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In this work a numerical analysis of two-dimensional Faraday waves is presented. This study is

based on direct numerical simulation of Navier–Stokes and continuity equations with appropriate

boundary conditions. Stability maps on the (F-a) plane for viscous liquid layers with equilibrium

depths between 531025 m and 1025 m are presented; comparisons are made with the linear

stability predictions obtained with Benjamin and Ursell’s model for an inviscid fluid and with

Kumar and Tuckerman’s model for a viscous fluid. Regions in which time-periodic solutions are no

longer obtained and nonlinear effects are relevant, and are also delimited and analyzed: in these

zones the disintegration of the free surface into drops may take place. © 2003 American Institute

of Physics. @DOI: 10.1063/1.1601220#

I. INTRODUCTION

When a container filled with a liquid is subject to a ver-

tical oscillation, waves may be formed at the gas–liquid in-

terface. For given physicochemical properties of the liquid,

the required conditions under which a wavy interface is de-

veloped depend on the frequency and the amplitude of the

imposed vibration, the depth of the liquid layer and the ge-

ometry of the container.

The analysis of this system is a phenomenon closely

related to the storage and transportation of liquids when the

frequency of the external vibration is low, and to the atomi-

zation of liquids, at large frequencies of the imposed accel-

eration. The atomization of liquids is important in mass

transfer operations in which the mean size of the drops

formed should be very small. Because the mean diameter of

the drops ejected from the free surface is proportional to the

inverse of the excitation frequency, it is possible to produce

very small drops if the period of the imposed oscillation is

small enough.

This problem was first investigated by Faraday1 who

also reported that the frequency of the surface waves, today

known as Faraday waves, is equal to one half the frequency

of the external forcing. Many years later, Benjamin and

Ursell2 explained the phenomena reported by Faraday ana-

lyzing the linearized hydrodynamic inviscid problem. They

derived a set of Mathieu’s equations and showed that reso-

nance is responsible for the wavy motion. They also con-

cluded that the free surface is always unstable whenever the

ratio between any of the natural frequencies of the system

and the external one is equal to n/2 (n51,2,3,...), even for

amplitudes of the imposed acceleration infinitesimally small.

This unrealistic result is a consequence of the ideal behavior

assumed.

Ockendon and Ockendon3 extended the analysis pre-

sented by Benjamin and Ursell to small but finite perturba-

tions and included nonlinear terms. Miles4 proposed an av-

eraged Lagrangian approach from which a weakly nonlinear

model can be derived. He introduced additional linear terms

into the evolution equations to approximate the damping ef-

fects produced by viscous dissipation at the solid boundaries

and at the free surface when it is covered by a viscoelastic

surface film, and by capillary hysteresis associated with the

presence of contact lines.5

These works were followed by others in which weakly

nonlinear models were discussed. A review of these analyses

was presented by Miles and Henderson6 in 1990 and by

Miles7 in 1993.

Kumar and Tuckerman8 were the first to derive and to

solve the linear stability problem for the interface of two

viscous fluids subject to a vertical oscillation, based on the

complete hydrodynamic problem; that is, Navier–Stokes and

continuity equations. They show that under the effect of vis-

cosity the hydrodynamic system cannot be reduced to a set

of Mathieu equations with a linear damping term that is the

result of the phenomenological approach usually adopted in

the literature. A few years later, Cerda and Tirapegui9 re-

stated the problem analyzed by Kumar and Tuckerman; the

expression obtained for the amplitude of the free surface ~an

integro-differential equation! takes into account viscous ef-

fects in the bulk, near the bottom wall of the container and at

the free surface. In their analysis, these authors show that

their equation can be reduced to a Mathieu equation for a

highly viscous fluid; however, it differs from that derived by

Benjamin and Ursell2 for the inviscid case.

Although the literature related to Faraday waves is con-

siderable, there are very few studies in which the numerical

solution of the complete hydrodynamic problem is consid-

ered. In fact, numerical works on two-dimensional Faraday

waves have been presented very recently by Wright et al.10

and Murakami and Chikano.11
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Wright et al.10 analyzed the standing periodic waves

formed at the interface of two ideal fluids. They employed

two numerical methods, the boundary integral method when

the density of one of the fluids is negligible and a vortex

sheet method, otherwise. In their analysis, both fluids were

incompressible and they extended to infinity; the effect of

viscosity was considered including an extra term in the Euler

equation.

Murakami and Chikano11 used the SMAC method to

solve the governing equations ~Navier–Stokes and continuity

equations! with appropriate boundary conditions, once they

were transformed into a boundary-time-dependent coordinate

system. The values of the parameters of the system analyzed

in that work were the same as those of the experiments re-

ported by Lioubashevski et al.12 corresponding to a highly

viscous fluid. Murakami and Chikano discussed the velocity

fields of the two-dimensional standing waves developed near

the onset of the instability; they also investigated numeri-

cally their stability to two-dimensional disturbances in order

to reproduce the localized state reported by Lioubashevski

et al. However, the uniform standing-waves proved to be

stable, suggesting that the localized states are a three-

dimensional phenomenon.

In this work we study the evolution of a thin layer of a

liquid subject to a vertical periodic acceleration of high fre-

quency by numerically solving the full Navier–Stokes equa-

tions. Attention is restricted to the two-dimensional stability

problem as in the abovementioned analysis.

The numerical technique employed is based on the

Galerkin/finite element method combined with a suitable pa-

rametrization of the free surface ~Kheshgi and Scriven13! that

allows, at each time step, the simultaneous solution of the

complete set of governing equations ~Navier–Stokes and

continuity! and boundary conditions.

