AUTHOR	Lord, Frederic M.
TITLE	A Numerical Empirical Bayes Proceđure for Finding an Interval Estimate.
INSTITUTION	Educational Testing Service, Princeton, N.J.
SPONS AGENCY	Office of Naval Research, Washington, D.C. Personnel and Training Research Programs Office.
REPORT NO	RB-71-46
POB DATE	Jul 71
NOTE	26 p .
EDRS PRICE	MF-\$0.65 HC-\$3.29
DESCRIPTORS	*Bayesian Statistics; Computer Programs; Expectation;
	Goodness of Fit; *Mathematical Applications;
	Mathematical Models; Multiple Regression Analysis:
	Predictive Measurement: Probability Theory;
	*Sampling; *Statistics
IDENTIFIERS	*Statistical Inference

ABSTRACT
A numerical procedure is outlined for obtaining an interval estimate of a parameter in an empirical Bayes estimation problem. The case where each observed value x has a binomial distribution, conditional on a parameter zeta, is the only case considered. For each x, the parameter estimated is the expected value of zeta given x. The main purpose is to throw some light on the effectiveness of empirical Bayes estimation in samples of various sizes. Illustrative numerical results are presented. (Author)

A NUMERICAL EMPIRICAL BAYES PROCEIDURE

FOR FINDING AN INTERVAL ESTIMATE

Frederic M. Lord

This research was sponsored in part by the
Personnel and Training Research Programs
Psychological Sciences Division
Office of Naval Research, under
Contract No. N00014-69-C-0017
Contract Authority Identification Number
NR No. 150-303
Frederic M. Lord, Principal Investigator
Educational Testing Service
Princeton, New Jersey
July 1971

Reproduction in whole or in part is permitted for any purpose of the United States Government.

Approved for public release; distribution unlimited.

This research was sponsored in part by the Personnel and Training Research Programs Psychological Sciences Division Office of Naval Research, under Contract No. NOOO14-69-C-0017
Contract Authority Identification Number NR No. 150-303

Frederic M. Iord, Principal Investigator
Educational Testing Service
Princeton, New Jersey
July 1971

Reproduction in whole or in part is permitted for any purpose of the United States Government.

Approved for public release; distribution unlimited.

Security Classification

DOCUMENT CONTROL DATA.R \& D

(Securlty classification of liflo, body of abstrect and indexink annotation niust be enteped when the overall report is rlassilled)

11. SUPPLEMENTAAY NOTES	12. SPONSORING MILITARYACTIVITY Recearch Programs Personnel and Training Research Office of Naval Research Arlinguon, Virginia 22217

13. ABSTRACT

A numerical procedure is outlined for obtaining an interval estimate of a parameter in an empirical Bayes estimation problem. The case where each observed value x has a binomial distribution, conditional on a parameter ζ, is the only case considered. For each x, the parameter estimated is the expected value of ζ given x. The main purpose is to throw some Jight on the effectiveness of empirical Bayes estimation in samples of various sizes. Illustrative numerical results are presented.

Summary

A numerical procedure is outlined for obtaining an interval estimate of a parameter in an empirical Bayes estimation problem. The case where each observed value x has a binonial distribution, conditional on a parameter ζ, is the only case considered. For each x , the parameter estimated is the expected value of ζ given x. The main purpose is to throw some light on the effectiveness of empirical Bayes estimation in samples of various sizes. Illustrative numerical results are presented.

1. Introductory Numerical Example

The following example illustrates a type of situation in which the usual estimator for a binomial parameter can be very misleading. A sample of $n=10$ independent observations was drawn from a Bernouilli distribution with probability of success π. This was repeated for $N=10,000$ different values of π, these being obtained by random sampling from a prechosen distribution of π 's. The sample proportion p of successes was found for each of the 10,000 samples. The resulting sample distribution $\mathrm{Nf}(\mathrm{p})$ of the 10,000 velues of p is shown below:

p	.0	.1	.2	.3	.4	.5	.6	.7	.8	.9	1.0
$\mathrm{Nf}(\mathrm{p})$	7	.102	477	1140	2053	2476	2027	1173	437	98	10
$(\pi, \bar{\pi})$	$.189-$		$.469 \ldots$		$.490-$		$.493-$		$.493-$	$.493-$	
	.505		.505		.505		.509	.527	.840		

The usual estimator of the value of π giving rise to any particular sample of 10 is the observed p for that sample, this being a sufficient
statistic if the sample of 10 is considered by itself. For even values of 10p, the table also shows interval estimates ($\bar{\pi}, \bar{\pi}$) of the regression of π on p, obtained by the empirical Bayes approach to be described in this paper.

The purpose of the above numerical example is to display the disagreement between the usual estimates p of π and the empirical Bayes interval estimates shown. The reason for such sharp disagreement is that the population distribution of π chosen to generate these artificial data, until now conceuled from the reader, actually had a negligible standard deviation so that $\operatorname{Nf}(p)$ is in effect a random sample of 10,000 from a binomial distribution with $\pi=0.5$. Although this information was not available for estimation purposes, the empirical Bayes estimation procedure partially recovered equivalent information from the sample $N f(p)$. A pleasing result is that each interval estimate here turns out to include the true value $\pi=0.5$.

