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ABSTRACT 

The Purkinje fibers, which form the'specialized electrical conduction 

system of the heart, pose a challenge to the mathematical modeler. Their 

electrical behavior resembles that of nervous tissue in several respects. 

Small electrical stimuli elicit a response that is only detectable 

locally, while injected currents whose magnitude exceeds a certain ., 

threshold will produce a pulse that propagates the length of the fiber, 

and whose shape is essentially independent of the applied stimulus. As 

in the case of nerve fibers, the front of this pulse is very sharp, 

characterized by rise times of the order of hundreds of microseconds, 

and amplitudes of the order of 100 millivolts. The nerve pulse, however, 

ends in a few milliseconds, while the 'Purkinje fiber membrane potential 

remains nearly constant at a potential very far above the equilibrium 

value for hundreds of milliseconds. This long excited state is called 

the plateau. The long duration of the plateau compared to the times that 
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characterize the upstroke makes nt.unerical simul<,1tions difficult, especially 

in the case of the partial differential equations that must be used to 

describe impulse propagation in spatially inhomogeneous fibers. 

In this paper we investigate two sets of electrophysiological 

experiments on Purkinje fibers with the purpose of constructing a mathe-

matical framework in which hypotheses about these experiments may be 

tested. Ultimately we hope to gain new irisight into the working of the 

system that will aid in the design of new"experiments. 

First, we examine the experiments of Noble and Tsien (J. Physiol. 

200 (1969) pp. 205-231) on the details of the current-voltage relations 

for the plateau of the action potential of the space-clamped Purkinje 

fiber. Their experimental data is used to construct a quantitative model 

of the electrical behavior of the membrane. We use this quantitative 

model to simulate the time course of the plateau, the abolition of the 

plateau (i.e., premature restoration of the equilibrium potential) by a 

hyperpolarizing sh?ck, and the self-excited oscillations of the membrane 

potential at potentials in the plateau range which are observed in fibers 

that do not recover completely from the trauma of dissection. 

Second, we examine the experimental results of Hoffman and Cranefield 

(Circ. Res. 28 (1971) pp. 199-219) on anomalous propagation effects in 

Purkinje fibers in which a portion of the length of the fiber is rendered 

inexcitable by encasing it in an agar block whose ionic composition differs 

greatly from that of the normal extracellular fluid. Observed in these 

experiments were long delays of conduction, one-way conduction, and the 

conduction of one impulse across the block for each group of two (or 

sometimes more, in some preparations) ·incident impulses. Adaptation of 
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our quantitative ordinary differential equation model to a partial differ-

ential equation model to simulate these effects is conceptually complicated 

and would be computationally expensive; hence, a simpler qualitative model 

is derived. This model involves the injection of a current by a nonlinear 

membrane element when the potential' reaches a given threshold. This model 

is then used to investigate the hypothesis that one-dimensional cable 

theory and. a plausible assumption about an asymmetry in the experimental 

preparation are sufficient to explain the phenomena of delay and one-way 

conduction. Specialized numerical techniques are derived to solve the 

partial differential equations for the numerical experiments, and the 

hypothesis of a one-dimensional cable is shown to be sufficient to predict 

delay and one-way block. More powerful numerical techniques will be needed 

to simulate on~-for-n block with this model. The author and his coworkers 

are currently developing such techniques. 
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A NUMERICAL AND ANALYTICAL STUDY OF ANOMALOUS PROPAGATION 

OF ELECTRICAL IMPULSES IN DAMAGED HEART FIBERS 

I; INTRODUCTION AND BACKGROUND . 

1. General Introduction 

This work presents a mathematical framework in which two sets of 

experimental data canbe understood. Two models will be described: 

the first model is a set of ordinary differential. equations whose solu-

tibns reproduce in detail the behavior of the plateau of the Purkinje 

fiber action potential as observed by Hauswirth, Noble and Tsien (12), 

(16) , (17) ; the second is a system of nonlinear partial differential 

equations which is designed to reproduce qualitatively some of the anoma-

lous impulse propagation effects observed by Cranefield, Hoffman and 

their co-workers in canine Purkinje fibers whose excitability had been 

chemically depressed within small portions of their lengths. 

The parameters of the first model are derived by fitting polynomial 

and piecewise linear functions to the measured relations of membrane 

current to membrane potential and time found in. (16) and (17). This 

model will be seen to reproduce the self-excited osc~llations observed in 

fibers that do not recover from the dissec
1
tion process as reported in (12). 

The behavior of the second model in the case of spatial homogeneity will 

be shown to be similar to that of the first model for the plateau of the 

action potential for a healthy fiber, but it will not reproduce these 

oscillations .• 

We shall also examine in detail the nurnericai techniques for finding 

approximate solutions to the ordinary and partial differential equations 
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from the models presented. 

Let us begin with a brief review of the experimentally observed elec­

trical characteristics of the Purkinje fibers. He adopt the following 

sign convention for the membrane potential and currents: the membrane 

potential will be said to increase ~s the interior becomes increasingly 

positive withrespect to the exterior; the flow of positive charges inward 

is then regarded as a depolarizing current, and the flow of positive 

charges outward is a hyperpolarizing current. 

2. Salient Features of the Electrical Behavior of Purkinje Fibers 

The Purkinje fibers form the specialized conduction system of the 

heart. They are similar, but not identical to nerve fibers. Like nerve, 

and like most other heart or muscle tissue, they exhibit all or none 

response to electrical stimuli. The upstroke of the action potential 

(i.e. phase l of figure 13) has been shown to be mediated by sodium, with 

peak amplitude, conductance at peak amplitude, reversal potential and 

response to drugs similar to those of nerve cells (6) . Like ventricular 

muscle and unlike nerve, Purkinje fibers exhibit a long plateau, often 

lasting hundreds of milliseconds after the initial rise. The plateau is 

stable with respect to small perturbations in potential, but may be 

abolished by strong hyperpolarizing currents. 

The plateau has been studied experimentally byNoble and Tsien 

using voltage clamp techniques in which the membrane potential is held 

approximately constant in space and controlled in time, and the resulting 

currents measured (16) , (17) • These clamp techniques work \vell in the 

plateau region where the potential changes relatively slowly, but voltage 

·-i • 
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control is unreliable during the upstroke, and therefore the current vol-

tage relations are better understood for theplateau (6). The sequence 

.-
of events Noble and Tsien observe in (16) and (17) is as follows: after 

I • ··i~, 

the initial inward sodium current is inactivated, a depolarizing current 

is activated that is responsible for the maintenance of the plateau itself. 

A slowly activated outward current counteracts this current, and eventually 

abolishes the plateau, restoring the potential of.the interior of the cell. 

to its resting value approximately 100 millivolts below the exterior. 

The experimental data from (16) were used to estimate the paramete'rs 

for the ODE's comprising the model presented in the next section. 

,. 
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II. O.D.E. 's FOR THE PLATEAU 

1. The Hodel and Fit to Data from Noble and Tsien's Observations 

Our model is formally similar to the FitzHugry-Nagumo system of 

O.D.E. 's in that it contains a cubic current voltage relation and a slowly 

activated outward current whose kinetics are described by a pietewise 

linear O.D.E. Explicitly, the model has the form 

where 

i 
total 

v 

c 

X 

C dV 
dt i total - I(V) - xWo 

dx 
dt 

X (V) - X 
00 ·. 

T 

W xW 
0 

/ 

is the total membrane current in microamps/cm
2

, a given function 

of time; this is the quantity that would be injected by an 

intracellular electrode, or measured by an intracellular current 

measuring electrode under voltage clamp conditions. 

is the potential in millivolts of the inside of the cell, assuming 

the cell to be surrounded by an electrically homogeneous medium 

which is considered to have a uniform potential of 0. 

is the membrane capacity per unit area of membrane, measured in 

2 
iJF/cm . 

is the level of activation of the slow hyperpo,larizing current 

that counteracts the plateau. x is dimensionless and ranges 

between 0 and 1. 

. .., . 
.•. 



... 

:x (V) 
00 

I(V). 

w 

w 
0 

0 ' 0 0 
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is the value that x approaches as t goes to 00 if Vis held constant; 

this function is derived from the experimental data in (16). 

is the time constant in milliseconds associated with x. It is 

also estimated from experimental data. 

is the peak membrane current for a ,given value of V; this is the 

cubic polynomial referred to above; it has the dimensions of 

. . I 2 m1croamps em . 

is the total restoring current in microamps/cm
2

. 

is the fully activated value of the restoring current, measured 
. 2 

in microamps/cm . 

The experimental basis of this model of the plateau is described in 

(16). In (17), a modei is presented, along with a numerical method for 

reconstructing the time course of the plateau from the voltage clamp data 

in (16). The numerical method is a graphical version of the explicit 

Cauchy-Euler scheme. The resulting numerical reconstruction is success-

ful as far as 'it goes··, ·but Noble and Tsien do not attempt to construct a 

formal mathematical model based upon their experimental data relating the 

time course of the membrane current to the membrane potential which is 

under their control. Actually, the graphs they use to evaluate the ionic 

currents and their activation levels are drawn by eye through a series 

of points; it is these points, not the curves that came directly from 

their experiments. Perhaps the actual fitting of analytic forms to the 

points wo~ld present so~e difficulty if the curve did not resemble.any 

familiar function; but a glance at figures 7, 8, 9 and 11 in (16) (see 

appendix A, figures Al, A2, A3 and A4) reveals that a cubic polynomial 
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ought to provide a good fit to figure A4, a piecewise linear function 

should approximate A2 well, and as long as application of the model is 

restricted to the plateau range above -50 millivolts or so, Al and A3 

can be fitted by constants. On the basis of figures Al and A3 constants 

were assigned for T and for W for potentials in the plateau range, 
0 

a least-squares cubic polynomial was fitted to A4, and a piecewise linear 

form for the function x was estimated from figure A2. We have thus es-

senti<1lly constructed an analytical form of Noble 'and Tsien 's graphical 

theory. Because of the compromises made, this model will oniy reproduce 

the dynamics accurately in or near the plateau range; but the least-

squares cubic fits the instantaneous voltage-current relation so well 

that the predicted resting potential of -80.73 mV. and resting conductance 

of 2.00898 x 10-
4 

mho/cm
2 

compare quite favorably with measured values 

of -94 mV.(3, page 44) and 5.155 
-4 2 . . 

x 10 mho/em (3, page 198). 

