
i=1

Bj =
⊕̀
j=1

(Im̄j ⊗ Bj) (3.2)

with Bj ∈ T ′
j , where T ′

j denotes the irreducible ∗-subalgebra of Mn̄j corresponding to
the simple subalgebra Tj . The structural indices `, n̄j , m̄j and the algebraic structure
of T ′

j for j = 1, . . . , ` are uniquely determined by T . It may be noted that n̂j in
Theorem 3.1 (A) is equal to m̄jn̄j in the present notation. Conversely, for any choice
of Bj ∈ T ′

j for j = 1, . . . , `, the matrix of (3.2) belongs to PTT P .
We denote by

Rn =
⊕̀
j=1

Uj (3.3)

the decomposition of Rn that corresponds to the simple components. In other words,
Uj = Im(Q̂j) for the n × n̂j submatrix Q̂j of Q̂ that corresponds to Tj in Theo-
rem 3.1 (A). Although the matrix Q̂ is not unique, the subspace Uj is determined
uniquely and dimUj = n̂j = m̄j n̄j for j = 1, . . . , `.

In this paper we assume that

Case (i) always occurs in Theorem 3.1(C). (3.4)

It is mentioned that an algorithm that works without this assumption is given in a
subsequent paper [22].

Remark 3.2. Case (i) will be the primary case in engineering applications.
For instance the Td-symmetric truss treated in Section 5.2 falls into this category.
When the ∗-algebra T is given as the family of matrices invariant to a group G as
T = {A | T (g)TAT (g) = A, ∀g ∈ G} for some orthogonal representation T of G, case
(i) is guaranteed if every real-irreducible representation of G is absolutely irreducible.
Dihedral groups and symmetric groups, appearing often in applications, have this
property. The achiral tetrahedral group Td is also such a group.

Remark 3.3. Throughout this paper we assume that the underlying field is
the field R of real numbers. In particular, we consider SDP problems (2.1) and
(2.2) defined by real symmetric matrices Ap (p = 0, 1, . . . ,m), and accordingly the ∗-
algebra T generated by these matrices over R. An alternative approach is to formulate
everything over the field C of complex numbers, as, e.g., in [30]. This possibility is
discussed in Section 6.

3.2. Simple components from eigenspaces. Let A1, . . . , Am ∈ Sn be n × n
symmetric real matrices, and T be the ∗-subalgebra over R generated by {In, A1, . . . , Am}.
Note that (3.2) holds for every A ∈ T if and only if (3.2) holds for A = Ap for
p = 1, . . . ,m.

A key observation for our algorithm is that the decomposition (3.3) into simple
components can be computed from the eigenvalue (or spectral) decomposition of a
single matrix A in T ∩ Sn if A is sufficiently generic with respect to eigenvalues.

Let A be a symmetric matrix in T , α1, . . . , αk be the distinct eigenvalues of A
with multiplicities denoted as m1, . . . ,mk, and Q = [Q1, . . . , Qk] be an orthogonal
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matrix consisting of the eigenvectors, where Qi is an n × mi matrix for i = 1, . . . , k.
Then we have

QTAQ = diag(α1Im1 , . . . , αkImk
). (3.5)

Put K = {1, . . . , k} and for i ∈ K define Vi = Im(Qi), which is the eigenspace
corresponding to αi.

Let us say that A ∈ T ∩Sn is generic in eigenvalue structure (or simply generic)
if all the matrices B1, . . . , B` appearing in the decomposition (3.2) of A are free
from multiple eigenvalues and no two of them share a common eigenvalue. For a
generic matrix A the number k of distinct eigenvalues is equal to

∑`
j=1 n̄j and the

list (multiset) of their multiplicities {m1, . . . ,mk} is the union of n̄j copies of m̄j over
j = 1, . . . , `. It is emphasized that the genericity is defined with respect to T (and
not to Mn).

The eigenvalue decomposition of a generic A is consistent with the decomposition
(3.3) into simple components of T , as follows.

Proposition 3.4. Let A ∈ T ∩ Sn be generic in eigenvalue structure. For any
i ∈ {1, . . . , k} there exists j ∈ {1, . . . , `} such that Vi ⊆ Uj. Hence there exists a
partition of K = {1, . . . , k} into ` disjoint subsets:

K = K1 ∪ · · · ∪ K` (3.6)

such that

Uj =
⊕
i∈Kj

Vi, j = 1, . . . , `. (3.7)

Note that mi = m̄j for i ∈ Kj and |Kj | = n̄j for j = 1, . . . , `.
The partition (3.6) of K can be determined as follows. Define a binary relation

∼ on K by:

i ∼ i′ ⇐⇒ ∃p (1 ≤ p ≤ m) : QT
i ApQi′ 6= O, (3.8)

where i, i′ ∈ K. By convention we define i ∼ i for any i ∈ K.
Proposition 3.5. The partition (3.6) coincides with the partition of K into

equivalence classes of the transitive closure of the binary relation ∼.
Proof. This is not difficult to see from the general theory of matrix ∗-algebra,

but a proof is given here for completeness. Denote by {L1, . . . , L`′} the equivalence
classes with respect to ∼.

If i ∼ i′, then QT
i ApQi′ 6= O for some p. This means that for any I ⊆ K with

i ∈ I and i′ ∈ K \ I, the subspace
⊕

i′′∈I Vi′′ is not invariant under Ap. Hence Vi′

must be contained in the same simple component as Vi. Therefore each Lj must be
contained in some Kj′ .

To show the converse, define a matrix Q̃j = (Qi | i ∈ Lj), which is of size
n ×

∑
i∈Lj

mi, and an n × n matrix Ej = Q̃jQ̃
T
j for j = 1, . . . , `′. Each matrix Ej

belongs to T , as shown below, and it is idempotent (i.e., Ej
2 = Ej) and E1+· · ·+E`′ =

In. On the other hand, for distinct j and j′ we have Q̃T
j ApQ̃j′ = O for all p, and

hence Q̃T
j MQ̃j′ = O for all M ∈ T . This implies that EjM = MEj for all M ∈ T .

Therefore Im(Ej) is a union of simple components, and hence Lj is a union of some
Kj′ ’s.
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It remains to show that Ej ∈ T . Since αi’s are distinct, for any real numbers
u1, . . . , uk there exists a polynomial f such that f(αi) = ui for i = 1, . . . , k. Let fj be
such f for (u1, . . . , uk) defined as ui = 1 for i ∈ Lj and ui = 0 for i ∈ K \ Lj . Then
Ej = Q̃jQ̃

T
j = Q ·fj(diag(α1Im1 , . . . , αkImk

)) ·QT = Q ·fj(QTAQ) ·QT = fj(A). This
shows Ej ∈ T .

A generic matrix A can be obtained as a random linear combination of generators,
as follows. For a real vector r = (r1, . . . , rm) put

A(r) = r1A1 + · · · + rmAm.

We denote by span{· · · } the set of linear combinations of the matrices in the braces.
Proposition 3.6. If span{In, A1, . . . , Am} = T ∩Sn, there exists an open dense

subset R of Rm such that A(r) is generic in eigenvalue structure for every r ∈ R.
Proof. Let Bpj denote the matrix Bj in the decomposition (3.2) of A = Ap for p =

1, . . . ,m. For j = 1, . . . , ` define fj(λ) = fj(λ; r) = det(λI − (r1B1j + · · ·+ rmBmj)),
which is a polynomial in λ, r1, . . . , rm. By the assumption on the linear span of
generators, fj(λ) is free from multiple roots for at least one r ∈ Rm, and it has a
multiple root only if r lies on the algebraic set, say, Σj defined by the resultant of
fj(λ) and f ′

j(λ). For distinct j and j′, fj(λ) and fj′(λ) do not share a common
root for at least one r ∈ Rm, and they have a common root only if r lies on the
algebraic set, say, Σjj′ defined by the resultant of fj(λ) and fj′(λ). Then we can take
R = Rm \ [(∪jΣj) ∪ (∪j,j′Σjj′)].