2. Mathematical Formulation

Suppose that for each randomly drawn observation, there is not only an observed value x of the discrete random variable X, but also a corresponding unobservable value ζ of the continuous random variable Z. For any given ζ, x is drawn at random. from the binomial distribution

$$
\begin{equation*}
h(x \mid \zeta) \equiv \operatorname{Prob}(x=x \mid \zeta)=\left(\frac{n}{x}\right) \zeta^{x}(1-\zeta)^{n-x} \quad, \quad x=0,1, \ldots, n, \tag{1}
\end{equation*}
$$

where n is known. Given randomly drawn observations $x_{1}, x_{2}, \ldots, x_{N}$, the
ζ corresponding to any particular observation x_{a} can be estimated by empirical Bayes point-estimation methods (for example, Robbins, 1956; Maritz, 1966; Copas, 1969; Griffin \& Krutchkoff, 1971). More needs to be known about the effectiveness of such methods where n and N are not both very large.

Denote by $G(\zeta)$ the unknown cumulative distribution function of Z for the population from which the unobservable values are drawn. In view of (1), it will be assumed that the range of ζ is $0 \leq \zeta \leq 1$. Ordinarily, $G(\zeta)$ is thought of as continuous, but we will not exclude the possibility that it is a step function.

The (unconditional) probability distribution of X for the population can be written

$$
\begin{equation*}
\Phi_{G}(x)=\int_{0}^{1} h(x \mid \zeta) d G(\zeta) \quad, \quad x=0,1, \ldots, n \tag{2}
\end{equation*}
$$

The observed sample distribution of $x_{1}, x_{2}, \ldots, x_{N}$, to be denoted by $f(x)$, is the distribution of a random sample from $\Phi_{G}(x)$.

If $G(\zeta)$ were known, the value of ζ corresponding to any observed
x would in common practice be estimated by the regression function

$$
\begin{equation*}
\mu_{\left.Z\right|_{x}}=\varepsilon_{G}(Z \mid x)=\frac{1}{\Phi_{G}(x)} \int_{0}^{1} \zeta h(x \mid \zeta) d G(\zeta) \quad, \quad x=0,1, \ldots, n \tag{3}
\end{equation*}
$$

usually called the Bayes estimator. When $G(\zeta)$ is unknown, as here, the problem of finding a point estimator $\hat{\zeta}$ for the ζ corresponding to an observed x is a standard empirical Bayes problem. Typically, a point
estimate $\left(\hat{\mu}_{Z_{X_{a}}}\right.$, say) of $\varepsilon\left(Z \mid x_{a}\right)$, the regression of Z on x evaluated at x_{a}, is used as the empirical Bayes estimator of ζ for observation a - The binomial case considered here is of particular interest (as compared, for example, to the Poisson) since in the binomial case $G(\zeta)$ is unidentifiable-complete knowledge of $\phi_{G}(x)$ is sufficient to determine only the first n moments of $G(\zeta)$ (Skeilam, 1948).

The present note is explicitly concerned with an interval estimator ($\mu_{\alpha_{x}}, \bar{\mu}_{\alpha_{x}}$) of $\left.\mu_{Z}\right|_{x}, x=0,1, \ldots, n, G(\zeta)$ being unknown. Given the empirical Bayes model already specified and a sample with the observed distribution $f(x)$, what range of values for $\left.\hat{\mu}_{Z}\right|_{x}, x=0,1, \ldots, n$, is reasonably consistent with the observed $f(x)$?

Consider the set Γ_{α} consisting of all distribution functions $G(\zeta)$ such that the chi square $\left(X_{G}^{2}\right)$ between $\Phi_{G}(x)$, defined by (2), and the given $f(x)$ is less than $x_{1-\alpha}^{2}$, the $1-\alpha$ percentile of the chi square distribution:

$$
\begin{equation*}
x_{G}^{2} \equiv \sum_{x=0}^{n} \frac{\left[f(x)-\phi_{G}(x)\right]^{2}}{\phi_{G}(x)} \leq x_{l-\alpha}^{2} \tag{4}
\end{equation*}
$$

For each possible value of x, find $\bar{\mu}_{\alpha_{x}}=\operatorname{Max}_{\Gamma_{\alpha}}\left(\left.\mu_{z}\right|_{x}\right)$ and $\mu_{\alpha x} \equiv \operatorname{Min}_{\Gamma_{\alpha}}\left(\left.\mu_{z}\right|_{x}\right)$, the maximum and minimum values of (3) in Γ_{α}. For any given x, any value of $\left.\mu_{Z}\right|_{x}$ in the interval $\left(\mu_{\alpha_{x}}, \bar{\mu}_{\alpha_{x}}\right)$ is consistent with the data; values outside this interval will be considered implausible.

