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ABSTRACT
“>The’P#rkihje fiﬁgrs; which'form theispecialized eléétriéél conduction
..system of the ﬁeart( pose a chaflenge to the mafhemaﬁicél modeier. Their
electrical behavior’reéembles ﬁhat of‘heéypus £issué in several respects.
.Small electrical stimuli elicit a reSponsé that is only detectable
locally, whi;e'injected currenﬁs whose magnitude eﬁééeds_é certain
threshold will produce a pulse that propagates the lenéth of the fiber,
and whése shape is essentially independent of the appiied stimulus. Aé
in the cage‘of nerve fibers, thé front of this pulse is very sharp,
characterized by rise tiﬁes‘of the order of hundreas of microseconds,

ol | j‘ and émplitudes of the‘ordér éf ibb millivolts. Thevner;e pulse, howevér,
ends in a.feﬁ.milliseéénds, whiie”thequrkinjevfiﬁer membrgﬁe potential.
remains nearly constant ét a‘pdténtial Qefy far above ﬁhe equilibrium

. value for hundfeds'ofvmillisé§§nds.v This long excited staﬁe.is céiled

thé plateau. The long duration of the plateau compared to the times that
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‘characterize the upstroke makes numerical simulgtiohs difficult, especially
in the case of the partial differential equations that must be used to

describe impulse propaéation in spatially inhomogeneous fibers.

In this paper we investigate two sets of electrophysiological

iy

éxperiments on'Purkinje fibers with the purpoSe of‘constructing a matﬂe— o
matical‘framework in which hypotheses‘ébout these experiments may be
tested. Ultimately we hope to gain>new_iﬁsightbiﬁtoAthé working of the
system tﬁat'will aid in the deéign'bf newJexperiménts. |
First, we examine the experiments of Noble and Tsien (. Physiol.
399'(1969) pb; 205-231) on the'detéils of the cufrent—voltage relatiéns
for the plateau of the action potential of the spacé—clamﬁéd Purkinje
fiber. Theix ekperimental.daté'is used to construct a quantitative model
of the electrical behavior of the membrane. We use this quantitative
:model to simulate ﬁhe time course of the plateau,‘the abolition of the
plateau (i.é., premature restoration of £h¢ equilibrium potehtial) by a
hyperpolarizing shpck,vénd the self-excited oscillations of the membrane
potential at thentials in the pléteau rangé which are observed in fibers

that do not recover completely frém the trauma of dissection.:

Secoﬁd, we exémine the'experimentél results}of Hoffman and Cranefield
(Circ. Res. 28 (1971) pp. 199-219) on énomaious propagafion effects in
Purkinije fibers in which abportioh of the‘lehgﬁh of the fiber is rendered -~ .
inexcitable by éncasing'it in an agar bloék whose.ionic composition differs
greatly from that of the normal extraCellulér filuid. Observed in these -
experimehts were long delays of conduction, one-way conduction,'and the
conduction of one impuise across the block for each groupwof de (or

sometimes more, in some preparations) -incident impulses. Adaptation of
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our quantitatiﬁe'ordinary differential equation model to a partial differ-

Jential'équation model t§ simulate these effects is conceptually complicated

and would be Computatiohally expensive; hence, alsimpler Qualitative model
is defived. This model invqlves’the injeétion éf a Curreﬁt'by a nonlinear
membfane eleﬁent when the poteﬁtiai:;eaches a given‘thresholdi This model
is then used to investigate the hypothesis éhat one-dimensional cable
theory and a plausible assumption about an asymmeﬁfy in the. experimental
préparation are sufficient to explain the phenomena of delay and one-way
cqnduction.. Specialized numerical tgchniﬁues are derived to solve the
partial differential.equations for the numerical experiménts, and the
hypothesis of a bne—dimensionalﬂcable iS‘shéwn to be sufficient to predict
delay and one-way block. More powerfui numerical techniques willvbe needed

to simuléte bnq;for—n block with this model. The author-and his coworkers

are -currently deveioping such techniques.
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A NUMERICAL AND ANALYTICAL STUDY OF ANOMALOUS PROPAGATION
' OF ELECTRICAL IMPULSES IN DAMAGED HEART FIBERS

' I.. INTRODUCTION AND BACKGROUND . -

1. General Introduction

This work presents a mathematical framework in which two sets of -

experiﬁental data can be understood. Two models will be described:

 the first model ‘is a set of ordinary différéntial.eéuations whose solu-

B

tions reproduce in detail the behavior of the‘platéau of the Purkinje
fiber action potential as observed by Hauswirth, Noble and Tsien (12),

(16), (17); the sécond‘is a system of nonlinear partial differential

_equations which is desiéned to reproddce qualitatively some of the anoma-

ious impulse”propagétion effects_obsérved by Cranéfield, Hoffman and
their co—workéfs in cénine;Pufkinje fibérs'whoée éxcitability had b;en
chemiéally aepressed Qithin shall portions of their lengthé. P
 vThé parameters of tﬁe.first model‘are deri&ed by fitting pblynomial
ahd-piecewiéé'linéar‘funétions to thé meaéuréd relétions of membfane
current to membfane potential and time found in (16) and (17). 'Thié

model will be seen to reproduce the self-excited oscillations observed in

- fibers that do not recover from the dissection process as reported in (12).

The behavior of the second modél in the case of spatial homogeneity will
be shown to be similar to: that of the first model for the plateau:of the -

action potential for a healthy fiber, but it will not reproduce these

oscillations.

We shall also examine in detail the numerical techniques for finding
apprbximate solutions to thgvordinary and partial differential equations

.



from the models pfésented.

'Lef QS'begin with a brief. review bf thé expgrimentaily observea elec-
, trical chafaétéristics Sf the'Purkinje'fibers. 'Wé édoptrthe following
éignAcoﬁveﬁt?qn for‘the membrane potential and currents: the membrane
'potéhtial will_be said to increase as the interiqr beches increasingly
positive with*reSpec£ to the exterior; the flow of.positive charges‘ihward
is then regéfded'as'a depolarizing curreﬂt, and tﬁe,flow of positive

. charges outward is a hyperpolarizing current.

2. Saliéﬁ£ Features of the Electrical Beﬁaviér of Purkinje.Fibérs
i The Purkihjé fibers form the specialized gohduction sfStem'of the

heart. They are similar, but not idéntical to nerve.fibefs. Like nerVe,
énd-iike most bther heart or muscle tissue} they exhibit all or.noneb
response to electrical stimﬁli. The upsfroke of thevaction pofenﬁial
(ife. phase 1.of figure 13) has been shown to be médiatéd by spdium, with
peék amplitﬂdéy conductarice at peak .amplitude, reyérsal pqtehtial and
résponsé to drugs similar to thése of nervé célls (6). Like ventricular
muscle and ﬁnlike‘nerve, Purkiﬁje fibers éxhibit.a "long plateéu, often
| iasting hund#éds of milliseconds after the initial riée. The plateau is
stable with iespectlto small éerturbatiéns in poteﬁtial, but may be
 ébo1iéﬁed by strong hyperpolarizing currents.

.Thé plateéu has been studied experimentally by Noble and Tsien
using voltage clamp techniques in which the membrane_poténtial is held
apprqximately Constént in spacevand controlled in time; and the reSuiting
currénts meaéu:éd (16), (17); These clamp techniques work-well in‘the

plateau region where the potential changes'relatively slowly, but voltage
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control is unreliable duriﬁg the ‘upstroke, and therefore the current vol-
' tage relations are beﬁter understood for.the.plateau (6). The sequence

of events Noble and Tsien observe in (16) and (17) is as follows: after‘

the initial inward sodium current is inactivated, é depolarizing current
is activated fhat is responsible for the ma;ntenance of the plaﬁeau itseif.
A slowly activated ouﬁWard current counteracts this current, and eventually
abolishes thevplateaﬁ,,restoring the pogential of,the interior of the céll.
to its resting valﬁe approximatelyblOO millivolﬁs below the exterior.

The experimentél data from (16) Qeré used to estimate the parameters

for the ODE's cémprising the model presented in the next section.
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IT. 0.D.E.'s FOR THE PLATEAU

1. The Model and Fit to Data from Noble and Tsien's Observations

Our model is formally similar to the FitzHugh-Nagumo sYstem of

0.D.E.'s in that it contains a cubic current voltage relation and a slowly

activated outward current whose kinetics are described by a piecewise
linear 0.D.E.  Explicitly, the model has the form
dv. ' '
C— = i - I(V) -
dt Y total ) XWo
dt ' T
W = xW
o
. . 7
-where
. . : S . - ' -2 . .
1total - 1is the total membrane current in microamps/cm , a given functlon
of time; this is the quantity that would be injected by an
intracellular electrode, or measured by an intracellular current
measuring electrode under voltage clamp conditions.
v is the potential in millivolts of the inside of the cell, assuming
the cell to be surrounded by an electrically hbmogenéous medium
. which is considered to have a uniform potential of O. A
C is the membrane capacity per unit area of membrane, measured in "
: 2 "
UF/cm™ .
X is the‘level of activation of the slow hyperpolarizing current
that counteracts the plateau. X is dimensionless and ranges

between O éhd l.
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xw(V) ‘_is the value that x approaches as t goes to © if V is held constant;

this function is derived from the experimental data in (16).

T is the time constant in milliseconds associated with x. It ‘is

also estimated from experimental data.

I(V). is - the peak membrane current for a given value of V; this is the
) cubic polynomial referred to above; it has the dimensions of
. | ) . , . o v _
microamps/cm”.
: s e ' . L e 2
W o is the total restoring current in microamps/cm”,
W is the fully activated value of the restoring current, measured

ih'ﬁicroamps/cmz.