We may assume that the coefficient vector r is normalized, for example, to ‖r‖2 =
1, where ‖r‖2 =

√∑m
p=1 rp

2. Then the above proposition implies that A(r) is generic
for almost all values of r, or with probability one if r is chosen at random. It should
be clear that we can adopt any normalization scheme (other than ‖r‖2 = 1) for this
statement.

3.3. Transformation for irreducible components. Once the transformation
matrix Q for the eigenvalue decomposition of a generic matrix A is known, the trans-
formation P for T can be obtained through “local” transformations within eigenspaces
corresponding to distinct eigenvalues, followed by a “global” permutation of rows and
columns.

Proposition 3.7. Let A ∈ T ∩ Sn be generic in eigenvalue structure, and
QTAQ = diag(α1Im1 , . . . , αkImk

) be the eigenvalue decomposition as in (3.5). Then
the transformation matrix P in (3.2) can be chosen in the form of

P = Q · diag(P1, . . . , Pk) · Π (3.9)

with orthogonal matrices Pi ∈ Mmi for i = 1, . . . , k, and a permutation matrix Π ∈
Mn.

Proof. For simplicity of presentation we focus on a simple component, which is
equivalent to assuming that for each A′ ∈ T we have PTA′P = Im̄ ⊗ B′ for some
B′ ∈ Mk, where m̄ = m1 = · · · = mk. Since P may be replaced by P (Im̄ ⊗ S) for
any orthogonal S, it may be assumed further that PTAP = Im̄ ⊗ D, where D =
diag(α1, . . . , αk), for the particular generic matrix A. Hence ΠPTAPΠT = D ⊗ Im̄

for a permutation matrix Π. Comparing this with QTAQ = D ⊗ Im̄ and noting that
αi’s are distinct, we see that

PΠT = Q · diag(P1, . . . , Pk)

for some m̄ × m̄ orthogonal matrices P1, . . . , Pk. This gives (3.9).
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4. Algorithm for simultaneous block-diagonalization. On the basis of the
theoretical considerations in Section 3, we propose in this section an algorithm for
simultaneous block-diagonalization of given symmetric matrices A1, . . . , Am ∈ Sn by
an orthogonal matrix P :

PTApP =
⊕̀
j=1

m̄j⊕
i=1

Bpj =
⊕̀
j=1

(Im̄j ⊗ Bpj), p = 1, . . . ,m, (4.1)

where Bpj ∈ Mn̄j for j = 1, . . . , ` and p = 1, . . . ,m. Our algorithm consists of two
parts corresponding to (A) and (B) of Theorem 3.1 for the ∗-subalgebra T generated
by {In, A1, . . . , Am}. The former (Section 4.1) corresponds to the decomposition of
T into simple components and the latter (Section 4.2) to the decomposition into
irreducible components. A practical variant of the algorithm is described in Section
4.3. Recall that we assume (3.4).

4.1. Decomposition into simple components. We present here an algorithm
for the decomposition into simple components. Algorithm 4.1 below does not presume
span{In, A1, . . . , Am} = T ∩ Sn, although its correctness relies on this condition.

Algorithm 4.1.

Step 1: Generate random numbers r1, . . . , rm (with ‖r‖2 = 1), and set A =
m∑

p=1

rpAp.

Step 2: Compute the eigenvalues and eigenvectors of A. Let α1, . . . , αk be the
distinct eigenvalues of A with their multiplicities denoted by m1, . . . ,mk.
Let Qi ∈ Rn×mi be the matrix consisting of orthonormal eigenvectors
corresponding to αi, and define the matrix Q ∈ Rn×n by Q = (Qi | i =
1, . . . , k). This means that

QTAQ = diag(α1Im1 , . . . , αkImk
).

Step 3: Put K = {1, . . . , k}, and let ∼ be a binary relation on K defined by

i ∼ i′ ⇐⇒ ∃p (1 ≤ p ≤ m) : QT
i ApQi′ 6= O, (4.2)

where i, i′ ∈ K. Let

K = K1 ∪ · · · ∪ K` (4.3)

be the partition of K consisting of the equivalence classes of the transitive
closure of the binary relation ∼. Define matrices Q[Kj ] by

Q[Kj ] = (Qi | i ∈ Kj), j = 1, . . . , `,

and set

Q̂ = (Q[K1], . . . , Q[K`]) .

Compute Q̂TApQ̂ (p = 1, . . . ,m), which results in a simultaneous block-
diagonalization with respect to the partition (3.6).
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Example 4.1. Suppose that the number of distinct eigenvalues of A is five, i.e.,
K = {1, 2, 3, 4, 5}, and that the partition of K is obtained as K1 = {1, 2, 3}, K2 = {4},
and K3 = {5}, where ` = 3. Then A1, . . . , Am are decomposed simultaneously as

Q̂TApQ̂ =

m1 m2 m3 m4 m5

∗ ∗ ∗ O O
∗ ∗ ∗ O O
∗ ∗ ∗ O O
O O O ∗ O
O O O O ∗

(4.4)

for p = 1, . . . ,m.
For the correctness of the above algorithm we have the following.
Proposition 4.2. If the matrix A generated in Step 1 is generic in eigenvalue

structure, the orthogonal matrix Q̂ constructed by Algorithm 4.1 gives the transforma-
tion matrix Q̂ in Theorem 3.1 (A) for the decomposition of T into simple components.

Proof. This follows from Propositions 3.4 and 3.5.
Proposition 3.6 implies that the matrix A in Step 1 is generic with probability

one if span{In, A1, . . . , Am} = T ∩Sn. This condition, however, is not always satisfied
by the given matrices A1, . . . , Am. In such a case we can generate a basis of T ∩Sn as
follows. First choose a linearly independent subset, say, B1 of {In, A1, . . . , Am}. For
k = 1, 2, . . . let Bk+1 (⊇ Bk) be a linearly independent subset of {(AB + BA)/2 | A ∈
B1, B ∈ Bk}. If Bk+1 = Bk for some k, we can conclude that Bk is a basis of T ∩ Sn.
Note that the dimension of T ∩ Sn is equal to

∑`
j=1 n̄j(n̄j + 1)/2, which is bounded

by n(n + 1)/2. It is mentioned here that Sn is a linear space equipped with an inner
product A • B = tr(AB) and the Gram–Schmidt orthogonalization procedure works.

Proposition 4.3. If a basis of T ∩ Sn is computed in advance, Algorithm 4.1
gives, with probability one, the decomposition of T into simple components.

4.2. Decomposition into irreducible components. According to Theorem
3.1 (B), the block-diagonal matrices Q̂TApQ̂ obtained by Algorithm 4.1 can further
be decomposed. By construction we have Q̂ = QΠ̂ for some permutation matrix Π̂.
In the following we assume Q̂ = Q to simplify the presentation.

By Proposition 3.7 this finer decomposition can be obtained through a transfor-
mation of the form (3.9), which consists of “local coordinate changes” by a family of
orthogonal matrices {P1, . . . , Pk}, followed by a permutation by Π.