The foregoing is not an ideal way to set up an interval estimate. Unti.l better methods are implemented, however, it can throw some light on the accuracy of empirical Bayes point estimation. For the standard empirical Bayes problem of estimating ζ, any point estimate $\hat{\zeta}$ in the interval
($\mu_{-\alpha_{x}}, \bar{\mu}_{\alpha_{x}}$) would minimize the squared errors of estimation for some $G(\zeta)$ in Γ_{α}. Any estimate outside this interval would not.

If desired, the interval described above can be interpreted as a confidence interval for $\left.\mu_{\mathrm{Z}}\right|_{\mathrm{x}}$ with confidence level $>1-\alpha$. This may be seen as follows. For any given $G(\zeta), \Gamma_{\alpha}$ is a random variable so defined as to include $G(\zeta) I-\alpha$ of the time. Thus ($\mu_{\alpha x}, \bar{\mu}_{\alpha x}$) must include the true $\left.\mu_{Z}\right|_{x}$ at least $1-\alpha$ of the time.

3. Bounds for the Regression of Z on x

Substituting (1) in (2) and expanding, we have

$$
\left.\begin{array}{rl}
\Phi(x) & =\binom{n}{x} \int_{0}^{1} \zeta^{x}(1-\zeta)^{n-x} d G(\zeta) \\
& =\binom{n}{x} \sum_{r=0}^{n-x}\left({ }^{n}-x\right. \tag{5}
\end{array}\right)(-1)^{r} \mu_{r+x}^{\prime}, \quad x=0,1, \ldots, n,
$$

where μ_{s}^{\prime} is the moment about the origin of order s for the distribution $G(\zeta)$. Ruling out the degenerate case where Z takes no values other than 0 or 1 (and where consequently $\phi(x)=0$ unless $x=0$ or n), we have that $\mu_{s}^{\prime}>0$ for all s. Similarly, from (3),
$\left.\mu_{z}\right|_{x}=\frac{\sum_{r=0}^{n-x}\left(n_{r}^{n}-x\right)(-1)^{r} \mu_{r+x+1}^{\prime}}{\sum_{r=0}^{n-x}(n-x)(-1)^{r} \mu_{r+x}^{\prime}}=\frac{\sum_{R=x}^{n}\binom{n-x}{R}(-1)^{R-x} \mu_{R+1}^{\prime}}{\sum_{R=x}^{n}\binom{n-x}{R}(-1)^{R-x} \mu_{R}^{\prime}} \quad, x=0,1, \ldots, n \quad$.

Consider first a restricted case where $\mu_{1}^{\prime}, \mu_{2}^{\prime}, \ldots, \mu_{n}^{\prime}$ are fixed. In this special case, (6) is seen to be maximized (minimized) by maximizing (minimizing) μ_{n+1}^{\prime} if $n-x$ is even, by minimizing (maximizing) μ_{n+1}^{\prime} if $\mathrm{n}-\mathrm{x}$ is odd. A theorem of Markov (see Possé, 1886, sections V8 and V9; or Karlin \& Shapley, 1953) shows that if $\mu_{1}^{\prime}, \mu_{2}^{\prime}, \ldots, \mu_{n}^{\prime}$ (considered fixed) are the moments of some frequency distribution, then the maximum (minimum) value of μ_{n+1}^{\prime} is uniquely attained when $G(\zeta)$ is a certain specified step function. If n is even, all the frequency is concentrated at exactly $n / 2+1$ different values of ζ, including $\zeta=1$ if μ_{n+1}^{\prime} is maximized, $\zeta=0$ if μ_{n+1}^{\prime} is minimized. The situation for odd n is similar, but need not be detailed here.

This leads to the key conclusion that in order to find $G(\zeta)$ maximizing or minimizing (6) for fixed x, when $\mu_{1}^{\prime}, \mu_{2}^{\prime}, \ldots, \mu_{n}^{\prime}$ are given, it is only necessary to determine $M \equiv n / 2$ unknown values $\zeta_{0}, \zeta_{1}, \ldots, \zeta_{M-1}$ or $\zeta_{1}, \zeta_{2}, \cdots, \zeta_{M}$, together with the corresponding M unknown frequencies $g_{0}, g_{1}, \ldots, g_{M-1}$ or $g_{1}, g_{2}, \ldots, g_{M}$. It is not. necessary to admit to consideration any of the continuous frequency distributions on (0,1) nor any discrete distribution with more than M unknown values of ζ.

In our actual problem, we wish to find the probability distribution $\bar{g}_{\alpha x}(\zeta)$, sey, maximizing (6) or the $g_{\alpha x}(\zeta)$ minimizing (6) subject to the restriction that the corresponding cumulative distribution function is in Γ_{α}. This restriction does not change the key conclusion stated above, since holding $\mu_{1}^{\prime}, \mu_{2}^{\prime}, \ldots, \mu_{n}^{\prime}$ fixed also holds $\phi_{G}(0), \phi_{G}(1), \ldots, \Phi_{G}(n)$ fixed, because of (5), and thus fixes χ_{G}^{2}. Thus the extremizing $G(\zeta)$ will still be a step function with exactly $M+1$ different values of ζ, as before. (For example, let $\underline{\mu}_{1}^{\prime}, \mu_{2}^{\prime}, \ldots, \mu_{n}^{\prime}$ be the first n moments of
$\mathrm{g}_{\alpha_{\mathrm{X}}}$. Markov's theorem states that the minimizing $G(\zeta)$ with these moments is of the special form described. Thus if $g_{\alpha x}$ exists, it is of this special form.)