The main goals of this work are: ~i! to build the stability

charts for various liquid depths in order to determine the

influence of this parameter on the stability of the system; ~ii!
to validate our numerical predictions by comparing them

with results obtained from linear stability analysis; e.g., those

produced by Benjamin and Ursell for an ideal fluid and by

Kumar and Tuckerman for a viscous one; ~iii! to delimit the

regions in which our numerical predictions are unstable and

the motion of the free surface is so intense that standing

waves are no longer present; ~iv! to analyze the velocity

fields in order to relate the viscous effects associated to wall

friction in thin films to the minimum force required to desta-

bilize the system. Point ~iii! is important because it locates

regions of the stability maps where drops may be produced

and ejected from the free surface.

II. MATHEMATICAL FORMULATION

A Newtonian and incompressible liquid of viscosity m
and density r, is lying on a horizontal solid plate. The air

above the liquid is regarded as inviscid, it exerts only normal

stresses along the gas-liquid interface and its pressure is uni-

form everywhere. The system is isothermic and there are not

surface active agents present; therefore all the physicochemi-

cal properties including the surface tension ~s! are uniform

and constant. The liquid layer is extended on the horizontal

plane (x ,z) and its equilibrium height measured along the

y-coordinate is H0 . A vertical harmonic oscillation of ampli-

tude a0 and frequency v is imposed to the system in order to

destabilize the free surface; since the reference frame

adopted ~see Fig. 1! is attached to the solid wall the external

acceleration is added to gravity acceleration.

In this work we consider only two-dimensional ~2-D!
motions of the liquid, then its height can be expressed in

dimensionless form as h(t ,x).

Initially, a 2-D sinusoidal perturbation of amplitude «H0

and wave number k is imposed, and the temporal evolution

of this disturbance is followed. The extension of the domain

in the x-direction is equal to one half the wavelength of the

initial perturbation; therefore, the lateral boundaries are sym-

metry planes and the wavy motion developed is repeated at

both sides of this domain.

Fluid motion is governed by Navier–Stokes and conti-

nuity equations. These expressions are made dimensionless

by means of the following scales: p/k5pH0 /a for lengths,

2p/v for time, vH0/2a for the velocities and r(vH0/2a)2

for pressure and stresses. Thus, the equations expressing con-

servation of momentum and mass are

]v

]t
1v"¹v52¹p1

1

Re
¹•@¹v1~¹v!T#

1

1

Fr
@F cos~2pt !21#j, ~1!

¹"v50, ~2!

where Re5rvpH0
2/2ma2 is the Reynolds number, Fr

5v2H0/4pga is the Froude number and F5a0v2/g gives

the ratio between the external imposed force and the gravi-

tational force. The initial perturbation in dimensionless form

is

h~0,x !5a/p@11« sin~px2p/2!# , 0<x<1. ~3!

The boundary conditions required by Navier–Stokes equa-

tions are summarized in Fig. 1 where u and v are the x- and

y-components of the velocity vector, respectively. At the bot-

tom wall the nonslip condition is imposed while at the lateral

planes, symmetry is required.

At the free surface, the adjacent gas phase exerts only

normal stresses through its pressure which is chosen as the

datum pressure and is arbitrarily set equal to zero; therefore,

continuity of stresses at the interface is expressed as

FIG. 1. Schematic representation of the flow domain, boundary conditions,

and coordinate system adopted.
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n"T5

1

We

dt

ds
, y5h~ t ,x !, ~4!

where T is the stress tensor on the liquid side of the inter-

face, n is the outward pointing unit normal to the free surface

and t is the unit tangent to the interface. We

5prv2H0
3/4sa3 is the Weber number. Due to the hypoth-

eses stated at the beginning of this section, surface tension is

uniform and constant; therefore, the tangential component of

the stresses at the free surface vanishes.

The free surface is a material surface because mass is not

transferred through it. The expression of mass conservation

is the kinematic condition that for a two-dimensional flow in

the (x ,y) plane is

v5

]h

]t
1u

]h

]x
, y5h~ t ,x !. ~5!

The free surface requires boundary conditions; we impose

symmetry conditions at x50 and x51.

III. NUMERICAL TECHNIQUE

The Galerkin/finite element method is used to obtain the

spatial discrete form of the governing equations while the

free surface location is traced with the aid of a suitable pa-

rametrization ~Kistler and Scriven14!.
The flow domain is tessellated into quadrilateral ele-

ments, the vertical sides of any element are spines with base

points located at fixed values of the x-coordinate, while the

shape and location of the horizontal sides depend on those of

the free surface. Each quadrilateral element is mapped iso-

parametrically onto a unit square with coordinates ~j,h!,
0<j, h<1 by means of nine node biquadratic basis functions

(F i(j ,h)),

x~j ,h !5(
i51

9

x iF i~j ,h !, ~6!

y~ t ,j ,h !5(
i51

9

y i~ t !F i~j ,h !, ~7!

where (x i,y i(t)) are the nodal coordinates of the element.

The above transformation applied to all the elements of the

flow domain defines the computational domain in which the

free surface is a coordinate line and it is approximated by the

one-dimensional specialization of the biquadratic basis func-

tions,

yFS5(
i51

3

h i~ t !F i~j ,h51 !. ~8!

In Eq. ~8!, h i are the coefficients of the free surface param-

etrization and each one of them represents the distance along

a given spine from the x-axis to the gas–liquid interface.