The'exﬁérimentgl basisvof tﬁisvmodél“of'the platééu‘is described in
(16).‘ In'(l?),[a'model is presented,‘aloﬁg with a numerical method for
feconsffucting the time course of the plateau from the voltagé clamp data
in (16). The numerical ﬁethod is a graphiéai'version'of the explicit
Cauchy-Euler scheﬁe. The resulting nﬁmerical reconstruction is success-
ful as far aé'it goes’, ‘but Noble and Tsien do not attempt to construct a
formal mathematical model based-ﬁpon their experim%ntal data relating.the
time course of the membrane cdrrent to the membrane potential which is
under their coﬁtrol. Actually, the graphs they use to evaluate the jonic
currents and their aétivation levels arevdrawn'by éye through a serigs

of points; it is these points, not the curves that came directly from

~ their experiments. Perhaps the actual fittiﬁg of analytic forms to the

points would pfeSent'Soﬁebdiffiéulty if the curve did not resemble any

familiar function; but a glance at.figufes'7, 8, 9 and 11 in (16) (see

appendix A, figures Al, A2, A3 and A4) feveéls that a cubic polyhomial
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ought to provide a good fit to figure A4, é?pieceWisé linear function
‘'should appfdximate A2 well, and as long aé application of the model is
restricted to the plateau range above -50 millivblﬁs or so; Al and A3
can be fitted by constants. On the basis of figures Al and A3 constants
were assignéd‘for T and for WO for potentials ip.the plateau range,

a least—SquareS cubic polynomial was fiﬁped to A4, and a piecewise linear .
fdrm for the function x was estimated frém figure.AZ. Werhave thus es-
sentiélly construcfed an anaiytical forﬁ of Noble éhd Tsien's graphical
theory.  Because of the compromiseé made, this model wiil only reproduce
the dynamics acc§réteiy in or near'the'plateauirange; but the leaét—
sdﬁares cubic fits the iﬁstantahéous voltage-cugfent-felation so well

that the predicted resting‘potential'of.—80.73 mV. and festing conductancé
'of.2.0Q898 x 10‘4 inho/cm2 compare quite favorably with measﬁred values

" of ~94 mV. (3, page 44) and 5.155 x 10™% mho/cm’(3, page 198).

| The actuai”nﬁmbers derived from Nobie and Tsien'é data that detefmine_

the explicit form of (2.1) are:

I(V) = (9.283 x 107°v% + .578 x 1072V + .0706) (V + 80.73) (2.2)
x_(V) = .01695V + .949,V > -55mv = . : (2.3)
= O, v < f55
T ‘? 550msec
W = SUA/cmz.
O

C will be taken to be 2.4 WF/cm®, following Fozzard (10).
'The dynamics of the fast sodium current that is responsible for the
upstroke of the action potential are not included in this model; it has

been noted above that reliable voltage clamp data are not available for
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for the upstfoke.’ Thé voltage'clamp,techniques usedvare too sléw to follow
the Na current; and thus,the stegdy state Na'cgrrent ié implicitly included
in I(V)t Thérefaré this ﬁodel éan ﬁotbbe expééted to produce action poten-
tials with the proper upstroke veldcities. That tﬁe‘model will not produce
proper action potentials can be easily seen by examining (2.1). At the
resting potehtiai,_w = 0, and |

| dav . -1

& - ¢ M.

'l';Taking the maximum of the right'hand'side indicates that the largest values
_of dV/dt to be expected are in the range of 1 millivolt per millisecond,
- two orders of‘magnitude'smaller than typical upsttoke velocities, but

‘quite satisfactory for the velocity of repolarization (16).

" Numerical integration of (2.1) yields, as expected, simulated plateaus

vthét possess all of the desired characteristics. - Figure 1 shows the time

course of a simulated plateau, beginning with initial conditions-V = =10
and W = 0; notice the similarity to the experimentally observed response,

figure A5, from (3), page 177. TFigure 2 illustrates the phenoménon of all

. or none repolarization in the response of the model to a series of hyper-

pblarizing shocks of increasing intensity. Four’graphs are plotted: the
normal time coqrse.éhown in figure 1, énd the time éourées of three simu-
lations ﬁhat‘were éubjécted to.hyperpolarizing shocké-of 5, 10 and 1275
microémps/cm2 fromt = 5 to t = 15 ms;_ Here, as in'the rea; system, a
hypefpolarizing stimulus of a given duratién will ndt aboiish the plateau
unless its strengtﬁ exceeds a certain threshold.

The phase portrait of‘the system (2.1) for the case of zero total"

current  is given in figuré 3, where the nullclines for V and W (i.e.

. av dw Lo .
those curves on which —— and a—-respectively equal zero; their intersections

dt t
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are the equilibrium points of the system.) are shown, along with several
:representative trajectories. In terms of circuit théory, this model cor-

responds to a nonlinear.conductor in parallel with a capacitor. The only

equilibriun point of this system is at W = 0, V = -80.73. This equilib-
rium point is. a staﬁlé one, as expeéted.

All or néthing repolafization can be easiif uﬁdefstood in terms of
the'phase portfait. During therplatéau, the potential is approximately
constﬁnt,,so the portioﬁ of the trajectéry in phase space porreséonding
to the plateau occurs near the v nullcliné. A hyperpolarizing cﬁrrent
| éppiiéé ;ofthé system'would be modeled by addiﬁg a negative termfto itotal
in (2.1). The effect 6f this on the éhaséjpértrait Qddld simply - be the
translation of the V ﬁullcliﬂe'downwards with no éﬁange in its éhape, as
shown in figure 4. Consider now the trajectories passing thfough the
poiﬁt P in figﬁre 4,'in;£he two cases of éero total current and negatiVe
(ile.lhypefpolarizing) current. The trajectory is Steeper in the zero
current case, since iﬁ the negative current case P is further from the

dt

If the hyperpolarizing current is then turned off,‘the V nullcline returns

V nullcline and therefore

is larger while %% remains “unchanged.

to its_originéi‘positionrwhich may now bé above the point Q; In the re-
gion below the V nullcline %¥~ is positive; thus iﬁ this case a depolar;
izing current will flov and the plateau will be restéred.. If, on the
ofher hand, fhebhyperﬁolariZing current shbuld be sustained»long enough
for £he situation illusfrated>in figure 5 to occur, éhen the trajectéry
would reach thé point R whigh lies in the region where g¥ is negéfive,'

~and the membrane would be repolarized to the resting potential. Therefore

a standard strength-duration curve could be plotted for all or nothing
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repolarization which would resemble qualitatively the strength-duration
curve for evocation of the action potential. Strong hyperpolarizing cur-
dv s : y .

rents would cause Ez-to become strongly negative, and the phase point would
traverse the region between the V nullcline and the V axis in figure &4
more rapidly than it would in the case of a weaker hypetpolarizing current ;
thus the weaker current would require'more time in order to provoke abol-
ition of the plateau and repolarization to the resting potential. A sim-

ilar explanation of this phenomenon appears in (16).

2. Self-Excited Oscillations

.For the purpoées of the following analysis of the stability of the
system, let us rewfite.(2.2) and (2.3) as follows:’
. ) dv » . '
i(V,W) = I(V) + W + CEE - - (2.4)

aw
- dt

aV - BW + vy, V = =55

- BW ,» V< =55

whege {(V,W) is the total membrane curreﬁt, and o, B, and Yy are constants
that arise as pombinations ofkw0 and the parameters of x_ in~the deriva-
tion of (2.4) from (2.2) and (2.3). (2.4)bis in the form of the current
.clamped caée, i.e. that case where the time course of ‘the current is pre-
determined; this corresponds to the case of a given current injected
through a microelectrode, among other thiﬁgs. 0f course, propagation
effects will be neglected for the time being; thus tth) describes a
short fiber, or one that has been space clamped.

We shall examine the behavior of solutions to (2.4) by considering
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:the sgabilify of the‘eq;ilibrium>points of the system for various constant
}.values io of the totai cur%ent i(V,W). Physiologically this would repre-
". sent a pgthglogicai steady ieakage current of'a steady_current injected
into a healthy celi ﬁhtough a ﬁicfoeléétrodévdr acroés‘é sﬁcrose gap.

This is not:the énly way insfabilities in (2.4) pould be produced. It
:woﬁld be helpfui to have some idea of tﬁe nature.of fhe pathology of those
fibers that exhibit the seif éxciged osciliétions»spontaneOusly; énylnum-

:bér og changes in the form of I(V) could produce them, e.g. the opening
:of a éhannel with linear cbﬁductance ;nd a reversal Eotential in the pla-
vteau rénge or belbw could change the phase portrait from one resembling
'j:figufe'3 to one resemb1ing figure.6{ This couldvquité eaéily'resﬁlt in -
self excited os;iilations; either spontaneously, Qr‘with the injection of
 a_steady curreﬁt. Now,_for a givén value of ;o’ lef.(Vo, WO) be an

fequilibrium point for (2.4). Then:

i + 1) +wl =0
© : (2.5)

.aVO—BWO +v =0
 We'have also:
Iy = 1 v®) + (-1 (v©) +-%(V-v°)21"(vo) + ...
Now putting U = v-v°, .y = w-uw’, a, = 1' (v°), a, =-§I"(v°), ay = %I"'(VQ)
We arrive-ét: B
dau 2 .3 '
Cdt = —alU—azU —33U -Y ‘ . L (2.6)
§X_; aU-BY

dt

where we have explicitly made use of the fact that I(V) is a cubic_polyhomial.
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‘'The linearized system in a neighborhood of (VO, wo) has the form:

. o | i ( ) - ( L .%g;) ( ) , (2.7)

o -8

" We know from the classical theory of Ardinary,differential equations
that the sfaﬁility of the systemv(2.7) in a neighbérhood of the origin,
which corresponds tq the stability of system (2.6) in:a small neighborhood
of (Vo,wo),‘is;charactériZed by‘the eigénvalues were computed ﬁumeriéally

for integer values of V? from -1 to -80, assuming C = 3, with the following

 results;_ 
Y = =1 to V= =23mV Eigenvalues‘real and negafive
V==-24 to V = —29.Y‘Eigenvalues_conjugate_complex, reai part
- T negative » | |
V=-30 to -35 .Eigénvalues conjugate complex, real part
' o positive ' o

V=-3 to =54 Eigenvalues real and positive

‘§.= -55  to : -66 Eigenvalues real and of opposite sign

V= ~-67 ‘té -80 Eigenvalues real and négative.

o - In order to determine whether self-excited oscillations will occur
’ . \ ' . - ' . o
- -~ for a given total current i, we compute the corresponding value of V7,

and thén_find the eigenvalues of the linearized system in a néighborhood

o P . o . v o
). It is interesting to note that while the value of C does

of (V°, W
-not affect Vo(Note that WQ is linearly related fo Vo), it does affect
the.éigenvalues of (2.7) and thﬁs the stability of the equilibrium pdint

v°, w°).



