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Abstract. In this work, we consider a novel inverse problem in mean-field games (MFG).
We aim to recover the MFG model parameters that govern the underlying interactions
among the population based on a limited set of noisy partial observations of the popu-
lation dynamics under the limited aperture. Due to its severe ill-posedness, obtaining a
good quality reconstruction is very difficult. Nonetheless, it is vital to recover the model
parameters stably and efficiently in order to uncover the underlying causes for population
dynamics for practical needs.

Our work focuses on the simultaneous recovery of running cost and interaction energy in
the MFG equations from a finite number of boundary measurements of population profile
and boundary movement. To achieve this goal, we formalize the inverse problem as a con-
strained optimization problem of a least squares residual functional under suitable norms.
We then develop a fast and robust operator splitting algorithm to solve the optimiza-
tion using techniques including harmonic extensions, three-operator splitting scheme, and
primal-dual hybrid gradient method. Numerical experiments illustrate the effectiveness
and robustness of the algorithm.

1. Introduction

The basis for the MFG framework is the concept of Nash equilibrium, where agents cannot
unilaterally improve their objectives. Under suitable regularity assumptions, a common
MFG model reduces to the following system of partial differential equations (PDE):

−∂tφ(x, t)− ν∆φ(x, t) +H(x,∇xφ(x, t)) = F (x, ρ(·, t)), in Ω′ × (0, 1),

∂tρ(x, t)− ν∆ρ(x, t)−∇x · (ρ(x, t)∇pH(x,∇xφ(x, t))) = 0, in Ω′ × (0, 1),

ρ(x, 0) = ρ0(x), φ(x, 1) = g(x), in Ω′.

(1.1)

Here, ρ(·, t), t ∈ [0, 1] represents the population distribution over the state space Ω′ at
time t satisfying a Fokker-Planck equation, and φ(x, t) is the value function of each player
that satisfies a Hamilton-Jacobi equation and governs optimal actions of players. The
Hamiltonian, H, is the Legendre transform of the Lagrangian, L, representing the running
cost for each agent. Furthermore, F represents an interaction between the agents and the
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population. Typical choices for H,L, F in crowd motion applications are

H(x, p) =
1

2
κ(x)|p|2 , L(x, v) =

1

2κ(x)
|v|2 , F (x, ρ) =

∫
Ω′
K(x, y)ρ(y)dy .(1.2)

Introduced in [19, 17, 18] and [14, 13], MFG is an actively growing field significantly ad-
vancing the understanding of social cooperation and economics [1, 5, 10], biological systems
[30], election dynamics [31], population games [20], robotic control [25], machine learning
[28, 22], dynamics of multiple populations [7]. Recently, they are utilized to understand
pandemic modeling and control such as COVID-19 [21].

With the significant descriptive power of MFGs, it is vital to consider inverse problems
arising in MFGs. We aim to reconstruct MFG parameters for a class of nonlocal prob-
lems, including the geometry of the underlying space and the interactions between large
crowds, based on partial population observations. More specifically, we are interested in
the following problem.

Problem 1.1. Given a part of the solution to an MFG system (1.1), (1.2), for instance,(
ρ (x, s) ,−ρ (x, s)∇pH(x,∇xφ(x, t))

)
|∂Ω×(0,T ),

for finitely many examples of ρ0 and terminal cost g, can we numerically recover the speed
field κ(x) and the interaction kernel K(x, y) from observations?

Such a model-recovery algorithm can help understand the underlying population dynam-
ics in numerous problems, such as migration flow or contagious rate of COVID-19. We
further envision applications to include rescue and exploration team management, policy-
making, diplomacy, election modeling, catastrophe management, and evacuation planning.

Note that m(x, s) = −ρ (x, s)∇pH(x,∇xφ(x, s)) represents the flux of the agents through
the state x at time s as a result of optimal actions. The interpretation of the flux is straight-
forward for crowd-dynamics models and can be measured by counting people crossing check-
points or parts of the border. For such models, the value function φ(x, s) could represent
the travel cost for a traveller who is at location x at time s. Hence, one could also consider
an inverse problem where one observes the value function, instead of the flux, by looking at
travel companies’ expenses or consumer ticket prices (discounted for the companies’ profit
margins).

For economic and finance models [11, 1, 5] the state variables typically represent asset
(wealth, income, inventory) levels instead of a physical location. Hence, the value function
represents maximal utility for agents with a given asset level, and the flux represents the
total amount of transactions performed by them. Interestingly, in economic models one often
has implicit mean-field interactions reflected in market-clearing type conditions instead of
an explicit interaction functional F (x, ρ). Hence, a related inverse problem is to find an
appropriate market-clearing condition or tune its parameters for a given economy. This
manuscript addresses explicit models with flux data leaving the implicit ones with other
data types for future work.

1.1. Our contributions. We propose a new MFG inverse problem with non-invasive par-
tial boundary measurements. Based on insights from [26, 23, 24] we postulate a feature
expansion representation for the interaction kernel K and formulate the forward problem
(1.1) as a convex-concave saddle point problem. Furthermore, we design a three-operator
splitting scheme [8] for the resulting inverse problem with a saddle-point constraint. The
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algorithm reduces to a forward-backward splitting for the parameter updates, a primal-
dual hybrid gradient for the forward saddle point problem update, and a proximal-point
algorithm for the adjoint problem update. Intriguingly, our algorithm applies to inverse
problems whose forward problem has a saddle point structure beyond MFG.

1.2. Related work. Despite of the large body of work on theory, numerical methods, and
applications [2], inverse problems arisen from MFG is still quite an unexplored terrain. To
the best of our knowledge, only [9, 16, 4] study such problems. The work in [9] is the closest
to our objective but considers the case with a full space-time measurement of data in the
sampling domain. However, most inverse problems in practice only have partial boundary
measurements available, either obtained via non-invasive measurement methods or because
of the limited access to the sampling domain. Compared with the case with full space-time
measurement in the domain, inverse problems with only partial boundary measurements
are generally known to be more severely ill-posed. In this work, we focus on the recovery
problem with only boundary measurements coming from several measurement events.

The rest of the paper is organized as follows. In Section 2, we introduce an abstract
inverse problem with a saddle point constraint and a generic algorithm to solve it. In
Section 3, we present the inverse MFG formulation. Next, in Section 4 we discuss the
implementation of the algorithm in Section 2 for the inverse MFG in Section 3. Section 5
contains three numerical examples to demonstrate the robustness and effectiveness of our
algorithm. Finally, Section 6 contains a discussion and concluding remarks.

