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Abstract

A numerical framework for DC and RF small-signal simulations of nanowire transistors is presented, which is based on the 

self-consistent solution of the Poisson, Schrödinger, and Boltzmann transport equations and is stable for the entire range from 

weak to strong particle scattering. The proposed approach does not suffer from the deficiencies due to the transformation of 

the Boltzmann transport equation into the energy space and can handle the quasi-ballistic case. This is a key requirement 

for the investigation of plasma resonances and other high-mobility phenomena. The in-house solver is validated with results 

of a previously developed simulator based on the H-transformation for a conventional N+
NN

+ silicon transistor with strong 

scattering. Then, its results are compared with those of moments-based models and it is shown that these do not provide a 

satisfactory description of the electron dynamics in the quasi-ballistic transport regime. Furthermore, the internal bound-

ary conditions of the transport models at the contacts are found to have a significant impact on plasma resonances and the 

physics-based thermal-bath boundary condition strongly suppresses them.

Keywords Boltzmann equation · Nanowire transistor · Numerical simulation · Ballistic transport · Plasma oscillations

1 Introduction

Recently, scientific interest in solid-state terahertz (THz) 

devices (operating at frequencies between 300 GHz and 

3 THz) has increased significantly [1–5]. The main idea, 

based on the shallow-water analogy put forward by Dya-

konov and Shur [6–8], is to use field-effect transistors with 

high-mobility channels as nonlinear elements for the reso-

nant detection of incident THz radiation. Moreover, the pos-

sibility of plasma instabilities leading to the emission of THz 

radiation by planar field-effect transistors, as pointed out by 

Dyakonov and Shur, has resulted in investigations by many 

groups (e.g., [9–13]). The question arises whether similar 

plasma instabilities could occur in nanowire or nanotube 

transistors. Although the methods developed previously for 

planar transistors could be applied to nanowire transistors, it 

is not clear whether the assumptions on which these models 

are based hold in the case of quasi-ballistic transport, which 

is a prerequisite for plasma instabilities [14]. Therefore, 

we discuss in addition to the drift-diffusion (DD) model, 

which is similar to the transport model used by Dyakonov 

and Shur, also the Boltzmann transport equation (BE) from 

which the DD model can be derived under rather stringent 

approximations [15].

Since the stabilization scheme based on the H-transfor-

mation for the BE fails for quasi-ballistic transport, a scheme 

based on the phase-space trajectories of the electrons is pre-

sented [16]. Furthermore, in the case of quasi-ballistic trans-

port the stationary drain current of a MOSFET is limited by 

the finite injection velocity of the electrons from the source 

into the channel (e.g., [17, 18]). This leads to a much more 

complex behavior of the source contact at high frequencies 

that can be described by the simple approximation made 

by Dyakonov and Shur and that the small-signal electron 

density must satisfy a Dirichlet boundary condition (D-BC) 

at the source side of the channel [6]. In order to describe the 

quasi-ballistic transport in such devices, it is not only neces-

sary to go beyond the drift-diffusion approximation but to 

also include a more realistic contact model.

In the semiclassical framework, the BE provides the most 

precise information about the distribution of the charge car-

riers in the multidimensional phase space [19]. The most fre-

quently applied method to solve the BE is the Monte-Carlo 
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method [19], but there are no Monte-Carlo methods known 

to the authors that can perform small-signal simulations 

at complex frequencies required by the Dyakonov–Shur 

approach to plasma instabilities. On the other hand, deter-

ministic solvers for the BE have been successfully used in 

the case of nanowire transistors (e.g., [20]), even including 

small-signal calculations [21]. In these cases, a transforma-

tion from the wavenumber to energy is used, which causes 

trouble in the case of a 1D k-space, because the density of 

states diverges at zero energy. This exacerbates the prob-

lems of small-signal calculations already encountered in the 

case of a 2D k-space [22]. Furthermore, in the ballistic limit 

the distribution function can be strongly asymmetric and 

discontinuous w.r.t. the wavenumber. This leads to further 

problems with the usual stabilization schemes based on the 

maximum entropy dissipation scheme [23] and the H-trans-

formation [24]. These deficiencies are fatal in the numerical 

analysis of plasma resonances, where a numerically robust 

solver for the BE is required for handling the ballistic limit. 

In order to solve the above-mentioned problems, the BE is 

discretized directly in the phase space [16] and the quasi-

ballistic limit of a nanowire transistor is investigated. The 

particular focus is on demonstrating a stabilization method, 

which is based on the method of characteristic curves and 

matrix exponentials. Thermal bath BCs, with the assumption 

of thermal equilibrium only for the electrons entering the 

device, give a more realistic description of the contacts [25]. 

The results are compared to the results of the DD equations.

The paper is organized as follows. Section 2 provides a 

description of the numerical framework used to evaluate the 

DC and small-signal behavior extending to the ballistic limit. 

