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Based on the Lyapunov characteristic exponents, the ergodic property of dissipative 

dynamical systems with a few degrees of freedom is studied numerically by employing, as 

an example, the Lorenz system. The Lorenz system shows the spectra of ( +, 0, -) type 

concerning the 1-dimensional Lyapunov exponents, and the exponents take the same values 

for orbits starting from almost of all initial points on the attractor. 

This result suggests that the ergodic property for general dynamical systems not neces

sarily belonging to the category of the axiom-A may also be characterized in the framework 

of the spectra of the Lyapunov characteristic exponents. 

§ I. Introduction 

Recently, chaotic motions that arise clue to non-linearities of dissipative dynami

cal systems have received a great concern in physical and non-physical fields. 1) 

However, in general dynamical systems which do not satisfy the axiom-A, little 

progress has been made to analyse those chaotic motions by theoretically well

esta blishecl methods. 2 )~ 4 ) 

One of the purposes of this paper is to present numerical methods, by which 

wide-spread chaotic motions in dissipative dynamical systems would be characterized 

in a systematic manner. Our basic idea for this aim is to utilize the complete set 

of 1-dimensional Lyapunov exponents, which characterize the asymptotic orbital 

instability of dynamical systems. 5 )~g) The second purpose is to show that the con

cept of Lyapunov exponents presents a practical tool to discuss problems of bifurca

tion of those chaotic solutions. 

For these purposes, it becomes an important problem to estimate the Lyapunov 

exponents by some numerical methods, because it may not be expected, in general, 

that the equations for orbits exhibiting chaotic motions have globally single-valued 

analytic solutions. In case of measure preservig diffeomorphisms, Benettin et al. !1), *l 

have recently pointed out almost the same method as developed in this paper. 

ll Present address: Department of Physics, College of Science and Technology, Nihon Univ

ersity, Tokyo. 

*l The reader should not confuse two reference 7) and 11) by Benettin et al.. 
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1606 I. Shimada and T. Nagashima 

In § 2, brief discussion on the existence and properties of the k-dimensional 

Lyapunov exponent is presented. The relations of the characteristic exponents to 

the invariant measure and also to the measure-theoretic entropy (Kolmogorov ent

ropy10J) are commented. In the Appendix, a general scheme for estimating numeri

cally the k-dimensional Lyapunov exponent is briefly developed, and discussion on 

the relation between our method and another approximate method7J for estimating 

the Lyapunov exponent is also given. 

In § 3, the famous turbulent model, i.e., the Lorenz model,12l is studied in the 

light of our method, and the result of the complete set of the 1-dimensional 

Lyapunov exponents for this system is explicitly given. As an application of our 

approach based on the Lyapunov exponents, § 4 is devoted to problems of bifurca

tion of chaotic solutions in the Lorenz system. 

§ 2. A partial summary of Lyapunov characteristic exponents for 

irregular motions 

It is considered that dynamical systems exhibiting chaotic motions without any 

contact with external disturbance may possess some unstable properties of orbits. 

From this point of view, it is worth while noting that there is a fundamental 

method for investigating the time-dependent behavior of small deviations from an 

orbit. The method is called Lyapunov's method which uses the first variational 

equation of orbits. *J 

Now, let us consider the system of which time evolution is described by a set 

of differential equations in N-dimensional Euclidian space, 

x=F(x). (1) 

The solution of Eq. (1) under the initial condition x (0) = x 0 1s written as 

x(t)=Txo, (2) 

where Tt is the map vvhich describes time-t evolution of all phase points. 

On the other hand, the time evolution equation for the first variation of the 

orbit obeys the following set of non-autonomous linear differential equations: 

~. oF (Tt ) " Ox=- x 0 Ox. 
ax (3) 

The sol uti on of Eq. (3) tan be written as 

ox (t) = u;,oxo' (4) 

where u;, is the fundamental matrix5) of Eq. (3)' and OXo is an initial deviation 

at t=O. The fundamental matrix in Eq. (4) satisfies the following chain rule: 

*J As a general introduction to this chapter, one may refer to the book cited in Ref. 5). 
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"~ Numerical Approach to Ergodic Problem 1607 

(5) 