The actual numbers derived from Noble and Tsien's data that determine. 

the explicit form of (2.1) are: 

I(V)- (9.283 X lo-
5v2 

+ .578 X lo-
2v + .0706) (V + 80.73) 

x (V) .01695V + .949,V ~ -55mV 
00 

T 

w 
0 

0, v < -:-55 

550msec 

2 
8'\.lA/cm . 

C will be taken to be 2.4 'IJF/cm
2

, following Fozzard (10). 

(2.2) 

(2.3) 

The dynamics of the fast sodium current that is responsible for the 

upstroke of the action potential are not included in this model; it has 

been noted above that reliable voltage clamp data are not available for 

.... 
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for the upstroke. The voltage clamp.techniques used are too slow to follow 

the Na current, and thus the steady state Na current is implicitly included 

in I(V). Therefore this model can not be expected to produce action poten-

tials with the proper upstroke veldcities. That the model will not produce 

proper action potentials can be easily seen by examining (2.1). At the 

resting potential, W = 0, and 

dV 
dt 

-1 

c 
I (V) 

-Taking the maximum of the right hand side indicates that the largest values 

of dV/dt to be expected are in the range of 1 millivolt per millisecond, 

two orders of magnitude smaller than typical upstroke velocities, but 

quite satisfactory for the velocity of repolarization (16). 

Numerical integration of (2.1) yields, as expected;,. simulated plateaus 

that possess all of the desired characteristics. ·Figure 1 shows the time 

course of a simulated plateau, begirtning with initial conditions·V = -10 

and W = 0; notice the similarity to the experiment~lly observed response, 

figure AS, from (3), page 177. Figure 2 illustrates the ~henomenon of all 

· or none repolarization in the response of the model to a series of hyper-

polarizing shocks-of increasing intensity. Four graphs are plotted: the 

normal time course shown in figure 1, a:nd the time courses of three simu-

lations that were subjected to.hyperpolarizing shocks of 5, 10 and 12.5 

microamps/cm
2 

from t = 5 to t = 15 ms. Here, as in the real system, a 

hyperpolarizing stimulus of a given duration will not abolish the plateau 

unless its strength exceeds a certain threshold. 

The phase portrait of the system (2.1) for the case of zero total 

current is ·given in figU.re 3, where the nullclines for V and W (i.e. 

h h . h dV d dW . 1 1 h . . . t ose curves on w 1c dt an dt respect1ve y equa zero; t e1r 1ntersect1ons 
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are the equilibrium points of the system.) are shown, along with several 

representative trajectories. In terms of circuit theory, this model cor-

responds to a nonl:in..~ar .. conductor in parallel with a capacitor. The only 

equilibrium point of this system i~ at W = 0, V = -80.73~ This equilib~ 

rium point is a stable one, as expected. 

All or nothing repolarization can be easily understood in terms qf 

the phase portrait. During the plateau~ the potential is approximately 

constant,,so the portion of the trajectory in phase space corresponding 

to the' plateau occurs near the V nullcline. A hyperpolarizing current 

appiied to' the system would be modeled by adding a negative term to i 
total 

in (2.1). The effect of this on the phase,portrait would simply be the 

translation of the V riullcline downwards with no change in its s_llape, as 

shown in figure 4. Consider now the trajectories passing through the 

point P in figure 4, in the two cases of zero total current an~ negative 

(t'.e. hyperpolarizing) current. The trajectory is steeper in the zero 

current case, since in the negative current case 

V nullcline and therefore ~~~ I is larger while 

P is further from the 

dW 

dt 
remains-unchanged. 

If the hyperpolarizing current is then turned off, the V nullcline returns 

to its original position which may· now be above the point Q. In the re­

gion below the V nullcline ~~ is positive; thus in this case a depolar­

izing current will flow and the plateau will be restored. If, on the 

other hand, the hyperpolarizing current should be sustained long enough 

for the situation illustrated in figure 5 to occur, then the trajectory 

would reach the point R which lies in the region where ~~ is negative, 

and the membrane would be repolarized to the resting potenti~l. Therefore 

a standard strength-duration curve could be plotted for all or nothing 
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repolarization which would resemble qualitatively the strength-duration 

curve for evocation of the action potential. Strong hyperpolarizing cur-

dV 
rents would cause dt to become strongly negative, and the phase point would 

traverse the region between the V nullcline and the V axis in figure 4 

more rapidly than it would in the case of a weaker hyperpolarizing current; 

thus the weaker·current would require more time in order to provoke abol-

ition of the pl~teau and tepolarization to the resting potential. A sim-

ilar explanation of this phenomen·on appears in (16). 

2. Self-Excited Oscillations 

For the purposes of the following analysis of the stability of the 

system, let us rewrite (2.2) and (2.3) as follows: 

i(V,W) I(V) + W + 0
dv 
dt 

(2.4) 

dW 
av - sw + v> -55 

dt 
y, 

sw v < -55 

where f(V,W) is the total membrane current, and a, 8, andy are constants 

that arise as combinations of W and the parameters of x
00 

in the deriva­
o 

tion of (2.4) from (2.2) and (2.3). (2.4) is in the form of the current 

clamped case, i.e. that case where the time course of.· the current is pre-

determined; this corresponds to the case of a given current injected 

through a microelectrode, among other things. Of course, propagation 

effects will be neglected for the time being; thus (2.4) describes a 

short fiber, or one that has been space clamped. 

We shall examine the behavior of solutions to (2.4) by considering 

v • 



•. 

.. 

... 

0 0 0 u ~~ 

-15-

the stability of the equilibrium points of the system for various constant 

values i of the total current i(V,W),_, Physiologically this would repre­
o 

sent a pathological steady leakage current or a steady current injected 

into a healthy cell th~ough a mic~oelectrode or across a sucrose gap . 

This is not the only way instabilities in (2.4) could be produced. -It 

would be helpful to have some idea of the nature of the pathology of those 

fibers that exhibit the self excited oscillations spontaneously; any num-

ber of changes in the form of I(V) could produce them, e.g. the opening 

.of a channel with linear conductance and a reversal potential in the pla-

' 
teau range or below could change the phase portrait from one resembling 

figure 3 to one resembling ~igure 6. This could quite easily result in 

self e:l{cited _osci'llations-, either spontaneously, or with the injection of 

a steady current. 
0 0 

Now,. for a given value of i , let (V , W) be an 
.0 

equilibrium point for (2.4). Then: 

0 0 
av -sw + y = o 

We have also: 

I(V) = I(V
0

) + (V-V
0
)I'(V

0
) +%-(V-V

0
)

2
I''(V

0
) + ... 

Now putting U = V-V
0

, Y :::: W-W
0

, a
1 

= I' (V
0
), a

2 
=II'' (V

0
), a

3 

We arrive at: 

dY 
a.U-SY -= 

dt 

(2.5) 

(2.6) 

where we have explicitly made use of the fact that I(V) is a cubic polynomial. 
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The linearized ~ystem in a neighborhood of (V
0

, W
0

) has the form: 

d 

dt nl 
. a 

~1 )(~) 
-s . 

(2. 7) 

· We know from the classical theory of ordinary differential equations 

that the stability of the system (2.7) in a neighborhood of the origin, 

which corresponds to the stability of system (2.6) in a small neighborhood 

0 0 
of (V ,W ), is characterized by the eigenvalues were ~omputed numerically 

0 
for integer values of V from -1 to -80, assuming C = 3, with the following 

results: 

v -1 to V = :-23mV Eigenvalues real and negative 

v -24 to v = -29 Eigenvalues. conjugate complex, real part 

negative 

v = -30 to -35 .Eigenvalues conjugate complex, real part 

positive 

v -36 to -54 Eigenvalues real and positive 

v -55 to -66 Eigenvalues real and of ·opposite sign 

v -67 to -80 Eigenvalues real and negative. 

In order to determine whether self-excited oscillations will occur 

for a given total current i , we compute the corresponding value of V
0

, 
0 

and then find the eigenvalues of the linearized system in a neighborhood 

0 0 
of (V , W ). It is interesting to note that while the value of C does 

not affect V
0

(Note that W
0 

is linearly related to V
0
), it does affect 

the eigenvalues of (2.7) and thus the stability of the equilibrium point 

(Vo' Wo). 
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0· 
The equilibrium potential V and the equilibrium restoring current 

W
0 

as functions of the total current i are given in figure 7. These 
0 

points (V
0

, W
0

) are the intersections of the V and. W nullclines on the 

phase portrait for the system with total membrane current i . 
0 

It is clear that all solutions of (2.6) stay bounded for all time. 