In Sect. 3, the device structure is presented and the simula-

tion results concentrating, in particular, on the small-signal 

drain self-admittance are discussed. Finally, in Sect. 4 the 

conclusions are drawn.

2  Theory

The numerical models are mostly constructed with the 

usual methods [16, 26–30], and only the new aspects are 

discussed. Since it is difficult to include the Pauli exclusion 

principle properly in moments-based transport models and 

it was neglected by Dyakonov and Shur, we will also neglect 

it in this investigation.

The device model for the silicon nanowire transistor 

consists of three partial differential equations, the Poisson, 

Schrödinger, and Boltzmann equations [20]. The Poisson 

equation is formulated for the 3D real space

(1)∇ ⋅ (�∇�) = q
(

n − ND

)

,

 where �(r⃗) is the permittivity at position r⃗ in real space, 

�(r⃗, t) the quasi-stationary potential at time t, q the positive 

electron charge, n(r⃗, t) the electron density and N
D
(r⃗) the 

donor concentration. The quasi-stationary approach is suf-

ficient in this case, because even at 1 THz the wave length 

of light in silicon is about 100 μm and thus much larger than 

the device dimensions.

The device is sliced into N
sec

 sections perpendicular to 

the transport direction (z-direction), and the quasi-stationary 

Schrödinger equation is solved for 2D cross sections parallel 

to the xy-plane at fixed positions for z

under the assumption that the wave functions vanish out-

side of the silicon region. ℏ is the reduced Planck constant, 

m
�

xx
 , m�

yy
 the electron masses in x and y direction assuming 

a ⟨100⟩ orientation of the silicon nanowire and parabolic 

bands, ��(r⃗, t) the envelope function and ��
sub

(z, t) the sub-

band energy. The superscript � = (v, s) contains the valley 

index v of the minima of the conduction band and the sub-

band index s. Again, the quasi-stationary approximation 

is used, because the largest part of the confining potential, 

which results in the boundary conditions, does not depend 

on time and due to the high symmetry of the device, which 

suppresses acoustic-wave-like plasma oscillations perpen-

dicular to the transport direction.

The multi-subband 1D Boltzmann equation along the trans-

port direction (z-axis) is given by

where f �(z, k, t) is the electron distribution function at wave-

number k, v�(k) the group velocity and S{f } the scattering 

integral for single electron interactions [20]

L
sys

 is the 1D system volume and W�,�
�

(z, k, k�, t) the rate of a 

transition from state (k�, ��) into (k, �) calculated by Fermi’s 

golden rule [31]. Unless otherwise stated, we use the mac-

roscopic relaxation time approximation (RTA) to improve 

the consistency of the BE and the moments-based models

(2)
−ℏ2

2

(

1

m�
xx

�2

�x2
+

1

m�
yy

�2

�y2

)

��
− q���

= ��
sub

��

(3)
�f �

�t
+ v�

�f �

�z
−

1

ℏ

��
�

sub

�z

�f �

�k
+ S�{f } = 0,

(4)
S{f } =

Lsys

2�

∑

�
�
∫ W�,��(z, k, k�, t)f �

�

(z, k�, t)

− W�
�,�(z, k�, k, t)f �(z, k, t)dk�.

(5)S{f } ≈

∑

�
� ∫ f �

�

(z, k�, t)
dk�

�

p�

eq
(k) − f �(z, k, t)

�RTA

,
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where �
RTA

 is the macroscopic relaxation time and p�

eq
(k) the 

one-particle Maxwell–Boltzmann distribution. The electron 

density is evaluated by

The Poisson and Schrödinger equations are discretized with 

the standard methods (finite volume method, dimensional 

splitting, finite differences etc. [26]). The resultant linear 

systems of equations are solved with PARDISO [32] and the 

eigenvalue problems with FEAST [33].

The BE is directly discretized in the phase space, which 

is the Cartesian product of the position along the chan-

nel axis z and the axial wavevector k. An equidistant spa-

tial grid zi = iΔz with i = 1,… , Nz is introduced. In the 

k-space, a nonuniform grid with constant Δk near k = 0 

and a Δk at higher energies corresponding to a constant 

step in energy is chosen. The number of grid nodes for 

negative wavenumbers is N
k
 and the same for positive 

ones. For the sake of legibility, the time arguments are 

dropped from now on.

We start our formulation by considering the ballistic 

limit ( W�,��(z, k, k�) = 0 ), because this is the most critical 

case w.r.t. stability. Assuming a linear approximation for 

the subband energy ��
sub

(z) between the adjacent grid nodes 

zi and zi+1
 , the force F�

i
= −(��

sub,i+1
− �

�

sub,i
)∕(zi+1 − zi) is 

constant and the characteristic curves (ballistic electron 

path in the phase space) are parabolas. If the force is 

positive, the electrons are accelerated into the positive 

z-direction, and for k > 0 , an electron can move from zi 

to zi+1
 (blue trajectories in Fig. 1). The wavenumber of an 

electron in state � starting at zi with k
(

zi

)

 is at position zi+1

with

(6)n =

2

2�

∑

�
∫ f �dk |��|2 .