The orthogonal matrices {P1, . . . , Pk} should be chosen in such a way that if
i, i′ ∈ Kj , then

PT
i QT

i ApQi′Pi′ = b
(pj)
ii′ Im̄j (4.5)

for some b
(pj)
ii′ ∈ R for p = 1, . . . ,m. Note that the solvability of this system of

equations in Pi (i = 1, . . . , k) and b
(pj)
ii′ (i, i′ = 1, . . . , k; j = 1, . . . , `; p = 1, . . . ,m)

is guaranteed by (4.1) and Proposition 3.7. Then with P̃ = Q · diag(P1, . . . , Pk) and
Bpj = (b(pj)

ii′ | i, i′ ∈ Kj) we have

P̃TApP̃ =
⊕̀
j=1

(Bpj ⊗ Im̄j ) (4.6)

for p = 1, . . . ,m. Finally we apply a permutation of rows and columns to obtain (4.1).
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Example 4.2. Recall Example 4.1. We consider the block-diagonalization of
the first block Âp = Q[K1]TApQ[K1] of (4.4), where m1 = m2 = m3 = 2 and
K1 = {1, 2, 3}. We first compute orthogonal matrices P1, P2 and P3 satisfying

diag(P1, P2, P3)T · Âp · diag(P1, P2, P3) =
b
(p1)
11 I2 b

(p1)
12 I2 b

(p1)
13 I2

b
(p1)
21 I2 b

(p1)
22 I2 b

(p1)
23 I2

b
(p1)
31 I2 b

(p1)
32 I2 b

(p1)
33 I2

.

Then a permutation of rows and columns yields a block-diagonal form diag(Bp1, Bp1)

with Bp1 =

 b
(p1)
11 b

(p1)
12 b

(p1)
13

b
(p1)
21 b

(p1)
22 b

(p1)
23

b
(p1)
31 b

(p1)
32 b

(p1)
33

.

The family of orthogonal matrices {P1, . . . , Pk} satisfying (4.5) can be computed
as follows. Recall from (4.2) that for i, i′ ∈ K we have i ∼ i′ if and only if QT

i ApQi′ 6=
O for some p. It follows from (4.5) that QT

i ApQi′ 6= O means that it is nonsingular.
Fix j with 1 ≤ j ≤ `. We consider a graph Gj = (Kj , Ej) with vertex set Kj and

edge set Ej = {(i, i′) | i ∼ i′}. This graph is connected by the definition of Kj . Let
Tj be a spanning tree, which means that Tj is a subset of Ej such that |Tj | = |Kj |−1
and any two vertices of Kj are connected by a path in Tj . With each (i, i′) ∈ Tj we
can associate some p = p(i, i′) such that QT

i ApQi′ 6= O.
To compute {Pi | i ∈ Kj}, take any i1 ∈ Kj and put Pi1 = Im̄j . If (i, i′) ∈ Tj

and Pi has been determined, then let P̂i′ = (QT
i ApQi′)−1Pi with p = p(i, i′), and

normalize it to Pi′ = P̂i′/‖q‖, where q is the first-row vector of P̂i′ . Then Pi′ is an
orthogonal matrix that satisfies (4.5). By repeating this we can obtain {Pi | i ∈ Kj}.

Remark 4.4. A variant of the above algorithm for computing {P1, . . . , Pk} is
suggested here. Take a second random vector r′ = (r′1, . . . , r

′
m), independently of r,

to form A(r′) = r′1A1 + · · · + r′mAm. For i, i′ ∈ Kj we have, with probability one,
that (i, i′) ∈ Ej if and only if QT

i A(r′)Qi′ 6= O. If Pi has been determined, we can
determine Pi′ by normalizing P̂i′ = (QT

i A(r′)Qi′)−1Pi to Pi′ = P̂i′/‖q‖, where q is
the first-row vector of P̂i′ .

Remark 4.5. The proposed method relies on numerical computations to de-
termine the multiplicities of eigenvalues, which in turn determine the block-diagonal
structures. As such the method is inevitably faced with numerical noises due to
rounding errors. A scaling technique to remedy this difficulty is suggested in Remark
5.1 for truss optimization problems.

Remark 4.6. The idea of using a random linear combination in constructing
simultaneous block-diagonalization can also be found in a recent paper of de Klerk
and Sotirov [5]. Their method, called “block diagonalization heuristic” in Section 5.2
of [5], is different from ours in two major points.

First, the method of [5] assumes explicit knowledge about the underlying group
G, and works with the representation matrices, denoted T (g) in (2.14). Through
the eigenvalue (spectral) decomposition of a random linear combination of T (g) over
g ∈ G, the method finds an orthogonal matrix P such that PTT (g)P for g ∈ G are
simultaneously block-diagonalized, just as in (2.15) and (2.16). Then G-symmetric
matrices Ap, satisfying (2.14), will also be block-diagonalized.

Second, the method of [5] is not designed to produce the finest possible decompo-
sition of the matrices Ap, as is recognized by the authors themselves. The constructed
block-diagonalization of T (g) is not necessarily the irreducible decomposition, and this
is why the resulting decomposition of Ap is not guaranteed to be finest possible. We
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could, however, apply the algorithm of Section 4.2 of the present paper to obtain the
irreducible decomposition of the representation T (g). Then, under the assumption
(3.4), the resulting decomposition of Ap will be the finest decomposition that can be
obtained by exploiting the G-symmetry.

Remark 4.7. Eberly and Giesbrecht [6] proposed an algorithm for the simple-
component decomposition of a separable matrix algebra (not a ∗-algebra) over an
arbitrary infinite field. Their algorithm is closely related to our algorithm in Section
3.2. In particular, their “self-centralizing element” corresponds to our “generic el-
ement”. Their algorithm, however, is significantly different from ours in two ways:
(i) treating a general algebra (not a ∗-algebra) it employs a transformation of the
form S−1AS with a nonsingular matrix S instead of an orthogonal transformation,
and (ii) it uses companion forms and factorization of minimum polynomials instead
of eigenvalue decomposition. The decomposition into irreducible components, which
inevitably depends on the underlying field, is not treated in [6].

4.3. A practical variant of the algorithm. In Propositions 3.6 we have con-
sidered two technical conditions:

1. span{In, A1, . . . , Am} = T ∩ Sn,
2. r ∈ R, where R is an open dense set,

to ensure genericity of A =
∑m

p=1 rpAp in eigenvalue structure. The genericity
of A guarantees, in turn, that our algorithm yields the finest simultaneous block-
diagonalization (see Proposition 4.2). The condition r ∈ R above can be met with
probability one through a random choice of r.

To meet the first condition we could generate a basis of T ∩ Sn in advance, as
is mentioned in Proposition 4.3. However, an explicit computation of a basis seems
too heavy to be efficient. It should be understood that the above two conditions are
introduced as sufficient conditions to avoid degeneracy in eigenvalues. By no means
are they necessary for the success of the algorithm. With this observation we propose
the following procedure as a practical variant of our algorithm.

We apply Algorithm 4.1 to the given family {A1, . . . , Am} to find an orthogonal
matrix Q and a partition K = K1 ∪ · · · ∪ K`. In general there is no guarantee
that this corresponds to the decomposition into simple components, but in any case
Algorithm 4.1 terminates without getting stuck. The algorithm does not hang up
either, when a particular choice of r does not meet the condition r ∈ R. Thus we can
always go on to the second stage of the algorithm for the irreducible decomposition.

Next, we are to determine a family of orthogonal matrices {P1, . . . , Pk} that
satisfies (4.5). This system of equations is guaranteed to be solvable if A is generic
(see Proposition 3.7). In general we may possibly encounter a difficulty of the following
kinds:

1. For some (i, i′) ∈ Tj the matrix QT
i ApQi′ with p = p(i, i′) is not regular

and hence Pi′ cannot be computed. This includes the case of a rectangular
matrix, which is demonstrated in Example 4.3 below.

2. For some p and (i, i′) ∈ Ej the matrix PT
i QT

i ApQi′Pi′ is not a scalar multiple
of an identity matrix.

Such inconsistency is an indication that the decomposition into simple components
has not been computed correctly. Accordingly, if either of the above inconsistency is
detected, we restart our algorithm by adding some linearly independent matrices of
T ∩ Sn to the current set {A1, . . . , Am}. It is mentioned that the possibility exists,
though with probability zero, that r is chosen badly to yield a nongeneric A even
when span{In, A1, . . . , Am} = T ∩ Sn is true.
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It is expected that we can eventually arrive at the correct decomposition after a
finite number of iterations. With probability one, the number of restarts is bounded
by the dimension of T ∩ Sn, which is O(n2). When it terminates, the modified
algorithm always gives a legitimate simultaneous block-diagonal decomposition of the
form (4.1).

