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Abstract: A numerical technique was developed for solving nonlocal nonlinear stochastic delayed
differential equations driven by fractional variable-order Brownian noise. Error analysis of the pro-
posed technique was performed and discussed. The method was applied to the nonlocal stochastic
fluctuations of the human body and the Nicholson’s blowfly models, and its accuracy and computa-
tional time were assessed for different values of the nonlocal order parameters. A comparison with
other techniques available in the literature revealed the effectiveness of the proposed scheme.
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1. Introduction

Fractional calculus (FC) deals with the differentiation and integration operators of
arbitrary orders [1–3]. Over the last decades, FC has become globally recognized in nearly
all fields due to its widespread usage, such as in mathematics [4–7], mechanics [8–10],
physics [11,12], biology [13,14], and economics [15,16]. Fractional differential equations
(FDEs) with and without noise are powerful mathematical tools for investigating phe-
nomena in many applied sciences. The FDEs are studied in various branches of science,
including chaotic oscillations [17,18], engineering [19,20], image processing [21,22], and
epidemic models [23–25]. The existence and uniqueness studies involving FDEs were
reviewed in [26,27]. In addition, many papers present distinct numerical techniques for var-
ious classes of FDEs, those including Chebyshev polynomials [28–30], finite difference [31],
Hermite wavelet [32], Jacobi collocation [33], Legendre collocation [34], and others [35–37].
Recently, a novel exponential time differencing (ETD-RDP) method was developed by Iyiola
et al. [38] to handle space-fractional reaction–diffusion systems with mixed and mismatched
initial and boundary conditions for which regular numerical methods are unsuitable.

Variable-order fractional operators preserve memory and the hereditary properties of
dynamical systems, while the constant-order fractional operators characterize memory with
a uniform pattern [39,40]. Fractional differential equations of variable-order include those
with classical operators, as well as others with short memory operators, which constitute a
new kind of variable-order method [41–43]. Moreover, constant-order fractional operators
are a special case (and probably the simplest one) of variable-order fractional ones.

The variable-order fractional Brownian motion (VOFBM) is expressed as a Gaussian
process via the variable-order Hurst index [44]. The FDEs driven by VOFBM noise have
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several usages, such as in physics [45], finance [46], and signal processing [47]. The VOFBM
is defined as [44]:

vH(t)(t) =
1

Γ(H(t) + 1
2 )

∫ t

0
(t− τ)H(t)− 1

2 v(τ)dτ,
1
2
< H(t) < 1, t ≥ 0. (1)

In the follow-up, we assume that (Ψ,F , P) denotes a fixed probability space with
normal filtration (Ft)t≥0.

There are distinct kinds of fractional uncertain differential equations [48]. In this
paper, we studied the fractional stochastic delay differential equation driven by VOFBM
(FSDDE-VOFBM), given by: CD

γ
0,tu(t) = G(t, u(t), u(t− λ) + M(t, u(t))

dvH(t)(t)
dt

, t ∈ (0, T]

u(t) = Θ(t), t ∈ [−λ, 0],
(2)

where γ ∈ ( 1
2 , 1) and CD

γ
0,tu(t) denote the Caputo fractional derivative [49]:

CD
γ
0,tu(t) =

1
Γ(b− γ)

∫ t

0

u(b)(φ)

(t− φ)γ+1−b dφ, 0 ≤ b− 1 < γ ≤ b ∈ N, (3)

where γ ∈ R+ is the order and u(b)(t) represents a smooth and continuously differentiable
function on the interval Ψ = [0, T]. Additionally, G ∈ C(Ψ,R,R), M ∈ C(Ψ,R), λ repre-
sents a time delay, Θ(t) stands for a function on the interval t ∈ [−λ, 0] related to system
history, and v(t) (t ≥ 0) is a Wiener’s process.