(7)k
(

zi+1

)

=

√

k
(

zi

)2

+
(

K�

i+1∕2

)2

m
�

zz
 is the electron mass in transport direction. Thus, 

k
(

zi+1

)

≥ K�

i+1∕2
 holds. For electrons starting at zi+1

 and mov-

ing into the negative direction, we get

The electrons can pass the barrier only, if their kinetic 

energy is larger than ��
sub,i

− �
�

sub,i+1
 and thus k

(

zi+1

)

≤ −K�

i+1∕2
 

(red trajectories in Fig.  1). If this is not the case 

( −K�

i+1∕2
≤ k

(

zi+1

)

≤ 0 ), the electron returns to position zi+1
 , 

where its wavenumber has reversed sign (black trajectories 

in Fig. 1).

The change in the wavenumber depends only on the dif-

ference in the subband energy and not on the exact force 

profile between both grid nodes. We can therefore assume 

that the subband energy is piecewise constant and changes 

abruptly at position zi+1∕2
= (zi+1

+ zi)∕2 . Due to the Liou-

ville theorem, the electron flux at position zi+1∕2
 on the left-

hand side of the step must equal the one on the right-hand 

side. For k
L
> 0 , where the superscript L indicates quantities 

on the LHS and R the ones on the RHS, we get

with

Thus, for the piecewise constant subband energy profile the 

characteristic curves are no longer continuous at zi+1∕2
 and 

the values of the distribution function on the left and right 

sides of the step have to be distinguished. For k
R
< −K

�

i+1∕2
 , 

the electrons can pass the barrier from right to left resulting 

in the negative root for the wavenumber 

 together with (10). For |k
R
| < K

�

i+1∕2
 , we get reflection 

Discrete equations are obtained by box integration in the 

k-space. The k-grid has 2N
k
 grid nodes, which are symmetri-

cally distributed around zero and the value zero itself is 

excluded from the grid. The jth box is given by k−
j
< k < k+

j
 

with its boundaries k±
j
= (kj + kj±1

)∕2 and j = 1,… , 2Nk . 

The interpolation function for the jth box is one inside the 

jth box and zero outside

(8)K
�

i+1∕2
=

√
||
|
|
|

2m�

zz
(��

sub,i+1
− �

�

sub,i
)

ℏ2

|
|
|||
.

(9)k
(

zi

)

= −

√

k
(

zi+1

)2

−
(

K�

i+1∕2

)2

.

(10)v�(kR)f
�

R
(zi+1∕2

, kR)dkR = v�(kL)f
�

L
(zi+1∕2

, kL)dkL

(11)k
R
=

√

k
2

L
+
(

K
�

i+1∕2

)2

.

(12)k
L
= −

√

k
2

R
−
(

K
�

i+1∕2

)2

.

(13)f �
R
(zi+1∕2

, kR) = f �
R
(zi+1∕2

,−kR).

Fig. 1  Schematic representation of the characteristic curves for the 

case ��
sub,i

> �
�

sub,i+1
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where Θ(x) is the Heaviside function. The distribution func-

tions are assumed to be piecewise constant with the value 

f �,j(z) for the jth box

On the LHS/RHS of the step in subband energy, we have 

Particle flux conservation is mapped onto the discrete k-grid 

by box integration. This allows to discretize (10) together 

with (13) for j > Nk (positive wavenumbers)

The first term on the RHS describes the flux of electrons 

from the left to the right and the second term electrons 

reflected at the step. The integration limits are defined as

If we assemble the N
k
 values of the distribution function for 

positive wavenumbers into a vector on the LHS of the step 

f⃗ �
Lp,i+1∕2

 , on the RHS f⃗ �
Rp,i+1∕2

 and for negative wavenumbers 

f⃗ �
Ln,i+1∕2

 , f⃗ �
Rn,i+1∕2

 , we can formulate (17) with matrices

where the diagonal N
k
× N

k
 matrix D̂�

p
 is invertible and does 

not depend on the position in real space

for j, j� = 1,… , Nk . The other two matrices are

(14)Ωj(k) = Θ

(
k+

j
− k−

j

2
−

|
|
|
|
|
k −

k+
j
+ k−

j

2

|
||||

)

,

(15)f �(z, k) ≈

2Nk
∑

j=1

f �,j(z)Ωj(k).

(16)f
�,j

L,i+1∕2
= f

�,j

L
(zi+1∕2

), f
�,j

R,i+1∕2
= f

�,j

R
(zi+1∕2

).

(17)

f
�,j

R,i+1∕2 ∫
k+

j

k−
j

v�(kR)dkR

=

2Nk
∑

j�=Nk+1

f
�,j�

L,i+1∕2 ∫
K

�,j
max

K
�,j

min

v�(kL)Ωj� (kL)dkL

+ f
�,2Nk−j+1

R,i+1∕2 ∫
k+

j

k−
j

v�(kR)Θ
(

K�

i+1∕2
− kR

)

dkR .