There is some subtlety concerning the optimality of the obtained decomposition.
If a basis of T ∩ Sn is generated, the decomposition coincides, with probability one,
with the canonical finest decomposition of the ∗-algebra T . However, when the algo-
rithm terminates before it generates a basis of T ∩Sn, there is no theoretical guarantee
that the obtained decomposition is the finest possible. Nevertheless, it is very likely
in practice that the obtained decomposition coincides with the finest decomposition.

Example 4.3. Here is an example that requires an additional generator to be
added. Suppose that we are given

A1 =


1 0 0 0
0 1 0 1
0 0 1 −1
0 1 −1 0

 , A2 =


1 0 0 0
0 1 0 0
0 0 1 1
0 0 1 0


and let T be the matrix ∗-algebra generated by {I4, A1, A2}. It turns out that the
structural indices in (4.1) are: ` = 2, m̄1 = m̄2 = 1, n̄1 = 1 and n̄2 = 3. This
means that the list of eigenvalue multiplicities of T is {1, 1, 1, 1}. Note also that
dim(T ∩ S4) = n̄1(n̄1 + 1)/2 + n̄2(n̄2 + 1)/2 = 7.

For A(r) = r1A1 + r2A2 we have

A(r)


1 0
0 (r1 − r2)/c
0 r1/c
0 0

 = (r1 + r2)


1 0
0 (r1 − r2)/c
0 r1/c
0 0

 (4.7)

with c =
√

(r1 − r2)2 + r1
2. This shows that A(r) has a multiple eigenvalue r1 + r2

of multiplicity two, as well as two other simple eigenvalues. Thus for any r the list of
eigenvalue multiplicities of A(r) is equal to {2, 1, 1}, which differs from {1, 1, 1, 1} for
T .

The discrepancy in the eigenvalue multiplicities cannot be detected during the
first stage of our algorithm. In Step 2 we have k = 3, m1 = 2, m2 = m3 = 1. The
orthogonal matrix Q is partitioned into three submatrices Q1, Q2 and Q3, where Q1

(nonunique) may possibly be the 4× 2 matrix shown in (4.7), and Q2 and Q3 consist
of a single column. Since QTApQ is of the form

QTApQ =


1 0 0 0
0 ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗


for p = 1, 2, we have ` = 1 and K1 = {1, 2, 3} in Step 3. At this moment an
inconsistency is detected, since m1 6= m2 inspite of the fact that i = 1 and i′ = 2
belong to the same block K1.
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We restart the algorithm, say, with an additional generator

A3 =
1
2
(A1A2 + A2A1) =

1
2


2 0 0 0
0 2 1 1
0 1 0 0
0 1 0 −2


to consider Ã(r) = r1A1 + r2A2 + r3A3 instead of A(r) = r1A1 + r2A2. Then Ã(r)
has four simple eigenvalues for generic values of r = (r1, r2, r3), and accordingly we
have {1, 1, 1, 1} as the list of eigenvalue multiplicities of Ã(r), which agrees with that
of T .

In Step 2 of Algorithm 4.1 we now have k = 4, m1 = m2 = m3 = m4 = 1. The
orthogonal matrix Q is partitioned into four 4× 1 submatrices, and QTApQ is of the
form

QTApQ =


1 0 0 0
0 ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗


for p = 1, 2, 3, from which we obtain K1 = {1}, K2 = {2, 3, 4} with ` = 2 in Step 3.
Thus we have arrived at the correct decomposition consisting of a 1 × 1 block and a
3× 3 block. Note that the correct decomposition is obtained in spite of the fact that
{I4, A1, A2, A3} does not span T ∩ S4.

5. Numerical examples.

5.1. Effects of additional algebraic structures. It is demonstrated here that
our method automatically reveals inherent algebraic structures due to parameter de-
pendence as well as to group symmetry. The S3-symmetric matrices A1, . . . , A4 in
(2.7) and (2.8) are considered in three representative cases.
Case 1:

B =
[

1 2
2 1

]
, C =

[
1
2

]
, D =

[
1

]
, E =

[
3 1
1 2

]
,

Case 2:

B =
[

1 2
2 1

]
, C =

[
1
2

]
, D =

[
1

]
, E =

[
3 1
1 3

]
,

Case 3:

B =
[

1 2
2 1

]
, C =

[
1
1

]
, D =

[
1

]
, E =

[
3 1
1 3

]
.

We have nB = 2 and nD = 1 in the notation of Section 2.2.
Case 1 is a generic case under S3-symmetry. The simultaneous block-diagonalization

is of the form

PTApP = Bp1 ⊕ (I2 ⊗ Bp2), p = 1, . . . , 4, (5.1)

with Bp1 ∈ M3, Bp2 ∈ M2; i.e., ` = 2, m̄1 = 1, m̄2 = 2, n̄1 = 3, n̄2 = 2 in (4.1). By
(2.10)–(2.13), a possible choice of these matrices is

B11 =
[

B O
O O

]
, B21 =

[
O

√
3C√

3CT O

]
, B31 =

[
O O
O D

]
, B41 =

[
2E O
O O

]
,
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and B12 = B, B22 = B32 = O, B42 = −E. Our implementation of the proposed
method yields the same decomposition but with different matrices. For instance, we
have obtained

B12 =
[

−0.99954 −0.04297
−0.04297 2.99954

]
, B42 =

[
−1.51097 0.52137

0.52137 −3.48903

]
.

Here it is noted that the obtained B12 and B42 are related to B and E as[
B12 O
O B12

]
= P̃T

[
B O
O B

]
P̃ ,

[
B42 O
O B42

]
= P̃T

[
−E O

O −E

]
P̃

for an orthogonal matrix P̃ expressed as P̃ =
[

P̃11 P̃12

P̃21 P̃22

]
with

P̃11 = −P̃22 =
[

0.12554 −0.12288
−0.12288 −0.12554

]
, P̃12 = P̃21 =

[
0.70355 −0.68859

−0.68859 −0.70355

]
.

In Case 2 we have a commutativity relation BE = EB. This means that B and E
can be simultaneously diagonalized, and a further decomposition of the second factor
in (5.1) should result. Instead of (5.1) we have

PTApP = Bp1 ⊕ (I2 ⊗ Bp2) ⊕ (I2 ⊗ Bp3), p = 1, . . . , 4,

with Bp1 ∈ M3, Bp2 ∈ M1 and Bp3 ∈ M1; i.e., ` = 3, m̄1 = 1, m̄2 = m̄3 = 2,
n̄1 = 3, n̄2 = n̄3 = 1 in (4.1). The proposed method yields B12 = [ 3.00000 ],
B42 = [ −4.00000 ], B13 = [ −1.00000 ] and B43 = [ −2.00000 ], successfully detecting
the additional algebraic structure caused by BE = EB.

Case 3 contains a further degeneracy that the column vector of C is an eigenvector
of B and E. This splits the 3 × 3 block into two, and we have

PTApP = Bp1 ⊕ Bp4 ⊕ (I2 ⊗ Bp2) ⊕ (I2 ⊗ Bp3), p = 1, . . . , 4,

with Bp1 ∈ M2, Bpj ∈ M1 for j = 2, 3, 4; i.e., ` = 4, m̄1 = m̄4 = 1, m̄2 = m̄3 = 2,
n̄1 = 2, n̄2 = n̄3 = n̄4 = 1 in (4.1). For instance, we have indeed obtained

B11 ⊕ B14 =

 0.48288 1.10248 0
1.10248 2.51712 0

0 −1.00000

 .