It is apparent that the asymptotic behavior of a small deviation is described by the 

asymptotic behavior of the fundamental matrix for t-H:oo. Now, the asymptotic 

behavior of this matrix for t->oo can be characterized by the following expo

nents :6), 61 ' 111 

(G) 

for k=1, 2, ···, 1V. The symbols 111 (6) have the following meanings: e" is a /.:

dimensional subspace in the tangent space Ex, at x 0, {e;} (i = 1, 2, ···, k) are a set 

of bases of e", ;\ is an exterior product and II o II is a norm with respect to some 

Riemannian metric. The exponent defined by (6) represents an expanding rate of 

volume of the !,-dimensional parallelepiped in the tangent space along the orbit 

which starts at x 0 , and is called the k-dimensional Lyapunov exponent. It is clear 

from this cleiinition that the exponent does not depend on a chaise of a set of 

bases nor norms, but depends only on the !<:-dimensional subspace ek.lsl 

It may be useful to summarize the properties of the Lyapunov exponents, 

which will be utilized in the subsequent discussion. 

1) 1-dimensional exponent A ( e\ x) may take, at most, N distinct values, and we 

will use the notations {},i} l:S:i:s::v and suppose A1> X,>···> A;y. 

2) k-dimensional exponent l-(ek, x) may take, at most, NCk distinct values, and each 

value is connected with a sum of k distinct 1-dimensional exponents. For instance, 

in the case N = 3, the h-dimensional exponents X (e", x) (!' = 1, 2, 3) may take the 

following values respectively: 

?. (c', x) =one of the values 111 { CA1 + l-,), CA1 + Xs), ()-, + J.,)}, 

3) If a set bases {ei} (i = 1, 2, · · ·, lv) is chosen at random in tangent space, then 

the h-dimensional exponents A (ck, x) for k = 1, 2, ···, 1V converge respectively, with 

probability 1, to the maximal values among sets of values which are allowed to 

possess IYCk distinct values. (This proposition was proved by Benet tin et al. 111 

case of diffeomorphisms. 111 ) 

It must be mentioned here that the above discussion on the Lyapunov ex

ponents becomes meaningful only if the existence of the limit of the quantity 

defined on the r.h.s. of (6) would be guaranteed. 

The proof of the existence of such limits has been made by Oseledec. Here 

we describe his theorem in the form suited to our discussion. 

The multiplicative ergodic theorem of Oseledec:61 If there is a T'-invariant 

measure fl and II 8F j8x II E V (/1), then the !~-dimensional Lyapunov exponents 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/6

1
/6

/1
6
0
5
/1

8
3
0
9
8
7
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



1608 I. Shimada and T. Nagashima 

A ( ek, x 0) (k = 1, 2, · · ·, N) exist for jl-almost all x 0. In this theorem, notations have 

the same meaning as the one used in the preceding discussion. 

Hereafter, we would like to remark some relations between the Lyapunov 

exponents and the measure-theoretic entropy (K-entropy) of dynamical systems. It 

has been known that the existence of the Lyapunov exponents is directly related 

to the K-entropy. Of the relations obtained so far, the weakest relation may be 

the following: 

(7) 

where H(!t) is the K-entropy of the dynamical system with invariant measure p .. 

This inequality has been proved by Ruelle.l4l' 15l In cases of Hamiltonian sys

tems and axiom-A dynamical systems, the equality in (7) does hold.m If the 

equality in (7) would be assured, then the phase average of the sum of positive 

Lyapunov exponents becomes the K-entropy itself. Furthermore, it is expected 

that the category of dynamical systems which do satisfy the equality in (7) would 

be much more extensive than the dynamical systems mentioned. 

§ 3. 1-, 2- and 3-dimensional Lyapunov exponent of the Lorenz system 

In this section, based on the numerical method developed in the Appendix, 

we present the explicit result of a complete set of the 1-dimensional Lyapunov 

exponents for the famous turbulent model due to Lorenz. 

The Lorenz model is described by the following set of differential equations: 

(X) ( -oX +oY 

:t ~ = Cr~ix -Y ) =F(x), 

-bZ 

(8) 

where (o, b, r) are the parameters. The Lorenz model is a dissipative system, and 

therefore it does not have a priori invariant measure in contrast to Hamiltonian 

systems. It is believed in this system that the high-dimensional attractor with very 

complicated geometrical structure like Cantor set comes forth beyond a certain value 

of the parameter r (o and b are suitably chosen), and orbits on the attractor are 

non-periodic. 