(18)K
�,j

min
=

√

max

{

k2

j−1∕2
− (K�

i+1∕2
)2, 0

}

,

(19)K
�,j
max

=

√

max

{

k2

j+1∕2
− (K�

i+1∕2
)2, 0

}

.

(20)D̂�

p
f⃗ �
Rp,i+1∕2

= R̂L
�

i+1∕2
f⃗ �
Lp,i+1∕2

+ R̂R
�

i+1∕2
f⃗ �
Rn,i+1∕2

,

(21)

[

D̂�

p

]

jj�
= ∫

k+
j+Nk

k−
j+Nk

v�(k)dk�j,j�

and

Flux conservation for particles moving from right to left 

results with (10) and (12) in

The second term on the RHS is due to the assumption of a 

maximal positive wavenumber k+
2N

k

 , and all particles, which 

were to exceed this value while moving from left to right 
(
√

k
2

L
+
(

K
�

i+1∕2

)2

> k
+
2N

k

)

 , are instead reflected to ensure 

flux conservation (dashed black line in Fig. 1). Furthermore, 

a similar set of equations can be formulated for a positive 

step in energy.

Under stationary conditions, the ballistic distribu-

tion function does not depend on position for a constant 

subband energy and within a box of the real space grid 

zi−1∕2
< z < zi+1∕2

 we get

Due to the TB-BCs, the distribution function of the incom-

ing particles is given by the equilibrium one f⃗ �
eq

 [25]

The Fermi energies of the contacts are chosen such that the 

space charge densities are zero within the contacts at equi-

librium. This closes the system of equations, and in most 

cases, a unique solution can be obtained for f⃗ �
p,i

 , f⃗ �
n,i

.1 Since 

the Pauli exclusion principle occurs in the BE only in the 

scattering integral, it can be included in the ballistic case by 

using Fermi functions instead of Boltzmann distributions in 

the boundary conditions.

(22)

[

R̂L
�

i+1∕2

]

jj�
= ∫

K
�,j+Nk
max

K
�,j+Nk
min

v�(k)Ωj�+Nk
(k)dk

(23)

[

R̂R
�

i+1∕2

]

jj�
= ∫

k+
j+Nk

k−
j+Nk

v�(k)Θ
(

K�

i+1∕2
− k

)

dk�j�,Nk−j+1.

(24)D̂�

n
f⃗ �
Ln,i+1∕2

= L̂R
�

i+1∕2
f⃗ �
Rn,i+1∕2

+ L̂L
�

i+1∕2
f⃗ �
Lp,i+1∕2

.

(25)f⃗ �
Lp
(zi+1∕2

) = f⃗ �
Rp
(zi−1∕2

) = f⃗ �
p,i

(26)f⃗ �
Ln
(zi+1∕2

) = f⃗ �
Rn
(zi−1∕2

) = f⃗ �
n,i

.

(27)f⃗ �
p,1

= f⃗ �
p,eq,SRC

(28)f⃗ �
n,Nz

= f⃗ �
n,eq,DRN

.

1 For certain profiles of subband energy with minima within the 

device, some parts of the phase space might be decoupled from the 

rest due to the lack of scattering and the distribution function in those 

parts is undetermined [34].
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The solution becomes unique for arbitrary subband pro-

files, if scattering is taken into account, because scattering 

couples all states for a given position [20]. Since scatter-

ing couples different subbands and valleys, the index � is 

dropped and the vector of the distribution function contains 

from now on the distribution functions for all values of � . 

Due to the assumption of a piecewise constant subband 

energy, the force is zero within a box of the real space. Inte-

gration of the BE over a box in k-space yields

with the scattering integral

Due to scattering, the solution depends on the z-coordinate 

within a box of the real space, even if we assume that the 

transition rate itself does not depend on position within the 

box. With f⃗i = f⃗ (zi) , Ŝi = Ŝ(zi) and the matrix exponen-

tial [35], the solution is within the ith box of the real space 

grid

With the abbreviation Ĉi(z) = (zi − z)D̂−1

v
Ŝi , the solution at 

the boundaries of the ith box in real space is

These equations replace (25), (26) of the ballistic case. Thus, 

it is possible to calculate the distribution function on the left- 

and right-hand side of the steps based on the distribution 

function on the ith grid node and a complete set of equa-

tions can again be assembled. The matrix exponential can 

be calculated with the methods described in Ref. [35], but 

for large matrices the numerical accuracy might not be suf-

ficient. In this case, Expokit together with an iterative solver, 

which requires only multiplications of the matrix exponen-

tial with a vector, yields results with a higher precision and 

is more CPU efficient [36]. If the Pauli exclusion principle 

were included in the scattering integral, (29) would become 

nonlinear and could be integrated by ODE-solvers.