2. An inverse problem with a saddle point forward model

In this section, we formulate an abstract inverse problem with a saddle point forward
model. We discuss suitable Karush–Kuhn–Tucker (KKT) conditions and a generic algorithm
to solve such inverse problems.

2.1. A forward saddle point problem. Consider a saddle point problem

(2.1) min
x∈X

max
y∈Y

F (u, x, y, c),

where F : U ×X ×Y ×D → R
⋃
{±∞} a smooth functional such that (x, y) 7→ F (u, x, y, c)

is strongly convex-concave. Here, x is the primal variable, and y is the dual variable in the
forward problem. Commonly, y is either used to handle constraints in the forward problem
or linearize nonlinear components via some splitting scheme. The variable c represents
model parameters associated with the functional F , while u represents boundary and initial-
terminal conditions. Given model parameters c, we define a boundary measurement map
Λc as follows:

Λc : U → ΠBX ×ΠBY

u 7→ (ΠB,x (x) ,ΠB,y (y)) where (x, y) ∈ arg min
x

arg max
y

F (u, x, y, c),

where ΠB,x,ΠB,y denote a projection operator that represent the partial boundary mea-
surements of x, y available. We note that u corresponds to boundary conditions of the
forward problem, whereas B is the subset of the domain where the partial measurements
are collected.
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2.2. The inverse problem and a generic algorithm. Assume that

(r̃B,i, s̃B,i) ≈ Λc(ui) = ([ΠB,x (x)] (ui) , [ΠB,y (y)] (ui))

are noisy measurements for a given {ui}Ni=1 ∈ U . Our goal is to recover c ∈ D. We formulate
this problem as a constrained optimization problem

(2.2)

inf
{xi,yi}Ni=1,c

{ N∑
i=1

1

2
‖ΠB,x(xi)− r̃B,i‖2 +

N∑
i=1

1

2
‖ΠB,y(yi)− s̃B,i‖2 +R(c) :

(xi, yi) ∈ arg min
x

arg max
y

F (ui, x, y, c)

}
,

where R is a suitable regularizer and ‖ · ‖ are suitable choices of (semi)-norms. Introducing
Lagrange multipliers (dual variables) (λxi , λyi), (2.2) reduces to

(2.3)

inf
{xi,yi}Ni=1,c

sup
{λxi ,λyi}

N
i=1

{ N∑
i=1

1

2
‖ΠB,x(xi)− r̃B,i‖2 +

N∑
i=1

1

2
‖ΠB,y(yi)− s̃B,i‖2 +R(c)

+
N∑
i=1

〈∂xiF (ui, xi, yi, c), λxi〉 −
N∑
i=1

〈∂yiF (ui, xi, yi, c), λyi〉
}
.

Thus, the KKT condition for (2.2), (2.3) are as follows:

(2.4)



Π∗B,x[ΠB,x(xi)− r̃B,i] + ∂2
xi,xiF (ui, xi, yi, c)λxi = 0,

Π∗B,y[ΠB,x(yi)− s̃B,i]− ∂2
yi,yiF (ui, xi, yi, c)λyi = 0,

∂cR(c) +
N∑
i=1
〈∂c∂xiF (ui, xi, yi, c), λxi〉 −

N∑
i=1
〈∂c∂yiF (ui, xi, yi, c), λyi〉 = 0,

∂xiF (ui, xi, yi, c) = 0,

−∂yiF (ui, xi, yi, c) = 0,

for i = 1, . . . , N . Here, Π∗B,x,Π
∗
B,y are the adjoints of ΠB,x,ΠB,y, respectively.

Finally, we formulate these KKT conditions as an inclusion problem

0 ∈ A (c, (x, y), (λx, λy)) + C (c, (x, y), (λx, λy)) ,

where

A (c, (x, y), (λx, λy)) =

∂cR(c)
(0, 0)
(0, 0)

 ,

and

C (c, (x, y), (λx, λy))

=


∑N

i=1〈∂c∂xiF (ui, xi, yi, c), λxi〉 −
∑N

i=1〈∂c∂yiF (ui, xi, yi, c), λyi〉(
∂xiF (ui, xi, yi, c),−∂yiF (ui, xi, yi, c)

)(
∂2
xi,xiF (ui, xi, yi, c)λxi + Π∗B,x[ΠB,x(xi)− r̃B,i],

−∂2
yi,yiF (ui, xi, yi, c)λyi + Π∗B,y[ΠB,x(yi)− s̃B,i]

)
 .

Note that A is monotone but C is not known to be monotone in general.
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2.3. A generic algorithm. Here, we outline an iterative algorithm for solving (2.3). At
(n+1)-th iteration, we first update the adjoint variables {(λxi , λyi)}Ni=1 using the Chambolle-
Pock method [6]; then we update c for the inverse problem by taking a proximal gradi-
ent step; next we use the Chambolle-Pock method again to compute forward problems
{(xi, yi)}Ni=1. Summarizing, a high level description of the (n+ 1)-th iteration is as follows:


λn+1
yi = [1− αλyi∂

2
yi,yiF (ui, x

n
i , y

n
i , c

n)]−1
(
λnyi − αλyiΠ

∗
B,y[ΠB,y(y

n
i )− s̃B,i]

)
λn+1,temp
xi = [1 + αλxi∂

2
xi,xiF (ui, x

n
i , y

n
i , c

n)]−1
(
λnxi − αλxiΠ

∗
B,x[ΠB,x(xni )− r̃B,i]

)
λn+1
xi = 2λn+1,temp

xi − λn,temp
xic

n+1 = (I + αc∂cR)−1
[
cn − αc

∑N
i=1〈∂c∂xiF (ui, x

n
i , y

n
i , c

n), λn+1
xi 〉

+αc
∑N

i=1〈∂c∂yiF (ui, x
n
i , y

n
i , c

n), λn+1
yi 〉

]
xn+1
i = [1 + αxi∂xiF (ui, ·, yni , cn+1)]−1(xni )

yn+1,temp
i = [1− αyi∂yiF (ui, x

n+1
i , ·, cn+1)]−1(yni )

yn+1 = 2yn+1,temp
i − yn,temp

i ,

where (αλxi , αλyi , αc, αxi , αyi) are the corresponding time steps.

In what follows, we specify the MFG inverse problem and the implementation of the
algorithm above for it.

3. An inverse MFG problem

Here, we explain the saddle point problem formulation of nonlocal MFG [26, 23, 24] and
formulate the inverse MFG problem of our interest.