It should be mentioned that the high-dimensional attractor of the Lorenz system 

does not belong to a well-established mathematical category like the axiom-A 

strange attractorm because on the edge of the attractor, there is a fixed point 

(0, 0, 0), and therefore the uniform hyperbolic structure of the attractor is not 

rna terialized. 

In our calculations, parameters are set as (J = 16.0, b = 4.0 and r= 40.0. These 

values of parameters are not equal to the original Lorenz's values, i.e., (J = 10.0, 

b = 8/3 and r = 28.0, but the geometrical structure of orbits on the attractor is 
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Fig. 1. Temporal convergence of the 1-, 2- and 3-dimensional Lyapunov exponent for the 

Lorenz system (0'=16.0, b=4.0 and r=40.0). Exponents are calculated, based on the 

formula (A·2) given in the Appendix, under the following initial conditions 

(xo, e,, ez, ea) : 

1. ( (10.0, 0.0, 30.0), (1.0, 0.0, O.o), (0.0, 1.0, 0.0), (0.0, 0.0, 1.0)) 

2. ( (10.0, 10.0, 30.0), (1.0, 0.0, O.o), (0.0, 1.0, 0.0), (0.0, 0.0, 1.0)) 

3. ( (10.0, 10.0, 30.0), (0.0, 1.0, 1.0), (1.0, 0.0, 1.0), (1.0, 1.0, O.o)). 

qualitatively the same as the original one within the region 50>r<:rr=O' (u -1- b 

+3)/(u-b-1). Our numerical integration scheme is the usual Runge-Kutta-Gill 

method in double precision, and typical time difference is taken as 0.01. By inte

grating the orbit equations and the first variational equations, according to the 

method investigated in the Appendix (the renormalization time was chosen as 

r = 1.0), the 1-, 2- and 3-dimensional Lyapunov exponent have been calculated. 

They converged respectively to certain definite values. It should be noted here 

that three exponents A (e1 , x 0), Jc (e2 , x 0) and A (e', x 0) for an orbit starting at x 0 did 

not depend on the initial choice of the subspace ek (k = 1, 2, 3). The numerical 

results are shown in Fig. 1. Following the statement for the Lyapunov exponents 

described in § 2 · 3), the estimated values of the exponents A (ek, x 0) (/? = 1, 2, 3) 

select, respectively, the maximal values undoubtedly. Therefore, we can expect that 

the following relations hold: 

(9) 

where Ai (i = 1, 2, 3) are the 1-dimensional Lyapunov exponents and are assumed to 

be Ai> lj for J>i. Therefore we can estimate the 1-dimensional Lyapunov ex

ponents as 

(10) 
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1610 I. Shimada and T. Nagashima 

Figure 1 indicates that the Lyapunov exponents J.(ek,x0) (k=1,2,3) do not 

depend not only on the initial choice of a set of bases in the subspace ek, but also 

on the initial position x 0 in the state space. 

Contrary to the statement of the last paragraph, there are other trivial Lya

punov exponents for the Lorenz system, i.e., the exponents for orbits which tend 

to the fixed point at (0, 0, 0). The 1-dimensional Lyapunov exponents for these 

orbits become the spectra of the linearized vector field at (0, 0, 0) and take diffe

rent values from Ai(i=1, 2, 3) obtained by our numerical experiment. Therefore, 

it should be considered that orbits tending to the fixed point at (0, 0, 0) \vould be 

negligible in some sense. 

Relating to the result presented above, we would like to make the following 

two remarks. The first remark is concerned with the ability of our numerical 

scheme for estimating the Lyapunov exponents, which has been developed in the 

Appendix. It has been known that the divergence of the vector field of the 

Lorenz system takes a constant value, i.e., div F(x) =- (o-+b+1) = -21.0. This 

property of the Lorenz system can be utilized to test the ability of our numerical 

scheme. 