To see this, simply multiply the first equation by aU and the second by 

Y, and add the two resulting equations together. The result is an expres-

. l d 2 2 
s~on for 2 dt(aU + Y) that is quartic in U and quadratic in Y with neg-

ative leading coefficients, from which it follows that the time derivative 

2 2 
of aU + Y will be negative for all U and Y sufficiently large in abso-

lute value. Numerical evidence indicates that for equilibrium potentials 

in the plateau range (i.e. ?;!: -48 mV or so) there is only one equilibrium 

. . 

point for the whole system; this corresponds to leakage currents greater 

than 1.5 ~A/cm 2 
or so, given a membrane capac~-tance of 1 ~F/cm 2 . We can 

see from (2.4) that membranes with larger capacitances require more cur-

rent to displace the resting potential an equivalent amount. If there is 

a unique equilibrium point and the eigenvalues of the matrix in (2.7) 

have positive real part, then solutions starting near the equilibrium 

point must spiral outward and, staying b?unded, must approach a limiting 
I 

orbit which is necessarily periodic. This is the content of the well 

known Poincare-Bendixson theorem (see, e.g., (13), pp. 109-111). 

For some positive values of i there will be two or more critical 
0 

points; this can be seen by taking the cubic curve in figure 3 and trans-

lating it upward without changing its shape. In these cases the possibil-

ity of other behavior arises. Numerical computation of approximate 

solutions to (2.4) in. one of .those cases with three equilibrium points 

.. . 
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indicates that no new behavior worthy of additional consideration occurs. 

The results of these computations are summarized in figure 8. 

·Let us turn now to the experimental data on the self-excited oscil-

lations shown in figure A6. Given a typical area for these fibers of 

2 . 
• 005 em ((12), page 259), we may convert the currents shown in figure A6 

to currents per unit area, and compare the experimental results to the 

predictions of the model. The results in figure A6 indicate that as the 

injected hyperpolarizing current passes through a range of approximately 

2 microamps/cm
2

, the fiber passes from stability at -20 millivolts through 

states of self-excited oscillation with increasing amplitude and period 

to :a stable state near -50 millivolts, in good agreement with tlHi model. 

We can see from.figures 9, 10 and 11 that the statement on page 255 of 

{12) that "The amplitude and frequency of the oscillations. are very 

2 
sensitive to applied currents less than 1 microamp/cm . Larger currents 

abolish the oscillatory activity 11 also applies to our model. Thus in 

this model, as in the real system, equilibrium potentials between -30 and 

-50 millivolts are unstable, and oscillations results. Stable oscillations 

of realistic magnitude and period appear at leakage currents near 2.6 

microamps/cm
2

; for leakage currents slightly less than 2.6, the oscilla-

tions will be much slower, with magnitudes large enough to carry the paten-

tial out of the region of applicability of this simple model. Hence the 

oscillations in the plateau range observed by Hauswirth, Noble and Tsien 

in (12) are observed in the numerical solutions of the equations compris-

ing this modeL The agree~ent of our computational results with experi-

ment lends support to the statement in the "Discussion" section of (12) 

that " .•• it should be relatively easy to induce low voltage oscillatory 

I 0 
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activity in normal preparations by procedures which simply vary the amount 

of background current ... low voltage oscillations represent ,a mode of 

activity of relatively norma] membranes." 

' ,;t 

3. A Model of the Purkinje Fiber Action Potential 

We next construct a model that combines the plateau kinetics described 

above with Hodgkin-Huxley type sodium kinetics to produce simulated Pur-

kinje fiber action potentials. No attempt was made to include the fast 

outward transient that is responsible for th.e notch observed at the be-

ginning of the plateau (this notch is perceptible in figure A4 in the top 

and bottom trace.s; it is more pronounced in other records in the litera-
i 

ture) and the pacemaker potential, which manifests itself as a slow de-

polarizing current in phase 4, and is responsible for spontaneous pace-

maker activity in some Purkinje fibers. 

Before presenting the model itself, let us review briefly the kinet-

ics of the fast sodium current in the Hodgkin-Huxley model. The sodium 

current is assumed to be proportional to the difference between the mem-

brane potential and the sodium equilibrium potential VNa given by the 

Nernst equation: 

RT ln 
F 

/ l 

[Na] 
external 

[Na]internal 

where T is the absolute temperature, R is the universal gas constant, F 

is the charge in coulombs of a mole of elementary charges, and square 

brackets denote concentration. The factor of proportionality, i.e. the 

conductance, depends on two dimensionless parameters m and h which vary 

between zero and one. The parameters m and h obey first order rate equa-

tions whose coefficients depend on the membrane potential V. We introduce 
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for m the rate constants a and B , both depending on V as follows: 
m m 

a (V) 
m 

O.l(V + 25)[exp((V + 25)/10)-1]-l; Bm 4exp(V/18) 

and similarly for h: 

.07exp(V/20); Bh(V) (exp[ (V + 30)/10] + 1)-l 

We may now write the rate equations for m and h: 

dh 
dt 

dni 
dt 

a (l....;m)-8 m 
m m 

In terms of m and h, we write the sodium conductance as: 

(2.8) 

(2.9) 

(2 .10) 

where gNa is the peak sodium conductance. The effect of temperature may 

be simulated by'multiplying the right hand side of equations (2.10) by 

some function of temperature cp. (for details, see (7), page 25; for 

further modifications, see (8)). 

To gain some insight into the behavior of m and h, let us define 

four new functions of V; m
00

, Tm' h
00

, Th as follows: 

m 
00 

a 
m 

a + B 
m m 

T 
m 

1 

..... 
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and likewise for h. (2.10) then become: 

Thus if v is held 

dm 
dt 

m - m 
00 

'T 
m 

dh 
dt 

constant, m decays to m with time constant 'T • and h 
00 m 

decays to h with time constant Th. moo, 'T 
m' 

h and 'Th are very complicated 
00 00 .. ' 

functions of v, but an intuition can be gained for the behavior of (2.11) 

by examining their graphs which are displayed in figures 12 and 13. The 

whole expression fo~- the.sodlum current in this model is: 

(2.12) 

~-;' 

Under normal conditions, VNa is approximately 120 mV., so the iNa 

term is negative at rest, but very small in magnitude due to the small 

value of m near the resting potential. 

Let us now examine the behavior of the sodium current during phase 1 

as illustrated in figure 14. Suppose the system starts in equilibrium, 

and is subjected at time t = 0 to a short pulse of inward current that 

quickly raises the membrane potential V from rest by 20 to 40 millivolts. 

The value of m
00 

at this new potential is near .5, while the value of h
00 

at the new potential is very nearly zero. Since 'T is v~ry much less 
m 

than Th, m approaches its new equilibrium value rapidly, while h remains 

near its original value for some time. Since the new equilibrium value 

of m and the original (i.e. evaluated at resting potential; see figure 13) 

equilibrium value of h are comparatively large, the total sodium current 
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becomes very strongly negative for a short time (Le. <<Th). Since the 

total current is the sum of the ionic current and the capacity current 

dV . 
(given by edt) and the other components of the ionic current remain very 

dV 
nearly constant over times comparable to T , -d must become positive 

m t 

under current clamp conditions. The result is illustrated as phase 1 in 

figure 14. As phase 1 continues and V rises, we note from the lower graph 

in figure 14 that m rises with it, while h does not reach its minimum un-

til well intophase 3. Phase 1 ends as the rise in Vis limited by two 

factors·: as V approaches VN , the total sodium current (given in (2.12) 
a 

decreases; and eventually, h begins to decrease sharply, since its equil-

ibrium value at potentia.ls greater than 60 mV above resting potential is 

effectively zero, as shown in figure.l3. 

We have noted above that the assumptions underlying the derivation 

of (2.1) break down outside of the plateau region, and extension of the 

model to more positive or negative potentials requires the introduction 

of nonconstant functions of V for .T and W , and the modification of x (V) 
0 00 

so that it will take a constant value of 1 at potentials greater than a 

given cutoff potential. We choose this cutoff potential by requiring 

that x be continuous, i.e. we solve 2. 2 for the value of V such that 
00 

X
00 

1, and set x
00 

= 1 for all larger V. By this process we find the 

cutoff to be V = 3.0088 mV. W was fitted to Npble and Tsien's experi­
o 

-1 
mental data (fig. A3) by a quadratic polynomial and T is fitted to 

figure Al by a least squares cubic. The explicit forms of these poly-

nomials are given below: 

w 
0 

-1 
T 

-1.983 X 10-
3 

(V- 50) (V + 80. 73) 
(2.13) 

2.365 + .009141 V- 3.582 X 10-
4 v

2
- 9.166 X l0-

6 v3 
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The integrated model is essentially a combination of 2.1 with W and T as 
- 0 

in (2.13) with excitation modeled (by 2.12). One last step in the con-

struction remains: I(V) implicitly contains the steady state sodium 

current, since the exp_.eriments on which "its construction is bCJSL'd _involve 

time scales so much longer than T that the sodium kinetics are regarded 
. - m 

as occurring instantaneously. 
- 3 . 

Therefore a term of the form gN m h (V-VN ) 
aoooo a 

must be subtracted from the sum of the sodium current and the plateau 

currents to avoid counting the steady _state sodium current twice. 

We now have all the terms necessary to write down equations that will 

model the behavior of a fiber with H?dgkin-Huxley excitability and a pla-

teau with the kinetics observed by Noble and Tsien for Purkinje fibers(l6) 

The equations are: 

i(V,x,m,h) 

w xW (V) 
0 

dx -1 

dt 
T . (V) (x

00 
(V) - x) 

(2.14) 

dm 
m - m 

00 

dt T. 
m 

dh 
h h 

00 

dt Th 

It would seem from the vastly different time scqles of the upstroke 

of the action potential and the plateau that pro.blems of stiffness would 

arise in any-riumeri~al calculation associated with a model of the Purkinje 

fiber action potential. Such stiffness problems do indeed await the unwary 

user of explicit methods with long time steps, especially if he attempts 

to lengthen his t~me steps by using highly accurate multistep methods. 
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The failure of such tactics is well illustrated in figure A7. This graph 

is reproduced from (15), which is a study of numerical techniques for the 

Hodgkin-Huxley system. If an implicit method .is used, one may take time 

steps of the same order as the slowest time constant in the problem once 

the fast parameters have come sufficiently close to their equilibrium val­

ues that further details of their time courses are no longer of interest. 