Also in this case the proposed method works, identifying the additional algebraic
structure through numerical computation.

The three cases are compared in Table 5.1.

5.2. Optimization of symmetric trusses. Use and significance of our method
are illustrated here in the context of semidefinite programming for truss design treated
in [25]. Group-symmetry and sparsity arise naturally in truss optimization problems
[1, 14]. It will be confirmed that the proposed method yields the same decomposition
as the group representation theory anticipates (Case 1 below), and moreover, it gives
a finer decomposition if the truss structure is endowed with an additional algebraic
structure due to sparsity (Case 2 below).

The optimization problem we consider here is as follow. An initial truss configura-
tion is given with fixed locations of nodes and members. Optimal cross-sectional areas,
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Table 5.1
Block-diagonalization of S3-symmetric matrices in (2.7) and (2.8).

Case 1 Case 2 Case 3
n̄j m̄j n̄j m̄j n̄j m̄j

j = 1 3 1 3 1 2 1
j = 4 — — — — 1 1
j = 2 2 2 1 2 1 2
j = 3 — — 1 2 1 2

(1)

(2)

(3)

(4)

Fig. 5.1. A cubic (or Td-symmetric) space truss.

minimizing total volume of the structure, are to be found subject to the constraint
that the eigenvalues of vibration are not smaller than a specified value.

To be more specific, let nd and nm denote the number of degrees of freedom of
displacements and the number of members of a truss, respectively. Let K ∈ Snd

denote the stiffness matrix, and MS ∈ Snd and M0 ∈ Snd the mass matrices for the
structural and nonstructural masses, respectively; see, e.g., [35] for the definitions of
these matrices. The ith eigenvalue Ωi of vibration and the corresponding eigenvector
φi ∈ Rnd

are defined by

Kφi = Ωi(MS + M0)φi, i = 1, 2, . . . , nd. (5.2)

Note that, for a truss, K and MS can be written as

K =
nm∑
j=1

Kjηj , MS =
nm∑
j=1

Mjηj (5.3)

with sparse constant symmetric matrices Kj and Mj , where ηj denotes the cross-
sectional area of the jth member. With the notation l = (lj) ∈ Rnm

for the vector of
member lengths and Ω̄ for the specified lower bound of the fundamental eigenvalue,
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our optimization problem is formulated as

min
nm∑
j=1

ljηj

s.t. Ωi ≥ Ω̄, i = 1, . . . , nd,
ηj ≥ 0, j = 1, . . . , nm.

 (5.4)

It is pointed out in [25] that this problem (5.4) can be reduced to the following dual
SDP (cf. (2.2)):

max −
nm∑
j=1

ljηj

s.t.
nm∑
j=1

(Kj − Ω̄Mj)ηj − Ω̄M0 º O,

ηj ≥ 0, j = 1, . . . , nm.


(5.5)

We now consider this SDP for the cubic truss shown in Fig. 5.1. The cubic truss
contains 8 free nodes, and hence nd = 24. As for the members we consider two cases:

Case 1: nm = 34 members including the dotted ones;
Case 2: nm = 30 members excluding the dotted ones.

A regular tetrahedron is constructed inside the cube. The lengths of members forming
the edges of the cube are 2 m. The lengths of the members outside the cube are
1 m. A nonstructural mass of 2.1 × 105 kg is located at each node indicated by a
filled circle in Fig. 5.1. The lower bound of the eigenvalues is specified as Ω̄ = 10.0.
All the remaining nodes are pin-supported (i.e., the locations of those nodes are fixed
in the three-dimensional space, while the rotations of members connected to those
nodes are not prescribed).

Thus, the geometry, the stiffness distribution, and the mass distribution of this
truss are all symmetric with respect to the geometric transformations by elements of
(full or achiral) tetrahedral group Td, which is isomorphic to the symmetric group S4.
The Td-symmetry can be exploited as follows.

First, we divide the index set of members {1, . . . , nm} into a family of orbits, say
Jp with p = 1, . . . ,m, where m denotes the number of orbits. We have m = 4 in Case 1
and m = 3 in Case 2, where representative members belonging to four different orbits
are shown as (1)–(4) in Fig. 5.1. It is mentioned in passing that the classification of
members into orbits is an easy task for engineers. Indeed, this is nothing but the
so-called variable-linking technique, which has often been employed in the literature
of structural optimization in obtaining symmetric structural designs [20].

Next, with reference to the orbits we aggregate the data matrices as well as
the components of vector b in (5.5) to Ap (p = 0, 1, . . . ,m) and bp (p = 1, . . . ,m),
respectively, as

A0 = −Ω̄M0; Ap =
∑
j∈Jp

(−Kj + Ω̄Mj), bp =
∑
j∈Jp

lj , p = 1, . . . ,m.
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Table 5.2
Block-diagonalization of cubic truss optimization problem.

Case 1: m = 4 Case 2: m = 3
block size multiplicity block size multiplicity

n̄j m̄j n̄j m̄j

j = 1 2 1 2 1
j = 2 2 2 2 2
j = 3 2 3 2 3
j = 4 4 3 2 3
j = 5 — — 2 3

Then (5.5) can be reduced to

max −
m∑

p=1

bpyp

s.t. A0 −
m∑

p=1

Apyp º O,

yp ≥ 0, p = 1, . . . ,m


(5.6)

as long as we are interested in a symmetric optimal solution, where yp = ηj for j ∈ Jp.
Note that the matrices Ap (p = 0, 1, . . . ,m) are symmetric in the sense of (2.14) for
G = Td. Note that the two cases share the same matrices A1, A2, A3, and A0 is
proportional to the identity matrix.

The proposed method is applied to Ap (p = 0, 1, . . . ,m) for their simultaneous
block-diagonalization. The practical variant described in Section 4.3 is employed. In
either case it has turned out that additional generators are not necessary, but random
linear combinations of the given matrices Ap (p = 0, 1, . . . ,m) are sufficient to find
the block-diagonalization. The assumption (3.4) has turned out to be satisfied.

In Case 1 we obtain the decomposition into 1 + 2 + 3 + 3 = 9 blocks, one block of
size 2, two identical blocks of size 2, three identical blocks of size 3, and three identical
blocks of size 4, as summarized on the left of Table 5.2. This result conforms with the
group-theoretic analysis. The tetrahedral group Td, being isomorphic to S4, has two
one-dimensional irreducible representations, one two-dimensional irreducible repre-
sentation, and two three-dimensional irreducible representations [23, 27]. The block
indexed by j = 1 corresponds to the unit representation, one of the one-dimensional
irreducible representations, while the block for the other one-dimensional irreducible
representation is missing. The block with j = 2 corresponds to the two-dimensional ir-
reducible representation, hence m̄2 = 2. Similarly, the blocks with j = 3, 4 correspond
to the three-dimensional irreducible representation, hence m̄3 = m̄4 = 3.

In Case 2 sparsity plays a role to split the last block into two, as shown on the
right of Table 5.2. We now have 12 blocks in contrast to 9 blocks in Case 1. Recall
that the sparsity is due to the lack of the dotted members. It is emphasized that the
proposed method successfully captures the additional algebraic structure introduced
by sparsity.