(29)

(

D̂p

D̂n

)

⏟⏞⏞⏟⏞⏞⏟
=D̂v

�

�z

(

f⃗p(z)

f⃗n(z)

)

⏟⏞⏟⏞⏟
=f⃗ (z)

+

(

Ŝpp Ŝpn

Ŝnp Ŝnn

)

⏟⏞⏞⏞⏟⏞⏞⏞⏟
=Ŝ(z)

(

f⃗p(z)

f⃗n(z)

)

= 0⃗

(30)

�
Ŝ(z)

��,��

jj�
=

Lsys

2�

k+
j

∫
k−

j

⎛
⎜⎜⎜⎝

k+
j�

∫
k−

j�

W�,��(z, k, k�)dk�

−
�
���

∞

∫
∞

W�
��,�(z, k��, k)dk���

�,���j,j�

⎞
⎟⎟⎠
dk.

(31)f⃗ (z) = exp
(

(zi − z)D̂−1
v

Ŝi

)

f⃗i.

(32)f⃗L,i+1∕2
= exp

(

Ĉi(zi+1∕2
)
)

f⃗i

(33)f⃗R,i−1∕2
= exp

(

Ĉi(zi−1∕2
)
)

f⃗i.

For small-signal analysis, we assume a time 

dependence for the solution quantities given by 

x(t) = x +ℜ{�x exp(st)} , where x is the large-signal sta-

tionary solution, �x the complex phasor of the small-signal 

solution and s = � + i� the complex frequency, where � 

is the real part describing a damped ( � < 0 ) or growing 

( � > 0 ) solution and � = 2�f  the imaginary part corre-

sponding to a harmonic oscillation with the frequency f. 

The time derivative in the BE can therefore be replaced 

by s, and within a box of the spatial grid, the linearized 

BE has two additional terms compared to the stationary 

case (29)

D̂
k
 is a diagonal matrix, which is due to box integration in 

k-space and contains the k-space box volumes

Since the scattering integral depends on the subband ener-

gies and wave functions, linearization of the scattering inte-

gral yields the term on the RHS of (34). The corresponding 

derivatives are calculated by the chain rule and stationary 

perturbation theory for the SE [30]. With the abbreviation 

Ĉ�
i
(z) = (zi − z)D̂−1

v

(

Ŝi + sD̂k

)

 , the solution of the small-sig-

nal BE is obtained

With this result, the values of the small-signal distribution 

function at the boundaries of the real-space box can be cal-

culated by numerical means. Linearization of (20) yields

and (24) similarly. These equations together with the small-

signal PE and the small-signal version of the boundary con-

ditions (27), (28)

can be used to assemble a linear system of equations for the 

complete system. For the calculation of the small-signal ter-

minal currents, a formulation of the Ramo–Shockley theo-

rem is used that is consistent with the presented numerical 

framework [21, 37]. Thus, admittance parameters can be cal-

culated as a function of the complex frequency s, as required 

by the analysis of plasma instabilities.

(34)sD̂k�f⃗ (z) + D̂v

��f⃗ (z)

�z
+ Ŝ�f⃗ (z) = −�Ŝf⃗ (z).

(35)
[

D̂k

]��
�

jj�
= (k+

j
− k−

j
)�

�,��
�j,j� .

(36)

�f⃗ (z) = exp
(

Ĉ�

i
(z)

)

�f⃗i

+ ∫
1

0

exp
(

Ĉ�

i
(z)(1 − �)

)

�Ĉi(z) exp
(

Ĉi(z)�
)

d�f⃗i.

(37)
D̂�

p
�f⃗ �

Rp,i+1∕2
= R̂L

�

i+1∕2
�f⃗ �

Lp,i+1∕2
+ �R̂L

�

i+1∕2
f⃗ �
Lp,i+1∕2

+ R̂R
�

i+1∕2
�f⃗ �

Rn,i+1∕2
+ �R̂R

�

i+1∕2
f⃗ �
Rn,i+1∕2

(38)�f⃗ �
p,1

= 0⃗, �f⃗ �
n,Nz

= 0⃗
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3  Results and discussion

The test structure with a gate all-around architecture is 

shown in Fig. 2. The rectangular channel cross section is 

5 nm × 4 nm with a gate oxide thickness of 1 nm (further 

details are given in Table 1).

First, simulation of the ballistic case is demonstrated, 

because this is the numerically most challenging case. 

Since scattering is neglected, particles cannot transfer 

between valleys and subbands, and only a single parabolic 

subband with m
xx
= m

zz
= 0.19m

e
 , m

yy
= 0.98m

e
 is simu-

lated ( m
e
 is the electron rest mass). The k-space grid has 

a constant spacing of Δk = 0.0225 nm−1 at low energies 

and at higher ones a spacing corresponding to an energy 

of 2.5 meV. The maximal energy is 1.01 eV. The struc-

ture described in Table 1 is simulated with a grid spacing 

in real space of 0.5 nm, and the doping profile is shown 

in Fig. 3. To demonstrate the stability of the approach, 

the electron density in the device is shown for different 

gate and drain voltages under ballistic conditions (Fig. 3). 