It is, of course, always possible that Γ_{α} is empty. This situation has not yet arisen in practical application. The smaller the value of α chosen, the less likely it is that Γ_{α} will be empty.

For a discrete $G(\zeta)$ such as $g_{\alpha_{x}}(\zeta)$ the first line of (5) can $h=$ written

$$
\begin{equation*}
\Phi(x)=\binom{n}{x} \sum_{m=0}^{M} g_{m} \zeta_{m}^{x}\left(1-\zeta_{m}\right)^{n-x} \tag{7}
\end{equation*}
$$

where either $g_{0}=0$ or $g_{M}=0$. Similarly, (3) becomes

$$
\begin{equation*}
\left.\mu_{Z}\right|_{x}=\frac{\left(\frac{n}{x}\right)}{\phi(x)} \sum_{m=0}^{M} g_{m} \zeta_{m}^{x+1}\left(1-\zeta_{m}\right)^{n-x} \tag{8}
\end{equation*}
$$

Formulas derived by Markov (not given here) provide the explicit solution (if any) to the extremization problem when $\mu_{1}^{9}, \mu_{2}^{\prime}, \ldots, \mu_{n}^{\prime}$ are fixed. These formulas do not help with the more general problem to be solved here, which seems to require the numerical methods of mathematical programming.

4. Numerical Methods

Note that the use of a step function for $G(\zeta)$ here is required by the problem itself, not imposed for the convenience of the writer. For simplicity, the following discussion deals only with minimization. Maximization is essentially similar.

Thanks to Markov, our problem is now to find ζ_{m} and. $g_{m}{ }^{\prime}$, $m=0,1, \ldots, M-1$ or $m=1,2, \ldots, M$, so as to minimize (8), subject to the restrictions

$$
\begin{equation*}
0 \leq \zeta_{m} \leq 1, \quad g_{m} \geq 0, \text { and } \quad \Sigma g_{m} \leq 1, \tag{9}
\end{equation*}
$$

and also subject to (4). The problem thus stated can be solved numerically for any given set of data by mathematical programming techniques.

Actually, the inequality (\leq) restriction in (4) can without loss of generality be replaced by equality. A proof is given in the appendix for situations where at least two or three of the g_{m} are nonzero.

The writer is indebted to Martha Hamilton who developed the computer program to carry out the required minimizations and maximizations numerically for various sets of data. The program implements a sequential unconstrained minimization technique (SUMT) of Fiacco and McCormick (1968, chapter 4). The constraint on χ^{2} was handled by use of a penalty function; other constraints were dealt with by simpler means. The unconstrained minimizations required for SUMT were carried out by a program developed by JUreskog (1967, section 8) and modified by Hamilton, implementing the Fletcher-Powell-Davidon (1963) method.

All computer runs were made in double precision on an IBM $360 / 65$. As a check, each of the 44 extremization problems dealt with in Table 1 was run with two different starting points, one of which was completely random within the limitations $0 \leq g_{m}$ and $0 \leq \zeta_{m} \leq 1(m=0,1, \ldots, M)$ and $\Sigma g_{m}=1$. When $N=12,990$, the agreement between the $\mu_{\alpha x}$ or $\bar{\mu}_{\alpha x}$ reached from two different starting points was to at least four decimal
places; when $N=130$, the agreement was to at least three decimal places. This suggests that the intervals obtained represent global, not just local, maxima and minima, at least to a three-decimal-place approximation. Hundreds of other checks were made to be sure that small changes in $g_{\alpha_{x}}(\zeta)$ or in $\bar{\varepsilon}_{\alpha_{x}}(\zeta)$ would not give more extreme $\mu_{\alpha_{x}}$ or $\bar{\mu}_{\alpha_{x}}$, respectively. All such checks were satisfied.

5. Numerical Results

The procedure described was applied to the real data shown in the second column of Table l. This column shows the frequency distribution of $N=12,990$ independent observations (actually, test scores of 12,990 students--their number of correct answers on a psychological test composed of $n=20$ questions). A separate study (see below) shows that this distribution is compatible with the mathematical model given by (1) and (2).

The fifth column shows interval estimates of $\left.\mu_{Z}\right|_{x}$, obtained for these data by the method outlined, with $\alpha=.05$. These empirical Bayes intervals, unlike ordinary interval estimates, are wider at extreme values of x than at middle values. In the middle, the intervals shown for $N=12,990$ are happily short.