Mixed interpolation is used to approximate the velocity

and pressure fields; consequently,

v~x,t !5(
i51

9

vi~ t !F i~j ,h !, ~9!

p~x,t !5 (
k51

4

pk~ t !Ck~j ,h !, ~10!

where vi(t) and pk(t) are the nodal values and Ck(j ,h) are

the four bilinear basis functions defined in the unit square.

The numerical scheme employed is similar to that pro-

posed by Gresho et al.15 to analyze transient flows with the

modifications introduced by Kheshgi and Scriven13 to adapt

this technique to the solution of transient free surface flow

problems. Very briefly, the governing Eqs. ~1! and ~2! are

weighted with the basis functions employed to interpolate

the velocity and pressure fields, respectively, and they are

integrated in the flow domain; the kinematic expression @Eq.

~5!# is weighted with the one-dimensional specialization of

the biquadratic basis functions and it is integrated along the

free surface. A set of nonlinear ordinary differential equa-

tions is thus obtained. To evaluate the time derivatives ap-

pearing in the residuals (]v/]t and ]h/]t), one must take

into account that the points of the mesh are moving; since in

the ~j,h! plane the nodal coordinates remain unchanged,

these derivatives can be though of as time derivatives at a

fixed point in the computational domain. Then,

]v

]t
5 v̇2 ẋ"¹v, v̇5(

i

dvi

dt
F i~j ,h !, ~11!

where ẋ is the velocity of a point with fixed isoparametric

coordinates which are evaluated from Eqs. ~6! and ~7!.
The set of nonlinear ordinary differential equations is

reduced to a set of nonlinear algebraic equations using the

following finite difference approximation:

A trapezoidal rule corrector is used to approximate the

time derivatives ~v̇,ẋ! in the residuals of Eqs. ~1! and ~5!, and

the resulting set of equations is solved by means of the one-

step Newton’s method. To provide an accurate approxima-

tion for nodal values of the velocity and free surface coeffi-

cients, at time tn, the second order Adams–Bashforth

predictor is used; pressures are initialized with values corre-

sponding to the previous time step. The predictor also pro-

vides an estimate of the time discretization error which is

controlled with the time step size, and is kept small enough

to obtain convergence in just one Newton iteration. Two time

steps are computed, one is based on the norm of the velocity

and the other on the norm of the free surface coefficients, the

smallest one is chosen in the calculations.

The criteria adopted to select the appropriate finite ele-

ment mesh were based on the following physical aspects of

the problem.

~1! The motion of the fluid is more intense near the free

surface, where larger gradients of the velocity occur. There-

fore, nodes are concentrated at the free surface and its vicin-

ity.

~2! A boundary layer is developed in the liquid just

above the solid wall; consequently, the mesh is refined in this

region.

~3! The number of elements in the x-direction turns on

the wave number ~a! and on the parameter F.

We next exemplify the type of numerical experiments

carried out to determine an appropriate mesh when nonlinear
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effects are important, that is for large values of the external

amplitude. They correspond to points labeled c and d in Fig.

3 but they are applicable to any of the solutions presented in

this work. We employed the following three meshes: NEX

515 and NEY59, NEX530 and NEY59, NEX550 and

NEY530. In all these meshes the relationship between the

number of elements in the x and y direction was selected

taking into account the aspect ratio of the computational do-

main, in order not to have very distorted elements.

In Figs. 2~a! and 2~b! we illustrate the evolution in time

of the numerical solutions corresponding to point c in Fig. 3.

We see that the three meshes predict the existence of a peri-

odic state although the maximum amplitude attained by the

free surface is clearly variable when the coarsest grid is em-

ployed @see Fig. 2~a!#; differences in the evolution of the free

surface are slightly noticeable when the solutions computed

with the other two meshes are compared. The same conclu-

sion can be inferred from results depicted in Fig. 2~b! where

the evolution of the interfacial area is illustrated.

To determine if this mesh was suitable to accurately pre-

dict not only periodic solutions but also the conditions under

which the amplitude initially imposed to the free surface

increases without bounds, we performed similar numerical

tests for points located in Region 1-I of the stability maps;

one of those points ~labeled d! is shown in Fig. 3. Results

that are not illustrated here, show that with none of these

meshes a periodic solution is obtained, being the evolution of

the free surface computed with the three meshes very similar.

From the above numerical experiments, we conclude

that the mesh NEX530 and NEY59 is suitable to follow

the time evolution of the system when the initial liquid depth

is equal to 531025 m even when nonlinear effects are im-

portant. A more refined mesh would only lead to an unnec-

essary increase of the CPU time.

FIG. 2. ~a! Predictions of the time

evolution of one end of the free sur-

face for point labeled c in Fig. 3, com-

puted with three different meshes. ~b!
Predictions of the time evolution of

the interfacial area for point labeled c

in Fig. 3, computed with three differ-

ent meshes.
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IV. NUMERICAL RESULTS

In order to determine the influence of the film thickness

on the stability of liquid layers under forcing vertical oscil-

lations, we have carried out computations with equilibrium

depths between 1024 m and 1025 m. The physicochemical

properties correspond to water at 20 °C; thus, we have, r
5103 kg/m3, s57031023 N/m, and m51023 Pa s. The os-

cillation frequency of the container ~f! was set at 29 kHz

while its amplitude was widely varied.

In this section we first discuss the stability charts of the

system and then we analyze the influence of the initial film

thickness (H0) on the velocity fields.

A. The stability maps

The numerical solutions pertaining to each initial liquid

depth give rise to a stability chart on the F-a plane. In Figs.