The electron density can vary by more than 10 orders of 

magnitude without any problems. In Fig. 4, distribution 

functions in the k-space are shown near the drain and the 

source/channel barrier (top of the subband energy). The 

distribution function is positive in the whole phase space 

and shows no spurious oscillations. Due to the larger num-

ber of electrons moving from the left to the right than into 

the other direction, the distribution function is strongly 

asymmetric. Since the electrons do not loose energy by 

scattering when moving from source to drain, they gain 

qV
DS

= 100 meV in energy and a second maximum occurs 

in the distribution function near the drain at positive wave-

numbers. Although the cutoff by the source/channel bar-

rier is abrupt, the left flank of the second maximum near 

the drain is not as abrupt as at the top of the barrier. This 

is due to the finite k-space grid, which leads to artificial 

diffusion in the k-space, because a k-space box on the LHS 

of a step of the subband energy in real space is connected 

to multiple boxes on the RHS and vice versa (see (17)). 

Fig. 2  Schematic representation of the nanowire NMOSFET. The 

carriers are confined in the x − y plane and the transport happens 

along the z-axis from source to drain

Table 1  Parameters of the nanowire NMOSFET

Parameter Value

Oxide thickness ( t
ox

) 1 nm

Nanowire area 5 nm × 4 nm

Gate oxide material SiO
2
(�

ox
= 3.9)

N
+

D
5 × 1019 cm−3

N
D 1 × 10

18
cm

−3

L
S/D

 , L
G

20 nm, 20 nm

Fig. 3  Doping profile (dotted blue curve) and electron density at 

V
DS

= 0.1 V (solid curves) and V
DS

= 0.5 V (dashed curves) and room 

temperature (Color figure online)

Fig. 4  Distribution functions near the drain contact and top of the 

barrier for the ballistic case at V
GS

= 0.5 V , V
DS

= 0.1 V and room 

temperature
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This is a fundamental problem of tensor-product grids 

in phase space and occurs regardless of the treatment of 

the derivative in k-space, because any formulation of the 

derivative in k-space involves multiple grid nodes. In prin-

ciple, a finer grid in k-space could reduce the diffusion, 

but a finer k-space grid requires a finer real space grid to 

prevent numerical problems and a certain level of diffusion 

cannot be avoided. On the other hand, the impact of the 

artificial diffusion is weak, the phase-space solver based 

on the tensor-product grid is stable in the ballistic case, 

and the problems due to the H-transformation in the case 

of the small-signal parameters are avoided.

In silicon nanowires, the mobility is rather low due to 

strong scattering resulting in diffusive transport [34], and 

it is not clear whether the numerical methods developed 

for the ballistic case will work. To investigate this, a sili-

con nanowire is simulated. The electron bandstructure in 

silicon is modeled in the conventional way accounting for 

six ellipsoidal and parabolic valleys, and five subbands are 

considered in each valley. As for the scattering mechanisms, 

various inter-valley and intra-valley electron–phonon inter-

actions are included according to [38] and the deformation 

potential of elastic phonon scattering is adjusted in high-

doped regions to reproduce the results of [20]. The simula-

tions are performed at room temperature, assuming a ⟨100⟩ 

orientation in transport direction. The calculated I
DS

− V
DS

 

curves are presented in Fig. 5 (red curves), and the results 

are smooth.This shows that also strongly diffusive trans-

port can be simulated. In order to validate the model, the 

results are compared to consistent simulations by other 

means. The BE is solved in addition based on the H-trans-

formation [21] and by projection onto the first 10 Hermitian 

polynomials (TM) [14], and the results are almost identical. 

At V
DS

= 0.2 V , the calculations by the H-transformed BE 

and moments equations differ by ≈ 1.5% for V
GS

= 0.6 V 

and ≈ 0.8% for V
GS

= 0.5 V , where an energy grid with a 

uniform spacing of approximately 2.6 meV has been used 

for the H-transformed BE. Figure 6 shows the I
DS

− V
GS

 

characteristics of the device for V
DS

= 0.1 V and different 

discretization parameters. The artificial diffusion in phase 

space translates to artificial carrier heating and increases 

the subthreshold slope of the device. This effect, however, is 

not very significant, and our simulations show that even for 

a coarse k-grid ( Δk = 0.055 nm−1 ), the subthreshold slope 

changes from SS = 60.5 mV∕dec to SS = 66.5 mV∕dec 

as we move from a very coarse spatial grid ( Δz = 2 nm ) 

to a very fine one ( Δz = 0.2 nm ). Refining the k-grid alle-

viates this problem and we have SS = 62.5 mV∕dec for 

Δk = 0.0225 nm−1 . Although Δk cannot be reduced below 

a certain value for a given Δz , the spurious increase in the 

subthreshold slope can be reduced to such a level that it is 

negligible (at least at room temperature). Keeping this in 

mind, our results confirm the validity of all three approaches 

for the simulation of conventional devices with relatively 

low mobilities.