3.1. Saddle point formulation of MFG via feature-space expansions. Consider the
following MFG system with nonlocal couplings:

(3.1)


−φt(x, t)− ν∆φ(x, t) + κ(x)

2 ‖∇φ(x, t)‖2 =
∫

Ω′ K(x, y)ρ(y, t)dy in Ω′ × (0, 1),

ρt(x, t)− ν∆ρ(x, t)−∇ · (κ(x)ρ(x, t)∇φ(x, t)) = 0 in Ω′ × (0, 1),

(κ(x)ρ(x, t)∇φ(x, t)) · n = 0 on ∂Ω′ × (0, 1),

ρ(x, 0) = ρ0(x), φ(x, 1) = g(x) in Ω′.

We assume that K is positive definite and translation invariant, which yields that the
mean-field interaction satisfies the Lasry-Lions monotonicity condition [19] and agents are
crowd averse. Moreover, (3.1) admits a saddle point formulation

inf
φ

sup
ρ,m

{
−
∫

Ω′
φ(x, 0)ρ0(x)dx−

∫
Ω′

∫ 1

0
(ρφt + νρ∆φ+m · ∇φ) dtdx

−
∫

Ω′

∫ 1

0

1

2κ(x)

‖m‖2

2ρ
dtdx− 1

2

∫
Ω′×Ω′

K(x, y)ρ(x, t)ρ(y, t)dxdy − χρ≥0 + χφ(x,1)=g(x)

}
(3.2)

Here, χZ(z) is the indicator function over the set Z defined by

χZ(z) =

{
0, if z ∈ Z
∞, otherwise.



6 YAT TIN CHOW, SAMY WU FUNG, SITING LIU, LEVON NURBEKYAN, AND STANLEY OSHER

Modeling the interaction term

1

2

∫
Ω′×Ω′

K(x, y)ρ(x, t)ρ(y, t)dxdy

directly is costly for both forward model and the inverse problem. Moreover, based on
the works from [26, 23, 24, 3], we model and approximate this term using feature-space
expansions. More specifically, based on Bochner’s theorem [27], we postulate that

K(x, y) =
r∑

k=1

µ2
k cos(ωk · (x− y))

=
r∑

k=1

(
µ2
k cos(ωk · x) cos(ωk · y) + µ2

k sin(ωk · x) sin(ωk · y)
)

for some {ωk} ⊂ Rd, and {µ2
k} ⊂ R+. Denoting by

µ =
(
µ1,1, µ1,2, µ2,1, · · · , µr,1, µr,2

)
ω =

(
ω1,1, ω1,2, ω2,1, · · · , ωr,1, ωr,2

)
Codd=even =

{
(x1,1, x1,2, x2,1, · · · , xr,1, xr,2) : xi,1 = xi,2

}
ζ(x;µ, ω) =

(
µ1,1 cos(ω1,1 · x), µ1,2 sin(ω1,2 · x), · · · , µr,1 cos(ωr,1 · x), µr,2 sin(ωr,2 · x)

)
we obtain

K(x, y) = ζ(x;µ, ω) · ζ(y;µ, ω), µ, ω ∈ Codd=even.

Using this representation, we obtain

1

2

∫
Ω′×Ω′

K(x, y)ρ(x, t)ρ(y, t)dt =
1

2

∥∥∥∥∫
Ω′
ζ(x;µ, ω)ρ(x, t)dx

∥∥∥∥2

= sup
a

{
a(t) ·

∫
Ω′
ζ(x;µ, ω)ρ(x, t)dx− 1

2

∫ 1

0
‖a(t)‖2dt

}
,

where a(t) = (a1,1 (t) , a1,2 (t) , .., ar,1 (t) , ar,2 (t)) are auxiliary dual variables. The last equal-
ity is a result from [26]. Hence, (3.2) transforms to

inf
φ,a

sup
ρ,m

{
1

2

∫ 1

0
‖a(t)‖2dt−

∫
Ω′
φ(x, 0)ρ0(x)dx−

∫
Ω′

∫ 1

0
(ρφt + νρ∆φ+m · ∇φ) dtdx

−
∫

Ω′

∫ 1

0

(
1

2κ(x)

‖m‖2

2ρ
+ ρ a(t) · ζ(x;µ, ω)

)
dtdx− χρ≥0 + χφ(x,1)=g(x)

}

:= inf
φ,a

sup
ρ,m

{
− L

(
(ρ0, g), (ρ,m), (φ, a), (κ, µ)

)}
,

(3.3)

For more details on representation of nonlocal MFG interactions via a basis and computa-
tional methods, see [26, 24, 23, 3]. We also attach an example Algorithm 3 for calculating
the nonlocal mean-field game problem in the appendix.

3.2. An inverse mean-field game problem. Denoting by

u = (ρ0, g), x = (ρ,m), y = (φ, a), c = (κ, µ),

F
(
(ρ0, g), (ρ,m), (φ, a), (κ, µ)

)
= L

(
(ρ0, g), (ρ,m), (φ, a), (κ, µ)

)
,

we place the MFG forward model in the abstract framework (2.1). Next,we assume that
Ω ⊂ Ω′ and κ(x) is known in the domain Ω′\Ω. We refer to Ω and Ω′ as sampling and
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computational domains, respectively. An example is shown in Figure 1, where the Ω′ is the
large square domain, while Ω is the inner square with its boundary highlighted in red.

Figure 1. Denote ρ as the solution to the mean-field game system. From
left to right, the pictures display the density distribution ρ at time t =
0.1, 0.5, 0.9. The solid red line represents the boundary of domain Ω. In this
mean-filed game, the density travels from the right towards the left, crossing
the boundary ∂Ω twice.

Next, we take

ΠB,(ρ,m) (ρ,m) := (ρ,m · n) |[0,T ]×∂Ω+ , ΠB,(a,φ)(a, φ) := (0, 0) ,

for the partial boundary measurement along the boundary ∂Ω. Here, ∂Ω+ means that the
normal vector n is pointing outward. Measuring the density and flux through ∂Ω is reason-
able based on physical meaning of the variables. We cannot measure a directly because it
is a non-physical auxiliary variable introduced specifically for an efficient representation of
nonlocal interactions.