The équilibrium potential v° "and thé equilibrium restoring current
.WO as functions of the total current io are gi&en in figure ?.' These
_poinfs (Vo,'wo) are the intersections of the V and W nullclines on the -
. phase portrait for the system with total membrane current io
It ié clearvthat all solutions of (2.6) stay bounded for all time. v
- To see this,'éimply multiply the firét equation by‘aU and the second by
Y, and add the two resulting equations together; The result ié an expres-
sion for'%'é%(aU2.+ Y2) that is quartic in U and quédtétic in Y with neg-
‘vative leading coefficients, from which it fbllows tﬁat the time deriva;ive
of aUz + Y2 will be negative for all'U.and Y.sufficiently large“in abso-
lute value. _Numérical eyidence indicatés that for equiiibrium potentials 
in the plateau féﬁge (i.e. > -48 mV or so) there is ohly one equilibrium
poiht for the whole system; éhis corresponds ;o leakage cﬁrrents greafer
ﬁhan 1.5 uA/cm2 or so, given a membréne'capacitancé of 1 uyF/cm . We can
see from (2.4) that membraneé with larger capacitgnces:require more cur-
reht to aisplace the resfing potentiél an equivalept_amount. 1f there is
a unique equilibriuﬁ point'and ;he eigenvalues of the.matrix in_(2.7)

have positive real part, then solutions starting near tﬁe equilibrium

! .
i

point must spiral outwérd and, staying bpuhded,_must'approach a limiting

orbit which is necessarily periodic. This iS-fhe content of the well:

known Poincaré—Bendixson theorem (see, e.g., (13), pp- 109—111).A .
For soﬁe positive values of io there will Be‘two or more critical

points; this can be seen by taking the cubic curve in figure 3 and trans-

Iating it upwafd without changing its shape. 1In these cases the possibil-~

ity éf 6£her behavior.arises. Numerical computation of approximate

solutions to (2.4) in one of those cases with three equilibrium points
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indicates_fhat’no new behavior worthy of additional consideration occurs.
The results of these c§mputations ére éummarized iﬁ-figﬁre 8.
Let us'turn‘npw to the”expcrimentélvdaté on ﬁhe:sélf—excited oscil-

lations shoﬁn in figure A6. - GiQen a typical area for these fibers of

.005 cmz((IZ);:page 259), wé may c&nyert the currents shown in figure A6
to currents péf Qnit afea,’andvcompére thé experiménﬁal‘résults to the
_predictioné of the model.-'The resuits in figure Ab iﬁdicate that as the
injected hyperpolarizing current passes through a‘fange_of approximately

2 microamps/émé;:the fiber-pasées from stability at —Zb hillivolts through
states of self—éxcited'oScillation with increasing'amplitude and period

to a stable épate near =50 miilivoits,'in good agfeéhent.with thélmodel.'
~ We can see from figures 9, 10 and il thét the staﬁement én page 255 of
(12) that "Thévéﬁplitude and frequency of tHe oscillations. are vefy
‘sensitive to.applied'curreﬁtS'léss'than 1 microamp/émz; Larger currents
abolish thequéiilétory'aciivity " also applies thou¥ model. Thﬁs in
;this model, aé in thevreal system, eﬁuilibrium pbtentials beﬁweén.—BO and
-50 millivolts‘are'unétéble,.and oscillatioﬁs;resuits. Stable osciliétions
of realistic-magnitﬁde aﬁd period appear at léakage'currents-neaf 2.6
microamps/cmz; for leakage cﬁrrents slightly 1essbthan'2.6, the oscilla-
tions will be_much.slower, with magnitudés>1arge énéugh to carry the poten-—
tialhout of the region of applicébiiity bf this siﬁple.model. Hénce the
oséillations ihiﬁhé plateau fange'observed.by Hauswirth, Noble and Tsien
in (12) aré observed in the ﬁpmeficél-solutions'of théhequations compris-
ing this quel. The agrechent of ourvcomputational;results with experi-
ﬁent lends support to the statement in the "Discussion" section of (12)

that "..:it shduld be relatively easy to induce low VOltage oscillatory
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activity in normal preparations by procedures which simply vary the amount
of background current...low voltage oscillations fepresent,a mode of

activity of relatively normal membranes.'

s

3. A Model of the Purkinje Fiber Action Potential
We next construc;_a quel #hat combines thé plateau kinetics described
above with Hodgkin-Huxley type sodium kinétics tb>produce simulated Pur-
kinje fiber action pqtentials. No attempt was ma@e to include the fast
outward transient thaf ié réépoﬁéible for the notchvoﬁserQed at thebbe—
giﬁning of thé.plateaﬁ (this notch is perceptible in figure A4 in the top

and bottom traces; itvis‘more pronounced in other records in the litera-

¥

ture) and the pacemaker po;ential,_which manifests itself as a'slow.de_
polariziﬁg current in phase 4, and is respohsibie'fof spontaneous pace-
maker;activitylin some Pﬁrkinje fibers.

Before presenting the model itself, let us fe?iew briefly.the kinet-
ics of the fast sodium current in the Hodgkin—Huxley:mode1. The sodium
current is assumed to be proportional to the diffé?éhce between the mem-
brane potential gnd}the spdium gquilibrium potentiél VNa given by.the
Nernst»equation: o i o ‘ N

v = Ez.ln [Na]external
Na = F (Na],

internal-

where T is the absolufe temperature, R is the universal gas constant, F
is the charge in coulombs of a mole of elementary charges, and square
brackets denote cohceﬁtfation. The factor of proportionality, i.e. the
conductance, dgpends on two dimensionless parameters m"aﬁd h which vary
between zéro énd one.. The parameters m and h obey first order raté equa—-

tions whose coefficients depend on the membrane potential V. We introduce
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~for m the rate constants am and Bm, both depending on V as follows:

am(vj = 0.1(V + 25)[ exp((V + 25)/10)—11"1; Bmv= 4exp (V/18) (2.8)'

and similarly for h:
ah(V) = .o7exp(v/20); Bh(v) = (expl (V +°30)/10] + 1)"1' (2.9)

We may now write the rate equations for m and h:

dh

UL AL @2.10)
dm _ . '
E — OLm(l—m)—Bmm

In terms of m and h, we write the sodium conductance as:

B T by,
where éNa ielfhe eeak sodium COnductance{ The effecfrof temperature may
be simulated by 'multiplying the right hand side of equations (2.10) by
some function of temperature ¢. {(for deﬁails,’see (7), page 25; for
further modifieations, see (8)).
| To gain eeme insight into the behavior of m and h, let us define"
four nmew functions of V; mm,.Tm, hm,'T as follows:

h

a - i

© o + 8 m a + B
m m
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- and likewise for h. (2.10) then becoﬁe:

dm I, — M . dh __®
dt T > 4t T

Thus if V is held constant, m decays to m = with time constant T and h

decays to h_ with time constant Th' m Tm, hoo andvTh are very complicated

functions.ofbV, but an intuition cah be\géined_for the behavior of (2.11)

w’

by examining théir graphs which are displayed in figurés'12 and 13. The

whole expression for the sodium current in this model is:

i =

Na &N ) . | (2.12)

- .3
am h.(V—VNa

,/" '

Underindfaal condit_ions,'VNa is approximately 120 mV., so the {ﬁa
term is negafiVe at rest, but very small in magnitude due to‘the small
value of m near the resting potential. |

Let us now examiﬁe'theibehaviér'of'the sodium current during phase 1
as illustrated in figure 14.__Suppose'the system starts.in equilibriﬁm;
~and is subjected at time t =u6 tb a short pulse of inward current that
quickly raises ﬁhe membranevpdtential V from rest by 20 to 40 millivolts.
The value of m_ at this new potential is near .5, while the value of‘h°°
‘at the new potential is very nearly zero. Since Tm is very much less
than Tﬁ’ m approaches its new equilibrium value rapidly, while h remains
near its original value for some time. Since the new equilibfium value
of m and the original (i.e. evaluated at resting potential; see figure 13)

equilibrium value of h are comparatively large, the total sodium current
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becomes very strongly negative for a short time (i;e.‘<<1h). Since the
total current is the sum of the ionic current and the capacity current
_ v, - - - .
(given by CEE) and the other components of the ionic current remain very
, - T v I
nearly constant over times comparable to Tm’ at must become positive
under current clamp conditions. The result is illustrated as phase 1 in
figure 14. As phase 1 continues and V rises, we note from the lower graph
in figure 14 that m rises with it, while h does not reach its minimum un-
til well into phase 3. Phase 1 ends as the rise in V is limited by two

factoré; as V ‘approaches V the total sodium current (given in (2.12)

. Na’
dec¢reases; and eventuélly, h begins to decféase sharply, since its equil-
ibrium Qélue at potentials greater than.60 mV»abovevfésting potential is
éffectively zero, as'shown_in figuré;l3.

We have notéd above that the assumptions unde:lyiﬁg the defivation
of (Z.i) break dbwn outside of the plateau region, and ex;ension‘bf the
model to more ﬁositive or negativé potehfials.requires the.introductidn
of nonconstant functions of V for 17 and Wo, and the:modificatioﬁ.of xw(V)
so that it will fake a constant value of 1 at potenfiais greater than a
giveﬁ cutoff'potential. We choose this.cﬁtoff potentiél by requiring
that x_ be continuous, i.e. we:solve 2.2 for the value of V éuch that
X, =1, and sét x, = 1 for all larger V.' By this process we find thev
cutoff fo be V_= 3.0088 mv. wo was fitted to Noble and Tsien's experi-
mental data (fig. A3) by a quadratic.polynbmial and T_l is fitted to
figuré Al by a least squéres cubic. The explicit forms of these poiy—

nomials are given below:

8 ~1.983 x 10 (V- 50) (V+ 80.73) ,
| (2.13)

2.365 + .009141 V — 3,582 x 10'4v2- 9.166 % 10‘6v3

= .
Il

=]
i
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The integratéd'model is‘esséntialiy a combinétion'of 2.1 with wo and T as
in (2.13) with excitation modeled (by 2.12). One last étep in thé con-
struction rémaiﬁsi .I(Qj_implicitiy éontains the sFeady state sodium 
current, since,tﬁe“experiments on whiéh‘its c&nstrucFioq ié‘bqs§d involve
time scales so much 19nger than Tm that the sodium kinetigé are reéarded
as occurring insﬁantaneously.»vTherefoie a;term of thé form éﬁamwhm(V_VNa)
must be subﬁracted ffom the sum of the spdigm current and the plateau‘
currents ﬁo aYOiﬁ poup#ing the steady,state sodium“cprrent twice.