Although it is not obvious from a look at the table, no straight-line regression of ζ on x can be fitted inside the intervals shown for $N=12,990$. The indicated nonlinearity is not rigorously demonstrated by the methods described here. However, linearity of regression implies

Table 1. Observed frequency distributions $f(x)$ and corresponding interval estimates $(\alpha=.05)$ for the regression of Z on x.

x	$\mathrm{Nf}(\mathrm{x})$		$\left.\hat{\mu}_{z}\right\|_{x}$	Interval Estimate of $\left.\mu_{\mathrm{Z}}\right\|_{\mathrm{x}}$	
	$\mathrm{N}=12,990$	$N=130$		$\bar{N}=12,990$	$N=130$
20	63	2	. 898	.852-.952	. 690-1.000
19	141	2	. 863		
18	220	2	. 823	.780-.846	. 615-. 943
17	319	2	. 773		
16	424	6	. 716	. $690-.743$. $573-.855$
15	622	4	.663		
14	776	8	.619	.605-. 646	. $510-.749$
13	1001	4	. 583		
12	1203	9	. 553	. $534-.564$. $440-.636$
11	1443	19	. 526		
10	1550	13	. 500	. $485-.511$. $404-.556$
9	1409	12	. 475	. $461-.487$	
8	1235	13	. 451	. $1436-.463$. $363-.491$
7	1052	18	. 426		
6	696	8	. 402	. $387-.420$. 305-. 491
5	471	4	. 379		
4	226	3	. 356	. $340-.399$.199-. 491
3	98	1.	. 334		
2	27	0	. 314	. $233-.383$.049-. 491
1	12	0	. 296	. 107-. 380	
0	2	0	. 280	. $010-.374$.000-. 491
	12,990	130			

that ${ }_{G}(x)$ is a negative hypergeometric distribution (Lord \& Novick, 1968, section 23.6); thus linearity can be tested by determining whether $f(x)$ can be considered a random sample from such a distribution.

In order to investigate the effects of sample size, a random sample of 130 observations was drawn from the 12,990. The resulting $f(x)$ is shown in the table along with the corresponding interval estimates of $\left.\mu_{\mathrm{Z}}\right|_{\mathrm{x}}$. The intervals are of course much wider than for $N=1.2,990$, but fortunately not 10 times as wide. (Grouping of frequencies was used in the calculations where necessary so that the denominator of (4) should never be less than 1.)

The fourth column of the table is included as a partial check on the validity of the intervals obtained. This column shows the regression of ζ on x corresponding to a certain $G(\zeta)$ which was found (in a separate study) to provide a good fit to the $f(x)$ in column two, the obtained chi square between $\phi_{G}(x)$ and $f(x)$ being near the 50 th percentile of the tabled distribution of chi square for 20 degrees of freedom. It is pleasant to find that these regression values all lie well within the interval estimates shown in column five.

This research was supported in part by the Office of Naval Research.

References

Copas, J. B. Compound decisions and empirical Bayes. Journal of the Royal Statistical Society, Series B, 1969, 31, 397-425. Fiacco, A. V. \& McCormick, G. P. Nonlinear programming: Sequential unconstrained minimization techniques. New York: Wiley, 1968.

Fletcher, R. \& Powell, M. J. D. A rapidly convergent descent method for minimization. Computer Journal, 1963, 2, 163-168.

Griffin, B. S. \& Krutchkoff, G. Optimal linear estimators: an empirical Bayes version with application to the binomial distribution.

Biometrika, 1971, 28, 195-201. JHreskog, K. G. Some contributions to maximum likelihood factor analysis. Psychometrika, 1967, 32, 443-482.

Karlin, S. \& Shapley, L. S. Memoirs of the American Mathematical Society.
Number 12. Geometry of moment spaces. Providence: American
Mathematical Society, 1953.
Lord, F. M. \& Novick, M. R. Statistical theories of mental test scores.
Reading, Mass.: Addison-Wesley, 1968.
Maritz, J. S. Smooth empirical Bayes estimation for one-parameter discrete distributions. Biometrika, 1966, 53, 417-429.
Possé, C. Sur quelques applications des fractions continues algébriques.
St. Pétersbourg, Russie: L'Académie Impériale des Sciences, 1886.
Robbins, H. An empirical Bayes approach to statistics. In J. Neyman (Ed.), Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability. Berkeley: University of California Press, 1956. Pp. 157-164.

Skellam, J. G. A probability distribution derived from the binomial distribution by regarding the probability of success as variable between sets of trials. Journal of the Royal Statistical Society, Series B, 1948, 10, 257-261.

Appendix

It will be shown here that $g_{\alpha_{x}}(\zeta)$, the $G(\zeta)$ that minimizes (6) or (8) subject to (4) and (9) must lie on the boundary where $x_{G}^{2}=x_{l-\alpha}^{2}$. To avoid tediousness, the proofs are limited to situations where at least two or three (as convenient) of the ζ_{m} are distinct and have nonzero frequency.