3, 4, and 5 the charts for H0 equal to: 531025 m, 2.27

31025 m, and 1025 m, respectively, are illustrated. These

maps and those obtained for the other equilibrium heights

considered in this work, not shown here, are qualitatively

similar; therefore, we first give a detailed description of the

chart corresponding to H05531025 m and then we point

out the main differences observed when this variable is

modified.

Every point of the stability maps represents the outcome

FIG. 3. Stability chart in the

F-a (a0-k) plane for H055

31025 m.

FIG. 4. Stability chart in the

F-a (a0-k) plane for H052.27

31025 m.
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of the time evolution of a rather small initial perturbation

imposed to the motionless liquid. Circles indicate stable situ-

ations characterized by perturbations whose amplitudes de-

cay in time, while crosses represent unstable cases character-

ized by perturbations whose amplitudes increase without

bounds or that evolve toward time periodic solutions. To fa-

cilitate the analysis of the results each point drawn in Figs. 3

to 5 may be regarded either as a point on the (F-a) plane or

on the (a0-k) plane.

It is easy to notice that the data reported in Fig. 3 can be

grouped into four different regions identified as 1, 2, 3, and

4; the same situation could be detected in Figs. 4 and 5

although in these cases due to the narrower range of wave

numbers investigated, we did not explore points pertaining to

region 3. In regions 1–3, the relation existing between the

dominant frequency of the wave appearing on the free sur-

face and the frequency imposed on the motion of the con-

tainer is equal to 1/2, 1 and 3/2, respectively and in all of

them only one elementary cell is observed. Region 4 presents

subharmonic resonance ~the free surface vibrates with a fre-

quency equal to one half of the applied external frequency!
but two elementary cells are formed. Since a reduction in the

dimensionless wave number, a, implies a proportional in-

crease of the domain length, the points located here should

probably be a duplication of points lying in region 1, a hy-

pothesis that will be confirmed later. Also, we have detected

three subharmonic elementary cells when the wave number

was further reduced. Although other unstable regions can be

found for larger values of a, we have not investigated them

because they are associated with too high external forces

and, consequently, they have not practical interest.

Results illustrated in Fig. 3 show that regions 1 and 4

overlap for values of F.45 000 but the other regions remain

separated from one another in agreement with the linear sta-

bility analysis reported by Benjamin and Ursell.2

The instability threshold in each region is characterized

by a single pair of values of F and a: (FC5aCv2/g ,aC); if

F goes beyond the critical value disturbances with a wave

number within a specific range will be excited. That is, the

resonance phenomenon is first observed when there is a fine

tuning between the natural frequency of the system and the

frequency of the imposed motion.

The wave number at the instability threshold increases as

one moves from region 1 to region 3; also, the applied force

required to attain that threshold increases in the same way

suggesting that larger dissipation effects associated to stron-

ger spatial gradients may be responsible for the higher values

of F needed to destabilize the system.

The four regions illustrated in Fig. 3 can be related to the

theoretical work presented by Benjamin and Ursell2 for an

ideal fluid. In their formulation the position of the interface is

described by a series whose coefficients cm(t) satisfy the

Mathieu equation, that is

d2cm

dT2
1@pm22qm cos 2T#cm50, ~12!

where T5vt/2. It is well known that the stability of the

solutions of this equation depends on the values of the pa-

rameters p and q that for the m mode are defined by the

following expressions ~Eq. 2-13 in Ref. 2!,

pm5

vm
2

~v/2!2
, vm

2
5km tanh~kmH0!S g1

km
2 s

r
D , ~13!

qm52kma0 tanh~kmH0!, ~14!

where vm is the natural frequency of mode m and km

5mk . For all points located in regions 1 to 3 of the stability

map shown in Fig. 3, one elementary cell is observed; then,

we employed m51 in Eqs. ~13! and ~14! to evaluate p and q

there, while for those points located in region 4 where two

elementary cells are formed, we put m52. The resulting

points (p ,q) are illustrated in Fig. 6, where again crosses and

circles represent unstable and stable solutions, respectively.

Additionally, the boundaries of the regions predicted by the

linear theory are shown.

FIG. 5. Stability chart in the F-a (a0

2k) plane for H051025 m.
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It is clear that our results representing unstable evolu-

tions of the free surface are located within the three regions

predicted by the linear stability theory. Nevertheless, the sta-

bility limits are translated toward values of q.0. The param-

eters F and q have similar meaning because both depend on

the amplitude of the external vibration. Then, we can con-

clude that when the viscous effects are considered, a fine

tuning between the frequency of the imposed force and the

natural frequency of the system is not enough to produce

resonance; it is also required that F be larger than a critical

value. These results are in agreement with the theoretical

analysis reported by Kumar and Tuckerman8 and by Cerda

and Tirapegui9 for a slightly viscous fluid.

When points located in region 4 are mapped into the

(p-q) plane, they all lie in region 1 of Fig. 6, confirming the

hypothesis that region 4 is a replication of region 1. A careful

inspection performed of the corresponding numerical solu-

tions have shown that this is indeed the case.

In order to detect the influence of the film thickness on

the onset of the instability, we have mapped the stable points

located close to the limits of region 1 in Figs. 3, 4 and 5 into

the (p ,q) plane using Eqs. ~13! and ~14!; the result is de-

picted in Fig. 7. As it is expected, the extension of the un-

stable region is reduced, not only because the threshold is

shifted toward larger values of q ~that is, larger amplitudes of

the imposed force! but also because the lower limit is shifted

toward larger values of p, as H0 is reduced.