There are several definitions of fractional derivative [50,51]. Commonly used formula-
tions are the Grünwald–Letnikov, Riemann–Liouville and Caputo ones. In this paper, we
adopted the Caputo fractional derivative. Indeed, it is the most frequently used in engineer-
ing and physics applications, since it allows traditional initial and boundary conditions
to be included in the corresponding fractional equations, and the Caputo derivative of a
constant is zero. Additionally, the Riemann–Liouville definition can be transformed into
the Caputo one using an auxiliary power function. The Caputo derivative is an appropriate
mean for modeling phenomena characterized by interactions with the past and nonlocal
properties.

In this work, a numerical technique was developed for solving the nonlocal nonlinear
FSDDE-VOFBM. An error analysis was performed and discussed. The effectiveness of
the new method was assessed using some examples, for different values of the nonlocal
order parameters. Therefore, the main novelty and contributions of the manuscript can be
summarized as follows:

• An accurate and computationally efficient technique for solving FSDDE-VOFBM with
Hurst index was proposed;

• A cubic spline interpolation method for time discretization was adopted;
• Error and convergence analysis of the suggested scheme was performed;
• The proposed numerical technique was applied to fractional stochastic dynamical sys-

tems and assessed from the perspective of statistical indicators of stochastic responses.

It should be mentioned that the method is valid for nonlocal nonlinear stochastic
delayed differential equations using fractional variable-order Brownian noise and, thus,
goes beyond other techniques [52,53], which focus on the existence and uniqueness of
solutions for different classes of stochastic delay differential equations driven by fractional
Brownian motion with the Hurst parameter H > 1/2.

The rest of this paper is divided into four sections. Section 2 proposes an explicit
method based on cubic spline interpolation to discretize and solve the FSDDE-VOFBM (2).
It describes an error analysis of the technique. Section 3 assesses the method accuracy,
considering the nonlocal stochastic fluctuation of the human body and the Nicholson’s
blowfly model. Finally, Section 4 summarizes the main considerations.
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2. Computational Implementation

An explicit approach for solving the FSDDE-VOFBM (2) was proposed, and error
analysis was performed. In the follow-up we considered that tl = l∆, with ∆ = [ T

$ ]

denoting an uniform step size and l = {0, 1, . . . , $}, with $ ∈ N. The cubic spline s$(φ) is of
the form

db

dφb u(φ) ≈ s$(φ) =
$

∑
l=0

Nl,$(φ)
db

dφb ul +
$

∑
l=0

Ml,$(φ)
db+1

dφb ul+1, (4)

where the shape functions are stated as Nl,$(φ) and Ml,$(φ) in each interval [tl , tl+1], for
1 ≤ l ≤ $− 1, given by

Nl,$(φ) =



(
1− 2φ− 2tl

tl − tl+1

)(
φ− tl+1
tl − tl+1

)2

, tl−1 ≤ φ ≤ tl(
1− 2φ− 2tl+1

tl+1 − tl

)(
φ− tl

tl+1 − tl

)2

, tl ≤ φ ≤ tl+1

0, otherwise

,

and

Ml,$(φ) =


(φ− tl)

(
φ− tl+1
tl − tl+1

)2

, tl−1 ≤ φ ≤ tl

(φ− tl+1)

(
φ− tl

tl+1 − tl

)2

, tl ≤ φ ≤ tl+1

0, otherwise

.

For l = {0, $}, Nl,$(φ) and Ml,$(φ) are of the form
N0,$(φ) =

(
1− 2φ− 2t1

t1 − t0

)(
φ− t0

t1 − t0

)2

, t0 ≤ φ ≤ t1

N$,$(φ) =

(
1−

2φ− 2t$

t$ − t$+1

)(
φ− t$+1

t$ − t$+1

)2

, t$−1 ≤ φ ≤ t$

N0,$(φ) = N$,$(φ) = 0, otherwise

,

and 
M0,$(φ) = (φ− t1)

(
φ− t0

t1 − t0

)2

, t0 ≤ φ ≤ t1

M$,$(φ) = (φ− t$)

(
φ− t$+1

t$ − t$+1

)2

, t$−1 ≤ φ ≤ t$

M0,$(φ) = M$,$(φ) = 0, otherwise

.