We assume that the ground truth parameters (κ, µ) represent a disturbance of background
parameters (κ0, µ0). Therefore, given an additional parameter ε ≥ 0, we would also like
to have a regularization term in the form of Rβ = χβ≥ε(β). We also write R(κ, µ) =
R1(κ, µ) +R2(κ, µ), where

R1(κ, µ) = R̃1(κ) + R̃2(µ) := γκ‖κ− κ0‖L1 + γµ‖µ− µ0‖L1 ,

R2(κ, µ) := χκ≥ε1(κ) + χµ2≤ε2(µ).

It is also possible to have other choices of regularization for (κ, µ), such as TV,H1,
Wavelet norms.

Now, we can formulate the inverse MFG as follows:

(3.4)

inf
{(ρi,mi),(φi,ai)}Ni=1,

κ,µ

{
N∑
i=1

1

2
‖ΠB(ρi,mi)− r̃B,i‖2 +R(κ, µ) :

(ρi,mi), (φi, ai) ∈ arg min
ρ,m

arg max
φ,a

F ((ρ0,i, gi), (ρ,m), (φ, a), (κ, µ))

}
.
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4. The algorithm

We propose an inverse algorithm adapted from the three-operator splitting method [8],
which has also been shown to predict Nash equilibria in traffic flows [12]. We also discuss
stabilizing techniques that are essential in practice.

4.1. The three-operator splitting scheme. Denoting by λ(ρ,m) := (λρ, λm) and λ(a,φ) :=
(λa, λφ) and applying the framework in Section 2 to (3.4) we obtain the following inclusion
formulation of the inverse MFG problem:

0 ∈ A (κ, µ) +B (κ, µ) + C
(
(κ, µ), ((ρ,m), (a, φ)), (λ(ρ,m), λ(a,φ))

)
,(4.1)

where

A (κ, µ) =

∂R1(κ, µ)
(0, 0)
(0, 0)

 , B (κ, µ) =

∂R2(κ, µ)
(0, 0)
(0, 0)

 ,

and

C
(
(κ, µ), ((ρ,m), (a, φ)), (λ(ρ,m), λ(a,φ))

)

=



∑N
i=1

〈
∂(κ,µ)∂(ρi,mi)L, λ(ρi,mi)

〉
−
∑N

i=1

〈
∂(κ,µ)∂(ai,φi)L, λ(ai,φi)

〉(
∂(ρi,mi)L,−∂(ai,φi)L

)(
∂2

(ρi,mi),(ρi,mi)
Lλ(ρi,mi) + Π∗B,(ρ,m)[ΠB,(ρ,m)(ρi,mi)− r̃B,i],

−∂2
(ai,φi),(ai,φi)

Lλ(ai,φi)

)


.

The three-operator splitting scheme in [8] applies to optimization problems of the form

find z ∈ H such that 0 ∈ Az +Bz + Cz,(4.2)

where A,B,C are maximal monotone operators defined on a Hilbert space H, and C is
cocoercive. Denote by IH the identity map in H, and JS := (I + S)−1 the resolvent of a
monotone operator S. The splitting scheme for solving (4.2) can be summarized as follows

(4.3)
zk+1 := (1− λk)zk + λkTz

k,

T := IH − JγB + JγA ◦ (2JγB − IH − γC ◦ JγB),

where γ is a scalar. If an operator S is of the sub-differential forms; that is, S = ∂fS for some
functional fS , the resolvent JS reduces to the proximal map x 7→ arg min

y
fS(y)+ 1

2‖x−y‖
2.

Overall, the algorithm for (4.1) follows three components of the generic framework in
Section 2.3, upon some modification. In what follows, we discuss each component separately.

4.1.1. Update of the adjoint problem. Firstly, we choose ‖·‖(ρ,m) and ‖·‖(a,φ) with L2([0, T ], H−1/2(∂Ω))×
L2([0, T ], H1/2(∂Ω)) semi-norm, and L2

t × L2
x,t norms, respectively. Here the H

1
2 (∂Ω) and
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H−
1
2 (∂Ω) semi-norm are taken as follows:

|v|2
H

1
2 (∂Ω)

:= min
v0∈H1(Ω) , v0=v on ∂Ω

|v0|2H1(Ω) ,

|v|2
H−

1
2 (∂Ω)

:= min
v0∈H1

0 (Ω) , ∂nv0=∂nv on ∂Ω
|v0|2H1(Ω) ,

where the right hand side denotes the standard H1(Ω) semi-norm.

Assuming appropriate regularity of (ρ,m), we recall that the operator ΠB,(ρ,m) is the

restriction/trace operator onto the appropriate Sobolev space on the boundary L2
(
[0, T ],

H−1/2(∂Ω)
)
× L2

(
[0, T ], H1/2(∂Ω)

)
ΠB,(ρ,m) (ρ,m) := (ρ,m · n) |[0,T ]×∂Ω+ .

With the aforementioned choice of the semi-norms, we naturally have the (formal) adjoint
of ΠB,(ρ,m), Π∗B,(ρ,m), as the Dirichlet and Neumann harmonic extension operators by defi-

nition; that is,

(ηi,∇ξi) := Π∗B,(ρ,m)[ΠB,(ρ,m)(ρ
n
i ,m

n
i )− r̃B,i],

where (ηi, ξi) satisfy

(4.4)



{
∆ηn+1

i = 0 in Ω

ηn+1
i = ρni − pr1r̃B,i on ∂Ω+

∆ηn+1
i = 0 in Ω′\Ω

ηn+1
i = ρni − pr1r̃B,i on ∂Ω−

ηn+1
i = 0 on ∂Ω′



{
∆ξn+1

i = 0 in Ω

∂nξ
n+1
i = mn

i · n− pr2r̃B,i on ∂Ω+
∆ξn+1

i = 0 in Ω′\Ω
∂nξ

n+1
i = mn

i · n+ pr2r̃B,i on ∂Ω−

∂nξ
n+1
i = 0 on ∂Ω′

Here we use pr1, pr2 to denote the projection from the noisy data. The harmonic extension is
taken at each time t ∈ [0, 1] independently. In the implementation, we use a standard finite
difference scheme to compute the harmonic extension on spatial grids for each time grid
point. Note that if we assume κ = κ0 to be known outside of domain Ω, the measurements
of m and ∇φ are equivalent, as −κ0(x)ρ(x)∂nφ(x) = m(x) · n on ∂Ω+.

We remark that the techniques of harmonic extension have been applied to various other
problems, e.g. over point clouds and in machine learning [29].