Thus, if an implicit method were used to integrate (2.14), we could expect 

to take time steps of the same order as the times characteristic of the 

plateau once the sodium transient decayed. However, the added complica'­

tion of the implicit methods adds so much computational overhead that the 

longer time steps they take may not result in any overall saving in com­

puting cost over explicit methods unless the stiffness of the system is 

quite pronounced. For (2.14), Huen's second order explicit Runge-Kutta 

method was observed to perform as well as Miller's second order diagon­

ally implicit Runge-Kutta method which is specifically designed to deal 

with stiff systems (see K: Miller (14) for details of this method and 

stiff systems in general). The damping effect of h upon m seems to 

stabilize the system and eliminate much of the stiffness after the fast 

transients have died out. The usual stepsize changing algorithm allowed 

Huen's method to take time steps as long as the longest allowed by the 

diagonally implicit Runge-Kutta method. However, future investigators 

would probably do well to keep in mind the fact that because of their 

essential dependence on widely differing time constants, Hodgkin,--Huxley 

type systems are inherently stiff, and in some cases may require specialized 

methods for practical computation. 

A typical action potential computed from equations (2.14) is 
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illustrated in figure 15. A system of partial differential equations 

could be derived.from (2.14) in aider to model the behavior of propagated 

impulses.in Purkinje fibers. Unfortunately this is not a computationally 

..... 
practical model betause a fine space·grid is required to r~solve the quasi-

threshold behavior of the sodium current. This limitation, combined with 

the excessively small time constants of the upstroke relative. to the long 

time constants of the plateau (i.e.· stiffness, or greatly differing time 

constants) leads to excessive computational expense, even on a computer 

with the speed and cost effectiveness of the CDC 7600. 

We should note finally that this model contains the implicit assump-

tion that the. instantaneous current-voltage relation I(V) is actually 

instantaneous; this· assumption was warranted for the modeling of the pla-

teau with its long time scales but since this integrated model is intended 

to deal with time scales of the same order as the sodium activation time, 

the assumption is no longer consistent .. 

The next sections deal with a qualitative partial differential equa-

tion model which will be used to investigate the nonlinear propagation 

phenomena observed in (4). 
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III. THE SIMPLIFIED HODEL 

1. O.D.E.'s for the Space Clamped Case 

In this and the following sections the purely qualitative model re­
' 

ferred to in the introduction will be described, as well as the numerical 

schemes used to compute results from it and the numerical results them-

selves. We shall begin our discussion with a presentation of the ordinary 

differential equations that describe the space clamped case, or equiva-

lently, a small patch of membrane in which there is no appreciable spatial 

variation in potential. 

Fo.r the·· p'urpos'es of the following analysis, a homogeneous patch of 

I 

membrane will be consideredas a parallel RC network in parallel with a 

nonlinear conductor, which may be represented schematically as follows: 

potential u 

j_ 

outside 

lcD. 
L__LT 

inside 

Figure 16 

l directio~ of injected 
current 1 

1
. 

non 1near 

where the rectangle labeled NLC is a nonlinear conductor with properties 

as follows: for u < some constant voltage a, it acts as an open circuit; 

for u -~a, a current {s inje~ted in the direction indicated whi~h decays 

exponentially in time with nine constant Th. We write this as follows: 

i 1. non J.near { 

0, u <a 

E h 
:....£_, u~ a 

(3 .1) 

.R 
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where h is a dimensionless variable which takes on values between 0 and 

1 according to the following O.D.E.: 

dh 
dt 

1 - H(u- a) - h 

Th 
(3. 2) 

E
0 

and Th in the above two equations are constants with the dimensions 

of potential and time respectively; H(y) is the Heaviside function, i.e. 

H(y)=O if y is negative and 1 if y;;;.o. 

If we write: 

RC T 

and set the sum of the currents in the resistor, capacitor and NLC equal 

to zero, we arrive at the following differential equations or the behavior 

of the circuit in fig. 16: 

du 1 + .-u 
dt T 

E 
0 

-H (u- a)h 
T 

dh 
dt = 

1 - H(u-a) - h 

Th 

At rest, u = 0 and h = 1. If, however, the model is brought to 

(3. 3) 

threshold, say by a stimulating current appearing as a positive term on 

the right hand side of the first equation of (3.3), the solution may be 

found as follows: Let u~ begin at t = 0 with u = a and h = 1. Then 

H(u-a) = 1, and so, for a short time at least, h = exp(~t/Th), assuming 

du 
E is large enough to make -d positive when u 

0 . t 
a. The. first equation of 

(3.3) then becomes: 
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~ 9 I . 

Multiplying through by exp (t/T) yie1ds:: 

d 

dt 
[ exp (tIT) u] 

E 
0 

T [ exp ( [ l - l ] t )] 
T Th 

integration with respect to to yields: 

So: 

exp(t/T)u(t)-u(O) = 

u(t) u(O)exp(-t/T) + 
E

0 
( exp (-t/Th)-exp (-t/T)) 

l:._(T/Th) 

There are two limiting cases that are of interest: 

(3 .4) 

T 
- -r 0 and 
lh 

T 
--roo 
T . The first.is the more realistic case from the point of view of the 

h 

task of modeling of action.potentials, but the second will lead to a P.D.E. 

with peculiar and interesting properties. 

T 
First, put-·= s<<l .. Then write: 

Th 

s = t/T; u(t) v(s) 

S.ubstitution into (3 .4) yieids 

E 

v(s) = v(O)exp(-s.) + l-'-oE: (exp(-Es)-exp(-s)) (3. 5) 
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So for short time, i.e., s << 1/£, we have: 

v(s) ~ v(O)exp(-s) + E (1-exp(-s)). 
0 

Graphically; this looks like: 

E 
0 

vta 

o~--------------
-+ 
s 

Figure 17 

For time scales on the order of Th, the time scale of the d.ecay of 

i 
1

. , we introduce the variables r = t/Th and w(r) = u(t). From 
non J.near 

(3 .4) we find that: 

E 

w(r) = w(O)exp(-r/£) + 
1

_
0
£ (exp(-r)-exp(-r/£)) 

~ E exp(-r) 
0 

(3.6) 

as long as w(r) ~ a; when w(r) decays to a, the current injected by the 

nonlinear element turns off, and the second term on the right hand side of 

(3.6) vanishes. Thus, to lowest order, w(r) vanishes after this point, and 

the lowest order solution exhibits a jump from a to 0. This jump is actu-

ally an exponential decay with time constant £ in this time scale. We 

may determine the pulse length t to lowest order by setting: 
p 

E exp(-r ) ~ E exp(-t /Th) a. 
0 p 0 p 

Dividing through by E and taking logs on both sides yields:. 
0 
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By the foregoing, the complete solution must look like 

ut 

.E 
0 

a 

0 ~---------~~------~~~ 
0 t t 

p 

Figure 18 

We note here that the above results could have been obtained by intra-

clueing the scaled variables rands into equations (3.3), solving the 

resulting systems to lowest order in E, and then matching the solutions 

. ob,tained, rather than writing down (3.4), the solution to (3. 3), arid examining 

th~ .behavio_r of t11e solution for long and short times as we have done. 

Let ,us turn now to the case T/T~ ~ 00 • Actually, the case we will con­

sider is not simply this limit, but the ~ase in which T/Th ~oo while the 

total charge injected by the nonlinear element remains constant. .If this 

constant charge provision or something like it were not assumed, and all 

other parameters ~ere held. constant, then this case would reduce to that 

of a current injected for a decreasing amount of time, which would become 

trivial in the limit. 

to see this, let us consider the total charge injected by the non-

linear element if the potential is maintained above threshold for infinite 
..•. ''i 

time. The total charge Q is given by: 

1
GP . 

Q = - i dt 
0 nonlinear .. l

ao E C 

- -
0

- exp(-t/T. )dt 
T · h · 

-~h CE exp(-t/T )1
00 

T 0 h 
t 0 

T 

~ E C 
T o 

(3. 7) 
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So the capacity of the membrane will be charged to a potential of 

T 

J2 = ~(E ) which vanishes as Th/T goes to zero. Let us rewrite (3.3) so 
C T 0 

that Q remains constant as follows: 

du 1 + -u 
dt T 

Q ' 
- H(u-a)h 
C-rh 

dh 
dt 

1 - H(u-a) - h 

Th 

(3.4) then becomes: 

u(t) u(O)exp(-t/T) + exp(-t/-r)-exp(-t/Th) 

(3. 8) 

(3. 9) 

where£= -rh/-r. As t~o, this model reduces to a ~odel devised by Charles 

Peskin in which the nonlinear element in fig. (16) injects a delta-function 

of current when the potential passes a certain threshold. We may now 

repeat the analysis given above to determine the behavior of solutions to 

(3.8) for small £. Writing r = t/Th and v(r) = u(t), we find 

Q 
v(r) v(O) exp (-£r) + -C--,-(l_,_--£~) [exp(-£r) -exp (-r)] 

For short times, i.e. small values of r, the above reduces to 

v(r) v(O) + ~ [1- exp(-r)] 