Remark 5.1. Typically, actual trusses are constructed by using steel members,
where the elastic modulus and the mass density of members are E = 200.0 GPa and
ρ = 7.86 × 103 kg/m3, respectively. Note that the matrices Kj and Mj defining
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the SDP problem (5.6) are proportional to E and ρ, respectively. In order to avoid
numerical instability in our block-diagonalization algorithm, E and ρ are scaled as
E = 1.0× 10−2 GPa and ρ = 1.0× 108 kg/m3, so that the largest eigenvalue in (5.2)
becomes sufficiently small. For example, if we choose the member cross-sectional areas
as ηj = 10−2 m2 for j = 1, . . . , nm, the maximum eigenvalue is 1.59 × 104 rad2/s2 for
steel members, which is natural from the mechanical point of view. In contrast, by
using the fictitious parameters mentioned above, the maximum eigenvalue is reduced
to 6.24 × 10−2 rad2/s2, and then our block-diagonalization algorithm can be applied
without any numerical instability. Note that the transformation matrix obtained by
our algorithm for block-diagonalization of A0, A1, . . . , Am is independent of the values
of E and ρ. Hence, it is recommended for numerical stability to compute transforma-
tion matrices for the scaled matrices Ã0, Ã1, . . . , Ãm by choosing appropriate fictitious
values of E and ρ. It is easy to find a candidate of such fictitious values, because we
know that the maximum eigenvalue can be reduced by decreasing E and/or increasing
ρ. Then the obtained transformation matrices can be used to decompose the original
matrices A0, A1, . . . , Am defined with the actual material parameters.

5.3. Quadratic semidefinite programs for symmetric frames. Effective-
ness of our method is demonstrated here for the SOS–SDP relaxation of a quadratic
SDP arising from a frame optimization problem. Quadratic (or polynomial) SDPs are
known to be difficult problems, although they are, in principle, tractable by means of
SDP relaxations. The difficulty may be ascribed to two major factors: (i) SDP relax-
ations tend to be large in size, and (ii) SDP relaxations often suffer from numerical
instability. The block-diagonalization method makes the size of the SDP relaxation
smaller, and hence mitigates the difficulty arising from the first factor.

The frame optimization problem with a specified fundamental eigenvalue Ω̄ can
be treated basically in the same way as the truss optimization problem in Section 5.2,
except that some nonlinear terms appear in the SDP problem.

First, we formulate the frame optimization problem in the form of (5.4), where
“ηj ≥ 0” is replaced by “0 ≤ ηj ≤ η̄j” with a given upper bound for ηj . Recall that
ηj represents the cross-sectional area of the jth element and nm denotes the number
of members. We choose ηj (j = 1, . . . , nm) as the design variables.

As for the stiffness matrix K, we use the Euler–Bernoulli beam element [35] to
define

K =
nm∑
j=1

Ka
j ηj +

nm∑
j=1

Kb
j ξj , (5.7)

where Ka
j and Kb

j are sparse constant symmetric matrices, and ξj is the moment of
inertia of the jth member. The mass matrix MS due to the structural mass remains
the same as in (5.3), being a linear function of η. Each member of the frame is
assumed to have a circular solid cross-section with radius rj . Then we have ηj = πr2

j

and ξj = 1
4πr4

j .

Just as (5.4) can be reduced to (5.5), our frame optimization problem can be
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Fig. 5.2. A D6-symmetric plane frame.

reduced to the following problem:

max −
nm∑
j=1

ljηj

s.t.
1
4π

nm∑
j=1

Kb
j η2

j +
nm∑
j=1

(Ka
j − Ω̄Mj)ηj − Ω̄M0 º O,

0 ≤ ηj ≤ η̄j , j = 1, . . . , nm,


(5.8)

which is a quadratic SDP. See [13] for details.
Suppose that the frame structure is endowed with geometric symmetry; Fig. 5.2

shows an example with D6-symmetry. According to the symmetry the index set of
the members {1, . . . , nm} is partitioned into orbits {Jp | p = 1, . . . ,m}. For symmetry
of the problem, η̄j should be constant on each orbit Jp and we put dp = η̄j for j ∈ Jp.
By the variable-linking technique, (5.8) is reduced to the following quadratic SDP:

max
m∑

p=1

bpyp

s.t. F0 −
m∑

p=1

Fpyp −
m∑

p=1

Gpy
2
p º O,

0 ≤ yp ≤ dp, p = 1, . . . ,m,


(5.9)

where F0 = −Ω̄M0 and

Fp =
∑
j∈Jp

(−Ka
j + Ω̄Mj), Gp = − 1

4π

∑
j∈Jp

Kb
j , bp = −

∑
j∈Jp

lj , p = 1. . . . ,m.

Suppose further that an orthogonal matrix P is found that simultaneously block-
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diagonalizes the coefficient matrices as

PTFpP =
⊕̀
j=1

(Im̄j ⊗ F̃pj), p = 0, 1, . . . ,m,

PTGpP =
⊕̀
j=1

(Im̄j ⊗ G̃pj), p = 1, . . . ,m.

Then the inequality F0 −
∑m

p=1 Fpyp −
∑m

p=1 Gpy
2
p º O in (5.9) is decomposed into a

set of smaller-sized quadratic matrix inequalities

F̃0j −
m∑

p=1

F̃pjyp −
m∑

p=1

G̃pjy
2
p º O, j = 1, . . . , `.

Then the problem (5.9) is rewritten equivalently to

max
m∑

p=1

bpyp

s.t. F̃0j −
m∑

p=1

F̃pjyp −
m∑

p=1

G̃pjy
2
p º O, j = 1, . . . , `,

0 ≤ yp ≤ dp, p = 1, . . . ,m.


(5.10)

The original problem (5.9) can be regarded as a special case of (5.10) with ` = 1.
We now briefly explain the SOS–SDP relaxation method [15], which we shall

apply to the quadratic SDP of (5.10). It is an extension of the SOS–SDP relaxation
method of Lasserre [21] for a polynomial optimization problem to a polynomial SDP.
See also [10, 11, 17].

We use the notation yα = yα1
1 yα2

2 · · · yαm
m for α ∈ Zm

+ and y = (y1.y2, . . . , ym)T ∈
Rm, where Zm

+ denotes the set of m-dimensional nonnegative integer vectors. An
n× n polynomial matrix means a polynomial in y with coefficients of n× n matrices,
i.e., an expression like H(y) =

∑
α∈H Hαyα with a nonempty finite subset H of Zm

+

and a family of matrices Hα ∈ Mn indexed by α ∈ H. We refer to deg(H(y)) =
max

{∑m
p=1 αp | α ∈ H

}
as the degree of H(y). The set of n×n polynomial matrices

in y is denoted by Mn[y], whereas Sn[y] denotes the set of n×n symmetric polynomial
matrices, i.e., the set of H(y)’s with Hα ∈ Sn (α ∈ H). For n = 1, we have S1[y] =
M1[y], which coincides with the set R[y] of polynomials in y with real coefficients.

A polynomial SDP is an optimization problem defined in terms of a polynomial
a(y) ∈ R[y] and a number of symmetric polynomial matrices Bj(y) ∈ Snj [y] (j =
1, . . . , L) as

PSDP: min a(y) s.t. Bj(y) º O, j = 1, . . . , L. (5.11)

We assume that PSDP has an optimal solution with a finite optimal value ζ∗. The
quadratic SDP (5.10) under consideration is a special case of PSDP with L = ` + 2m
and

Bj(y) = F̃0j −
m∑

p=1

F̃pjyp −
m∑

p=1

G̃pjy
2
p, j = 1, . . . , `,

B`+p(y) = yp, B`+m+p(y) = dp − yp, p = 1, . . . ,m.
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PSDP is a nonconvex problem, and we shall resort to an SOS–SDP relaxation method.
We introduce SOS polynomials and SOS polynomial matrices. For each nonneg-

ative integer ω define

R[y]2ω =

{
k∑

i=1

gi(y)2 | gi(y) ∈ R[y], deg(gi(y)) ≤ ω (i = 1, . . . , k) for some k

}
,

Mn[y]2ω =

{
k∑

i=1

Gi(y)TGi(y) | Gi(y) ∈ Mn[y], deg(Gi(y)) ≤ ω (i = 1, . . . , k) for some k

}
.