It is clear to see that λφ is redundant and λa = 0 whenever 0 ∈ A + B + C. Hence,
we can consider only C

(
(κ, µ), ((ρ,m), (a, φ)), (λ(ρ,m), (0, 0))

)
. In this case, we preform a

primal-dual hybrid gradient method for updating λ(ρ,m):

(4.5)



(
λn+1,temp
ρi

λn+1,temp
mi

)
=I + αnλ(ρi,mi)
ρni

 1
κn
|mni |2
(ρni )3

− 1
κn

mni
(ρni )2

− 1
κn

mni
(ρni )2

1
κnρni

I

−1((
λnρi
λmni

)
− αnλ(ρi,mi)ρ

n
i

(
ηn+1
i

∇ξn+1
i

))
(
λn+1
ρi

λn+1
mi

)
= 2

(
λn+1,temp
ρi

λn+1,temp
mi

)
−

(
λn,temp
ρi

λn,temp
mi

)



10 YAT TIN CHOW, SAMY WU FUNG, SITING LIU, LEVON NURBEKYAN, AND STANLEY OSHER

4.1.2. Update of the inverse problem. In this part, we focus on the update for the inverse
problem variables (κ, µ).
(4.6)


κn+1,temp = Sαnκγ

(
2κn − κ̃n − αnκ

∑N
i=1 Λκ(κn,mn

i , ρ
n
i , λ

n+1
ρi , λn+1

mi )− κ0

)
+ κ0

κ̃n+1 = κ̃n + κn+1,temp − κn

κn+1 = max
{
ε1, κ̃

n+1
}

µn+1,temp = Sαnµγ

(
2Π∗µ(µn)− µ̃n − αnµ

∑N
i=1 Λµ(λn+1

ρi , ani )−Π∗µ(µ0)

)
+ Π∗µ(µ0)

µ̃n+1 = µ̃n + µn+1,temp − µn

µn+1 = Πµ

(
min

{
ε2, µ̃

n+1
})

where Sα(r) is the shrinkage operator given as Sα(r) = sign(r) max{|r| − α, 0}, and

Λκ(κ,m, ρ, λρ, λm) =

∫ T

0

1

2(κ)2

‖m(·, s)‖2

(ρ(·, s))2
λρ(·, s)−

1

(κ)2

m(·, s)
ρ(·, s)

λm(·, s)ds,

Λµ(λρ, a) =

∫ T

0

∫
Ω′

Λ1(ω, y)λρ(y, s)a(s)dyds,

Λ1(ω, x) =



(
cos(ω1 · x) 0

0 sin(ω1 · x)

)
. . . 0

...
. . . 0

0 . . .

(
cos(ωr · x) 0

0 sin(ωr · x)

)
 .

Since we have the µ, ω ∈ Codd=even := {(x1,1, x1,2, x2,1, x2,2, ..., xr,1, xr,2) : xi,1 = xi,2∀i =
1, ..., r}, we write the projector ∂χCodd=even

(where we identify Codd=even with Rr) as

Πµ : R2r → Codd=even
∼= Rr

(x1,1, x1,2, x2,1, x2,2, ..., xr,1, xr,2) 7→ (
x1,1 + x1,2

2
,
x2,1 + x2,2

2
, ...,

xr,1 + xr,2
2

)

and its adjoint as

Π∗µ : Rr → R2r

(x1, x2, ..., xr) 7→ (x1, x1, x2, x2, ..., xr, xr).

4.1.3. Update of the forward problem. As for the forward problem, we use primal–dual
hybrid gradient method (PDHG) [6] to update ((ρi,mi) , (φi, ai)) for each event i, for 1 ≤ i ≤
N . The iterative updates contains three parts: firstly a proximal gradient descent step for
(ρi,mi) with stepsizes (αnρi , α

n
mi); then a proximal gradient ascent step for (φi, ai) of stepsizes

(αnφi , α
n
ai); lastly an extrapolating step for (φi, ai). Note that we make the choice of norm

‖φ‖2
H1
x,t

= ‖φt‖2L2
x,t

+ ‖∇xφ‖2L2
x,t

for φ, based on the General-proximal Primal-Dual Hybrid

Gradient (G-prox PDHG) method [15] that can be interpreted as a preconditioning step for
obtaining a mesh-size-free convergence rate for the algorithm. Overall, the computation for
the forward model follows the computational method proposed in [23, 24].
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(4.7)

(ρn+1
i ,mn+1

i ) = argmin(ρ,m)

{
L
(

(ρ0,i, gi), (ρ,m), (ani , φ
n
i ), (κn+1, µn+1)

)
+ 1

2αnρi
‖ρni − ρ‖2L2

x,t
+ 1

2αnmi
‖mn

i −m‖2L2
x,t

}
(φn+1,temp
i , an+1,temp

i ) = argmin(a,φ)

{
− L

(
(ρ0,i, gi), (ρ

n+1,mn+1), (a, φ), (κn+1, µn+1)

)
+ 1

2αnφi
‖φni − φ‖2H1

x,t
+ 1

2αnai
‖ani − a‖2L2

t

}
(φn+1
i , an+1

i ) = 2(φn+1,temp
i , an+1,temp

i )− (φni , a
n
i )

Assembling all three components described above, we arrive at the following algorithm
for solving (4.1).

Algorithm 1 Inverse method for the nonlocal mean-field game system

Input: (ρ0,i, gi, r̃B,i) for i = 1, ..., N , (κ0, µ0)
Output: (κn, µn) for n = 1, ...,Nmax

while iteration n < Nmaximal do
1.Update for the adjoint problem:

compute (λn+1
ρi , λn+1,

mi ) use (4.4)(4.5) for i = 1, ..., N .
2. Update for the inverse problem:

compute (κn+1, µn+1) use (4.6)
3. Update forward problem:

compute (ρn+1
i ,mn+1

i , φn+1
i , an+1

i ) use (4.7) for i = 1, ..., N .
n← n+ 1

end while

4.2. Stabilizing techniques. Here, we discuss key numerical strategies for stabilizing Al-
gorithm 1. We refer to Appendix 2 (in particular, Algorithm 2) for more implementation
details.