Therefore, we get

CD
γ
0,t$

[u(t)] ≈
(

CD
γ
0,t$

[u(t)]
)

approx

≡
$

∑
l=0

(∫ tl+1

tl

(t$ − ζ)b−1−γ

Γ(b− γ)
Nl,$(φ)dφ

)
db

dφb u(tl)

+
$

∑
l=0

(∫ tl+1

tl

(t$ − φ)b−1−γ

Γ(b− γ)
Ml,$(φ)dφ

)
db+1

dφb+1 u(tl). (5)

and, after some calculations, we obtain

CD
γ
0,t$

[u(t)] ≈
$

∑
l=0

∆b−γ

Γ(b− γ + 4)
αl,$u(b)

l +
$

∑
l=0

∆b−γ+1

Γ(b− γ + 4)
βl,$u(b+1)

l , (6)

where
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αl,$ =



−6(2$ + 1 + b− γ)($− 1)b−γ+2 + $b−γ ×
(
(−6(b− γ)− 18)$2

+12$3 + (b− γ)3 + 6(b− γ)2 + 11(b− γ) + 6
)

, l = 0

6
(
($− l − 1)b−γ+2(2l − 2$− b + γ− 1)

+($− l + 1)b−γ+2(2l − 2$− b + γ + 1 + 4($− l)b−γ+3)

)
, 1 ≤ l ≤ $− 1

6(b− γ + 1), l = $

,

and

βl,$ =



−(6$ + 2(b− γ))($− 1)b−γ+2 + nb−γ+1×(
b− γ2 + (−4$ + 5)(b− γ) + 6($− 1)

)
, l = 0

2(3l − 3$− b + γ)($− l − 1)b−γ+2

−2(3l − 3$ + b− γ)($− l + 1)b−γ+2 − 8($− l)b−γ+2(b− γ + 3), 1 ≤ l ≤ $− 1

−2(b− γ), l = $

.

Thus, we get the following proposition.

Proposition 1. Let us consider the function u(t) ∈ Cb+4(Ψ), γ > 0, and ‖u(b+4)‖∞ ≤ A,
with A > 0. Therefore, for (6), the truncated error R$ = CD

γ
0,t$

[u(t)]−
(

CD
γ
0,t$

[u(t)]
)

approx
is

bounded, such that

E
[
|R$|

]
≤ nA

4!× 16Γ(b + 1− γ)
∆b−γ+4. (7)

Proof. Assume the error function, E (t), defined by

El(t) = u(m)
l (t)− sl(t) =

u(b+4)(ϕl)

4!
(t− tl)

2(t− tl+1)
2, l = 1, . . . , $, (8)

where ϕl ∈ [tl , tl+1]. Thus,

E
[
|R$|

]
= E

[
1

Γ(b− γ)

∫ t$

t0

(t$ − φ)b−γ−1‖E (φ)‖∞dφ

]
=

1
Γ(b− γ)

E
[ $−1

∑
l=0

∫ tl+1

tl

(t$ − φ)b−γ−1

∥∥∥∥∥u(b+4)(ϕl)

4!
(φ− tl)

2(φ− tl+1)
2

∥∥∥∥∥
∞

dφ

]

≤ Ah4

4!× 16Γ(b− γ)

$−1

∑
l=0

∫ tl+1

tl

(t$ − φ)b−γ−1dφ

≤ B∆b−γ+4,

where
B =

nA
4!× 16Γ(b + 1− γ)

.
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Hereafter, the proposed algorithm will be briefly denoted as “CSM-algorithm”. It
should be noted that, for solving the initial condition problems such as (2), we incorporated
the CSM-algorithm with the finite differential quotient stated as:

u(b)(t) =
1

∆b

b

∑
s=0

(−1)s

(
b
s

)
u(t + (p− s)∆) +O(∆). (9)