With the purpose of validating the numerical solutions,

we have solved the viscous model reported by Kumar and

Tuckerman8 for the same initial liquid depths considered in

Figs. 3 to 5. The values of a0 obtained for each wave number

a selected were then mapped into the (p ,q) plane using Eqs.

~13! and ~14!, and finally the stability limits for the subhar-

monic region corresponding to each H0 were illustrated in

dashed lines in Fig. 7. It is evident that the agreement be-

tween our numerical solutions and those calculated with Ku-

mar and Tuckerman’s model is excellent. That is, the numeri-

cal solution accurately reproduces the boundaries of the

unstable regions predicted by the linear stability analysis of

the full hydrodynamic problem.

One of the practical applications of the problem under

study is the production of sprays. Drops are formed from the

crests of high capillary waves. Therefore, it would be useful

to investigate the condition under which the amplitude of the

free surface waves increases without bounds. With this pur-

pose, we have closely examined the numerical solutions lo-

cated in region 1 of the stability charts presented in Figs. 3–5

and we have delimited the subregions labeled 1-I, which are

approximately defined by dashed-lines in the maps. For the

points inside these zones our numerical predictions show—

just before the computation breaks down—almost chaotic

free surface evolutions and wave amplitudes increasing with-

out bounds, suggesting that these points correspond to values

of the parameters in which the atomization of the liquid

might occur. Obviously, these solutions cannot be detected

with simpler models based on the assumption of small free

surface deformations.

An interesting feature of the results obtained is that the

location of the subregion 1-I depends on the film thickness.

In fact, for the larger values of H0 considered in this work,

this zone is located near the upper bound of region 1 ~see

Figs. 3 and 4!, while for the thinnest value of the liquid layer

it is located near the lower bound of the subharmonic region

~see Fig. 5!. In the first case, our results agree with the ex-

periments and the numerical solutions reported by Jiang

et al.16 in a range of very small forcing frequencies ~3.15–

3.34 Hz!, that is, for a long wave.

To detect the origin of the differences induced by the

initial film thickness on the location of subregion 1-I, we

have analyzed some of the solutions that are located near the

boundary of this zone when the initial liquid depth is equal to

531025 m ~Fig. 3! and 1025 m ~Fig. 5!. These solutions are

FIG. 6. Comparison of numerical results with the linear theory by Benjamin

and Ursell.

FIG. 7. Stability limits for selected values of H0 near the threshold of region

1 ~Figs. 3–5! and comparison of numerical results with Kumar and Tucker-

man’s model.
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for a fixed value of F, and for a varying within the range

delimited by the lower and upper branches of region 1 in the

corresponding stability map. We took F equal to 20 000 and

67 759, for H05531025 m and H051025 m, respectively.

The examination of the free surface for the thicker liquid

layer (H05531025 m) once a time-periodic solution is de-

veloped for each value of a, shows that the amplitude of the

wave monotonically increases as the wave number is aug-

mented, almost until the upper branch of the neutral stability

curve is reached; in fact, from our numerical solutions not

presented here, we found that the wave amplitude increases

from 1.331025 m, when a52.05, to 7.3831025 m for

a52.86.

When the same analysis is carried out for H051025 m

and F567 759, the amplitude of the wave corresponding to

the time periodic-state achieved by the system at each se-

lected value of a, first increases and then diminishes as the

dimensionless wave number is augmented, as in the previous

case; nevertheless, according to our numerical solutions, the

maximum amplitude computed is approximately equal to

2.6531025 m and corresponds to a'0.57 ~point labeled b in

Fig. 5!, a value closer to the lower bound of region 1.

To illustrate the relevant features of the solutions devel-

oped near the onset of region 1-I, for H0 equal to 5

31025 m and 1025 m, we have depicted for the points la-

beled a and b in Figs. 3 and 5, respectively, the time evolu-

tion of the free surface height at both ends of the computa-

tional domain, i.e., at the points that initially were the crest

and the trough of the wave @Figs. 8~a! and 8~b!#. In Figs. 9~a!
and 9~b! we present the corresponding results of transform-

ing the waveforms into Fourier space using the fast Fourier

transform ~FFT!.
Results illustrated in Fig. 8 show that the amplitude of

the free surface waves increase from the perturbations ini-

tially imposed up to certain final values in the two cases

considered. When H051025 m a time periodic-state is rap-

idly attained, while for H05531025 m a repeated pattern is

more difficult to detect. The results of the FFT analysis pre-

sented in Figs. 9~a! and 9~b!, confirm that in both cases the

dominant mode has a frequency equal to (1/2) f ; however,

the spectra for point a is not as well defined as that for point

b. This fact added to the relatively important peak that ap-

pears at a frequency equal to (1/4) f , contribute to the irregu-

lar aspect of the evolution of the amplitude of the free sur-

face observed in the first case @see Fig. 8~a!#.
The FFT analysis carried out at point b reveals the pres-

ence of smaller peaks at frequencies equal to multiples of f: f,

(3/2) f , 2 f , . . . ; that is, higher harmonics are also excited and

they are responsible for the departure of the waveform from

a sinusoidal curve @see Fig. 8~b!#.