For longer times of the order ofT, we choose the new time scales= t/T, 

and the new solution function w(s) = u(t). Equation (3.9) then becomes: 

w(s) = w(O)exp(-s) + c(i-£) [exp(-s)-exp(-s/E)] 

which reduces to: 

w(s) ~ [ w(O) + g ] exp (-s) 
c 
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to lowest order.· 

Hence.the solutions to the above O.D~E's are ~ery similar in form for 

both of the limiting cases considered. We shall see, however, that these 

two cases behave very differently when ·we. pass to the case of the partial 

differential equation d.escribing a· iong fiber. · .· 

In order to compare this simple model with the more detailed model of 

the Purkihje fiber plateau presented in chapter II, we define a new 

parameter p = 1- h, and write (3. 3) as 

du 
dt 

~ 
dt 

1 Eo 
-u + (1-p)H(u-a) 
T T 

H(u-a) - p 

Th 

(3 .10) 

The phase portrait of ·(3.9) is given in figure 19. To the left of the 

vertical line u = a, this is exactly the phase portrait of Young's model, 

as illustrated in fig~ 2.1 of (7), with the vertical line u =a correspond-

ing exactly to what FitzHugh calls the excitation barrier. To the right 

of the excitation barrier, the similarity to figure 3 is clear. In the 

plateau region, the simplified model can be expected to behave much like 

the more detailed model with small leakage current. The simple model will 

exhibit all or none repolarization frotn the plateau by exactly the same 

dynamics as the more detailed model. 

The simple model will not reproduce the self excited oscillations that 

occur in nature and are exhibited by the detailed model. This failure 

results from the sharp discontinuity of H. 

some approximation H , for example, H (x) = 
z z 

If we were to replace H with 

1
-(x/z) and substitute 

1 + e ' · 
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H for some small z in place of H in (3.10), the phase portrait of the new 
z 

system would resemble figure 20, in which self-excited oscillations could 

quite plausibly occur. 

2. Traveling Wave Analysis for the Partial Differential Equation 

The PDE that describes the electrical behavior of a long fiber whose 

space-clamped behavior is given in (3.3) above is: 

+ E H(u-a)h + u 
0 

1 - H(u-a) - h 

Th 

(3.11) 

where A = the length constant of the membrane, and the subscripts x and t 

represent differentiation with respect to length and time respectively. 

E
0

, T, and Th are the same constants defined above in section 1 of this 

chapter, i.e. E /R is the peak amplitude of the current injected by the 
0 

nonlinear conductor, T is the passive membrane time constant and T is 
h 

the time constant associated with the parameter h. 

Let us scale the equation as follows: 

X 
y 

A 

(3.11) then becomes 

s 
t 

T 

u u + u - E H ( u-a) h 
YY s o 

h 
s 

= T [ 1 - H ( u-a) - h] 
Th 

(3.12) 
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Figure 19 

Phase Portrait of Simple Model 

••• ". 4 ................. . 
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---......;110 direction of trajectory 
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Phase Portrait of System with Pointwise 
Approximate Step Function 

Figure 20 

. . . . . . . . .. . . . . . . . . . . ~ . ... . 

• · · · - ·-·-p nullcline 
--------U nullcline 
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Now let us look for traveling wave solutions to (3.12) by transforming 

to a ~oving frame of reference translating to the left with speed 8. We 

do this by writing: 

z x_ + s 
8 

and seeking solutions of the form u(y,s~ = v(z) and h(y,s) = h(z). The 

new functions' v and h must satisfy the ordinary differential equations: 

v" = e2
v' + e2

v 
2 

- 8 E H(v-a)h 
0 

.2.[1-h' H(v-a)-h] 
Th 

.We now impose the following conditions on v: 

v(O) a; v(z)+O as lz!+oo; VE;c'(6i); v(z
1

) a for some .z > 0 
1 

(3.13) 

<3 .ua> 

We solve (3.13) subject to (3.13a)as follows: for z ~ 0, h- 1 and v(z) 

aexp(y±z), where y± are the roots of: 

2 82y 
. 2 

0, i.e. 
e2

± Ve4 + 482 
y - 8 = y± 2 

Let us now consider the first limiting case discussed in section 1, i.e. 

E: << 1. In the interval 0 ~ z ~ z 1 ~ h exp(-Ez), so in this region, 
. ·Th 

( 3.13) becomes 
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2 2 2 ' ' 
8 v' + 8 v - 8 E exp(-£z)~ 

0 

It is then natural to look for solutions of the form: 

v 

B is determined by substituting Bexp(-£z) into (3.14) which yields: 

hence 

B 

Note here that B+E as £+0. 
0 

::;: 

(3.14) 

(3. 15) 

The solution in the region 0 ~ z ~ z is given by (3.15) and the solu-
1 

tion in the region z > z
1 

is v(z) = aexp [y_(z-z
1
)J, h = exp [-£(z

1
+z)] + 

1-exp(-Ez). The condition that ve:c\tR) then becomes: 

(3.16) 

(3.16) is a set of four equ.;ltions in four unknowns: A
1

, A
2

, 8, and z
1

. If 

this system can be solved, then we have the exact solution to the traveling 

wave problem. 
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Let us now seek a solution to (3.16) in which the upstroke of the 

pulse is determined by :he A
2
exp(y_z) term, the downstroke is de~ermined 

by the A
1
exp(y+z) term, and the plateau is approximately given by Bexp(-Ez); 

this is equivalent to requiring th~ pulse to be sha~ed like the solution to 

the ODE described above for T/T h<<l. Accordingly, let us define the new 

coefficient c
1 

= A
1 

exp (y+zl), and assume that c
1 

is of order a, i.e., 

A
1 

is of order exp(-y+z
1
)., Neglecting terms in exp (-y+zl) and exp (y_z

1
), 

(3.16) reduces to: 

i) 'B + A
2 

·· = a 

-EB + y_A
2 

y+a 

ii) Be~p(-Ez 1 ) + C
1 

= a 

-EBexp(-Ez
1

) + y+Cl = y_a 

In this approximation, the speed may be determined by the behavior 

of (3.17) i)·alone, and the pulse length z
1 

is then determined from the 

speed derived from i), along with the so1ution of ii). Thus the speed is 

determined solely by-the behavior of the leading edge of the wave. This 

is a realistic result; wavelengths associated with the pulse as a whole 

must be of the order of tens of centimeters, since the pulse duration is 

~ 300 milliseconds and the propagation speed is ~ 2 meters/ second. These 

long wavelengths are of the same length scale as the.whole fiber, so the 

front 'of the wave is the only part that can be said to propagate in any 

meaningful sense. This uncoupling of the leading from the trailing edge 

is exactly the behavior we want from a model of Purkinje fiber action 

potential. 
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I h th d . . . n t e zero or er approx1mat1on 1n E, we find the·speed of the 

wave to be exactly that of the traveling front of a change of state wave-

form for a pure threshold process without. recovery (Peskin [ 18], pp. 261-3). 

th 
The zero· 

where p 

order approxim<;~.tion e to the speed e is: 
0 

E 
0 

a 

2 
(p ~ 2) 

p- 1 

.We now turn to the outer expansion, i.e. time scales on the order of 

Th. With the new independent variables s = t!Th and y = x/ A (3. 10) be-

comes: 

u 
YY 

u - E H(u-a)h + u 
s p . 

h 1 - H(u-a) - h 
s 

As above, we look for traveling waves. Write z y_ + s, u(y,s) 
¢ 

h(y,s) = h(z). U and. H must satisfy: 

= EU' + U - E H(u-a)h 
0 

~' 1 -·H(U-a) - h 

By dimensional analysis, we see that ¢ = e 
E 

U(z), and 

(3.18) 

As before, we require pulse shaped solutions, i.e. U(z) ~a iff 0 ~ z ~ z
1

, 

-s 
so in (0, z

1
) h = e , and therefore in (0, z

1
) (3.18) becomes: 
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EU' - E e-z + U. 
0 

th 
To zero order in E, U 

-z 
E

0
e and we may approximate z

1 
by: 

a= E e-zl 
0 

The zeroth order approximation to (3.18) for z < 0 or z > z
1 

is U = 0. 

·-z 
This can be matched to the above approximation U = E e at z = 0 and 

0 

z = z
1 

by patching the two regions with expansions in the fast time scale. 

In the slow time scale, the solution rises from a to ~ at z = 0 and decays 
0 

from a t.o 0 at z = z
1 

exponentially with time-constant of the order of E, 

' . y 
since th'e characteristic roots of (3 .18) with U ~ a are ___j; where Y ± 

E 

are the same as in equation 3.15. The form of the solution in this long 

time scale is shown in figure 21. 

This model is a very crude one, and in fitting its behavior to experi-

ment, some compromises must be made. To see this, let us refer back to 

(3 .10): 

u 
T XX 

1-H(u-a)-h 

Th 

Now transform to the moving coordinate 

wave solutions of the form u(x,t) = U(~). 

We then have: 

E 
0 

- H(u-a)h 
T 

·X 

c 
~ t, and look for traveling 
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U' + 

1-H(U-a)-h 

Th 

E 
0 

T 
H(U-a)h 

with boundary conditions as before: U (?;;) -+ 0 as Is I -+cc, U( ~;; 1 ) = U (0) = a for 

some positive ~;; 1 . The solution in the region [0, ~;; 1 ] will look like: 

U(i;;) Bexp(-k?;;) + A
1

exp(y+?;;) + A
2

exp(y_?;;) 

} 1 
2 {1 J 4/..2' 

where k and 
c 

Th 
Y+ 

2.A2 
+ I+~ 

c "[ 

>..
2 

2 
Assume - << T this is the assumption that the propagation of the front 

c2 

is the fastest.process in the problem. 