Next, we investigate the quasi-ballistic limit of the 

nanowire transistor. In the rest of this paper, single-sub-

band and single-valley transport together with the RTA 

for the scattering integral is assumed for the sake of CPU 

efficiency and consistency of the BE and the moments-

based models. In the case of high mobilities, the impact of 

Fig. 5  Calculated I
DS

− V
DS

 curves of the silicon N+
NN

+ transistor at 

different gate voltages. The results are obtained from simulation of 

the BE under H-transformation, simulation of the BE in phase space, 

and tenth-order moments-based equations (TM)

Fig. 6  Calculated I
DS

− V
GS

 curves of the silicon N+
NN

+ transistor, 

obtained from simulation of the BE in phase space. Δz = 2 nm and 

Δk = 0.055 nm−1 were chosen for these simulations
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scattering is weak anyway and the error due to the RTA is 

small for small V
DS

 . In order to check the accuracy of our 

BE solver, the ballistic small-signal drain self-admittance 

Y
DD

 is calculated for different grid refinement factors and 

the relative error w.r.t. the finest grid is shown in Fig. 7. 

It is important to note that the refinements of the z- and 

k-grids have contrary impacts on the numerical stabil-

ity of the discretized equations, which leads to a Cou-

rant–Friedrich–Lewy-like condition for Δz and Δk . While 

the k-grid should be fine enough to capture discontinuities, 

the z-grid must be refined accordingly to prevent numeri-

cal instabilities. Hence, Fig. 7 presents the relative error 

with simultaneous refinement of both z- and k-grids. The 

error decreases for finer grids and the method converges.

We investigate the drain self-admittance as a func-

tion of the frequency, because it is an important quantity 

to determine the impact of plasma waves on the device 

behavior. For example, a negative real part of the drain 

self-admittance corresponds to an instability and could 

enable the generation of THz waves [7, 39]. Results of 

the BE are compared to the ones calculated with projec-

tions onto different numbers of Hermitian polynomials 

and boundary conditions, where the first two Hermitian 

polynomials result in the DD model. In order to obtain 

a plasma instability, specific bias conditions have to be 

applied to the contacts of the device. The gate/source port 

should be short-circuited and the drain/source port open 

(i.e., the drain self-admittance should be zero). These bias 

conditions should not be confused with the boundary con-

ditions of the transport models at the contacts inside the 

device, which are determined by the contact model.

Resu l t s  a r e  p re sen ted  fo r  mob i l i t i e s  o f 

� = q�
�

RTA
∕m

�

zz
= 100 cm

2∕Vs in Fig. 8 (strong damping of 

plasma waves) and � = 10
6

cm
2∕Vs (quasi-ballistic case) in 

Fig. 9 for TB-BCs and 10 for D-BCs. For lower mobilities, 

good agreement between the two methods is observed over 

the entire frequency range and the details of the source and 

drain boundary conditions do not play an important role, 

i.e., even the drift-diffusion (DD) model with D-BCs can 

give reasonably accurate predictions in the diffusive regime 

for frequencies f < 3 THz . Although the DD model deviates 

Fig. 7  Convergence of Y
DD

 at zero frequency. Ballistic simulations 

for L
G
= 20 nm . V

GS
= 0.6 V , V

DS
= 0 V

Fig. 8  ℜ{Y
DD

(i2�f )} versus frequency at V
GS

= 0.5 V and V
DS

= 0 V . 

Simulations are performed for the mobility of � = 100 cm
2∕Vs

Fig. 9  ℜ{Y
DD

} versus frequency at V
GS

= 0.5 V and V
DS

= 0 V . Sim-

ulations are performed for a mobility of � = 10
6

cm
2∕Vs and TB-BCs 

are applied
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from the results of the BE solver at higher frequencies (e.g., 

it has an error of ≈ 8% at f = 8 THz ), it performs well in 

predicting the overall behavior of the real part. Truncation 

of the Hermite polynomial expansion at higher orders and 

TB-BCs improve the accuracy of the results.