FIG. 8. Prediction of the time evolution of the film

thickness at x50 and x51 for ~a! point labeled a in

Fig. 3 and ~b! point labeled b in Fig. 5.
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In order to detect the possible mechanisms involved in

the breaking of the free surface waves for a large (H055

31025 m) and a very thin (H051025 m) liquid layer, we

have examined the evolution of the free surface shapes dur-

ing a short time interval ~about half cycle! for cases a and b

~Fig. 10!. The intervals chosen are enclosed by a rectangle in

Figs. 8~a! and 8~b!, and the times selected are indicated in

the insets of these illustrations where an enlarged view of the

framed regions is shown. The shapes corresponding to point

a ~1–8! are drawn with solid line while those for point b

~9–15! are depicted in dashed line.

It is easy to see that the more remarkable difference

between the curves corresponding to these two cases, is the

steepness of the wave that is the ratio between the peak to

peak amplitude and the wavelength; in fact, this quantity is

approximately equal to 0.65 for H05531025 m ~point a!,
and to 0.24 for H051025 m ~point b!.

The profiles corresponding to point a, show that as the

right side of the domain moves upward a large quantity of

liquid is displaced toward the crest giving rise to a high peak,

where the radius of curvature of the interface becomes small

and, consequently the capillary forces become large. Consid-

ering that an increase of the amplitude of the external force

will produce a higher and more peaked wave, these results

suggest that drops might be formed at the maximum crest

elevation. It is interesting to note that, due to the presence of

higher order harmonics, the free surface never becomes hori-

zontal during the time interval.

FIG. 9. ~a! and ~b! Discrete Fourier

transform of the temporal evolution at

x50 for points a and b, respectively.

FIG. 10. Predicted free surface shapes for selected

times corresponding to the half cycle enclosed with

dashed lines in Figs. 8~a! and 8~b!. The curves drawn in

solid lines ~1–8! are for H05531025 m and those de-

picted in dashed lines ~9–15! are for H05131025 m;

the curves are numbered sequentially for increasing val-

ues of time.
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If we now consider the sequence of wave shapes illus-

trated in dashed lines for H051025 m, we see that the influ-

ence of the bottom boundary on the evolution of the system

becomes very important. In fact, in this case, a very thin

liquid film is formed during the evolution ~the minimum liq-

uid height at the trough of the wave is smaller than 3

31026 m in curve 14!. As the height of the liquid located at

the right of the domain increases, a small wave travels to-

ward the left; therefore, the free surface presents a depression

separating two regions: one where there is a large amount of

liquid and the other where a thin liquid film exists; the latter

will resist the leveling of the liquid layer once the highest

liquid elevation is reached at the other end of the domain. In

this case, an increase of the amplitude of the external vibra-

tion should produce a larger crest and a thinner film, a situ-

ation that might favor the film disruption instead of the ejec-

tion of drops.

The large magnitude of the capillary forces compared to

the effective gravity forces, is responsible for the rounded

crests presented by the waves during the cycle; that is, on the

verge of the numerical break down of our solutions we do

not see the flat crests observed—for low excitation frequen-

cies and when the capillary effects are much lower—by

Jiang et al.16

Finally, in the two cases analyzed, the temporal symme-

try is broken, a result that can also be inferred from Figs. 8~a!
and 8~b!.

Results depicted in Figs. 3, 4, and 5 and those not re-

ported here for other selected values of H0 , show that the

stability charts are qualitatively similar. Indeed, the same re-

gions previously described are detected and, at the onset of

the instability, the interface is always subharmonically ex-

cited with a frequency equal to one half the frequency of the

external vibration; however, the following differences can be

observed.

~1! The minimum value of F required to produce a

wavy interface, which in our case corresponds to a minimum

in forcing amplitude (aC) since the applied frequency is kept

constant, increases as the depth of the liquid layer decreases;

that is, the system becomes more stable if viscous effects are

relatively larger. Also the minimum value of F associated to

the rupture of the free surface increases as the depth of the

liquid layer is reduced.

~2! The wave number k5kC of the elementary cell de-

veloped at the onset of the instability increases as the film

thickness diminishes.

Next, we discuss both differences in detail.

B. Critical value of a0 as a function of H0

In Fig. 11, the value of the critical amplitude (aC) is

illustrated as a function of H0 at the threshold of the first

subharmonic region ~region 1 in Figs. 3–5!. It is readily seen

from our numerical predictions that larger amplitudes of the

external force are required to destabilize a system as the

initial liquid height is reduced; also, the effect of the film

thickness becomes important for H0<531025 m. In fact, if

the depth of the liquid layer is reduced below this value, the

external force will have to be greatly augmented to turn the

system unstable, while it remains almost constant for H0

larger than 531025 m.

It is of interest to compare our values of critical wave

amplitude with those calculated with the exact solution of the

linear viscous hydrodynamic problem reported by Kumar

and Tuckerman.8 Therefore, we have also depicted in Fig. 11

the minimum amplitude required to destabilize the system as

a function of the initial liquid depth obtained by solving that

problem. It is easy to see that the agreement is excellent; in

fact, the largest difference observed is below 2.5% and it

corresponds to H051024 m.

The open squares depicted in the inset of Fig. 11, repre-

sent the minimum forcing amplitude (a05aCI) required to

produce a solution in region 1-I for four values of the initial

liquid depth considered in this work. As it is expected, aCI

FIG. 11. Critical amplitudes vs H0 for region 1 (aC)

and for subregion 1-I (aCI) ~inset!.
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diminishes as H0 is augmented; however, for H0.5

31025 m, aCI becomes almost insensitive to changes in film

thickness, this result confirms that the behavior of the system

is no longer affected by the presence of the bottom wall.

As we have just mentioned, the onset of subregion 1-I

occurs at larger amplitudes of the external force when H0

diminishes; nevertheless, the ratio between the amplitude

values at the onset of subregion 1-I and at the threshold of

region 1, i.e., aCI /aC , diminishes as the initial liquid depth

decreases. It is easy to verify from the results reported in Fig.