We now hgvg allithe‘tetms hecesé;ry_to writg dqwnlequations thaf will
‘model the behavior of a fiber with degkinéﬂpkiey excitability and a pia—
teau wiph'the kinetics observed by Noble and‘Téiénvfberurkinje fiberskl6)

The equations are:

. R T « ' S o= 3 . =-. 3 .
i(v,x,m,h) = Cqr + I(V) + W+ CA h(V_-' vNa) gNamoohoo(V -‘-VNa)
W o= xW (V)
dx _ -1 o ' ’
qe T T (V) (= (V) -x) S o ) . (2.14)
dm moo - m
Z{E = T :
m
dn _ hoo’ - h
di . Th

It would seem from -the vAstlyvdifferent time scéles of the upstroke
of the action ﬁdtential and the plateaq thatnprqbléms of stiffness would
;éfiéé.ih35n§“ﬁuﬁeriéal calculaﬁibn associated with a model of the Purkinje
fiber action pdtential. Such stiffness problems do indeed await the unwary
user of,éxplicitiméthdds with long time steps, especialiy if he attempts

to lengthen‘his time steps by‘uéing highly accurate multistep methods.
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The failure of such tactics is well'illustrated inifigure A7. This graph
is reproduced from (15), thch ie'a studyvof numerical techniques for the
Hodgkin~Huxley eystem. If an impiicit method is uSed, one‘may take time
steps of the same order as the slowest time constant‘in the p;oblemvdnCe
the fast parametersvhave come sufficiently'elose to their'equilibrium val-
ues that further-details of theif time.cedrses are no'longer of interest.
Thus, if'an'implicitimethod'were used to integfate (2114), we could expect
to take time stepS'of the same order as the times characteristic of the
plateau once the sodium transient decayed. 'Hewever;.the.added complica-
vtion of the implicit metﬁode'adds so much computational ovefhead that the
-longer time.steﬁs they take may not resultein any overall saving in com-
vpdting cose over'explicit methbds unless the stiffness of the system is
quite:pronounced. For (2.14),vHuen's secOnd.ordef'explicit Runge-Kutta
method was obserVed to perform as well as Miller'svsecond_order diagon-
ally implicit Rﬁnge—Kutta method which is specifically designed to eeal
with stiff eystems (see K. Miller (14) for details of thie method and
stiff systems in. general). The damping effect of h upon m seems to
stabilize the system and eliminate much of the stiffeess after the fast
transients have diea out. The usual stepsize changipg algoritﬁm alioWed
Huen's mefhod to take timeAsteps as long as the 1ongest éllowed by ‘the
diagonally implicit Runge-Kutta method. However, futufe investigatofs
would probably do Qell to keep in mind the fact that because of their
essential dependence on widely differing time constants, Hbdgkin;Huxley
type systems are inherently stiff, and in eome cases may require specialized
methods for practical computation.

A typical action potential computed from eduetions (2.14) is
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illustrated in figure 15. A system of partial differential equations

could be derived. from (2.14) in order to model the behavior of propagated

impulses .in Purkinje fibers. Unfortunately this is .not a computationally

practical model because a fine space«érid is required to resolve the quasi-
threshold behavior of the sodium current. This limitation, combined with _

the excessively small time constants of the upstroke relative to the long

‘time constants of the plateau (i.e. stiffness, or greatly differiﬁg time

constants) leads to excessive computational expense, even on a computer

‘with the speed and cost effectiveness of the CDC 7600.

We should note finally that this model contains the implicitAassump-

tion that the instantaneous current-voltage relation I(V) is actually

.

_instantaneous; this- assumption was warranted for the modeling of the pla—

teau with its long time scales but since this integrated model is intended

--to deal with time scales of the same order as the sodium activation time,

* the assumption is no longer consistent.

The next sections deal with a qualitative partial differential equa-

tion model which will be used to investigate the nonlinear propagation

phenomena observed in (4).
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I1II. THE SIMPLIFIED MODEL

1. O.D.E.'s for the Spacé Clamped Case

In this and the follo&ing sect%ons the purely qualitative model re-
ferred to in the introduction will be described, as well as the numerical
schemes used»td compute resﬁlts-from it and the numerical results them-
‘selves. We éhall begin our diécussidn with a preseﬁtation of thé‘ordinary
differential equations that deséfibe the SPace clamped case, or equiva-
1ently, a small patch of membrane in which there is no appréciable spatial
variation in potential.

For the purposes of the féllowing analysis, a homogeneous patch of
mémbranevwiil'be conéiaered‘as a paéallel'RC ;etwdrk-in parallel with a

nonlinear conductor, which may be represented schematically as follows:

outside

‘ l c R direction of;injected
potential u . .
: : current 1 ,
¢ . nonlinear
inside
_Figure 16

where the‘rectangle‘labeled NLC is a nonlinear conductor with properties

as follows: for u < some constant voltage a, it acts as an open circuit;

N

for u = a, a current is injeécted in the direction indicated which decays

‘exponentially in time with time constant Ty We write this as follows:
0, u<a
i =
i E h (3.1)
nonlinear. Yo', u>a
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'

where h is a dimensionless variable which takes on values between 0 and

1 according to the following O.D.E.:

dh . i-Alca) b | (3.2)
h
EO and T in:the above two equations are constanté.with the dimensions
of potential and time respectively; H(y) is the Heaviside function, i.e.
‘H(y)=0 if y_ is negative and i if y=0. ’
If we wri;e:
"RC = T

-and set the sum of the currénts in the resistor, Eapacitor and NLC equal
to zero, we -arrive at fhe f§1}owing differenfial équationsvor the behavior

of the circuit in fig. 16:

_ .
du 1 o) '
— + = = — -
ac Tu T H{(u-a)h

(3.3)
dh _ 1- H{u=-a) - h
dt T

At rest, u = OYand h =,l; If, however, .the médel is_brought to
threshold, séy by g'stimulating currént appeéring as a poéitive‘term.on
the right hand side of the first equation of (3.3), the.soiution may.be
found as follows: Let us begin.at.t = 0 with u = a and h = 1. Then
H(u-a) = 1, and so, for a‘short time at least, h #.exp(}t/Th), assuming

Eo is large enough to make g%— positive when u = é. The. first equation of

(3.3) then becomes:
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du o) :
—_— T eXP("t/Th)

+ iu =
dt T
Multiplying through by exp(t/T)'yieldé:f,j'l

d _ o 1 1
e [exp(t/T)u] = - [eXP( = - Th]t)]

integration with respect to to yields:

PR wul G |
exp(t/T)u(t)—u(O) = h .

So:

Eo(exp(—t/rh)—exp(—t/T)) |

u(t) = u(0)exp(-t/7) + T 6w

There are two limiting cases that are of interest: LI 0 and
o .. T,
‘ ' h
;f'?*”-vThe firstAis the more realistic case from the point of view of the
Y ' . 7 oL
task of modeling of action potentials, but the second will lead to a P.D.E.

with peculiar and interesting prdpérties.‘

. T .
First, put = £<<1l.  Then write:

“s=t/T; u(t) = v(s)

Substitution into (3.4) yields

E

v (s) f.V(O)exp(—s) + if% (exp(—eé)-exp(—s)) _ (3.55
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So for short time, i.e., s << 1/¢, we have:
v(s) = v(0)exp(-s) + Eo(l-exp(—s));

Graphically, this looks like:

~ Figure 17

>
S

For time scales on the order of T the time scale of the decay of

h’

. we-introduce the variables r = t/Tﬁ and w(r) = u(t). From

i .
nonlinear’

(3.4) we find that:

S E ) : ,
w(r) = w(0)exp(-r/€) +,-If% (exp(-r)-exp(-r/€)) v
' (3.6)

~ E (-
0exp( r)

as léng as w(rj 2 a; when w(r) decays to a, the current injected by the
nonlineaf elemént turns off, and the second ferm on the right hand side of
(3.6) vanishes} Thué, to lowest order, w(r) vanishes after this point; and
the lowest érder solutioﬁ exhibits é”jump from a to 0. This jump‘is actu-
ally an exﬁonential decay with'time éonstant € in this time scale. We

may determine the pulse length tb to lowest order by setting:
: Eoexp(-rp) ==Eoexp(-tp/Th) = a,.

Dividing through by E and taking logs on both sides yields:
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Figure 18

>
0 t t

We note heré that the above results could havé beén obﬁained'by intro-
ducing fhe scaled ygriablgs r and s into equations'(3.3), solving £he‘
resulting sYsteﬁs'to lowest order in €, and thegrﬁafching.the éolutions
_obtainéd, rather than writing down (3f§),'th¢ sglut?oﬁ*td (3.3), and examining
. the:behaviqr‘pf'tbe§§9¥utiop for long anq'éhétp timés as wé ha;é dbne.

h

sider is.not simply this limit, but the case in which T/Th-*-oo while the

Let .us turn now to the case T/T, . Actually, the case we will con-

total chafge iﬁjeéted by the nonlinear‘element remains constant. .If‘this
constant charée provision'or something‘like it Qefe not assumed, and all
other parameters'wefefhgld.constant, then tﬁis casé would reduce to that
of.é current injected for a décreaéingvamounf of fime, which would become
_ trivial in thg limit. |

to see this, let us consider ;he total charge injected by fhe non-
linear elemen; if the potential is maintained abéve tﬁréshoid for infinite

time. The total chargé Q is given by:

Q- —-0 lnonlineardt Y A exP(ft/Th)dt"' R
: | - 70 ' (3.7)

)
=T

h
1F-CEoexp(—t/Th)

1
It

t =20
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3

So the capacity of the membrane will be charged to a potential of

Th

€% = 7F(Eo) which vanishes as Th/T goes to zero. Let us rewrite

that Q remains constant as follows:

du . 1 _ _Q

at ¥ Tv T g Hlemadw
. h

+dh _ 1 - H(u-a) - h

dt , 2%

(3.4) then becomes:

u(t) = u(0)exp(-t/7) + exp(~t/T)-exp (~t/T, )

_qQ
cti-e)

(3.3) so

(3.8)

(3.9)

where € = Th/T. As €-0, this model reduces to a model devised by Charles

Peskin in which the nonlinear element in fig. (16) injects a delta-function

of current when the potential passes a certain threshold. We may now

repeat the analysis given above to determine the behavior of solutions to

(3.8) for smali é. Writing r = t/Th and v(r) = u(t), we find
Y@ = (o) exp (em) + E?f%gi [exp(-£x) -exp (-1)]

For short times, i.e. small values of r, the above reduces to

v(r) = v(O)'+<% [1 - exp(-1)]

For longer times of thé order of T, we choose the new time scale s

= t/T,

and the neWisolution function w(s) = u(t). Equation (3.9) then becomes:

w(s) = w(0)exp(-s) + | [exp(—s)—exp(—s/e)]__

Q
- C(1-¢)

which reduces to:

w(s) ~[w(0) + %—]exP(—S)
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to lowest order.’