That is, as the 3-dimensional exponent }, (e3, x 0) represents the rate of expansion 

of a volume element, it is directly comparable to the divergence of the vector 

field. The explicit result representing the temporal convergence of the 3-dimensio

nal exponent, together with that of the 1- and 2-dimensional characteristic expo

nents, is shown in Table I. From the result of the 3-dimensional exponents 

A (e', x 0), it might be concluded that we can expect, in principle, the same order 

Table I. An explicit data representing temporal convergence of the 1·, 

2- and 3-dimensional Lyapunov exponent for the Lorenz system 

(11=16.0, b=4.0 and r=40.0). In this table, it should be mentioned 

that the 3-dimensional exponent J.. (e') has converged to -21.0 within 

the accuracy of 0.01.%. 

t 
i 

J..(e') J.. (e') J..(e') 
------------- -- ------~ ------

2. 1. 475172 -0.219607 -20.99911 

4. 1. 281321 0.543842 -20.99913 

8. 1. 610772 1.166704 -20.99910 

16. 1. 339753 1.171347 -20.99914 

32. 1. 411494 1. 283690 -20.99913 

64. 1. 391993 1. 340821 -20.99914 

128. 1. 392513 1.364981 -20.99914 

256. 1. 378710 1.371627 -20.99914 

512. 1. 371741 1. 365655 -20.99914 

1024. 1. 370685 1. 367358 -20.99914 

2048. 1. 373692 1. 371871 -20.99914 

4096. 1.374207 1. 373337 -20.99914 
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ii Numerical Approach to Ergodic Problem 1611 

Table II. The complete set of the 1-dimen

sional Lyapunou exponent for the Lorenz 

system (<1=16.0, b=4.0 and r=40.0). The 

value in ( ) represents the maximal 

Lyapunov exponent obtained by Benettin's 

procedure.'> In the latter procedure, we 

have set II all =0.005 and -r=0.11. 

1. 37 

o.oo 

-22.37 

(1. 36) 

accuracy in the calculations of ). (e2 , x 0) 

and A (e\ x 0) as that for A (e3, x 0), if 

we take a sufficiently long time to 

estimate these exponents. 

According to the relation (10), 

we can estimate the complete set of 

the 1-dimensional Lyapunov exponents 

Ai (i = 1, 2, 3) for the Lorenz ~ystem. 

The result is presented in Table II, 

together with the result for the max-

imal 1-dimensional exponents estimated 

by the method \vhich uses the orbit equations (A· 4) given in the Appendix.n As 

is understood from the discussion in the Appendix, two values for the maximal 1-

dimensional exponent estimated by the present method and that uses the orbit 

equations showed a good coincidence, when conditions mentioned in the Appendix 

were satisfied. This makes our second remark. 

§ 4. The altractor of another type and the Lyapunov exponents in 

the Lorenz model 

It can easily be imagined that the spectral type of the Lyapunov exponents and 

the type of attractor are closely related with each other. Non-periodic motions 

of the Lorenz system possess a positive exponent, and the spectra of the 1-dimen

sional exponents }.i (i = 1, 2, 3) show the hyperbolicity of ( +, 0, -) type. It is 

clear that stable periodic orbit is characterized by the Lyapunov exponents of 

(0, -, -) type. In this sense, the spectral type of the 1-dimensional Lyapunov 

exponents is a very useful tool for investigating the appearance of attractors of a 

new type. From this point of view, we reported in a previous paper that the 

Lorenz system (rJ and b fixed) ends up with a stable periodic attracted for large 

"18) 
I· 

Hereafter, we \Vould like to add some new features that were not reported in 

the previous paper. In the intermediate region of r, i.e., 50<r<330, the solutions 

in the Lorenz system show a very complicated behavior of bifurcation, when the 

parameter r is changed (rJ = 16.0 and b = 4.0) .19> The situations are illustrated m 

Fig. 2. 

In order to discuss or predict the global bifurcation scheme of attractors, one 

needs the precise knowledge of the Poincare mapping for this system. In the range 

of the parameter r discussed here, there might happen to occur a violation of the 

tansversality of orbits in the sense that if we make the Poincare mapping on a 

certain surface of the section, i.e., Z = r-1, the orbit does not cross the surface 

transeversely. Therefore we cannot state, at the present stage, the global structure 

of bifurcation scheme for the Lorenz system in a precise manner. 
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1612 I. Shimada and T. Nagashima 

A,,-~~~~~~~~~~~~~~~~~~--, 

.... 