With reference to PSDP in (5.11) let ω0 = ddeg(a(y))/2e, ωj = ddeg(Bj(y))/2e,
and ωmax = max{ωj | j = 0, 1, . . . , L}, where d·e means rounding-up to the nearest
integer. For ω ≥ ωmax, we consider an SOS optimization problem

SOS(ω): max ζ

s.t. a(y) −
L∑

j=1

Wj(y) • Bj(y) − ζ ∈ R[y]2ω,

Wj(y) ∈ Mnj
[y]2(ω−ωj)

, j = 1, . . . , L.

 (5.12)

We call ω the relaxation order. Let ζω denote the optimal value of SOS(ω).
The sequence of SOS(ω) (with ω = ωmax, ωmax +1, . . .) serves as tractable convex

relaxation problems of PSDP. The following facts are known:
(i) ζω ≤ ζω+1 ≤ ζ∗ for ω ≥ ωmax, and ζω converges to ζ∗ as ω → ∞ under a

moderate assumption on PSDP.
(ii) SOS(ω) can be solved numerically as an SDP, which we will write in SeDuMi

format as

SDP(ω): min c(ω)Tx s.t. A(ω)x = b(ω), x º 0.

Here c(ω), b(ω) and denote vectors, and A(ω) a matrix. We note that their
construction depend on not only on the data polynomial matrices Bj(y) (j =
1, . . . , L), but also the relaxation order ω.

(iii) The sequence of solutions of SDP(ω) provides approximate optimal solutions
of PSDP with increasing accuracy under the moderate assumption.

(iv) The size of A(ω) increases as we take larger ω.
(v) The size of A(ω) increases as the size nj of Bj(y) gets larger (j = 1, . . . , L).

See [15, 17] for more details about the SOS–SDP relaxation method for polynomial
SDP.

Now we are ready to present our numerical results for the frame optimization
problem. We consider the plane frame in Fig. 5.2 with 48 beam elements (nm = 48),
which is symmetric with respect to the dihedral group D6. A uniform nonstructural
concentrated mass is located at each free node. The index set of members {1, . . . , nm}
is divided into five orbits J1, . . . , J5. In the quadratic SDP formulation (5.9) we have
m = 5 and the size of the matrices Fp and Gp is 3×19 = 57. We compare three cases:

(a) Neither symmetry nor sparsity is exploited.
(b) D6-symmetry is exploited, but sparsity is not.
(c) Both D6-symmetry and sparsity are exploited by the proposed method.

In our computation we used a modified version of SparsePOP [31] to generate an
SOS–SDP relaxation problem from the quadratic SDP (5.10), and then solved the
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Table 5.3
Computational results of quadratic SDP (5.10) for frame optimization.

quadratic SDP (5.10) (a) no symmetry (b) symmetry (c) symmetry
with m = 5 used used + sparsity used
number of SDP blocks ` 1 6 8
SDP block sizes 57 3, 4, 5, 7 1×6, 2, 2×6, 3,

9×2, 10×2 3, 5, 6×2, 7×2
SDP(ω) with ω = 3
size of A(ω) 461×1,441,267 461×131,938 461×68,875
number of SDP blocks 12 17 19
maximum SDP block size 1197×1197 210×210 147×147
average SDP block size 121.9×121.9 62.6×62.6 46.1×46.1
relative error εobj 6.2 × 10−9 4.7 × 10−10 2.4 × 10−9

cpu time (s) for SDP(ω) 2417.6 147.4 59.5

relaxation problem by SeDuMi 1.1 [26, 28] on a 2.66 GHz Dual-Core Intel Xeon cpu
with 4GB memory.

Table 5.3 shows the numerical data in three cases (a), (b) and (c). In case (a)
we have a single (` = 1) quadratic inequality of size 57 in the quadratic SDP (5.10).
In case (b) we have ` = 6 distinct blocks of sizes 3, 4, 5, 7, 9 and 10 in (5.10), where
9 × 2 and 10 × 2 in the table mean that the blocks of sizes 9 and 10 appear with
multiplicity 2. This is consistent with the group-theoretic fact that D6 has four one-
dimensional and two two-dimensional irreducible representations. In case (c) we have
` = 8 quadratic inequalities of sizes 1, 2, 2, 3, 3, 5, 6 and 7 in (5.10).

In all cases, SDP(ω) with the relaxation order ω = 3 attains an approximate
optimal solution of the quadratic SDP (5.10) with high accuracy. The accuracy is
monitored by εobj, which is a computable upper bound on the relative error |ζ∗ −
ζω|/|ζω| in the objective value. The computed solutions to the relaxation problem
SDP(ω) turned out to be feasible solutions to (5.10).

We observe that our block-diagonalization works effectively. It considerably re-
duces the size of the relaxation problem SDP(ω), which is characterized in terms
of factors such as the size of A(ω), the maximum SDP block size and the average
SDP block size in Table 5.3. Smaller values in these factors in cases (b) and (c)
than in case (a) contribute to discreasing the cpu time for solving SDP(ω) by Se-
DuMi. The cpu times in cases (b) and (c) are, respectively, 147.4/2417.6 ≈ 1/16
and 59.5/2417.6 ≈ 1/40 of that in case (a). Thus our block-diagonalization method
significantly enhances the computational efficiency.

6. Discussion. Throughout this paper we have assumed that the underlying
field is the field R of real numbers. Here we discuss an alternative approach to
formulate everything over the field C of complex numbers. We denote by Mn(C)
the set of n × n complex matrices and consider a ∗-algebra T over C. It should be
clear that T is a ∗-algebra over C if it is a subset of Mn(C) such that In ∈ T and
it satisfies (3.1) with “α, β ∈ R” replaced by “α, β ∈ C” and “AT” by “AH” (the
conjugate transpose of A). Simple and irreducible ∗-algebras over C are defined in an
obvious way.

The structure theorem for a ∗-algebra over C takes a simpler form than Theorem
3.1 as follows [32] (see also [2, 8]).
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Theorem 6.1. Let T be a ∗-subalgebra of Mn(C).
(A) There exist a unitary matrix Q̂ ∈ Mn(C) and simple ∗-subalgebras Tj of

Mn̂j (C) for some n̂j (j = 1, 2, . . . , `) such that

Q̂HT Q̂ = {diag(S1, S2, . . . , S`) : Sj ∈ Tj (j = 1, 2, . . . , `)}.

(B) If T is simple, there exist a unitary matrix P ∈ Mn(C) and an irreducible
∗-subalgebra T ′ of Mn̄(C) for some n̄ such that

PHT P = {diag(B,B, . . . , B) : B ∈ T ′}.

(C) If T is irreducible, then T = Mn(C).

The proposed algorithm can be adapted to the complex case to yield the decom-
position stated in this theorem. Note that the assumption like (3.4) is not needed in
the complex case because of the simpler statement in (C) above.

When given real symmetric matrices Ap (p = 1, . . . ,m), we could regard them as
Hermitian matrices and apply the decomposition over C. The resulting decomposition
is at least as fine as the one over R, since unitary transformations contain orthogonal
transformations as special cases. The diagonal blocks in the decomposition over C,
however, are complex matrices in general, and this can be a serious drawback in
some applications where real eigenvalues play critical roles. This is indeed the case
with structural analysis, as described in Section 5.2, of truss structures having cyclic
symmetry and also with bifurcation analysis [9] of symmetric systems.

As for SDPs, the formulation over C is a feasible alternative. When given an
SDP problem over R we could regard it as an SDP problem over C and apply the
decomposition over C. A dual pair of SDP problems over C can be defined by (2.1) and
(2.2) with Hermitian matrices Ap (p = 0, 1, . . . ,m) and a real vector b = (bp)m

p=1 ∈ Rm.
The decision variables X and Z are Hermitian matrices, and yp (p = 1, . . . ,m) are
real numbers. The interior-point method was extended to this case [24, 28]. Such
embedding into C, however, entails significant loss in computational efficiency.
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Appendix A. Proof of the structure theorem.
A proof of the structure theorem over R, Theorem 3.1, is outlined here. We follow

the terminology of Lam [19], and quote three fundamental theorems. For a division
ring D we denote by Mn(D) the set of n × n matrices with entries from D.