Then: ~ 1 + 
4

; 

2

2 
~ 

· · c T 

2\2 
1 + 2 2 

c T 

-1 
andY_~ 

T 
We assume as before that the A

1
exp(y+?;;) term remains unim-

portant near the leqding edge. The boundary conditions then become: 

Since 

have: 

k << h'_l, U'~y_A 2 near the threshold crossing at 1;; 

-a-E 
A =a-B and B~E so U'(O) ~ 

0 

2 o' · T 

0. We also 

But the peak amplitude will be.of the same order as B (recal]- that the 

shape of the. plateau is approximately Be-k1';;). Thus, if we pick T ~ 10 milli-

seconds in accordance with observation (3) and ask for the peak time 



-52-

derivative of the potential to be around 1000 V/sec as is observed ex-

perimentally, we find amplitudes in the neighborhood of 10 volts! 

In the actual numerical simulations, we have chosen to compromise the 

rising speed of the pulse rather than tolerate such unrealistically high 

peak amplitudes. Parameters used in the numerical simulations described 

in chapters four and five were chosen as follows: 

E. 225mV 
0 

a 3~V 

T 5ms 

Th lOOms 

A 2~ 

Numerical solution of 3.17 for these values yields speeds near 1m/sec, and 

a pulse duration of approximately 200ms. The amplitude is somewhat high at 

approximately 180mV, and the total rise time is rather slow at 16ms, but 

still fast on the time scale of the relevant experiments which lasted 

several seconds. 

It is assumed that the nonlinear characteristics of the membrane are 

due to action of some structures (i.e. pores or carriers) at specific sites 

at the membrane. Each site is assumed to have kinetics described by: 

iindividual 
site 

H(u-a)h; 
dh 
dt 

= 
1 - H(u-a) - h 

Th 

and the parameter E in the foregoing sections is proportional to the 
0 

density of active sites on the membrane. Thus if we assume that the action 

4 . 
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of some blocking agent i:s to clog up the individual sites, we may model 

the blocked fiber by: 

>...2 
-u 
T XX 

= 
E 

0 
B(x) -H (u...;a)h 

T 

1 - H(u-a) - h 

Th 

where B(x) is the proportion of unblocked active sites. 

(3.19) 

The action of poisons that interfere with the excitation process by 

changing the kinetics ~f each individual site could be modeled by multiply-

ing a or Th by a suitable function of x or t. 

For various choices of B(x), delay, block and one-way conduction can 

be observed in the numerical solution of (3.19). The numerical techniques 

used to solve (3.19) will be discussed in Chapter IV, and the results 

will be exhibit-ed in Chapter V. 

3. The Pathological Case: >> 1 

Although solutions of the space-clamped system in this case look 

T 
<< 1, the two traveling 

Th 
much like those of the space clamped system for 

wave cases are very different. In fact, the only traveling waves that 

Th 
exist in the limiting case = 0 (as noted above, this corresponds 

T 

to a nonlinear element that injects a finite charge across the membrane 

instantaneously when a given threshold potential is reached).are moving 

cusps, where the peak is at x±et = 0, for some e. 

We shall now derive the differential equation for traveling waves 

in this case. As noted in Section 1, we must modify the current-voltage 
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relation so that the charge injected by the nonlinear conductor remains 

constant independent of Th; we will then derive the equation for the 

traveling wave case exactly as before, by scaling x and t appropriately 

and then making a transformation to a moving frame of reference. 

As before, we choose the length constant A as our scale length; 

therefore we define the new variable y = x/;\. The time will be scaled 

to the passive time constant T, which, in this case is the slowest time 

constant in the problem. Now write T /Th = 1/E. The modification to 

(3.3) that yields the constant charge property we wish to incorporate 

in the model currently under discussion can be made by writing E /E 
0 

instead of E in (3.10). Our new time variable is s = t/T as described 
0 

above, and we shall write the solution variable in the new cooordinates 

as: u(x,t) = v(y,s). Equation (3.10) then becomes: 

v 
YY 

h 
s 

E 

v + ......£. H ( v-a) h + v 
S .. E 

1 - H(v-a) - h 

Th 

Now, in order to get the O.D.E. for traveling waves, we make the 

transformation z = y/8 + s and look for solutions of the form v(y,s) = 

V(z). If such solutions exist, they must satisfy: 

V" 

h' 

8
2
E 

--
0 

H (V-a)h 
E 

1 - H(V-a) - h 
E 

(3. 20) 

Let us now further simplify the model by neglecting the recovery of h 

and the turning off of i 
1

. after V has decayed to a value less 
non 1near 

than or equal to a. Equation ( 3. 20) then becomes: 
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8
2

E 
2 2 0 e v' + e v - --H(z)h 

E 

;-;-'"-' 

8 !:;) 

h 1, z ~ 0; h exp(-z/E), 

VI . =a; V'l 
.z=O z=O 

z ~ 0 

where y± are defined as above. For z~O, V exp(y+z). For z~ 0, (3.21) 

becomes 

-8
2
E 

--E-
0
- exp(-z/E) (3. 22) 

First, try a particular solution of the form Bexp(-z/E). Substitution 

into (3.22) yields: 

- e2] B . = 
E 

Hence: 

B 
2 

~ 1/E + e -
= 

Now let us look for solutions of the fo,rm 

V = Bexp(-z/E) + Aexp(y_z) 

The condition that V be c\<H) is then: 

B + A a 

1 
-B + y A = y a 
E - + 

-E 
0 

E8
2 

Upon substitution of the explicit form of· B into the above expression, 

we derive: 



• ·< 

A relation for 8 may now be derived from the above by eliminating A. 

This relation is 

[y + .!_ { 
E:8 2 

9202] - E: 1 82E: + 

In the case E: c= 0, we find B = 0, A= a, and 

E 
82 0 

+y = y+ a -

Hence 

82 (y+ - y_) 
a 

= -
E 

0 

So, 

E 
0 

~1 +~ 
a 82 

From the above we finally derive 

4 

a 
(y+ - y_) E 

0 

(3. 24) 

This is a degenerate case in which the nonlinear element injects a delta 

function of current when a given threshold potential is reached. The 

traveling waves look like moving cusps, unlike the voltage vs. time 

graph of the space clamped behavior of this system, which rises abruptly 

toE and then decays exponentially with time constant T, as we saw in 
0 
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Section 1 of this chapter. From the last equation above, we can see 

that there will be no traveling waves if E .;;;; a. 
0 

We will now show that the values of e and A depend smoothly on E 

for E sufficiently small by the rather conventional implicit function 

theorem argument described on the following pages. 

First, for the sake of convenience, divide both equations of (3.23) 

through by a, and define q = A/a and r = E /a. 
0 

Equation (3.23) then 

becomes 

E8
2 

} 
2 2 2 . + q e E - e s 

1 

Now write 

f
1

(8,g;E) 
' 2 2 2 2 

(g- 1) (1 + 8 E- 8 E ) - rES 

2 L 

Taking partials evaluated at 8 = 8 = 2/(r -1)'2
, q = 1, E = 0, we find 

0 

dfl 
1· 

dfl 
0 = ae = 

ag 
, 

'8f' df2 d 2 
2r8 + - y ) ag y ae = as <Y_ - + 

We have, from the definitions of y± that 

= 

and hence 
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= 

Recall from (3.24) that 8~ = 4/(r
2

- 1), so 

y_) ( 2 
8 

+ 4) I ( 2 
4 

+ 4) !z 
r-1 .. r-1 

r 

and thus 

4r 
= = 

Hence 

is nonsingular unless r = 1, a case which we have excluded from consider-

ation, so for all r > 1, q and 8 may be expressed as smooth functions of 

E: in some neighborhood of q = 1 and. E: = 0. The forms of the traveling waves 

for various values of E: are shown in figure 22. These waveshapes .are not 

strictly comparable, since the speeds vary with the value of E: and thus 

the scaling of the abscissa is different for each wave; but the decay 

of the peak amplitude with decreasing E: is readily apparent. 
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IV. NUMERICAL TECHNIQUES 

The model presented above has some obvious conceptual and analytical 

advantages: the biophysical intuition for each of the parameters in the 

equation is unambiguous, and the traveling wave analysis is easy, 

requiring only the solution of some transcendental equations for the 

complete solution of the problem for any g~ven combination of parameters. 

The case of greatest importance, however, is that of spatial inhomogeneity, 

where the traveling wave analysis cannot be used. There i~ now·only one 

exact solution known for a model of the form presented above with spatial 

inhomogeneities. This solution was presented by John Rinzel (personal 

communication)~ and it will be described in detail below. Perturbation 

techniques are also under consideration currently, but the major results 

are numerical. The discontinuities. in the model present special numerical 

problems which must be taken into account in the design of computer 

programs for the solution of equations (3.19). 

The only solutions we shall consider-will be those that are 

continuous in time and piecewise analytic in space. Recall that the 

longitudinal current is proportional to the space derivative of 'the 

membrane potential, the capacity current is proportional to its time 

derivative, and the membrane current is proportional to its second space 

derivative. Therefore, the condition that these physical quantities be 

finite implies that a solution must have a certain amount of srnnthness 

in order to have any physiological interest. We shall therefore assume 

that sufficiently smooth solutions exist. 