3. Numerical Results and Discussion

We assess the computational effort and accuracy of the proposed method, using the
experimental convergence order (ECO) and expected mean absolute error (EMAE), given by:

ECOms = log2

(
‖Ē2$‖ms

‖Ē$‖ms

)
, (10)

and

‖Ē$‖ms =
1
$

$

∑
l=1

(
E
[
‖u$

l − u2$
2l ‖

2
]) 1

2 , (11)

where u$
l and u2$

2l stand for the approximate values of u(tl), and $ denotes the quantity of
mesh interior points. Numerical experiments were performed with the software package
Maple V2019 on a processor Intel (R) Core (TM) i7-7500U @ 2.70 GHz.

The approximate solutions and CPU time obtained with the proposed CSM-algorithm
were compared with the IQM [54] and BSM methods [55].

Example 1. We considered the fractional stochastic fluctuation of the human body, described as an
inverted pendulum under the action of a time-delayed restoring force:

I CD
2γ
0,t θ(t) + φCD

γ
0,tθ(t)−mgl sin θ(t) = χ̃(θ(t− λ)) +

√
2R̃

dvH(t)(t)
dt

, (12)

where CD
2γ
0,t u(t) denotes the Caputo fractional derivative, with γ ∈ ( 1

2 , 1), and I = ml2 and mg
are the moment of inertia and the weight of the pendulum, respectively. Figure 1 illustrates the
schematic diagram of this model. Assuming that the sway angle complies with θ � 5◦, then we have CD

γ
0,tu(t) = κu(t) + χ(u(t− λ)) + σ

dvH(t)(t)
dt

, t ∈ (0, 10]

u(t) = 0.1, t ∈ [−λ, 0],
(13)

where 1
2 < γ, H(t) ≤ 1,

χ(u(t− λ)) = η tanh(u(t− λ)),

and κ ≈
√

mgl/2I. Moreover, the delay is indicated as λ, the negative feedback coefficient is
introduced as η, and σ =

√
2R̃ is used for the value of the noise. Equation (13) was investigated for

H(t) = 1
2 and different values of γ ∈ (0, 1] in [56].



Fractal Fract. 2023, 7, 293 6 of 11

Figure 1. Inverted pendulum schematic chart stabilized by means of wain movements.

Figure 2 depicts the approximation of (13) for σ = {0, 0.01} and γ = {0.55, 0.75, 0.95},
in t ∈ [0, 10]. Moreover, Table 1 compares ‖Ē$‖ms, ECOms and computational time obtained
with the IQM- [54] and CSM-algorithms, for distinct values of ∆, γ = {0.25, 0.5, 0.7, 0.9},
and t ∈ [0, 10]. We verified that, for all values of γ, the errors yielded by the proposed
method decrease as ∆ diminishes. Table 2 lists the values of some statistical indicators (SIs)
for several fractional orders, withT = 10. We verified that the values of the median and
mean are equal for the fractional orders γ = {0.55, 0.75, 0.95}. This means that the diagram
driven by 50 simulated paths at T = 10 is symmetric.

Table 1. Example 1: The values of ‖Ē$‖ms, ECOms, and CPU time (expressed in seconds) for (13)
obtained with the IQM- [54] and CSM-algorithms for distinct choices of γ and ∆, with κ = 1.58,
η = −1.6, σ = 0.01, λ = 0.1, and H(t) = 0.95− 0.02 t, in t ∈ [0, 10].