11, that this ratio is approximately equal to 7 and 3 for H0

51024 m and H051025 m, respectively.

Goodridge et al.17 in their experimental work on the pre-

diction of the threshold amplitude for drop ejection, report

that this value depends on the frequency of the external vi-

bration imposed to the system. These authors found that in

the case of water, the critical amplitude for the inception of

drop ejection (aD) is given by aD52.39(s/v2r)1/3; there-

fore, for the system analyzed in this work, aD'331025 m a

value larger than those reported here for the onset of region

1-I in the inset of Fig. 11.

C. The critical value of the wave number as a
function of H0

In Fig. 12 the wave numbers of the elementary cells

formed at the threshold of region 1, k5kC , are plotted as a

function of the initial film thickness, the points there illus-

trated represent our numerical solutions while the continuous

line corresponds to the inviscid solution, that is, kC is evalu-

ated from

vm5Atanh~kmH0!S km
3 s

r
1kmg D , ~15!

where vm514 500p s21 and m51; also, the values of kC

calculated with Kumar and Tuckerman’s model are shown in

dashed lines. These results show that the influence of the

bottom wall of the container becomes noticeable when the

film thickness is smaller than 531025 m. Thus, for larger

values of the initial liquid depth the critical wave number

remains almost constant, while if H0 is below 531025 m,

kC rapidly increases as the initial film thickness diminishes.

Although either in the inviscid or in the viscous case, the

solid wall affects the flow through the normal boundary con-

dition deviating the liquid in its vicinity, we see that the wave

numbers of our full model are larger than those predicted by

Benjamin and Ursell2 but, as the results illustrated show, they

are in very good agreement with those evaluated with the

model reported by Kumar and Tuckerman.8 In fact, these

authors found that in the range of low viscosity, an increase

of this property reduces the value predicted for the critical

wavelength if viscous dissipation in the bulk is taken into

account and viscous dissipation at the solid boundary is not

considered. In the present case, we observe that as the initial

film thickness decreases, the differences between the predic-

tions of the complete model and those of the linear theory,

increase; thus, viscous effects reduce the length of the el-

ementary cell at which the resonance phenomenon is ob-

served. Our numerical solutions show that this reduction is

0.57% when H0 is equal to 531025 m and 3.9% when the

initial depth is 1025 m.

D. The evolution of the free surface and the velocity
fields at the onset of the instability „region 1…

In this section we analyze the influence of the initial

liquid depth on the flow fields developed near the threshold.

The two cases studied correspond to values of H0 equal to

1024 m and 1025 m, that are the maximum and minimum

initial liquid depth considered in this work; the thresholds for

these two cases were obtained at F53400, a54.95, and F

526 000, a50.63.

In Figs. 13~a! and 14~a! we present the time evolutions

of the x-points that initially are the trough of the wave for

these two cases. Insets of these figures depict the interface

location of the liquid layer at x50 over approximately half

FIG. 12. Threshold values of k vs H0 for region 1 when

f 529 kHz.
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cycle and the dots shown correspond to selected times at

which the streamlines have been evaluated. The results are

portrayed in Figs. 13~b! and 14~b! for H0 equal to 1024 m

and 1025 m, respectively.

It is easy to notice @see Figs. 13~a! and 14~a!# that the

wave amplitude at the free surface increases from the ini-

tially imposed perturbation until the constant value corre-

sponding to the time periodic solution is achieved. A simple

analysis based on the fast Fourier transform confirms that the

period of the free surface oscillation is twice the period

FIG. 13. ~a! Temporal evolution of the film thickness at x50 near the threshold of the first subharmonic region for H051024 m. ~b! Streamlines corre-

sponding to the selected times illustrated in the inset of ~a!; the figures are ordered alphabetically for increasing values of time.
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of the external vibration; that is, the principal mode excited

is subharmonic in agreement with experimental results ~see,

for instance, Hasegawa et al.18!. Also, the shape of the wave

is almost sinusoidal at the onset of the instability for all the

values of H0 considered in this work. This result contrasts

with the result reported by Murakami and Chikano11 in their

numerical study of this problem for a more viscous fluid

~0.0072 Pa s! and at a much lower frequency of the external

FIG. 14. ~a! Temporal evolution of the film thickness at x50 near the threshold of the first subharmonic region for H051025 m. ~b! Streamlines corre-

sponding to the selected times illustrated in the inset of ~a!; the figures are ordered alphabetically for increasing values of time.
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vibration ~41 Hz!, who found that the critical waveform is

not sinusoidal. The analysis of the wave computed by these

authors using the FFT, shows the presence of odd ~1/2v,3/

2v,5/2v,...! and even components ~v,2v,3v,...! being the co-

efficients of the first two odd frequencies—which are the

largest—of the same order.

The streamlines illustrated in Fig. 13~b! for H0

51024 m correspond to the instants of time identified with

dots in the inset of Fig. 13~a!. The amplitude of the external

force required to produce this motion is equal to 1.0036

31026 m, and as we have already mentioned the imposed

force is approximately equal to the minimum needed to de-

velop free surface waves with a frequency equal to v/2; also

the aspect ratio (L5kH0 /p) of the elementary cell formed

is nearly 1.57, a value almost equal to the inviscid flow case.