While the change of κn+1 is made from the accumulation of all measurement events
(through (λn+1

ρi , λn+1
mi )), there is sometimes unexpected change of κn+1(x) that makes the

algorithm highly unstable. For instance, there may be a large κn+1(x) at a single grid
point. Moreover, we are using harmonic expansion method to update (λn+1

ρi , λn+1
mi ), which

causes large variances of κ(x) along the boundary ∂Ω. Therefore, we add a cut-off function
and a convolution kernel to the step (4.6) to have a smoother change in κn+1(x) in space.
Specifically, we have {

κ̃n+1 = κ̃n + Tmask(κn+1,temp, κ0)− κn

κn+1 = max
{
ε1, κ̃

n+1 ∗ ψ
} ,

where Tmask is a cut–off function that truncates the change of κ near ∂Ω given by

Tmask(κ, κ0)(x) = ξ(x)(κ− κ0)(x) + κ0(x),

for a function ξ(x) vanishing near ∂Ω. As for the convolution

κn+1(x) = max

{
ε1,

∫
Ω′
κ̃n+1(y)ψ(x− y)dy

}
,
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where the convolution kernel ψ(x) satisfies
∫

Ω ψ(x)dx = 1.

On the other hand, after the inverse problem parameters (κn+1, µn+1) are updated, we get
a new pair of parameters for a set of mean-field game problems. It is unclear whether starting
from (ρni ,m

n
i , φ

n
i , a

n
i ) and taking the update rule (4.7) once produces physical solutions for

the new mean-field game system due to highly nonlinear dependence of the solution on
the system parameters. Therefore, instead of preforming one iteration for the forward
problem, we apply the PDHG algorithm for the forward problem until its error reaches
a preset tolerance. More specifically, at every iteration n, with new system parameters
(κn+1, µn+1), we use (ρni ,m

n
i , φ

n
i , a

n
i ) as an initial guess and calculate the mean-field game

solution accurately so that the primal–dual gap is smaller than residual the preset tolerance.

5. Numerical examples

This section demonstrates the efficiency and robustness of the inverse mean-field game
algorithm with three examples. We also discuss details on the rule we used to choose the
best reconstruction parameters.

5.1. Numerical implementation details. In this section, we present several numerical
examples to illustrate the effectiveness of the new algorithm for the reconstruction of pa-
rameters in the mean-field game problem.

We consider the spatial-time domain Ω′ × [0, T ] = [−1, 1]2 × [0, 1]. In the following
examples, the partial boundary measurements are taken along the domain Ω = [−0.5, 0.5]2,
we refer as ∂Ω. The Figure 1 gives an example of the forward measurement event.

In order to collect our observed data of the forward problem, we solve a set of mean-
field game problem (3.3) with given (ρ0,i, gi) and (κ, µ) by finite difference method with a
mesh of size (0.05, 0.04) in space-time. Each problem is solved via primal-dual optimization
approach with primal-dual gap etol < 2e− 3. The initial density function ρ0,i is the average
of two Gaussian functions with centers xG ∈ Ω′\Ω. The final cost function g(x) is smooth
and has a smaller value around a single point xg ∈ Ω′\Ω such that densities are concentrated
in the neighborhood of xg at the final time. We want to point out that there is room to
improve the initial density function and final cost function choices. We choose this set
of (ρ0,i, gi) to ensure that the density’s movement covers the domain Ω as completely as
possible. We also expect the nonlocal interaction among agents to be better reflected at the
partial boundary measurements by setting the initial density as two Gaussians rather than
one.

We only take 16 forward measurement events for each of the following numerical examples.
The partial boundary measurement means that we only collect the ρ,m along the boundary
∂Ω in each event. Therefore, the resulting inverse problem is severely ill-posed.

To test the robustness of our reconstruction algorithm, we add some random noise to the
measurements as follows:

(5.1) (ρ,m · n)δ (ti, xj) = ((1 + εnδij,1)ρ, (1 + εnδij,2)m · n) (ti, xj) ,

where {(ti, xj)}i=1,..,I,j=1,...,J ∈ [0, T ]×∂Ω+ represents sampling points on the measurement
boundary [0, T ] × ∂Ω+, {δij,1, δij,2}i=1,..,I,j=1,...,J are i.i.d. random variables uniformly dis-
tributed on the interval [−0.5, 0.5] and εn corresponds to the noise level in the data, which
is always set to be εn = 10% in all our examples.
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From the noisy observed data {(ρ,m · n)δ (ti, xj)}i=1,..,I,j=1,...,J on the sampling points
of the measurement surface, we then use the algorithm to reconstruct the forward problem
parameters (κ, µ). Recall that we paramatrized the running cost L(x, v) := 1

2κ(x) |v|
2 by κ

and nonlocal kernel K(x, y) := ζ(x;µ, ω) · ζ(y;µ, ω) by µ. Since we aim at recovering the
model on a given domain with fixed grid points, we fix the choice of ω, and only seek sparse
recovery of µ.

In the following examples, we use a set of parameters uniformly, without tuning. γc =
0.2, γµ = 0.1, αc = 0.1, αµ = 0.1, αλ = 10. We set the lower-bound projection parameter
ε1 = κc, this is based on the additional assumption of the model parameters that κ(x) ≥
κc for x ∈ Ω′. The projection parameter for kernel coefficient is ε2 = 1.

To account for unknown ground truth of the model parameters, we introduce Res to
quantify the quality of the reconstructed parameters.

Resn =
∑
i

∫
∂Ω+

(
‖ρni − pr1r̃B,i‖2 + ‖mn

i · n− pr2r̃B,i‖2
)
,

where ρni ,m
n
i are the solution of the forward mean-field game problem with i-th choice of

initial density and final cost function with the reconstructed parameter (κn, µn) at the n-th
iteration of the algorithm. The boundary residual Res measures how much the new bound-
ary measurements of the mean-field game model with the recovered parameters deviate
from the given partial measurements. If (κ, µ) = (κtrue, µtrue), we would expect that Res is
close to 0. Therefore, we pick the reconstructed parameters at nopt-th iteration by taking

nopt = arg min
n

Resn,

(κopt, µopt) = (κnopt , µnopt).

When we implemented the algorithm, we observed that the quantity Resn first decreased
then increased with respect to the iteration. We also observed that with large enough
number of iterations, (for example, 1500), the inverse problem is contaminated and the re-
construction of mean-field game coefficients are very bad. In the following examples, we take
fixed number of iterations N = 1500 for the inverse algorithm, and pick the reconstructed
model parameters accordingly.