It will be shown first that $\left.\mu_{z}\right|_{x}$, considered as a function of the g_{m} and the ζ_{m}, has no unrestricted minimum satisfying (9). This is proved by showing that if we are given any set with $K \geq 2$ of g_{m} and ζ_{m} satisfying (9), we can reduce the $\mu_{z \mid x}$ computed from (8) by a change in the G_{m} and ζ_{m} that does not violate (9). Thus if a restricted minimum with $K \geq 2$ is found by the methods of section 4 , it must lie on the onl.y remaining boundary $\left(X_{G}^{2}=x_{1-\alpha}^{2}\right)$, imposed by restriction (4), since otherwise $\mu_{Z} \mid x$ could still be reduced by the methods outlined. We will treat explicitly only the case where x is even. Thus $\zeta_{0}=0$ by Markov's theorem. (Similar proofs will apply when x is odd.) Let $\zeta_{1}<\ldots<\zeta_{K}$ be the $K \geq 2$ distinct nonzero values at which $g_{\alpha_{x}}(\zeta)$ has nonzero frequency. All possibilities will now be covered by the following four cases.

Case 1: $g_{0}>0,0<x<n$.
Consider the derivative of (8) with respect to ' ζ_{i} :

$$
\begin{array}{r}
\frac{\left.\partial \mu_{z}\right|_{x}}{\partial \zeta_{i}} \propto g_{i} \zeta_{i}^{x}\left(1-\zeta_{i}\right)^{n-x-1}\left[x+1-(n+1) \zeta_{i}\right] \sum_{m=0}^{K} g_{m} \zeta_{m}^{x}\left(1-\zeta_{m}\right)^{n-x} \\
-g_{i} \zeta_{i}^{x-1}\left(1-\zeta_{i}\right)^{n-x-1}\left(x-n \zeta_{i}\right) \sum_{m=0}^{K} g_{m} \xi_{m}^{x+1}\left(1-\zeta_{m}\right)^{n-x}
\end{array}
$$

$$
\propto g_{i} \zeta_{i}^{x-1}\left(1-\zeta_{i}\right)^{n-x-1}
$$

$$
\text { - } \sum_{m=0}^{K} g_{m} \zeta_{m}^{x}\left(1-\zeta_{m}\right)^{n-x}\left[\zeta_{i}\left\{x+1-(n+1) \zeta_{i}\right\}-\zeta_{m}\left(x-n \zeta_{i}\right)\right]
$$

$$
\propto g_{i} \zeta_{i}^{x-1}\left(1-\zeta_{i}\right)^{n-x-1}
$$

$$
\begin{equation*}
\cdot \sum_{m=0}^{K} g_{m} \zeta_{m}^{x}\left(1-\zeta_{m}\right)^{n-x}\left[\zeta_{i}\left(1-\zeta_{i}\right)+\left(\zeta_{i}-\zeta_{m}\right)\left(x-n \zeta_{i}\right)\right] \tag{Al}
\end{equation*}
$$

Take $i=0$ and suppose for the moment that $K \geq 2$ and that $\zeta_{0}(=0)$ is replaced by a very small positive quantity. The first term in the brackets can be neglected. The second term in the brackets is zero when $m=0$ but is negative otherwise. Since all quantities outside the brackets are nonnegative and some, at least, are positive, the derivative (Al) will be negative. Thus $\mu_{\mathrm{Z}} \mid \mathrm{x}$ can be reduced by replacing ζ_{0} by a small positive quantity (this can also be seen intuitively).

Case 2: $g_{0}=0,0<x<n$.
Consider the effect on $\mu_{z \mid x}$ of a small change in g_{i} and a small compensating change in g_{K}, holding all other g_{m} fixed. Treating g_{K} as a function of g_{i} defined by the equation

$$
\begin{equation*}
g_{\mathrm{K}}=1-\sum_{\mathrm{m}=0}^{\mathrm{K}-1} \mathrm{~g}_{\mathrm{m}} \tag{A2}
\end{equation*}
$$

and using the formula

$$
\begin{equation*}
\frac{\left.d \mu_{z}\right|_{x}}{\partial g_{i}}=\frac{\left.\partial \mu_{z}\right|_{x}}{\partial g_{i}}+\frac{\left.\partial \mu_{z}\right|_{x}}{\partial g_{K}} \frac{d g_{K}}{d g_{i}} \tag{A3}
\end{equation*}
$$