0 ([,.) 
.. ... 

40 80 120 140 160 180 200 220 240 1 

Fig. 2. r·dependence of the maximal exponent X, for 

the Lorenz system (0"=16.0 and b=4.0). In this 

figure, it means that if X, would converge to zero 

at a certain value of r, the corresponding dyamical 

system has a stable limit cycle. 

However, for periodic attrac

tors, there are the following clearly 

distinct bifurcations in some re

stricted ranges of the parameter 

r. The first type might be called 

the symmetry breaking type and 

is illustrated in Fig. 3 (a). After 

the original stable limit cycle be

comes unstable, a pair of stable 

limit cycles come forth in this bi

furcation. Under the map (X, Y, Z) 

~ (-X, - Y, Z), one of the limit 

cycles is mapped into the other 

limit cycle. The orbit is attracted 

to one of these limit cycles depending on initial conditions. Therefore the symmetry 

of the Lorenz equation for the transformation S breaks after the bifurcation of this 

type. The second is the usual Brunovsky bifurcation20l and is also illustrated in Fig. 

3 (b). After the Brunovsky bifurcation of this type, the period of the limit cycles 

becomes twice the original period w. The symmetry does not change in this bifur

cation. 

If \Ve decrease the parameter r from a certain value, where the system pos

sesses an attracting periodic orbit with some periodicity and the symmetry under 

the transformation S, there occurs at first a symmetry breaking bifurcation. After 

the bifurcation of this type, there occurs a series of the Brunovsky bifurcations, 

through which periods of the limit cycles become longer and longer in such manner 

as UJ·2n(n=0, 1, ···). 

Chaotic solutions are considered to appear beyond the limiting value of the 

parameter r, at which the in

terval of the parameter consist

ing of a stable limit cycle with 

period n seems to vanish. Anal

ogous bifurcation phenomena 

mentioned above have been also 

observed in such dynamical sys

tems as Rossler's model'v and 

a certain chemical reaction 

model."l This senes of bi-

furcations leading to chaos 

may be considered to be an ex

ample of the generalized cata

strophe introduced by Thom. 23J 

----~~~-

Fig. 3. Bifurcations of periodic orbits in the Lorenz system; 
a) a symmetry breaking bifurcation, 

b) a Brunovsky bifurcation. 
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.1l Numerical Approach to Ergodic Problem 1613 

It should be noted here that it includes a very delicate problem in analyzing 

the series of these bifurcations quantitatively. Namely, as the spectral type of the 

Lyapunov exponents Ai (i = 1, 2, 3) for stable limit cycles and that of chaotic mo

tions must be different from each other, it is clear that there is a critical point at 

which the spectral type changes between ( +, 0, -) and (0, -, -). At this criti

cal point, one of the exponents changes its sign and degenerates to zero. When 

this degeneracy of the exponents occurs, the dynamical system becomes structurally 

unstable. So, near this critical point, we must take scrupulous care of analyzing 

problems by any numerical method. 

§ 5. Conclusions and discussion 

It is shown numerically that the complete set of the 1-dimensional Lyapunov 

exponents (A1, A,, As) for the Lorenz attractor should exist, and the exponents take 

the same values for almost all orbits stating at the neighbourhood of the Lorenz 

attractor. The above result supports strongly that there should exist an invariant 

measure on the attractor, and the Lorenz system should be ergodic on the attractor 

with respect to this invariant measure. Furthermore, from the fact that the spectra 

of the 1-dimensional exponents (A1 , A2 , As) is of ( +, 0, -) type, the motion on the 

attractor should take the positive-definite K-entropy and therefore possesses the 

property of mixing. 

It should be mentioned here that there is another trivial set of the 1-dimen

sional exponents, which implies a violation of the uniform hyperbolicity of the non

wandering set for the Lorenz system. This contradictory fact might be considered 

as follows: Although the Lorenz system does not satisfy the axiom-A in the 

strict sense,2l but the trouble is not so severe in a measure theoretic meaning, i.e., 

orbits, which belong to the trivial Lyapunov exponents, would occupy a space of 

measure zero in the non-wandering set. 