It is easy to derive jump conditions for the behavior of the 

solution at a threshold crossing. Write the first equation of (3.19) as: 

: 
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-B(x) 
E 

0 
H(u- a)h 

T 
(4 .1) 

Now suppose u = a at x = x
0

• Assume furthe~ th~t ux I x=a > 0. Choose 

x ~x and x .,;;x . After evaluating all of the terms of (4.1) at x+ + 0 0, 

and x_, we can form the following difference 

(~2 u -u 
XX t 

u -u 
XX t 

E 
0 

T 

If we allow x to approach _x+' keeping them on opposite sides of x
0

, the 

lu terms on the left-hand side cancel because of the continuity of u 
T 

at x , leaving us in the limit with 
o. 

[
(;\.2 u 

T XX 

E 
-B(x ) _E_ h(x ,t) 

0 T o · 
(4.2) 

where the square brackets denote the size of the jump in the quantity 

enclosed at the specified point. Note that B(x) need not be continuous, 

but must have a right and left limit everywhere .. In the case of traveling 

waves, ut is proportional to u , which is proportional to the longitudinal 
X . 

current, which must be continuous in order that the membrane current 

remain finite, so all of the discontinuity is accounted for by the u 
XX 

term. In the space clamped 'case, u = 0, and ut accounts for all of the 
XX · 

discontinuity. In the case of a boundary value problem, the values of 

the jumps in u and u cannot be readily determined. 
t XX 

With the jump conditions.in hand, let us now investigate the effects 

of using conventional numerical techniques to find approximate solutions 

to these equations with discontinuities. · First, we turn to the space 

clamp case. We shall limit our discussion to implicit methods· in order 
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to avoid the stability problems that inevitably arise with explicit 

methods. To simplify matters, we assume that h::: 1. This should not 

affect the applicability of otir results. We will only consider methods 

that are known to work when the solution is smooth enough, so the only 

questions remaining to be settled pertain to the behavior of the scheme 

in a neighborhood ,of a threshold crossing. In order to estimate the 

time course of the upstroke accurately, our method will have to take 

steps of the same order of magnitude as T. Since T << Th in the physio­

logically interesting case, h will change very little in the course of 

a few. time steps, and can be considered constant. Let I be the total 

current passing through our space clamped membrane, divided by the 

membrane capacitance/unit area. The differential equation governing 

the membrane potential V is 

dV 
dt 

E 
-l V. + ~H (V-a) + I 
T T 

Now let: 

U = the initial potential 

k the length of the time step 

W the approximate solution at time t = k 

V the true solution at t = k 

The backwards difference equation is 

W-U 
k 

+ lw 
T 

E 

I+~H(W-a) 
T 

Assume U <a; the solution to (4. 3) is: 

V Uexp(-t/T). + TI(l- exp(-t/T)) 

and this remains valid up to a threshold crossing. 

(4.3) 

(4.4) 
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Now let us attempt to solve (4.4) by a method of successive .approximations. 

Rewrite (4.4) as 

w u + ki 

1 + (k/T) 

'+ 
kE H(W- a) 

0 

T(l + (k/T)) 
F(W) (4. 5) 

The method of successive approximations will predict a threshold crossing 

if: 

u + ki 
1 + (k/T) 

;;;. a 

This is a sufficient condition; it is also necessary if U is used as the 

initial guess. Its necessity has not been checked in other cases. This 

can be illustrated by figure 23. 

Let us now check the conditions under which the true solution will 

cross threshold. Expanding the true solution at t = k in powers of * 
yields 

v ( 
k lk2 lk3 ) 

Ul-(:r)+2(T) -6(T) + ... 

2 
U + ki - ( _!: ) (U + .!_ ki) + 0 ( ~ ) 

T · 2 2 
(4. 6) 

T 

If the method of successive approximations predicts a threshold crossing, 

then (4~5a) is satisfied and 

v ;;;. 1 k 2 k
3 

- TI ( - ) . + 0 ( -
3 

) 
2 T 

T 

2 . 3 

a + .!_ (U - TI) ( _!:) + 0 ( .!:._) 
2 T T3 

since we have assumed a;;;.u. Therefore, if the method predicts a· threshold 
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The Method of Successive Approximations 

i) Threshold Crossing Not Predicted 

E 
U+kl+T k . 

1+--r 

1F(W) 

U+kl 
~ 
1~ 

ii) Threshold Crossing Predicted 

E., 
U+kl+T 

k 
1+;c 

1 F(W) 

a 

Figure 23 

u~--~------~-------------------------------- a 
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crossing, within a given tiine step then there will }?eone, up to an 

error of the same order .as the accuracy of the method itself. 

Since we are now assured that the method will predict no spurious 

threshold crossings, let us attempt to estimate the errors introduced 

when the threshold is crossed. The condition that a threshold crossing 

be predicted is: U + kl/1 + (k/T) > a. Let us suppose that this is the 

case. Then 

- 1.-

w 
U + kl + k(E /T) 

0 

1 + (k/T) 

Now suppose the true solution crosses threshold at t 

true solution V at t = k is given by 

t ~ k. Then the 
0 

V Uexp(-k/T) + 1(1- exp(-k/T)) + E (1- exp[(k- t )/T]) 
0 ,, 0 

·. ' -~ 

Expanding V and W in powers of k/ and subtracting yields 

(k- t ) 

V - W = E . 
0 + 0 (k 

2
) 

o T 

Thus, in ~ time stepin whi~h a threshold crossing occurs, the 

discontinuity introduces an error proportional to the fraction of the 

step in which the system remained below threshold. This is due to the 

fact that in such a step, the approximate solution is computed as if the 

system had been above threshold for the entire step. The error checking. 

code should therefore maneuver the step size in time in order to come 

close to having the approximate solution actually take on the threshold 

value. This is· the behavi<)r -observed in practice. 

The problem of dealing with the discontinuity becomes more difficult 

for the partial differential equation with inhomogeneities in space, 

since we may no longer deal with traveling waves.. We shall see below 
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that conventional methods will introduce large errors in the case of 

a discontinuity in u . 
XX 

With appropriate scaling, the model may be written as 

u + u- u H(u-a)h 
t XX 

= 
1-H(u-a)-h 

Th 

(4. 7) 

We are interested in the initial-boundary value problem for (4.7) on [0,1] 

subject to 

u (O,t) = u (l,t) = 0 
X X 

u(x,O) f(x) 

·We have -chosen the so-called sealed and boundary condition, i.e., the 

condition that there is no current flow out of the fiber at the ends. 

We shall first illustrate the difficulty that arises if the 

discontinuity is ignored, and uxx is evaluated by second differences on 

a fixed grid. Assume u is c1
( [0,1]) and piecewise analytic; assu~e 

further, to_ illustrate the problem, that u is decreasing on (jk, (j+l)k) 

and that u=a at x=jk+k', as in figure 24, where k is the distance 

between adjacent grid points. Let u be defined as u(nk). 
n 

piecewise analytic in space, we have 

Let 

u 
X 

u. 1 J-

dU I ax 
xjk+ k' 

+ 
u 

XX + u-+ a 

u 
XX 

Since u is 

u-+ a 

. . 
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Figure 24 

.! 

Assumed Graph of u versus x in an Interval 

Containing a Threshold Crossing 

jk jk+k' (j+1)k 

M 
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in Taylor series about the threshold crossing, 

in terms of u.' we find 
J 

a+ ku + 
k +l + u u .... 

X 2 XX 6 XXX 

' k'2 k'3 
u. + k u. + -2- u. + -6- u. 

J JX JXX ]XXX 

k'2 
k ( u. + k' u. + -2- u. + ... ) 

JX JXX ]XXX 

-2 k'2 k 
(u. + k'u. 

2 
+-- u. - u 

]XX JXXX 2 ]XXX XX 

+ ku. 
k2 k2 I + + ..... u. +z-u. -u 

2 XX _ J J 

the jump 

JXX 

in u from a 
XX 

u.+l - 2 . + u. 1 J . UJ J-

k2 

+ 
to a 

+ 
) 

and then 

A sequence of grids can clearly be chosen with the property that, k goes 

-
to 0 and k/k goes to 1. So, with the usual second difference formula, 

the discontinuity introduces an error which may be 0 (1) as k goes to 0. 

Suppose we interpolate to find the point where u crosses threshold. 

If the interpolation error in the location of the threshold crossing is 

e, the distance of the interpolated point from the left end of the 

interval is k*, and the value of u at jk + k'~ is u*, then calculations 

identical to those above yield: 

; ·-
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u. 1 - u. 
J- J 

k(k + k''<) 

. u*- u. 
1 

2 u. + 
JXX 

e2 u I++ .... 
4 k * ( k + k *) XX -

+ 
k*(k + k*) 

which is acceptable since e = o(k) for any respectable interpolation 

scheme; -b~t since we do not know u*, the :formula we must use is 

= 

u.
1 

- u. 
J- J + 

u*- u. u. 1 - u. 
]- . J + 

a-u. 
J + 

a-u* 

k(k + k*) k*(k + k*) k(k + k*) k*(k+,k*) k*(k+k*) 

In the case of linear or parabolic interpolation, this rightmost term ·can 

be 0 (1) as k goes to 0. A method that has been found to work is the 

construction of a weighted average of two parabolic interpolates, one 

from each side of the interval in which the threshold crossing takes place, 

with the weights chosen in such a way that 
a-u* 

goes to 0 like e/k 
k*(k+k*) 

as k goes to 0. 