-A3-
we find from (8) that when the $g_{m}(m \neq i, K)$ are fixed,

$$
\begin{align*}
& \frac{d \mu_{Z} \mid x}{d g_{i}} \propto \sum_{m=0}^{K} g_{m} \zeta_{m}^{x}\left(1-\zeta_{m}\right)^{n-x}\left[\zeta_{i}^{x+1}\left(1-\zeta_{i}\right)^{n-x}-\zeta_{K}^{x+1}\left(1-\zeta_{K}\right)^{n-x}\right] \\
& -\sum_{m=0}^{K} g_{m} \zeta_{m}^{x+1}\left(1-\zeta_{i n}\right)^{n-x}\left[\zeta_{i}^{x}\left(1-\zeta_{i}\right)^{n-x}-\zeta_{K}^{x}\left(1-\zeta_{K}\right)^{n-x}\right] \\
& \propto \sum_{m=0}^{K} g_{m} \zeta_{m}^{x}\left(1-\zeta_{m}\right)^{n-x}\left[\zeta_{i}^{x+1}\left(1-\zeta_{i}\right)^{n-x}\right. \\
& \left.-\zeta_{K}^{x+1}\left(1-\zeta_{K}\right)^{n-x}-\zeta_{m} \zeta_{i}^{x}\left(1-\zeta_{i}\right)^{n-x}+\zeta_{m} \zeta_{K}^{x}\left(1-\zeta_{K}\right)^{n-x}\right] \\
& \propto \sum_{m=1}^{K} g_{m} \zeta_{m}^{x}\left(1-\zeta_{m}\right)^{n-x_{1}}\left[\zeta_{i}^{x}\left(1-\zeta_{i}\right)^{n-x}\left(\zeta_{i}-\zeta_{m}\right)\right. \\
& \left.+\zeta_{K}^{x}\left(1-\zeta_{K}\right)^{n-x}\left(\zeta_{m}-\zeta_{K}\right)\right] \quad . \tag{A4}
\end{align*}
$$

The last expression in (A4) makes use of the fact that since $g_{0}=0$ for Case 2, any summation in (A4) can be written either including or excluding $\mathrm{m}=0$.

The second term in the brackets is never positive. Now take $i=1$. The first term in brackets is now zero when $m=1$ and negative otherwise. All quantities outside the brackets are nonnegative; if either $\zeta_{K}<1$, or if $K \geq 3$, then some of these quantities are positive. If so, the derivative of (A4) is necessarily negative for $i=1$. Thus $\left.\mu_{\mathrm{z}}\right|_{\mathrm{x}}$ can be reduced by shifting some frequency from ζ_{1} to ζ_{K}.
(If $\zeta_{K}=1$ ard $K=2$, all terms under the summation in (A4) are zero. This special case can be dealt with by using (Al) again with $i=1$. Since $g_{0}=0,1-\zeta_{K}=0$, and $\zeta_{i}-\zeta_{1}=0$, the last expression in
(Al) simplifies to $\left.d \mu_{Z}\right|_{x} / d \zeta_{1} \propto g_{1}^{2} \zeta_{1}^{2 x}\left(1-\zeta_{1}\right)^{2 n-2 x}$. This derivative of $\mu_{Z \mid x}$ is necessarily positive for $x<n$. Thus $\mu_{Z \mid x}$ can be reduced by decreasing ζ_{1}.)

Case 3: $x=0$
In this case (8) becomes

$$
\mu_{\left.z\right|_{x}}=\frac{\sum_{m=0}^{M} g_{m} \zeta_{m}\left(1-\zeta_{m}\right)^{n}}{\sum_{m=0}^{M} g_{m}\left(1-\zeta_{m}\right)^{n}}
$$

Using (A2) and (A3) as before, but with $i=0$, we find, since $\zeta_{0}=0$, that

$$
\begin{align*}
\frac{\left.d \mu_{z}\right|_{x}}{d g_{0}} \propto & \sum_{m=0}^{M} g_{m}\left(1-\zeta_{m}\right)^{n}\left[-\zeta_{K}\left(1-\zeta_{K}\right)^{n}\right] \\
& \quad-\sum_{m=0}^{M} g_{m} \zeta_{m}\left(1-\zeta_{m}\right)^{n}\left[\left(1-\zeta_{0}\right)^{n}-\left(1-\zeta_{K}\right)^{n}\right] \\
\propto & \sum_{m=0}^{M} g_{m}\left(1-\zeta_{m}\right)^{n}\left[-\zeta_{K}\left(1-\zeta_{K}\right)^{n}-\zeta_{m}+\zeta_{m}\left(1-\zeta_{K}\right)^{\left.n^{n}\right]}\right. \\
\propto & \sum_{m=0}^{M} g_{m}\left(1-\zeta_{m}\right)^{n}\left[-\zeta_{m}-\left(\zeta_{K}-\zeta_{m}\right)\left(1-\zeta_{K}\right)^{n}\right] \quad . \tag{A5}
\end{align*}
$$

Since (A5) is always negative, an increase in g_{0} together with a corresponding decrease in g_{K} will reduce $\mu_{\mathrm{Z} \mid \mathrm{X}}$ in Case 3 .

Case 4: $\mathrm{x}=\mathrm{n}$.
In this case

$$
\left.\mu_{z}\right|_{x}=\frac{\sum_{m=1}^{M} g_{m} \xi_{m}^{n+1}}{\sum_{m=1}^{M} g_{m} \zeta_{m}^{n}}
$$

Using (A2) and (A3) as before with $i=0$, we have

$$
\begin{align*}
\frac{\left.d u_{z}\right|_{x}}{d g_{0}} & \propto \sum_{n=1}^{M} g_{m} \zeta_{m}^{n}\left(-\zeta_{K}^{n+1}\right)+\sum_{m=1}^{M} g_{m} \zeta_{m}^{n+1}\left(\zeta_{K}^{n}\right) \\
& \propto \zeta_{K}^{n} \sum_{m=1}^{M} g_{m} \zeta_{m}^{n}\left(\zeta_{m}-\zeta_{K}\right) \tag{A6}
\end{align*}
$$

Since (A6) is always negative, an increase in g_{0} together with a compensating decrease in E_{K} will reduce $\left.\mu_{\mathrm{Z}}\right|_{\mathrm{x}}$ in Case 4.