The result for the Lorenz system described here has already pointed out in the 

previous paper.8l However, in the previous paper, we have employed the method 

which uses the orbit equation (A· 4) and is more appropriate to visualizing the 

existence of the exponential orbital separation in state space.w~ 26 l By solving the 

tangent equation, it becomes more apparent in this paper that the existence of 

positive Lyapunov exponent is related, on a mathematical basis, to the theory of 

ergodicity of dynamical systems. 

As stated in § 4, the method of the Lyapunov exponents employed in this 

paper is influential not only in characterizing irregular motions in a quantitative 

manner, but also in applying to problems of bifurcation of attractors. 

In closing this paper, we would like to propose that chaotic motions in 4 and 

/or higher dimensional dissipative dynamical systems should be classified according 

to the spectral type of the complete set of the Lyapunov exponents Ai (i = 1, 2, · · ·). 

In 4-dimensional case, it is easily considered that there should exist two kinds of 
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chaotic motions clearly distinguishable from each other, because there are two 

types of the Lyapunov spectra such as ( +, +, 0, -) and ( +, 0, -, -). 
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Appendix A 

--Method for Numerical Estimation 

of the k-Dimensional Lyapunov Exponent--

There is a technical problem, when we try to evaluate Lyapunov exponents 

directly, on the basis of the definition (6), by integrating 1-st variational equations. 

Namely, there occurs a overflow trouble in computer calculations, because 1-st 

variational equations have, at least, an exponentially diver sing solution. 

In order to keep calculations from this trouble, we exchange the base, after 

each time integration, in the following manner: 

e i+1=U' e 1 - (e H 1·U' e 1) ·e J+1/IIU' e 1 - (e H 1·U' e 1+1) ·e i+ 1 ll 2 Xo 2 1 Xo 2 1 a:: 0 2 1 Xo 1 1 ' 

e1+1=U' e 1-(e1+1·U' e 1)·e 1+1-(e1+1·U' e 1)·e 1+1/IIU' e 1 3 Xo 3 1 Xo 3 1 2 a:: 0 3 2 x 0 3 

e J+1=U< e 1 - (e J+1·U' e 1)e 1+1···- (ei+1·U' e 1) ·e1+1/IIU' e 1 k Xo k 1 Xo k 1 k-1 Xo k k-1 Xo k 

- (e J+l·U' e 1) ·e 1+1 ... - (e1+1.U< e 1) ·ei+lli 1 Xo k 1 k-1 x 0 k k-1 1• 

(A·1) 

Using the chain rule (5) and exchanging the base {U;1e/}; into {er1}; 

(j=0,1, ···, (n-1) and i=1,2, ···,k), we obtain the following equation: 

. 1 Ill\ U~',ei 0 ll 
hm - - log-' ---~-
'H"' nr II ;\ei0 ll 

i 

. 1 n-1 Ill\ U'oo1e/ II 
= hm ---I.; log- ' .-- (A·2) 

"-"' nr i= 0 11/\e/11 
i 

The procedure of exchange of bases leading to Eq. (A· 2) is justified by using 

the following property of exterior product; if {eJ and {f;} generate the same 

k-dimensional subspace, then the relation 

II!\ u e;]l II!\ u /£II 
i i --------- --- - ~--·-

11 !\ ei II II 1\fd 
i i 

holds. 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/6

1
/6

/1
6
0
5
/1

8
3
0
9
8
7
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



A Numerical Approach to Ergodic Probleni 1615 

Now, it may be useful to note the relation between our present method and 

the approximate method developed in Ref. 7) by Benettin et al. Benettin's proce

dure in Ref. 7) will converge to our method under the restrictions r~l and 

II e/ II ~1. Under these restrictions, an approximate relation 

U r i~rrc + j) yr 
XJei = Xj ei - XJ (A·3) 

holds. We can, therefore, obtain approximately the Lyapunov exponents as fol

lows: 

A (e\ x 0) ~lim (A·4) 
n~oo 

where T is the map which has appeared 111 Eq. (2). 

The special case (k = 1) of the expression (A· 4) has been utilized first by 

Benettin et al.,n who gave discussion for estimating the K-entropy of Hamiltonian 

systems. The authors applied their method, in the previous paper,8J to a dissipative 

dynamical system, and pointed out the possibility that turbulent phenomena 111 

dissipative dynamical systems would be discussed in a generalized framework of 

the ergodic theory of classical dynamical systems. 
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