IQM-Algorithm [54] CSM-Algorithm

γ ∆ ‖Ē$‖ms ECOms CPU Time ‖Ē$‖ms ECOms CPU Time

0.02 2.18× 10−4 − 35.703 7.31× 10−5 − 26.344
0.55 0.01 1.12× 10−4 0.96 151.516 6.31× 10−6 3.53 114.860

0.005 6.04× 10−5 0.89 708.140 1.13× 10−6 2.48 494.953

0.02 2.49× 10−4 − 35.578 1.47× 10−4 − 25.719
0.75 0.01 1.36× 10−4 0.87 147.922 1.01× 10−5 3.86 111.859

0.005 7.39× 10−5 0.88 704.922 5.02× 10−6 2.32 490.843

0.02 5.65× 10−4 − 35.641 2.84× 10−4 − 25.438
0.95 0.01 3.21× 10−4 0.85 151.937 1.60× 10−5 4.13 109.656

0.005 1.57× 10−4 1.00 705.917 4.04× 10−6 1.98 499.797

Table 2. The approximated SI values concerning the 50 simulated paths for (13), with
γ = {0.55, 0.75, 0.95}, κ = 1.58, η = −1.6, λ = 0.1, σ = 0.01, H(t) = 0.95 − 0.02 t, and step
size ∆ = 0.01, at T = 10.

SI γ = 0.55 γ = 0.75 γ = 0.95

Mean 0.093 0.089 0.083
Median 0.093 0.089 0.083
First quartile 0.091 0.088 0.081
Third quartile 0.094 0.092 0.087
Kurtosis 2.350 2.582 2.944
Skewness 0.200 −0.038 −0.197
Standard deviation 2.268× 10−3 3.661× 10−3 5.975× 10−3

95% Confidence interval [0.089, 0.097] [0.083, 0.095] [0.073, 0.093]
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Figure 2. The time evolution of u(t) for (12) with the proposed algorithm for κ = 1.58, η = −1.6,
λ = 0.1, γ = {0.55, 0.75, 0.95}, H(t) = 0.95− 0.02t, and ∆ = 0.01: (left side) σ = 0; (right side)
σ = 0.01.

Example 2. We considered the nonlinear fractional stochastic Nicholson’s blowflies differential
equation with time delay:

CD
γ
0,tu(t) = κu(t− λ) exp(−µu(t− λ))

−ρu(t) + σ
(

u(t)− µ−1 ln
(

κρ−1
))dvH(t)(t)

dt
, t ∈ [0, 10]

u(t) = 1.35 cos(3t), t ∈ [−λ, 0]

, (14)

where 1
2 < γ, H(t) ≤ 1, u(t) indicates the crowd size at the time instant t, κ represents peak

per capita daily rate of egg production, λ denotes production time, µ−1 is the value at which the
crowd multiplies at the peak rate, ρ is the adulthood per capita daily death rate, and σ introduces
the publication coefficient. It should be noted that the model (14), including non-stochastic and
stochastic terms, was studied in [57,58].

Figure 3 illustrates the approximated solutions of (14) for κ = 9, µ = 1, λ = 0.05,
ρ = 2, H(t) = 0.6 + 0.2 exp(0.01t) and σ = {0, 5} with different values of γ and step size
∆ = 0.01. We can observe the noise effect in Equation (14). Moreover, Figure 4 plots the
approximation magnitudes of SIs of the 50 simulated paths for σ = 5, γ = 0.55 at T = 10.

Figure 3. The time evolution of u(t) for (14) with the proposed algorithm for κ = 9, µ = 1,
λ = 0.05, ρ = 2, γ = {0.55, 0.75, 0.95}, H(t) = 0.6 + 0.2 exp(0.01t), and ∆ = 0.01: (left side) σ = 0;
(right side) σ = 5.
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Figure 4. The time evolution of u(t) (left side) and the SI values (right side) for (14) with the
proposed algorithm, with κ = 9, µ = 1, λ = 0.05, ρ = 2, σ = 5, γ = 0.55, H(t) = 0.6 + 0.2 exp(0.01t)
and ∆ = 0.01 over 50 simulated paths.