However, when the mobility is increased to 

� = 10
6

cm
2∕Vs , moments of the BE fail to even provide a 

qualitative description of the device’s small-signal behavior 

(Fig. 9). Although the model with ten moments (TM) does a 

better job than the DD model, the overall error below 5 THz 

is rather large. The DD model not only shows an artificial 

peak at about 5 THz, it also yields a far too large admit-

tance at zero frequency. This is a well-known deficiency 

of the DD model [40, 41]. The situation becomes worse, if 

we change the boundary conditions of the moments-based 

models from TB-BCs to D-BC, which were used by Dya-

konov and Shur (Fig. 10). The unrealistically large values 

of ℜ{Y} at zero frequency increase by another 2–3 orders 

of magnitude. In addition, the peaks of the real part of 

the admittance become much sharper and higher and the 

minima smaller. The latter result is important, because the 

Dyakonov–Shur instability corresponds to a zero of the 

drain self-admittance (pole of the drain self-impedance for 

a short-circuited input). In Fig. 11, the absolute value of the 

drain self-admittance is shown for the DD model with dif-

ferent BCs, where the maxima and minima correspond to 

the poles and zeros, respectively. For D-BCs, the poles and 

zeros are lined up at � = −1∕2�
RTA

 [6], which is very small 

for � = 10
6

cm
2∕Vs and results in sharp peaks on the imagi-

nary axis. The three poles with an imaginary part between 4 

and 10 THz correspond to the three peaks of the DD model 

in Fig. 10 in that frequency range. On the other hand, TB-

BCs shift these poles (and zeros) to the left and the plasma 

resonances are strongly damped. This reduces their impact 

on the self-admittance at � = 0 which is why the results in 

Fig. 9 are much smoother than in Fig. 10. For a plasma insta-

bility poles or zeros with � > 0 are required. Unfortunately, 

the more realistic TB-BCs move the poles and zeros far to 

the left making plasma instabilities even more improbable. 

Since the DD model fails for quasi-ballistic transport any-

way, the absolute values of the drain self-admittance calcu-

lated by the BE are shown in Fig. 12. The poles and zeros of 

the BE also occur at large negative real parts of s, and even 

a nonzero drain/source bias does not result in a significant 

shift to the right.

In Fig. 13, the nonequilibrium behavior of ℜ{Y
DD

(i2�f )} 

is shown for various drain/source voltages as a func-

tion of frequency. The BE results are compared to the 

tenth-order model. As it is evident at zero frequency, the 

Fig. 10  ℜ{Y
DD

} versus frequency at V
GS

= 0.5 V and V
DS

= 0 V . 

Simulations are performed for a mobility of � = 10
6

cm
2∕Vs and 

D-BCs are applied (BE with TB-BCs)

Fig. 11  Logarithm of the absolute value of the drain self-admit-

tance for V
GS

= 0.5 V and V
DS

= 0 V (i.e., equilibrium) for 

� = 10
6

cm
2∕Vs . The results are calculated by the DD model with 

D-BCs (upper figure) and TB-BCs (lower figure)
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transistor operates in the saturation regime for V
DS

> 0.2 V 

( Y
DD

(0) → 0 ). Increasing the drain bias shifts the peak at 

f = 8 TH
z
 to higher frequencies (see Fig. 12). The moments-

based model follows this behavior up to V
DS

= 0.1 V , 

whereas for higher biases it becomes unstable and cannot 

produce meaningful results. The BE, on the other hand, can 

be solved without problems for larger voltages and its results 

do not show any active behavior (i.e., ℜ{Y
DD

} < 0 ) for drain 

voltages larger than zero. The above results clearly show 

that the internal contact BCs of the transport model play an 

important role and that the more realistic TB-BCs strongly 

damp plasma resonances.

Since the damping of the plasma resonances depends on 

the type of the BCs, it would be interesting to investigate 

the impact of the D-BCs onto the BE results. The D-BCs 

are applied in the case of the moments-based models to 

the even moments (density, energy density (temperature), 

etc.). In the case of the BE, this would correspond to the 

application of D-BCs to the even parts of the distribution 

functions. Without scattering, such a boundary condition 

violates the Liouville theorem, because the ratio of the 

even part of the distribution function at the source and 

drain at energies above the top of the barrier is fixed by 

transport for an inversion symmetric bandstructure and 

cannot be imposed by the BCs. Thus, D-BCs for the even 

part of the distribution function and the ballistic BE are 

incompatible.

4  Conclusion

In this paper, a numerically stable approach for phase 

space discretization of the BE was proposed, which is 

applicable to the diffusive as well as ballistic regime. The 

presented BE solver was used to calculate the small-signal 

self-admittance of an N+
NN

+ nanowire transistor up to 

THz frequencies, and the results were compared to the 

ones by moments-based models. D-BCs were shown to 

result in spurious plasma resonances for weak scattering, 

and moments-based models fail at describing the small-

signal behavior of quasi-ballistic devices. This calls into 

question the credibility of DD or higher-order models for 

the investigation of high-mobility phenomena in electronic 

devices.

Fig. 12  Logarithm of the absolute value of the drain self-admittance 

for V
GS

= 0.5 V and the ballistic case. The results are calculated by 

the BE for V
DS

= 0 V (upper figure) and V
DS

= 0.1 V (lower figure)

Fig. 13  ℜ{Y
DD

} versus frequency at V
GS

= 0.5 V using the BE and 

tenth-order moments-based model. Simulations are performed for 

the mobility of � = 10
6

cm
2∕V

s
 and TB-BCs. The arrow denotes the 

increase in V
DS
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