5.2. Example 1. This example tests a running cost κ(x) with a bump at point (0.25, 0.25),
which means the density that travel crossing near this point has a lower cost than other
routes. The density are also expected to accelerate when they travel across this point. The
nonlocal kernel K(x, y) is constructed via a Gaussian function plus some sparse terms in
forms of µ2

k cos(ωk · x). The nonlocal kernel, in general, penalizes being too concentrated.
The amplify of certain Fourier frequencies determines the agents’ particular interaction
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preferences. Specifically, we have the following:

κ(x) = 2 + 4 exp

(
−(x1 − 0.25)2 + (x2 − 0.25)2

0.12

)
,

κ0(x) = 2,

K(x, y) = K0(x, y) +Ks(x, y) + k0,

K0(x, y) =
1

5
exp

(
−1

2

x2 + y2

0.42

)
,

Ks(x, y) = 0.20942 (cos (π(x1 − y1)) + cos (π(x2 − y2)))

+ 0.26132 (cos (π(x1 − y1) + π(x2 − y2)) + cos (−π(x1 − y1) + π(x2 − y2))) ,

where x = [x1, x2], y = [y1, y2]. We have µ0, which represents K0(x, y) via the expansions
form µ2

k cos(ωk · x), known. The variable k0 is a given constant value that makes the kernel
integration

∫ ∫
K(x, y)dxdy = 1. Varying this constant corresponding to changing the

coefficient of the zero Fourier mode (0, 0). This constant k0 does not change the intensity
of repulsion effect among the agents, since

∫
k0ρ(y)dy = k0

∫
ρ0(y)dy is uniform over the

domain Ω′. With K(x, y) = ζ(x;µ, ω) · ζ(y;µ, ω) for µ, ω ∈ Codd=even, we omit the even
entries (eg. µk,2, ωk,2) and express the kernel Ks as follows:

µs = (0.2094, 0.2094, 0.2613, 0.2613),

ωs = ((π, 0), (0, π), (π, π), (−π, π)).

Here, we also assume that κc = 2 and κ(x) = 2 for x ∈ Ω′\Ω is known.

10
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Figure 2. The residual Resn and the maxx κ
n(x) at n-th iteration.

Given (κ0, µ0) and the noisy partial boundary measurements with corresponding event
parameters (ρ0,i, gi, r̃B,i), we apply our inverse algorithm.The results are shown in Figure 2,3.
In Figure 2, we plot the residual Resn and the maxx κ

n(x) along the iteration. We see that
the residual oscillates and decreases first, then bounces back and increases. In Figure 3, we
show the reconstruction of model parameters by taking nopt = arg minn Resn, (κopt, µopt) =
(κnopt , µnopt). We see that the reconstructed κopt(x) has a single bump sits near (0.25, 0.25).
The shape of the bump is not as sharp as the ground truth κ. The maximal value of running
cost maxx κtrue(x) = 6; while maxx κopt(x) = 4. As for the non-local kernel, we have µopt
nicely reconstructed, where µtrue = µ0 + µs ≈ µopt. This example shows that our inverse
algorithm is robust to noise and can recover the model parameters (κ, µ) simultaneously.
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Figure 3. From left to right: the true running cost κ(x); the reconstructed
running cost κopt(x) at iteration nopt; the coefficient representation of non-
local kernel K(x, y) in vector form, where x-axis represents different Fourier
mode ω and the y-axis corresponds to the coefficients µ.

5.3. Example 2. In this example, we make the κ(x) more complicated by having two
bumps sitting diagonally. We except that if the density travels across these two bumps, it
will accelerate twice. The model set-up is as follows:

κ(x) = 2 + 4 exp

(
−(x1 + 0.25)2 + (x2 − 0.25)2

0.12

)
+ 4 exp

(
−(x1 − 0.25)2 + (x2 + 0.25)2

0.12

)
,

κ0(x) = 2, κc = 2,

K(x, y) = K0(x, y) +Ks(x, y) + k0,

K0(x, y) =
1

5
exp

(
−1

2

x2 + y2

0.42

)
,

µs = (0.3374, 0.3374, 0.2942, 0.2942),

ωs = ((π, 0), (0, π), (2π, 0), (0, 2π)).
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Figure 4. From left to right: the true running cost κ(x); the reconstructed
running cost κopt(x) at iteration nopt; the coefficient representation of non-
local kernel K(x, y) in vector form.

We can see from the Figure 4 that recovered bumps are well separated, and their lo-
cations are accurately captured. Reconstructed bumps are more spread compared to the
ground truth, and there is some noise on upper left and bottom right corners of the domain
Ω′. The nonlocal kernel is reconstructed nicely as shown in Figure 4(right). A precise
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sparse representation of Ks(x, y) is recovered. Considering the severe ill-posedness of the
inverse problem with 10% multiplicative noise added to the boundary measurements, the
reconstruction quality is quite satisfactory.

5.4. Example 3. In this example, we modify the κ(x) by having two bumps sitting in
parallel. Similar to the Example 2, the density would prefer to move crossing these bumps.
We set the nonlocal kernel with Ks containing Fourier modes with higher frequency.

κ(x) = 2 + 4 exp

(
−(x1 − 0.25)2 + (x2 − 0.25)2

0.12

)
+ 4 exp

(
−(x1 − 0.25)2 + (x2 + 0.25)2

0.12

)
.

κ0(x) = 2, κc = 2,

K(x, y) = K0(x, y) +Ks(x, y) + k0,

K0(x, y) =
1

5
exp

(
−1

2

x2 + y2

0.42

)
,

µs = (0.2973, 0.2973, 0.2973, 0.2973),

ωs = ((2π,−π), (2π, π), (π, 2π), (π,−2π)).
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Figure 5. From left to right: the ground true running cost κ(x); the recon-
structed running cost κopt(x) at iteration nopt; the coefficient representation
of nonlocal kernel K(x, y) in vector form.

We have the reconstruction result shown in Figure 5. The two parallel sitting bumps are
well separated and located with reasonable accuracy. Again, the bumps are diffused with
some noise near the upper boundary of Ω. The nonlocal kernel is recovered very nicely.