Hence the solutions to the above 0.D.E's afe_ﬁery similar in form for
both bf the limiting cases'considered.‘ We shéll.see,‘however, that these
two cases behave very differently Whenvwe'pass tovthe case of the partial
>’diffefentia1‘équation deséribing'aiiong fiber;;vg-]

In order to compare Phis simp1e moael with.the_more detailed model of
the'Purkihje.fibef'plateau bresentéd>iﬁ chapter II, we define a new

parameter p = 1-h, and write (3.3) as

E

- gltl_ = = %u'+ ?9 (1-p)H(u-a)

. (3.10)
dp . H(u-a) - p
dt Th :

ThehpﬁééeAp;;traiﬁ};f 13;95 iélgivén in‘figﬁfe'lg; vTo the left of the
vértiéal liné u‘.= a; this is exaétly‘the ﬁhaée portréit of Yoﬁng's model,
lés iiiﬁstrated in fig{ é.l bf“(7),.with fhé vertical line u = a cortespond—
‘iné exééfly to wha£ FitzHﬁgﬁvééiis the excitatibn»barrier; To thevright
of fhe ;ﬁéitation baprié;; ﬁﬁé similafity'tq figure 3 is ciear. -In the
plateau region, the simﬁlified'ﬁddel can be expeéted té behave much like-
the more detailed model.with sﬁail léakage‘cufrént; The simple model will
~ exhibit ail orlnone repoiérization from the plateau by exactly the same
dynamics as the more detailed model.

The simple model will not reproduce the self excited oscillations that

occur in nature and are exhibited by the detailed model. This failure

results from the sharp discontinuity of,H.,ij we were to replace H with

1

+ e"(X/Z) >

and substitute
l .

some approximation Hz’ for example, Hz(x) =
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Hz for some small z in place of H in (3.10), the phase portrait of -the new -
system would resemble figure 20, in which self-excited oscillations could

quite plausibly occur.

2. Traveling Wave Analysis for the Partial Differential Equation

The PDE that describes the electrical behavior of a long fiber whose

space-clamped behavior is ‘given in (3.3) above is:

2

A U = Tu, -f EOH(u—a)h + u
(3.11)
h _ 1- H(u-a) —.h
t T

h

where A = the length constant of the membrane, and the subscripts x and t
represent differentiation with respect to length and time respectively.

Eo’ T, and T, are the same constants defined above in section 1 of this

h
chapter, i.e. EO/R is the peak amplitude of the current injected by the
nonlinear conductor, T is the passive membrane time constant.and T is

the time constant associated with the parameter h.

A Let us scale the equation as follows:
_ X, s = &
y A T

(3.11) then becomes

u u + u-E H(u-a)h
vy s o

(3.12)

jny
I

. ‘
j'[; {1-H(u-a) -h]
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Figure 19

'Phase Portrait of Simple Model

vy
1-2 4 e
Eo . //
P
) B/
0) —_
_ U
------ p nullecline

U nullcline . .
——>direction of trajectory
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Figure 20

Phase Portrait of System with Pointwise
Approx1mate Step Function

¢+ s+--=p nullcline
U nullcline
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Now let us look for traveling wave solutions to (3.12) by transforming
to a moving frame of reference translating to Ehé left with speed 6. We

do this by writing:

and seekihg solutions of the form u(y,s) = v(z) and h(y,s) = h(z). The

new functions v and h must satisfy the ordinary_differential equations:

< .
1]

ezv' + 92v - GZEOH(V—a)h

_ (3.13)
h' = —[1 - H(v-a)-h] .
T .
We now'impose the follQWing conditions on v:
v(0) = a; v(z)*0 as!zjf+m; vec'(R) ; v(zl) = a for somev.zl >0 (3.13a)

We solve (3.13) subject to (3.13a)as follows: for z <0, h'= 1 and v(z)

= aexp(y,z), where Y, are the roots of:

L ‘ o 2.4 h 42 2 S
2 2 L2 . 9%+ Vet + % e L
Y -8y -606"= 0_, l.e. Y‘.*: = 3 ‘ = 7{ * 1+ 3 }

Let us now consider the first limiting case discussed in section 1, i;e,
__%- = € < 1. In the interval 0 <z <z , h = exp(-€z), so in this region,
(3.13) becomes

¢
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v'o= 0%t + 6%y - 0%E exp(-e2). , ‘ (3. 14)
It is then natural to look for solutions of the form:
v o= Alexp(y+z) + Azexp(y_z)‘+ Bexp(—Ez) : (3.15)

B is determined by substitutihg Bexp(~£z) into (3.14) which yields:

€? + 0% - 058 = 0%,
hence
2 2

€ + 926 -0

Note here that B—>Eo as e€~0.

The solution in the region 0 Sz < zy is given by (3.15) and the solu-

tion in the ?egion z >’zl is v(z) = aexp [Y_(Z—zl)], h = exP [_e(zl+z)] + R

l—exp(-éz). The condition that veﬁl(ﬁ) then becomes:

B + Al + A2 = a
R T Y_Az - v (3.16)-
‘ Bexp(—szi):+ Al exp(y+zl),+ A2 éxp(y;élj = a
_eBekp(fszl)'+ Y+A1 exp(y+zl).f Y_A, exp(y_zl) = Y.a
If

(3.16) is a set of four equations in four unknowns: Ai, A2, ©, and 2.

this system can be solved, then we have the exact solution to the traveling

wave problem.
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-

Let us now seek a solution to (3.16) in which the upstroké of the

pulse is determined by the Azekp(Y_z) term, the downstroke is determined

1

this is equivalent to requiring the pulse_to bé,shaped like the solution to

exp(y%z) term, and the plateau is approximately given by Bexp(—ez);

the ODE described above for T/ka<l. Accordingly, let us define the new

17 Alexp(Y+zl), and assume that Cl is of orderva, i.e.,

coefficient C

A1 is of order exp(—y+zl).,_Neglect1ng terms in exp (—Y+Zl) and exp_(y_zl),

~(3.16) reduces tof

i) B + A2 = 3
-£B + Y_A_z = Y+a
ii) Begp(-szl);+.cla = 3

—EBexp(—Ezl) +.Y+Cl =y_a

In this approximation, the speed may. be determined by the behavior

1

speed derived from i), along'with-the solution of ii). Thus the speed is

“of (3.17) i)*alone; and the pulse length Z» is then determined from the

determined soiely by- the behavior of the leading edge of the wave. This

is a realistic result; wavelengths‘associated with the pulse as a whole
must be of the order of tens of centimetérs, since'thé pulse duration is
~ 300 milliseconds aﬁd the propagétion speed is &~ 2 ﬁeters/ second. These
long wavelengths are of the same length scale as the.whqlevfiber, so the
front‘of_tﬁe wéVe is the only part that can be said to propagate in any:
meaningful sénse; 'This uncoupling of the leading from the trailing edge

is exactly the behavior we want from a model of Purkinje fiber action '

potentialf
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In the zeroth order approximation in €, we find the speed of the
wave to be exactly that of the traveling front of a change of state wave-
form for a pure threshold process without recovery (Peskin [ 18], pp. 261-3).

th . . .
The zero’ order approximation eo to the speed 0 is:

: 2
62 - (p=2)
o n-1
. Eo
where p = P

We now turn to the outer expansion, i.e. time scales on the order of

T, . With the new independent variables s = t/Th and y = x/A (3.10) be-

h
comes :

) _‘:L; i Lo B
uyy_ = Th u EpHFu.a)h-Fu

"h = 1 - H(u-a) - h

As aboVe,:we look for traveling waves. Write z = %-+ s, u(y,s) = U(z), and

h(y,s) = h(z). U and H must satisfy:

i
52

h' = 1 —-H(U-a) - h

g" = eU' +U - EOH(u-a)h
- (3.18)

By dimensional analysis, we see that ¢ = g

As before, we require pulse shaped solutions, i.e. U(z) 2 a iff 0 <z < z

so in (0, Zl) h = e—s, and therefore in (O, zl) (3.18) becomes:
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To zeroth order in €, U = Eoe z andAwe may aﬁpfoximate z, by:

The'zeroth order approximation to (3.18) for z < 0 or z > zy is U= 0.

This can be matched to the above approximation U = Eoe Zat z =0 and

z = by patching the two regions with expansions in the fast time scale.

z
1
In the slow time scale, the solution rises from a to Eo‘at z = 0 and decays

from a tp 0 at z ="zl exponentially with time.constant of the order of €,

‘since the characteristic roots of (3.18) with U< a are —f where Yi

are the same as in equation 3.15. The form of the solution in this long
time scale is shown in figure 21.
This model is a very crude one, and in fitting its behavior to experi-

ment, some compromises must be made. To see this, let us refer back to

(3.10):
2 E
A- u =u + 1 u - —Q-H(u—a)h
T XX t T -
' ht l—H(i—a)—h
: h
Now transform to the moving coordinate [ ="§',+‘t, and look for traveling

ﬁave solutions of the form u(x,t) = U(g).