The sequence of streamlines presented in the figure,

show the existence of two swirls, one near the bottom of the

container and the other at the free surface, both recirculations

are present during a very short period of time. The swirl

located on the solid wall is formed when the liquid is moving

from right to left and the cell height is almost maximum at

the left side. Under these conditions, the pressure on the

plate at x50 is larger than the pressure at x51; therefore,

the liquid located over the solid wall begins to move from

left to right and a recirculating flow is developed. The size of

this recirculation grows in time but is limited by the appear-

ance of another swirl at the free surface, where the stronger

motion takes place. After a very short period of time, all the

fluid moves together, but only in the zone located near the

free surface the modulus of the velocity is important. That is,

the boundary layer that exists along the solid wall is very

thin compared with H0 and does not affect the dynamics of

the system.

Figure 14~b! illustrates, near the instability threshold of

region 1, the evolution of the flow pattern during half cycle

of a system with an initial liquid depth equal to 1025 m. The

amplitude of the external force required to produce this mo-

tion is equal to 7.67431026 m and the aspect ratio of the

elementary cell developed is L50.200; that is, a value

slightly larger than the one corresponding to the ideal case

~0.192!.

The sequence of streamlines depicted in this figure

shows that in this case there is only one swirl; in fact, the

recirculation formed near the solid wall increases in size dis-

placing the liquid above it, and finally involves the whole

cell. That is, the effects of the viscous boundary layer that

exists near the plate affect the motion of all the fluid, a situ-

ation completely different to that illustrated in Fig. 13~b! for

H051024 m.

Although the analysis of the velocity fields associated to

Faraday waves here presented is limited to two cases only, it

shows that the streamlines developed for a slightly viscous

fluid strongly depends on the viscous effects associated to

the bottom wall. The vorticity generated at the solid bound-

ary has almost negligible effects on the flow pattern when the

liquid depth is large (H051024 m); however, it affects a

larger region as H0 diminishes, and it might even involve the

whole cell.

V. CONCLUDING REMARKS

The time evolution of thin liquid films subject to a peri-

odic vertical oscillation, has been numerically analyzed by

solving the Navier–Stokes equations for an incompressible

liquid. The results portrayed pertain to a slightly viscous

fluid; in fact, the values employed for the physicochemical

properties of the liquid were those of water. From our nu-

merical results we built charts delimiting instability regions

in the F-a plane. These regions nicely fit into the instability

zones determined almost 50 years ago by Benjamin and

Ursell for an ideal fluid; nonetheless, our results occupy

these zones only partially, making evident the stabilizing in-

fluence of viscosity as previously reported by Kumar and

Tuckerman and Cerda and Tirapegui. Moreover, the stability

limits numerically determined are in excellent agreement

with the limits of the linear stability analysis presented by

Kumar and Tuckerman.

We have studied the effect of the thickness of the liquid

film on Faraday’s phenomenon. The results just presented

confirm previous findings obtained by linear stability analy-

sis; among them that stronger exciting forces are needed to

produce unstable waves as the thickness of the film is re-

duced. Also, for the cases studied, that the lower boundary of

the unstable regions in the F-a charts appears to move to-

ward higher wave number values ~see Fig. 6!.
To detect the amplitudes of the external vibration at

which the breaking of the surface waves might take place,

we have delimited a region of the stability maps in which the

wavy motion of the free surface appears to increase without

bounds. Although a more complete numerical analysis con-

cerning the evolution of the free surface is required, our nu-

merical solutions show evidences that when the initial liquid

depth is very small, the instability process that produces the

free surface disruption might be different from the drop ejec-

tion mechanism.

We have also confirmed, for the case under analysis, that

a film thickness of about 531025 m delimits two zones of

clear different behavior; that is, if the film thickness is larger

than this value the force needed to turn the surface unstable

is almost constant, and so is the length of the unstable wave

appearing at the instability threshold. On the other hand, if

the film is thinner than 531025 m, the applied force at the

instability threshold increases almost exponentially as the

thickness of the film is reduced; accordingly, the length of

the wave appearing at the onset of the instability is rapidly

reduced. Since we suspected that the reasons behind this

change of behavior dwelled on viscous effects originated at

the solid wall, we studied in detail the time evolution of the

flow fields for two systems with initial film thickness of

1024 m and 1025 m, respectively; i.e. well above and below

the limit value just mentioned.

When the film thickness is large (H051024 m) the evo-

lution of the streamlines within a period of oscillation evi-

dences that the vorticity generated at the wall is weak and

does not interact with the surface motion. In fact, the flow

motion reverses by developing—at the interface—a thin

boundary layer that rapidly grows and occupies the whole

cell. Thus, as long as the flow in the vicinities of the solid
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wall does not influence the flow at the interface, the thick-

ness of the film becomes irrelevant for the instability pro-

cess, and the system is insensitive to changes in H0 .

A totally different situation occurs when the film thick-

ness is small (H051025 m); in this case the time evolution

of the streamlines shows that the vorticity generated at the

solid wall rapidly invades the cell reaching the free surface

and reversing the fluid motion on it. Consequently, given this

interaction, it seems reasonable that the instability process

should strongly depend upon the value of the film thickness.

In this work we have solved the full Navier–Stokes

equations without having recourse to the usually employed

simplifications; e.g., Stokes flow assumption and the use of

linear damping terms to account for viscous forces. The

methodology employed allowed the construction of stability

maps characterized by different equilibrium heights and the

detection of the region where the breaking of the waves

might occur; it also provides valuable information through

the time evolution of the easily portrayed pressure and ve-

locity fields. This last feature will be extensively exploited in

a future work where the presence of surfactant will be con-

sidered.
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