6. Conclusion

In this paper, we formulate a new class of inverse mean-field game problems given only
partial boundary measurements. A novel model recovery algorithm is proposed based on
the saddle point formulation of MFGs. We demonstrate the robustness and effectiveness of
the numerical inverse algorithm with several examples, where the MFG model parameters
are reconstructed accurately. Our algorithm can be further generalized to other inverse
problems with saddle point structure in the forward problem.
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Appendix Appendix A The KKT conditions of the inverse mean-field game
problem

We denote by

L(·) := L
(

(ρ0,i, gi), (ρi,mi), (ai, φi), (κ, µ)

)
,

the function L defined in Equation 3.3 for simplicity. The KKT conditions for the inverse
mean-field game problem are then

Π∗B,(ρ,m)[ΠB,(ρ,m)(ρi,mi)− r̃B,i] + ∂2
(ρi,mi),(ρi,mi)

L(·)λ(ρi,mi) = 0, i = 1, ..., N,

Π∗B,(a,φ)[ΠB,(a,φ)(ai, φi)− s̃B,i]− ∂2
(ai,φi),(ai,φi)

L(·)λ(ai,φi) = 0, i = 1, ..., N,

∂(κ,µ)R1(κ, µ) + ∂(κ,µ)R2(κ, µ) +
∑N

i=1

〈
∂(κ,µ)∂(ρi,mi)L(·), λ(ρi,mi)

〉
,

−
∑N

i=1

〈
∂(κ,µ)∂(ai,φi)L(·), λ(ai,φi)

〉
= 0,

∂(ρi,mi)L(·) = 0, i = 1, ..., N,

−∂(ai,φi)L(·) = 0, i = 1, ..., N.

Furthermore, the derivatives of L are given by

∂(ρi,mi)L =

(
∂tφ+ ν∆φ− 1

2κ

|m|2

ρ2
+ a · ζ(·;µ, ω),∇φ+

1

κ

m

ρ

)
∂(ai,φi)L =

(
−a+

∫
Ω′
ρ(y) ζ(y;µ, ω)dx,−∂tρ+ ν∆ρ−∇ ·m

)
∂2

(ρi,mi),(ρi,mi)
L =

(
1
κ
|m|2
ρ3

− 1
κ
m
ρ2

− 1
κ
m
ρ2

1
κρI

)

∂2
(ai,φi),(ai,φi)

L =

(
I 0
0 0

)
∂(κ,µ)∂(ρi,mi)L =

(
1

2κ2(x)
|m|2
ρ2

− 1
κ2(x)

m
ρ

Λ1(ω, ·) a 0

)

∂(κ,µ)∂(ai,φi)L =

(
0 0∫

Ω′ ρ(y) Λ1(ω, y)dy 0

)
where the variable Λ1(ω, x) is defined in Section 4.1.2.
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Appendix Appendix B The inverse algorithm

Algorithm 2 A detailed inversion algorithm for the nonlocal mean-field game system

Input: (ρ0,i, gi, r̃B,i) for i = 1, ..., N , (κ0, µ0)
Output: (κn, µn) for n = 1, ...,Nmax

while iteration n < Nmaximal do
1.Update for the adjoint problem by computing (λn+1

ρi , λn+1,
mi )

{
∆ηn+1

i = 0 in Ω

ηn+1
i = ρni − pr1r̃B,i on ∂Ω+

∆ηn+1
i = 0 in Ω′\Ω

ηn+1
i = ρni − pr1r̃B,i on ∂Ω−

ηn+1
i = 0 on ∂Ω′{

∆ξn+1
i = 0 in Ω

∂nξ
n+1
i = mn

i · n− pr2r̃B,i on ∂Ω+
∆ξn+1

i = 0 in Ω′\Ω
∂nξ

n+1
i = mn

i · n+ pr2r̃B,i on ∂Ω−

∂nξ
n+1
i = 0 on ∂Ω′

(
λn+1,temp
ρi

λn+1,temp
mi

)
=I + αnλ(ρi,mi)
ρni

 1
κn
|mni |2
(ρni )3

− 1
κn

mni
(ρni )2

− 1
κn

mni
(ρni )2

1
κnρni

I

−1((
λnρi
λmni

)
− αnλ(ρi,mi)ρ

n
i

(
ηn+1
i

∇ξn+1
i

))
(
λn+1
ρi

λn+1
mi

)
= 2

(
λn+1,temp
ρi

λn+1,temp
mi

)
−

(
λn,temp
ρi

λn,temp
mi

)
2. Update for the inverse problem by computing (κn+1, µn+1)


κn+1,temp = Sαnκγ

(
2κn − κ̃n − αnκ

∑N
i=1 Λκ(κn,mn

i , ρ
n
i , λ

n+1
ρi , λn+1

mi )− κ0

)
+ κ0

κ̃n+1 = κ̃n + Tmask(κn+1,temp, κ0)− κn

κn+1 = max
{
ε1, κ̃

n+1 ∗ ψ
}

µn+1,temp = Sαnµγ

(
2Π∗µ(µn)− µ̃n − αnµ

∑N
i=1 Λµ(λn+1

ρi , ani )−Π∗µ(µ0)

)
+ Π∗µ(µ0)

µ̃n+1 = µ̃n + µn+1,temp − µn

µn+1 = Πµ(min{ε2, µ̃
n+1})

3. Update forward problem by computing (ρn+1
i ,mn+1

i , φn+1
i , an+1

i ) with the forward
mean-field game algorithm for i = 1, ..., N .

Apply the iterative Algorithm 3 given input (ρ0,i, gi), (κn+1, µn+1), etol with initial
guess (ρni ,m

n
i , φ

n
i , a

n
i ), and assign

(ρn+1
i ,mn+1

i , φn+1
i , an+1

i ) := (ρ∗i ,m
∗
i , φ
∗
i , a
∗
i )

n← n+ 1
end while



20 YAT TIN CHOW, SAMY WU FUNG, SITING LIU, LEVON NURBEKYAN, AND STANLEY OSHER

Appendix Appendix C The forward algorithm for nonlocal mean-field
games

Algorithm 3 Iterative algorithm for the nonlocal mean-field game system

Input: (ρ0, g), (κ, µ), a set of initial guess (ρ0,m0, φ0, a0), etol, a set of stepsizes

(αjρ, α
j
m, α

j
φ, α

j
a)

Output: (ρ∗,m∗, φ∗, a∗)

while iteration j < Jmax and primal-dual gap PD(ρj ,mj , φj , aj) ≥ etol do

(ρj+1,mj+1) = argmin(ρ,m)

{
L
(

(ρ0, g), (ρ,m), (aj , φj), (κ, µ)

)
+ 1

2αjρ
‖ρj − ρ‖2L2

x,t
+ 1

2αjm
‖mj −m‖2

L2
x,t

}
(φj+1,temp, aj+1,temp) = argmin(a,φ)

{
− L

(
(ρ0, g), (ρn+1,mn+1), (a, φ), (κ, µ)

)
+ 1

2αjφ
‖φj − φ‖2

H1
x,t

+ 1

2αja
‖aj − a‖2

L2
t

}
(φj+1, aj+1) = 2(φj+1,temp, aj+1,temp)− (φj , aj)

j ← j + 1
end while
return (ρj ,mj , φj , aj)
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