Theorem A.1 (Wedderburn–Artin [19, Theorem 3.5 & pp. 38–39]).
(1) Let R be any semisimple ring. Then

R ' Mn1(D1) × · · · ×Mnr (Dr) (A.1)

for suitable division rings D1, . . . , Dr and positive integers n1, . . . , nr. The number r
is uniquely determined, as are the pairs (D1, n1), . . . , (Dr, nr) (up to a permutation).

(2) If k is a field and R is a finite-dimensional semisimple k-algebra, each Di

above is a finite-dimensional k-division algebra.
Theorem A.2 (Frobenius [19, Theorem 13.12]). Let D be a division algebra over

R. Then, as an R-algebra, D is isomorphic to R, C, or H (division algebra of real
quaternions).

Theorem A.3 (Special case of [19, Theorem 3.3 (2)]). Let D be a division
algebra over R. Then, Mn(D) has a unique irreducible representation in Mkn(R) up
to equivalence, where k = 1, 2, 4 according to whether D is isomorphic to R, C, or H.

Theorem 3.3 (2) in [19] says in fact much more that any irreducible representation
of a matrix algebra over some division ring is equivalent to a left regular representation.
This general claim is used in [19] to prove the uniqueness of the decomposition in the
Wedderburn-Artin theorem. Thus logically speaking, the claim of Theorem A.3 could
be understood as a part of the statement of the Wedderburn-Artin theorem. However
this theorem is usually stated as a theorem for the intrinsic structure of the algebra R,
and the uniqueness of an irreducible representation of simple algebra is hidden behind.
Thus we have stated Theorem A.3 to make sure what we have known extrinsically for
the argument we present here.

Let T be a ∗-subalgebra of Mn over R. We prepare some lemmas.
Lemma A.4. If T is irreducible, then it is simple.
Proof. Let I be an ideal of T . Since W = span{Ax | A ∈ I, x ∈ Rn} is a

T -invariant subspace and T is irreducible, we have W = {0} or W = Rn. In the
former case we have I = {O}. In the latter case, for an orthonormal basis e1, . . . , en

there exist some Aij ∈ I and xij ∈ Rn such that ei =
∑

j Aijxij for i = 1, . . . , n.
Then In =

∑n
i=1 eie

T
i =

∑n
i=1

∑
j Aij(xije

T
i ) ∈ I. This shows I = T .

Lemma A.5. There exists an orthogonal matrix Q such that

QTAQ =
⊕̀
j=1

m̄j⊕
i=1

ρij(A), A ∈ T , (A.2)

for some ` and m̄1, . . . , m̄`, where each ρij is an irreducible representation of T , and
ρij and ρi′j′ are equivalent (as representations) if and only if j = j′.

Proof. Let W be a T -invariant subspace, and W⊥ be the orthogonal complement
of W . For any x ∈ W , y ∈ W⊥ and A ∈ T we have ATx ∈ W and hence xT(Ay) =
(ATx)Ty = 0, which shows Ay ∈ W⊥. Hence W⊥ is also a T -invariant subspace.
If W (or W⊥) is not irreducible, we can decompose W (or W⊥) into orthogonal
T -invariant subspaces. Repeating this we can arrive at a decomposition of Rn into
mutually orthogonal irreducible subspaces. An orthonormal basis compatible with
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this decomposition gives the desired matrix Q, and the diagonal blocks of the block-
diagonal matrix QTAQ give the irreducible representations ρij(A).

Equation (A.2) shows that, by partitioning the column set of Q appropriately as
Q = (Qij | i = 1, . . . , m̄j ; j = 1, . . . , `), we have

ρij(A) = QT
ijAQij , A ∈ T . (A.3)

Lemma A.6. T is a finite-dimensional semisimple R-algebra.
Proof. For each (i, j) in the decomposition (A.2) in Lemma A.5, {ρij(A) | A ∈ T }

is an irreducible ∗-algebra, which is simple by Lemma A.4. This means that T is
semisimple.

Lemma A.7. If two irreducible representations ρ and ρ̃ of T are equivalent, there
exists an orthogonal matrix S such that ρ(A) = STρ̃(A)S for all A ∈ T .

Proof. By the equivalence of ρ and ρ̃ there exists a nonsingular S such that
Sρ(A) = ρ̃(A)S for all A ∈ T . This means also that ρ(A)ST = STρ̃(A) for all A ∈ T
(Proof: Since T is a ∗-algebra, we may replace A with AT in the first equation to obtain
Sρ(AT) = ρ̃(AT)S, which is equivalent to Sρ(A)T = ρ̃(A)TS. The transposition of
this expression yields the desired equation). It then follows that

ρ̃(A)(SST) = (SST)ρ̃(A), A ∈ T .

Let α be an eigenvalue of SST, where α > 0 since SST is positive-definite. Then

ρ̃(A)(SST − αI) = (SST − αI)ρ̃(A), A ∈ T .

By Schur’s lemma (or directly, since the kernel of SST − αI is a nonzero subspace
and ρ̃ is irreducible), we must have SST − αI = O. This shows that S/

√
α serves as

the desired orthogonal matrix.

We now start the proof of Theorem 3.1. By Lemma A.6 we can apply the
Wedderburn–Artin theorem (Theorem A.1) to T to obtain an algebra-isomorphism

T ' Mn1(D1) × · · · ×Mn`
(D`). (A.4)

Note that the last statement in (1) of Theorem A.1 allows us to assume that r in
(A.1) for R = T is equal to ` in (A.2).

By Frobenius’ theorem (Theorem A.2) we have Dj = R, C, or H for each j =
1, . . . , `. Depending on the cases we define a representation ρ̃j of Mnj (Dj) over R as
follows. Recall notations C(v, w) and H(v, w, x, y) in Theorem 3.1.

(i) If Dj = R, then ρ̃j(A) = A ∈ Mnj (R).
(ii) If Dj = C and A = (apq) ∈ Mnj (C) with apq = vpq + iwpq ∈ C (p, q =

1, . . . , nj), then

ρ̃j(A) =

 C(v11, w11) · · · C(v1nj , w1nj )
...

. . .
...

C(vnj1wnj1) · · · C(vnjnj , wnjnj )

 ∈ M2nj (R).

(iii) If Dj = H and A = (apq) ∈ Mnj (H) with apq = vpq + iwpq + jxpq + kypq ∈ H
(p, q = 1, . . . , nj), then

ρ̃j(A) =

 H(v11, w11, x11, y11) · · · H(v1nj , w1nj , x1nj , y1nj )
...

. . .
...

H(vnj1, wnj1, xnj1, ynj1) · · · H(vnjnj , wnjnj , xnjnj , ynjnj )

 ∈ M4nj (R).
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We may assume, by Theorem A.3 and renumbering the indices, that ρij in (A.2)
is equivalent to ρ̃j for i = 1, . . . , m̄j and j = 1, . . . , `. Then for each (i, j) there exists
an orthogonal matrix Sij such that

ρij(A) = ST
ij ρ̃j(A)Sij , A ∈ T (A.5)

by Lemma A.7.
With Sij in (A.5) and Qij in (A.3) we put Pij = QijSij and define P = (Pij | i =

1, . . . , m̄j ; j = 1, . . . , `), which is an n×n orthogonal matrix. Then (A.2) is rewritten
as

PTAP =
⊕̀
j=1

m̄j⊕
i=1

ρ̃j(A) =
⊕̀
j=1

(Im̄j ⊗ ρ̃j(A)), A ∈ T . (A.6)

This is the formula (3.2) with Bj = ρ̃j(A). We have thus proven Theorem 3.1.
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