We then have:
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o , FPigure 21
The Long Time Approximation:
Form of Solution and Region of Validity

—> Ofe) <—

%———1ong time>Sca1¢ OK*—f—ﬂi _ *——-longvfimevgcaie Ok >

hatched areas are regions of validity
- for the short time approximation
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2 E .
2 " U+ Tyu- © H(U-a)h
c T T
" 1-H(U-a) -h
Th‘

with boundary conditions as before: U(g) >0 as Ic|-*®, U(C1)==U(O)=:a for

some positive &y The solution in the region [0, gl]'will look like:

exp(Y T)

UCg) = Bexp(-kZ) + Ajexp(y L) + A,
: 2 2
where k = %— and Yy, = —C—z 1 +¢ 1+ .2>‘ 5 }
: : h B 2 ¢t '
2 - :
Assume'-7zv<< T this is the assumption that the propagation of the front
c _ ’ ‘
is the fastest process in the problem.
2 ' 2
’ 4 ~ 2\
Then. 1+ ) 1+ 3
Y O § - .eT _ o
and Y_* :l‘. We assume as before that the Alexp(y+c) term remains unim-

portant near the leading edge. The boundary conditions then become:

YAy - kB = y,a

Since k <3:|Y_1, Uﬂﬁﬁy_Az near the threshold crossing at 7 = 0. We also

.~a-E
(o)

have: A2'= a-B and B’“Eo, so U'(0) =

But the peak amplitude will,be,of the same order as B (recall that the

shape of the,pléteau is approximately Be—kc). Thus, if we pick 710 milli-

seconds in accordance with observation (3) and ask for the peak time
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derivative of the botential to be around 1600 V/sec as is observed ex-
perimentally, we find amplitudes in the neighborhood of 10 Véits!

In the actual numerical simulations, we have chosen to compromise the
rising speed of the pulse rather than tolerate such unrealistically high
peak amplitudes. Parameters used in the numerical simulations described

in chapters four and five were chosen as follows:

‘E = 225mV
o A

a =  30mV
T = 5ms
Th = 100ms
A = 2mm

‘Numerical solution of 3.17 for these values yields speeds near Im/sec, and
a pulse duration of approximately ZOOms. The amplitude.is somewhat high at
approximately 180mV, and the total rise time is rather slow at 1lé6ms, but
still fast on thé time scale of the'feievant ekpefiments which lasted
several seconds.

It is assumed tﬁat the nonlinear characterisfics of the membrane are
dﬁe to action.of some. structures (i.e. pbres or carfiers) at specific sites
at the membrane. Each site is assumed to have kinetics désCribed by; |
- H(u_a)h;' dh _ 1 -H(u-a) -h

dt T

Yindividual
site

and the parameter Eo in the foregoing sections is proportional to the

density of active sites on the membrane. Thus if we assume that the action

*4
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of some blocking agent is to clog up the individual sites, we may model
. N o ’ . . . :

the blocked fiber by:

2 =u+l'-3(5§—°—u(-')h
T u}_(X t TU X T u-a
; : B . (3.19)
ht _ 1 —'H(g—a) - h o
_ h

where B(x) is the proportion of unbiocked active sites.

The action of poisons that interfere with the,excitation process by
changing the kineticé'df each individual site could be modeled by multiplY—
ing a or T, by a suitable function of x or ﬁ. |

For Vérious choices of B(x), delay, block and one—wey conduction can
be observed in.the'ﬁumerical solutionuof (3.19). The nuﬁerical techhiques
used to selve (3.19) wili be discussed in Chaptef IV) and the results

will be exhibited in Chapter V.

. _ T .

3. The Pathological Case: ¥—'>> 1
Although solutions of the space—ciamped system in this case look

. T o .
- much like those of the space clamped system for ;—-<< 1, the two traveling
' . 'h

wave cases are very different. 1In fact, the only traveling waves that
exist in the limiting case - = 0 - (as noted above, this corresponds
to a nonlinear element that injects a finite chafge across the membrane
instantaneously when a given threshold potential is reached).are moving
cusps, where the peak is at x#0t = 0, for some 0.

We shall now derive the differential equation for traveling waves

in this case. As noted in Section 1, we must modify the current-voltage
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relation so that the charge injected by the nonlinear conductor remains
constant indepéndent of T, we will then derive thé equation for the
traveling'wéve case exactly’as before, by scaling x and t appropriately
and then making a transfofmation to a moving framé of reference.

As befdre, we choose the length constant A as our scale length;
therefore we define the new variable y = x/A. The time will be scéled
to the passive time constant 1, which, in ﬁhis case is the slowéstvtimev
constanf in the problem. Now wrife T/Th = 1/e. The modification to
(3.3) that yields the constant charge property we wish to incorpofate
in the model qurrently under discussidn can be made by writing Eo/e
instééd of Eo_ih.(B.lO). :Our new time variable is s = t/T as descfibed
above, and we shall write the solution-variablebiﬁ the new coocordinates

as: u(x,t) = v(y,s). Equation (3.10) then becomes:

E
v = v+ —2H (v-a)h + v
vy s €
h, = LoHGea) -h

Now, in order to get the 0.D.E. for traveling waves, we make the
transformation z = y/0+s and look for solutions of the form v(y,s) =
V(z). If such solutions exist, they must satisfy:

X i 0’k
v V' + 67V - —83}1 (V-a)h

: (3.20)
1 -H(V-a) - h
€

hl

Let us now further simplify the model by neglecting the recovery of h

and the turning off of i after V has décayed\to a value less

nonlinear

thaﬁ or equal to a. Equation (3.20) then becomes:
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2
w2 2 8 Eo
vt o= 87V + 67V —-*E——H(z)h

h=1, z2<0; h=exp(-z/e), 2z2>0

=v,a |V >0 as 2| v

) 2=0

where y, are defined as above. For z<0, V = exp(Y+z). For z=20, (3.21)

becomes
: 2

-8"E
€

vo- 0%y - e%y =

2 exp(—z/e)_ (3.22)

First, try a particular solution of the form Bexp(-z/e). Substitution

into (3.22) yields:

[L+9_2_ _62]3; 0 %
2 € - €
€ .
Hence:
2.
‘B . -0 E0 ) = S 882 .
: ,l/€+62_-662 °1+62€—6282

Now let us look for éolutions of the form
v o= Bexp(-z/€) + Aexp(y_z)

The condition that V be Cl(ﬂ) is then:
B+A = a
1 -
€B»+ YA = Y+a,
Upon substitdfion of the explicit form of B into the above expressibn,

we derive:
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692
-E +A = a
© 1 4 0% - %2
(3.23)
E 0’ +YA =
o 2 2 Yo Y+a

l+829—ee

A relation for O may now be derived from the above by eliminating A.

This relation is

v+ 2 =0 R R
T f 1+ e%e - o%? T

In the case €=0, we fihd-B=O, A=é, and

E

0,2 o
a o+ . F Y+
Hence
2 a
6" = (v, -v )'E'
o
So,
E _
6

From the above we finally derive

2

Q L= (3.24)

4
2
E /a2 -1

o) .
This is a degenerate case in which the nonlinear ¢lement injects a delta
function of current when a given threshold potential is reached. The
traveling waves look like moving cusps, unlike the voltage vs. time

graph of the space clamped behavior of this system, which rises abruptly

to Eo and then decays exponentially with time constant T, as we saw in
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Séction l of this chapter. From ﬁhe last equation aBove, we can see
that there will be no traﬁeling waves if EOSEa.
We will now show that the values of & and A.‘dépend smoothly on ¢
for £ sufficiently small by the ;a;her conVentioﬁal implicit'function M
ﬁhéorem érgument described onvfhe %ollowing‘pages. A
First, for the sake of convenience, divide both equations of (3.23)

through by a, . and define q = A/a and r = Eo/a. Equation (3.23) then

becomes

-T — +q =1
1+ 928 - _9222 , _ ‘_

Now write

I

£1(0,85€) (g-1)(1 + 0% - 6%¢?) - reo?

£,(0,856) = 67+ (y_g - v + 6% - 0°€0)

. _ 1 ,
Taking partials evaluated at 6==66 = 2/(r2-1)2, q=1, £€=0, we find

of of

1 . 1
TE; = 13 =6 B 0
tef,. of

2 _ . 2 2 -
T A A S

We have, from the definitions of.Y+ that
, . -
Y, - Y. = (6% + 4077

and hence.
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N |
9 64+492= 407+ 86 . 2T+

38 ,
, 2V 6% + 402 0244

Recall from (3.24) that 92 5“4/(r2-1), S0

Q
3
=
+
t
=
h g
i

o 1
3 _ 8 4 2
55 Yy = ¥2) —(2 +,4)/(2 +4>
: r -1 - AT -1
N\ L
- (2“ +~2)/< 21 +1)°
\r“-1 r -1
2 2 :
- ¥r ol 20D L o?i /el )]
T 2
. r -1 . .
and thus
) . '
£ _ o _sr 2Gtsn | 2vrien
36 | . _ - r
‘ 6’_60 \/rz-l .r\/rz-l B
Hence
of,  3fy : 1 0
dg a6 '
o, of - 2?1
2 _2 Y. T
‘dg 36 r

is nonsingular unless r=1, a case which we have excluded from consider-

ation, sb for all r>1, q and © may be expressed as smooth functions of
€ in some neighborhood of q=1 and-é==0. The forﬁs of the traveling waves
for various values of € are shown in figure 22. These waveéhapes:are not
;strictly cémparable; since the speedé vary with the value of € and thus

the scaling of the abscissa is different for eaéh'wave; but the decay

of the peak amﬁlitude with decreasing € is readily apparent.
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IV. NUMERICAL TECHNIQUES

The model presented above has some obvious cdnceptual and analyfical
advantages: the biophysical intuition for each of the parameters in the
equation is unambiguous, and the traveling wave analysis is easy,
requiring only the solution of some transcendental equations for the
completé solution of.the problem for any given combination of parameters.
The case of greatest imbortanée, however, is that of spapial inﬂomogeneity,
where the travéling wave analysis cannot be used. Thére ig.nowvonly'one
exact‘solutibn known for a model of the form preéented abo§e with spatial
inﬁdmogeneitieé} This solution was presented by John Riniel (personal
communication), and it will be described in detail Below,A Perturbation
techniques are also under cbnsideratioﬁ currently, butvthe major results
are numerical. The discoﬁtinuities_in the model pfeéent special numerical
problems which must be taken into account in fhe design of computer
programs for the solution of equations (3.19).