Table 3 summarizes ‖Ē$‖ms, ECOms and the computational time values of (14), ob-
tained with the BSM- [55] and CSM-algorithms for γ = {0.55, 0.75, 0.95}, with
∆ = {0.02, 0.01, 0.005} and λ = 0.05 in the time interval t ∈ [0, 10]. We verified that
a more accurate approximation is obtained when reducing the step size. Table 4 presents
the SI values for several γ cases, at T = 10. We verified that the diagram driven by 50 paths
for γ = {0.55, 0.75, 0.95} at T = 10 is symmetric. It should be noted that adopting σ = 5 cor-
responds to having data polluted by large random noise. Still, the stability of the proposed
method was verified.

Finite difference methods are intuitive and easy to implement. However, the discretiza-
tion schemes based on finite difference quotients do not necessarily increase convergence
order by increasing the number of mesh points, just diminishing the error of the approxi-
mation. This limitation is mitigated by our method, which uses a discretization scheme
based on cubic spline interpolation, with an implementation complexity similar to that of
the finite difference method. The experimental convergence order of the proposed method
is listed in Tables 1 and 3.

Table 3. Example 2: The values of ‖Ē$‖ms, ECOms and CPU time (expressed in seconds) for (14)
obtained with the BSM- [55] and CSM-algorithms for different values of γ and ∆, with κ = 9,
µ = 1, λ = 0.05, ρ = 2, σ = 5, and H(t) = 0.6 + 0.2 exp(0.01t), in t ∈ [0, 10].

BSM-Algorithm [55] CSM-Algorithm

γ ∆ ‖Ē$‖ms ECOms CPU Time ‖Ē$‖ms ECOms CPU Time

0.02 1.58× 10−3 − 10.140 9.54× 10−4 − 25.907
0.55 0.01 9.88× 10−4 0.68 44.828 4.71× 10−4 1.02 114.094

0.005 7.28× 10−4 0.44 194.265 8.68× 10−5 2.44 495.860

0.02 5.80× 10−4 − 9.937 3.98× 10−4 − 25.719
0.75 0.01 2.91× 10−4 0.99 4.328 1.85× 10−4 1.10 115.375

0.005 2.07× 10−4 0.49 191.828 5.43× 10−5 1.77 508.531

0.02 4.05× 10−4 − 10.687 3.96× 10−4 − 26.391
0.95 0.01 2.26× 10−4 0.84 45.094 1.87× 10−4 1.08 120.328

0.005 9.42× 10−5 1.26 185.047 5.89× 10−5 1.66 494.093
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Table 4. The approximated SI values concerning the 50 simulated paths for (14), with
γ = {0.55, 0.75, 0.95}, κ = 9, µ = 1, λ = 0.05, ρ = 2, σ = 5, H(t) = 0.6 + 0.2 exp(0.01t) and
step size ∆ = 0.01, at T = 10.

SI γ = 0.55 γ = 0.75 γ = 0.95

Mean 1.496 1.501 1.503
Median 1.496 1.501 1.503
First quartile 1.495 1.500 1.503
Third quartile 1.497 1.502 1.504
Kurtosis 3.145 2.670 2.567
Skewness −0.834 −0.067 0.215
Standard deviation 1.490× 10−3 4.645× 10−4 5.198× 10−5

95% Confidence interval [1.493, 1.498] [1.500, 1.502] [1.503, 1.504]

4. Conclusions

An explicit scheme based on cubic spline interpolation was proposed for numerically
solving nonlocal FSDDE-VOFBM. The effectiveness of the method when applied to the
nonlocal stochastic fluctuation of the human body and the Nicholson’s blowfly models
was investigated. Numerical experiments indicated the performance of the proposed
method both in terms of accuracy and computational burden. The results also revealed
the efficiency and feasibility of the algorithm for nonlinear stochastic delay systems. In
future research, we will consider this technique for tackling models with distributed order
fractional derivatives.
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