The interpolating parabola through uj-l' uj and uj+l is given by 

p. (x) 
J 

= 

Define h: such that 0 .,;;; h: .,;;; k and P. (h~) = a. 
J " 

(4 .10) 

Now put k = k-h*, 

where jk + h~ is the point where the parabola passing through uj, uj+l' 

and u.+
2 

takes on the value a in the interval between x = jk and 
J • 

X = (j+l)k. k satisfies 

a (4.11) 

Expanding (4.10) and (4.11) in Taylor series about jk and (j+l)k 

respectively yields 
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a 
h*2 

U + h* + + . u. -2- u. 
J JX jXX 

(4.12) 

-2 - I 2 - ·2 

a 
h h k 

u I++ 
h k 

u I+ + O(h 
3

) uj+1 - ku.+l + 2 u.+l + 
J X J XX 

4k XX 
2h

2 XX 

We have also 

* u = 

Let us now put k* 

a 

we derive 

h*2 

u. +·h* + u. + +
2 

u. + O(k
2

) 
J JX JXX 

k2 

uj+l - k_uj+lx. + 2 uj+lxx + O(k2) 

ah * + 8h * , where a + 8 
+ 

1. Since 

u. + k'u. + k
2
'
2 

u. + O(h 2) 
J JX ]XX 

0 -k+u. + u. 
JX ]XX 

(4.13) 

(4.13a) 

(4 .13b) 

{4.14) 

by subtracting (4.14) from (4.12), where k+ :: h~ -k'. and thus we are 

reassured that k+ = O(k
2

) in any domain bounded away from the boundary 

and from relative extrema; hence we may approximate u* by its linear 

interpolate au~ + Bu:, and in so doing, introduce an error which is 

2 
O(e) = O(k ), which will not contribute an 0(1) term to our estimate 

for u 
jXX 
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·so, multiplying (4.12) and (4.13a) by (4.13) and (4.13b) and (3, 

and forming -a(4.13a) - S(4.13b), we find 

a -
( 

* . + h 
-a -2 1 + 
T ku 2k + 

XX 1- . 

h_ 2 -2) . 
+ k2 + O(.k ) (4.15) 

Thus if we choose 

D * -. 2(h 
h+ 2k 

[ (- -2)] h . h 
1 *2 - - . 

n h+ 2~ + 1<2 

(4.16) 

s l: [ h2 ( h~ + h:
2

)] 
D - . 2k k2. 

h* k
1 

+ k+ 
-

+ 
h k + k 

equation (4.15) becomes 

.. 
+ 2 1 I+ [ -(k'2 + (h h2)( h*2) ' u2. -2 - - + + 

a-u + 0 (h ) = -u 2k k+ + R+ )k 2k + h2 2k + 7 2D XX _ 

+ (k
2 

+ 2kk +k2)k'2 (h~ h~
2

) c- k=)J 2k + 2 2k + 2 . 
k k 

(* h:
2)(h- -2) + 1 h+ h 

= + 2 2k +- u X 
2 2k 

k k2 XX 
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which is at worst O(kk+) O(ek). Using this method, I have obtained the 

numerical results described in the next section. 

In practice, the partial differential equations under consideration 

are approximated by the system of ordinary dif.ferential equations 

~' (t) 
"2 = -- A(t)u + ~(~.~) 
'L -

(4.17) 

E_'(t) 

where the components of the vectors ~ and E_ are the values of the 

approximate solutions at selected points x. in the space interval under 
l 

consideration, and ~ and M are nonlinear vector-valued functions whose 

E . 
. components N. and M. are given by B(x.) _E.H(u.- a)h and H(u.- a) 

J J J 'L J J 

respectively. A(t) is the matrix of the second difference operator for 

those points that do not border an interval where a threshold crossing 

takes place. If a threshold crossing is detected in the interval 

(xj,xj+l), the approximate position of the threshold crossing is determined 

by solving (4.~0) and (4.11) for h* and k respectively, and then forming 
+ 

the weighted average ah: + Bk k* shown above. For the point x., A(t) 
J 

is the asymmetric second difference operator 

where a is expressed as a linear function of u j _ i, u j and u j+ 1 using 
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the fact that the equation Pj(h~) =a is linear in u. An analogous 

calculation is done for the row of A(t) corresponding to xj+l" The 

system (4.17) of O.D.E. 's is solved numerically by Miller's diagonally 

implicit second order Runge-Kutta method. The results are presented in 

the following chapter. 
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V. RESULTS AND CONCLUS~IONS 

The numerical technique described above yields the results illustrated 

in figure 25 for a spatially homogeneous fiber 15 millimeters long, sealed 

at the ends. Note that the amplitude grows as the pulse approaches the 

distal end of the fiber. This effect is to be expected. One way to 

view the sealed end boundary conditions is to re-interpret the problem 

as one in which the solution is synnnetric with respect to the sealed end. 

In this framework, a pulse approaching a sealed end is represented as two 

pulses converging at the same speed to a point that stays exactly between 

them. The solution is then a superposition in some sense of the solution 

and its symmetric image. This effect was observed numerically for 

·Hodgkin-Huxley pulses by Rall and Goldstein (11). 

In the case of a spatially inhomogeneous fiber, very little can be 

said analytically. In the case of an infinite fiber stimulated by a point 

current source at x = 0 there is a steady state solution "*hich the fiber 

probably settles•down to after some length of time has elapsed. With 

appropriate scaling, we may write the equation for this case as 

ut + u - u 
XX 

= H(u- a)h + Uo (x) 

1-H(u-a)-h 

Th 

A steady state solution would be 

h 
{

0, 

1, 
u = { 

~Ue -x 
z ' 

~Uex , 

x~O 

x<O 

·u 
log(2a) 
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and U is required to be > 2a. 

The only other exact solution available at this time is for the 

case Th = oo, for the following conditions 

= u - .u + H(u- a)H(..,;x) 
XX 

u(x,O) W(x) 

where W(x- 6t) is the traveling wave solution to 

= u - u + H(u- a) 
··XX 

with u =a at x = 6t. This can be solved exactly since it is a linear 

problem. The solution is 

u(x, t) 

where 

K(x,t) 

f oo itfO · 
= K(x- y,t)W(y)dy + . K(x- y,s)dsdy 

= 

-t 

e e 

2 
-x /4t 

~ 

0 -00 

This solution approaches 

u(x) 
= {1-~ex 

-x 
~e 

x<O 

x;;;:.o 

for long times. This solution was first proposed by John Rinzel. 

Figures 26, 27 and 28 show the numerical results from applying the 

method described above to equation (3.19) for various choices of the 

blocking function B(x). Asymmetric forms of B(x) similar to those used 

in the computation of figures 27 and 28 could have arisen in the preparation 
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used by Cranefield, Ho~fman and their coworkers in (2), (4), and (5). 

The ager block which was used to depress the excitability of the center 

segment of a given fiber had a potassium concentration that was much 

higher than the bathing solution. As the bathing solution flowed over 

the agar during the experiment, it could have picked up additional 

potassium ions and carried them downstream, thus the bathing solution 

would have a higher concentration of potassium ions downstream of the block 

than upstream. Hence, if we were to travel in the downstream direction 

along the outer surface of the fiber we would see the potassium concen-

tration rise sharply as we entered the block and taper off slowly as we 

left it. 

In figures 26, 27, and 28, delay, block and one-way conduction are 

clearly displayed. We may conclude that these effects observed experi-

mentally by Cranefield and Hoffman (4) can be explained in terms of a one 

dimensional model, and may not depend on more complicated geometry or the· 

details of tbe voltage-current relations of the membrane. 

This example of one-way block may actually be a case of asynunetrical 

one-for-n block, i.e., the transmission by a depressed segment of one 

pulse for every n incident.pulses, but the numerical methods developed 

above will fail in an attempt to demonstrate one-for-n block, since the 

interpolation error for the parabolic interpolate used is proportional to · 

1/u , and thus it cannot deal with a relative extremum, which must occur 
X 

in the case of one-for-n block. New numerical methods are now being 

devised to deal with this problem. 
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Reciprocal Time Constant -1 vs. Potential 

10 

,, fitted constant 

'•- . \ --......___ ·-. . 

0 ·~L-~~~-L~---Lj~,~~~---·~·~·~·-·~>~· ~-~~-~~~--~0 

-SO' 0 -1110 

m\' 

Figure A1 

From page 220 of (16) 
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Steady State Activation of Slow Hyperpolarizing 
Current 
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Figure A2 

From page 221 of (16) 
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Fully Activated Res~oring Current vs. Potential 
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Instantaneous Current-Voltage Relation 

Figure A4 
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Recorded Purkinje Fiber Action Potentials 
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·FIG. 7-1. (A) Transmembrane action potentials recorded from papillary muscle 
(top trace) and attached Purkinje fibers (bottom trace) of the dog right ven­
tricle. Time calibration shows intervals of 10 and 50 msec. (B) Transmembrane 
action potcnt:als recorded from papillary muscle (bottom) and isolated false 
tendon (top) of the dog left ventricle. Upper trace in both records is the line of 
zero potential. Time calibration shows intervals of 100 and 500 msec. Vertical 
bar at left of figure is a voltage calibration of 100 mv for B. 

Figure A5 

from page 177 of (3) 
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Records of Oscillatory Activity 
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Figure A6 

from page 262 of (12) 
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An Example of Stiffness Instab~lity in 
The Integration of the Hodgkln­

Huxley Equations 

~•oo (ol 
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Flo. 2. (a) Comparison of H-H action potentials r.eneratrd by the Euler (Etn, Rung~'­
Kuua (RK), and /\dams (AM) intcgr<ltionmcthods for a 30 ;•sec time step with a ecn· 

· vcrgcnt solution (C). The con~sponding computation and plotting time arc shown in 
seconds. (b) As for (a), except that integration step size doubled to 60 iJSCC. 

Figure A7. 
from pag~ 260 of (15) 
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