’The.only solutions wershall consider .will be those that are
continuous in:time and piecewise analytic in spacé; _Recall that the
longitddingl current is proportional tolthe spaée derivétive of the
membrane potenﬁial, the capacity current is pfoportiohal to its time
derivative,:énd.the membrane current is proportional to its second space
derivative. Therefore, theicondition‘that these.physical quantities be
finite implies that a sdlution must have a certain amount of smonthness
in order»to have any physiological interest. We shall therefore assume
that sufficienfly smooth solutions exist. |

It is easy to deri&e jump conditions for thé behavior of the

solution at a threshold crossing. Write the first equation of (3.19) as:

5
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AL e - = -B(x) — H(u-a)h (4.1)
T Uyx t v T ' ’ )

Now suppose u=a at x€=xo. Assume further that u* __ > 0. Choose

x,Zx  and x_<x_ . After evaluating all of the terms of (4.1) at x%

and x_, we can form the foilowing.differenceA
E

. _ O
= —B(x+) - h(x+.t)
X=X

If we allow x to approach X,» keeping them on opposite sides of X the
%11 terms on the left-hand side cancel because of the continuity of u

at X s leaving us in the limit with

| [?%i uxxv_ ut.]

- where the square brackets denote the size of the jump in the quantity

= —B(xo.)—TEh(xo,‘t)_ (4.2)

X=X
(o]

enclosed at the specified point. Noté that B(x) need not be continuous,
but must have a right and left limi; everywhere...In‘thé case of traveiing
waves, u, is proportional tovu#, which is proportional to the léﬁgitudinal
. current, which must be éontipuous in oraer that the membrane current
remain finite; so all of the discontinuity is accounted for by the u
term. In the space clampedxgase, uxx=30, and u, aé;éunts for all of the
discontinuity.' In fhevcase of a_boundgry value probiem,_the valges of
the jumps in u, and U cannot be readily determined.

With the jump conditions in hand, let us now inveétigate the'effects
of using conVenpional numérical techﬁiques to find‘apprOXimate solutions
to these equatiéﬁs wiﬁh‘discontinui;ies.~'Fifst, wevturh to the space

clamp case. We shall limit our discussion to implicit methods in order
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to avoid the stability problems that inevitably arise with explicit

methods. To simplify matters, we assume that h= 1. This should not

affect the applicability of our results. We will only consider methods

that are known .to work when the solution is smooth enough, so the only

questions remaining to be settled pertain to the behavior of the scheme

in a neighborhood of a threshold crossing. In order to estimate the

time course of,the upstroke accurately, our method will have to take

steps of the same order of magnitude as T. 'SincévT<< Th in the physio-

logically intefesting case, h will change very little in the course of

a few;time steps, and can be considered constant. - Let I be the total

current passing through our space clamped membrane, divided by the

membrane capacitance/unit area. The differential equation governing

the membrane potential V is

Now let:

U

k

W

\

The backwards.difference equation is ' .

E o :
dv -1 0
- = =V 4 — - . .
dt_ z v - H.(V a) + I ‘ (4.3)

the initial potential
the length of the time step
the approximate solution at time t=k

the true solution at t=k

E ' . .
W-1U 1 o _o _ : -
= + ,[w = I+ T‘H(w a) | (4.?)
Assume U< a; the solution to.(4.3) is:
V = Uexp(-t/T1) + 1I1(1-exp(-t/T)) -,

and this remains valid up to a threshold crossing.
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Now let us -attempt to solve (4.4) by a method of successiveAapproximations.
Rewrite (4.4) as

 KE H(W- a)
W o= U + kI 4 o ]
C1+ (k/T) (1 + (k/T))

= OF(W) (4.5)

The method of successive apprqximatiOns will prédict a threshold crossing
if: ‘
U + kI
14+ (k/T)
This is a sufficient condition; it is also necessary if U is used as the
initial guess. 1Its necessity has not been checked in other cases. This
can be illustrated by figure 23.
Let us now check the conditions under which the true solution will

cross threshold. Expanding the true solution at t=k in powers of I

yields
- k. 1,k.2 1,k.3 k. 1,k.2,1 k.3
vV = U(l—(:‘r‘)+§'(jr‘) —g(?) +v...>+TI<(:‘E)“_2‘(?.) +'6_(',F) -~ e
' 2
- : Ky ol k-
__.1_]+k]’_-_-v(T),_(L+'2kI)+O( 2) | o (4.6)

T

If the method of successive approximations predicts a threshold cfossing,

then (4,5a) is satisfied and

. 2 : 3
k k 1.k 1 k.2 k
> 2y = 2. X ® B
v va(l_+'r): UT + 2U 2 ZTI(T) '+'O,( 3)
: T T
e Ko 2l L2 o
= hay . a U T ) T 2 T T T3
' 2 3
> a+Xw-m 50Ky
2 T TS

since we have assumed a=U. Therefore, if the method predicts a"threshold
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cfossing, within a given time step then there will be one, up to an
error of the samevorder‘as the accuracy of the method itseif.

Since we are now assured that the method will predict no spurious
threshold crossings, let us éftempt to estimate phe errors intrbducéd
when the threshold is crossed. Thé condition that a threshold crossing
be predicted is: U+kI/1+ (k/T) > a. Let us suppose that this is the
casé. Then | |

U+ KI + k(Eo/Tj

W =
1+ (k/1)
Now suppose the true solution crosses threshold at t = tO < k. Then the

true solution V at t= k is given by

V = Uexp(-k/T) + I(L-exp(-k/T) + E_(1- expl (k- £ )/T])

“Expanding V and W in powers of k/ ‘and subtracting yields

_(k-;t )

V-w = E ——2 4 o?
. o T .

Thus, iﬁl;wfimé éfepﬁin which a threshold érossiﬁgloccurs, the
discontinuit& iﬁttoduces an efror broportional to the fraction Qf the
Step in which the System remainedvbeiow.threshola, This is due to the
faﬁt tﬁat in sﬁéﬁ a step,‘éﬁevapproximéfé sblution is COﬁputéd as if the
sfstem had been above threshold for thé éntiré step. The error checking.
code shouid therefore manéuver_the step siée in time in ofder to come
close to haying the approximéte solution éctuallyltake on the threshold
value. Thié iStthe‘behévidrnbbservéd_in praétice.

The problem of deéling with the disdontinuity becomes more difficult
fpr the partialvdifferentia;“gquation with inhomogeneiﬁies in space,

since we’may:no longer deal with tfaveling waves. We shall see below
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that conventional methods'will_introduce large errors in the case of
a discontinuity in u__.
XX

With appropriate scaling, the model may be written as

+ - = -
u u-u H(u-a)h
| 4.7
_ 1-H(u-a)-h
t Th
We are interested in the initial-boundary value problém for (4.7) on [0,1]

subject to

u (0,8) = gx(i,t) = 0
‘vu(x,'O) = f(x) .

vWe have chosen the so-called sealed and boundary condition, i.e., the-
condition that there is4no current flow out of the fiber at the ends.
We shall first illustrate the difficulty that arises if the
discontinuity is ignored, aﬁd w . is eﬁaluated by second differences on
a fixed grid. Assume u is_Cl([O,l]) and piecewise analytic; aSsuﬁé
further, to,illust;ate the ﬁrbblem, that u is'decreésing oﬁ'(jk,(j+l)k)
and that u={a at x==jk:kk'; as in figure 24, wherg.k: is the distance
between adjacent gfid points. Let uﬁvbe defined as g(nk). Since u is

piecewise analytic in space, we have

u = -k +-EE u - Ef-u +
-1 T Yix T2 Y4xx T 6 Ujmxx | °
2 k'3
a = u, + k'u, +-— u, + — u,
2 jxx 6  Tixxx
Let
Ju + 32u - 82u
Yk T ox ‘ *Yxx T L2 * % T L2 -
® xjk+ k' ax” '‘u~>a 9x " 'u—ra
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Figure 24

vAssumed Gréph of u versus x in an Interval

Containing a Threshold Crossing
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Expanding .u in Taylor series about the threshold crossing, and then
ré—expanding in terms of uj’ we find

k -

v k -
= > + =
uj+1 a+ kux + 2 Yxx 6 xxx t
02 v3
= u, +k'u, + k_ u + kK~ u,
ix 2 ixx 6 jxxx
2 ,
- L .
+ k(u, +k'u + 1-S——--u. .2
' jxx 2 Tixxx
+-_E.3(u_ + ' l_c'_z. - u +)
2 jxx jxxx 2 ujxxx xx | -7
v 2 =2 +
= u, + ku, + B'——-u'. - Eﬁju + -
: 2 ixx 2 Txx | _
where
+ .
; . - +
u = - the jump in u__ from a to a
xx | _ XX .
Hence
u, -2, 4 u, : =2 +
j+1 uj -1 k
2 = u'xx -— '—2 uxx + LRIy
k J 2k -

A sequence of grids can clearly be chosen with the property that/k.vgoes
to 0 and E/k'goes to l.» So, with thé.usual second differenéevformula,
the diséontinuity introduces an error which may be 0(1) as k goes to 0.
Suppose we intérpolate to find the point where u crosses threshold.
If the interpolation error in the location of the threshold crossing is
e, the distance of the interpolated point frém.the left end of the
interval ié k*, and the value of u at jk+k* is u*, tﬁen caléulations

identical to those above yield:
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u, ;- ou u¥ g, 1 eZ' +
J . J + . - J = —i- U,. + ———y + ....
le(k + k*) K* (K + k*) IEE g ry L

which is acceptable since e = o(k) for sny respectable interpolation

scheme; but since we do not know u*, the ‘formula we must use is

*_'_u.

u, , - u, a-u, u, 4 - u, u
-1 - 3 NI et S J 4, _a-u*
k{k + k*) k*(k + k*) k(k+k*) = k¥*(k+k¥%) k*(k + k*) -

In the case of linear or parabolic interpolation, this rightmost term can

'be 0(1) as k goes to 0. A method that has been found to work is the

construction of a weighted average of two parabolic interpolates, one

from each side of the interval in which -the thfeshoid crossing takes place,
. . ‘ . : a-u* .

with the weights chosen in such a way.thas K% (K + k%) goes to 0 like e/k _

as k goes to O.

The interpolating parabola through uj—l’ uj and uj+l is given by

P (x) = = 7 J j=i 2,1 ¥ -1, (4.10)
h| 2 2 2 : ] ,

Define h} such that 0 < h} < k and P (h}) = a. Nowput k_=k-h,

where jk-Fhf is the point where the parabola passing through uj, uj+1’

and u,

j+2 takes on the value a in the interval Between_x = jk and

x = (J+Dk. _E_ satisfies

u, - 2u,, . +tu, _ ’ . . o
j¥2 . ¥l J g2 0 3¥2 . 3¢ 44 = a S (4.11)
T2 - 2k - 3t -

N

Expanding (4.10) and (4.11) in Taylor,ssries about jk and (j+1)k

respectively yields



2 b +  n*? +
a = u +h*+u, +2_y S - g2 + 0%
X 2 XX h XX 2
- 2h -
(4.12)
_ ﬁ_z_ ﬁ_k'z + hk'? + 3
a = u - ku + —u + u_ + — u_; + 0(h7)
j+l ]+lx 2 _]+lXX 4k XX | 2h2 XX |
(4.13)
We have also
* hiz 2, '
_ Lk , T+
g+ | uj + -h™ + ujX + - 5 ujxx + 0(k ) | , (4.133)
. _ K |
u = u -k u + —u 2
- i S e Sy + _
j+1 | j lx 2 7] lxx 0(k™) (4.13b)
Let us now put k¥* = ahi + Bhf-, where o+ R = 1. Since
9 .
_ ' k' 2 .
a = uj + k ujx + 5 ujXX + 0(h") (4.14)
we derive
*x2
0 = =k u + u Ei_—— - -k—'—z— + O(hz)
+ ix jxx 2 2 o

by subtracting (4.14) from (4.12), where'k+ = hi-ikf'and thus we are
reassured that k+ = O(kz) in any domain bounded away from the boundary
and from relative extrema; hence we may approximaté‘u* by its linear
interpolate aui + Buf, and in so déing, introduce an error which is

0(e) = 0(k2), which will not contribute an 0(l) term to our estimate

for u,
JxXx
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'So, multiplying (4.12) and (4.13a) by (4.13) and (4.13b) and B,

and forming v—a(4.13a) - B(4.13b), we find

% 2, _ -0 72 + +
a-u +0Mh") = 2kU' } Tk + 5
. XX |~ . k°
8,2 +(h R 5
LA — — ) ‘
+ 5 k ueto \ ok + kz + 0(k9) (4.15)
Thus if we choose
- » =2 % %2
D=h*zﬁl+h—' +1—122“:+~——h+
+ \ 2k k2 -\ 2k k2
A oafE B
o = D h+ K + ;E.
L_ N
v (4.16)
-
* %2\
D - 2 k2_
- -
RY = Ktk h k + k_
equation (4.15) becomes
. _ 9 .
+ . h  &°\/n
+ 2 _ _L '2 ’ ] -g2‘ -2 ___-'_ - -_+_ T
a-u +Q(h) = 2 Yex | -(k +2kk++k+)k 2k+h2 2k+
. . ' 2 =2
_ h* v* k
+ R +2kk + k2K —t+———h+ E:+—_
. : - - 2k 2 2k -, 2
. : k k
L[ v NAVE B2 +
Y g — + — Ju %
2\ 2k 2 2k 2 XX

k k -
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2Kk'k + kok'Z - 2Rk - Kk K2
9 - - : + T+
T =2 x %2
h*z _h_—+..h_— +}_12 h++.k_1i_
+ \2k T2 -\2k T 2

which is at worst 0(kk+) O(ek). Using this metbéd, I have obtained the
numerical results described in the next section.
In practice, the partial differential eduations under consideration

are approximated by the system of ordinary differential equations

A2 )
u'(t) = S A(Du + Nu,h)
' (4.17)
_ 1 -M -h -
h'(t) = T

where the components of the vectors u and h are the values of the
‘approximate solutiqns at'seleéted points X, in the space ihtervai under.
consideratioﬁ,.and N and M are nonlinear vector-valued functions'whose
. components Nj and Mj are -given by B(xj)E%ZH(ﬁj-ia)h and ’H(uj— a) 
respectively. A(t) is the matrix of the second difference operator for
‘those points that do not border an interval where a threshold crossing
takes place. 1If a fhreshold crossing is detected in the ‘interval
(Xj’xj+l)’ the approximaté position of the threshold crossing is d?termined

*

} and k_ respectively, and then forming

by solving (4.30) and (4.11) for h
the weighted average ahi + BE_ = k* shown above. For the point % A(t)

is the asymmetric second difference operator

l uj—l - uj N a—ui
k(k +k*) ~ k*(k+k¥)

n|

~where a is expressed as a linear function of uj;i; uj and Lﬁ*q_using
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the fact thaﬁ the equation Pj(hi) = a is linear in u." An analogous
calculation is done for the row of A(t) corresponding to Xj+l' The
" system (4.17) of 0.D.E.'s is solved numgrically by Miller's diagonally
implicitVSecond order Runge-Kutta method. The reéults are presenped in

the following chaptef.
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V. RESULTS AND CONCLUSIONS

The numerical technique described above yields the results illustrated
in figure 25 for a spatially homogeneoué fiber 15 millimeters long, sealéd‘
at the ends. JNote that the amplitude grows as fhebpulse approaches the
distal end of the fiber. This effect is to be expected. One way to
view the sealed end boundary conditions is to refintefpret the proﬁlem
as one in which the solution is symmetric with'reépect to the seéled end.
In this framework, a pulse apbroaching a sealed end»is repreéented as two
pﬁlseé ¢Onverging at the same speed to a point that stays exactly bgtweenl
them. The solution is then a supérpositionvin some éénse of the solutioﬁ
and its symmetric image. This effect was observed numerically for
'Hodgkin—Huxley pulses by Rall and Goldstein (11).

» Iﬁ the case of a spatially inhomogeneous fiber, véry little can be
said analytically. th the case of an infinité fiber stimulated by a point
current source at x=0 there is a steady state solution ﬁhich the fiber
probably settles :down torafter some length of time has elapsed. With.

appropriate scaling, we may write the equation for this case as

Uy +.u - u, = H(u-a)h + U8(x)

A steady state solution would be

< - {Lue™F, x> .
_ 0, |x| <x L Le *, x>0 xb=log(-y—)
1, |x| > Xy we™ | x<0 2a
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and U is required to be > 2a.

The only other exact solution available at this time is for the

case T = ®, for the following conditions

U = uw_ -u + H(u~- a)H(-x)

u(x,0) = W(x)
where W(xj-et) is the traveling wave solution to

u = u_ - u+H(@u-
t Ugg ~u T Hu-2)

with u=a at x = 6t. This can be sdlved'exactly since it is a linear

problem. The solution is

© _ : tfo '
f K(x-y,t)W(y)dy +f [}-K(x—y,S)d'sdy

U(X,t)v =
—oo 0
where
_ ot -x2/4t
K(x,t) = =2
‘ 4t
This solution approaches
| 1-%e* x <0
u(x) =
Le ® x=20

for long times. This solution was first proposed by John Rinzel.
Figures 26, 27 and 28 show the numerical results_from applying the

method described above to equation (3.19) for various choices of the

blocking function B(x). Asymmetric»forms of B(x) similar to those used

in the computation of figures 27 and 28 could have arisen in the preparation
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used by Cranefieid, Hoffman and their cowofkers'in (2), (4), and (5).

. The ager block which was used to deéress the excitability of the center
segment of a given fiber had a potassium'conceﬁtration that was much
higher than the bathing solution. As the bathing solution flowed over
the agar dﬁring the experiment, it could have picked up additional
potassium ions and carried them downstream, thuS'tﬁe bathing solution
would have a higherbcoﬁcentration of potassium ions downstream of the block
than upstream. Heﬁce, if we weré to travel in thé downstream direction
along the oﬁter surface of the fiber we would see thé pd;assium conéen—
tration rise sharply as we eﬁtéred the block and ﬁapef’off slowly as we .
leftbit. |

"In figures 26, 27, and 28, dela&, block and one-way conduction afe'
clearly displayed. Wé'may conclude that these effects observed expefi—
mentally by Cfanefieldvand Hoffmanv(4) can be eiplained in terms of'a one
dimensional model, and may not aepend on more complicated geometry or the
details of the voltage-current rélations of the membraﬁe.

This example of one-way block may actually be a case of asymmetrical
one-for-n block, i.e., the transmission by a depressed ségment of one
pulse for evéry n iﬁcident.pulses, but the numerical methods developed
above will fail.in an attempt fo demonstrate one-for-n block, sincé the

_ interpolation.errdr for the pérabolic inferpolate used is proportional. to -

l/ux, and tHus it cannot deal wifh a relative extremum,'which must occur
in the case of one-for-n block. New numerical methods are now being

devised to deal with this problem.
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Reciprocal Time Constant -1 vs. Potential
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Figure A1

From page 220 of (16)
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Steady State Activation of Slow Hyperpolérizing
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From page 221 of (16)
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Fully Activéted Restoring Current vs., Potential
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Figure A3



-88-

- Instantaneous Current-Voltage Relation
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Recorded rurki?je‘Fiber Action Potentials

-
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‘F1G. 7-1. (A) Transmembraue action potentials recorded from papillary muscle
(top trace) and attached Purkinje fibers (bottom trace) of the dog right ven-
tricle. Time calibration shows intervals of 10 and 50 msee. (B) Transmembrane
action potentials recorded from papillary muscle (bottom) and isolated false

. tendon (top) of the dog left ventricle. Upper trace in both records is the line of
gero potential. Time calibration shows intervals of 100 and 500 msec. Vemcal
bar at, left of figure is a voltagc calibration of 100 mv for B.

Figure A5
from page 177 of (3)
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Records of OsCiilatory Activity
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An Example of Stiffness Instability in
The Integration of the Hodgkin-
v Huxley Equations

dr(yéec)=3o
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dr{usec)=60

C 20 | 1 1 1
o -

. Time (msec)

- F1a. 2. (a) Comparison of H-H action potentials gcncratcd_by the EFuler (1), Runge-
Kutta (RK), and Adams (AM) integration methods for a 30 pscc time step with a cen-

_+ vergent solution (C). The corresponding computation and plotting time -are shown in. -
scconds. (b) As for (a), except that integration step size doubled to 60 uscc, :

Figure AT
from page 260 of (15)-
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