The four cases listed are exhaustive, provided $K \geq 2$. Similar proofs could be written to eliminate this proviso. Consequently, a minimum for $\left.\mu_{\mathrm{Z}}\right|_{\mathrm{x}}$ cannot occur except on the boundary established by (4).

4 Director, Personnel and Training Research Programs
Office of Naval Research
Arlington, Va .22217
1 Director
ONR Branch Office
495 Summer Street
Boston, Mass. 02210
1 Director
ONR Branch Office
1030 East Green Street
Pasadena, Cal. 91101
1 Director
ONR Branch Office
536 South Clank Street
Chicago, Ill. 60605
1 Office of Naval Research
Area Office
207 West 24th Street
New York, N. Y. 10011
1 Director, Information Systems Program Office of Naval Research (Code 437)
Arlington, Va. 22217
6 Director
Naval Research Laboratory
Washington, D. C. 20390
Attn: Library, Code 2029 (ONRL)
6 Director
Naval Research Laboratory
Washington, D. C. 20390
Attn: Technical Information Division
12 Defense Documentation Center
Cameron Station, Building 5
5010 Duke Street
Alexandria, Va. 22314
1 Behavioral Sciences Department
Naval Medical Research Institute
National Naval Medical Center
Bethesda, Md. 20014
1 Chief
Bureau of Medicine and Surgery
Code 513
Washington, D. C. 20390
1 Chief
Bureau of Medicine and Surgery
Research Division (Code 713)
Department of the Navy
Washington, D. C. 20390
1 Commanding Officer
Naval Medical Neuropsychiatric Research Unit
San Diego, Cal. 92152
1 Director
Education and Training Sciences Department
Naval Medical Research Institute
National Naval Medical Center
Building 142
Bethesda, Md. 20014

1 Technical Reference Library Naval Medical Research Institute National Naval Medical Center Bethesda, IVid. 20014

1 Mr. S. Friedman
Special Assistant for Research \& Studies
OASN (M\&RA)
The Pentagon, Room 4E794
Washington, D. C. 20350
1 Chief
Naval Air Technical Training
Naval Air Station
Memphis, Tenn. 38115
1 Naval Air Systems Command (AIR 5313A)
Washington, D. C. 20360
1 Chief of Naval Operations (Op-98) Department of the Navy
Washington, D. C. 20350
Attn: Dr. J. J. Collins
3 Technical Director Personnel Research Division Bureau of Naval Personnel Washington, D. C. 20370

3 Technical Library (Pers-11B)
Bureau of Naval Personnel
Department of the Navy
Washington, D. C. 20360
1 Training Research Program Mngr Bureau of Naval Personncl (Pers-A321) Washington, D. C. 20370

3 Technical Director Naval Personnel Research and Development Laboratory Washington Navy Yard, Building 200 Washington, D. C. 20390

3 Commanding Officer Naval Personnel and Training Research Laboratory San Diego, Cal. 92152

1 Cnairman
Behavioral Science Department Naval Command and Management Division U. S. Naval Academy

Luce Hall
Annapolis, Md. 21402
1 Superintendent
Naval Postgraduate School
Monterey, Cal. 93940
Attn: Library (Code 2124)
1 Commanding Officer
Service School Command *
U. S. Naval Training Center San Diego, Cal. 92133

1 Research Director, Code 06 Research and Evaluation Department U. S. Naval Examining Center Building $2711--G r e e n$ Bay Area Great Lakes, IIl. 60088 Attn: C. S. Winiewicz

1 Commander
Submarine Development Group Two
Fleet Post Office
New York, N. Y. 09501
1 Mr. George N. Graine
Naval Ship Systems Command (SHIP 03H)
Department of the Navy
Washington, D. C. 20360
1 Head, Personnel Measurement Staff
Capital Area Personnel Service Office Ballston Tower \#2, Room 1204 801 N. Randolph Street
Arlington, Va. 22203
1 Mr. Leo Mason
Center for Naval Analyses
1400 Wilson Blvd.
Arlington, Va. 22209
1 Dr. Robert Lockman Center for Naval Analysis 1400 Wilson Blvd.
Arlington, Va. 22209
1 Dr. A. L. Slafkosky
Scientific Advisor (Code AX)
Commandant of the Marine Corps
Washington, D. C. 20380
1 Dr. James J. Regan, Code 55 Naval Training Device Center Orlando, Fla. 32813

1 Behavioral Sciences Division Office of Chief of Research and Development
Department of the Army
Washington, D. C. 20310
1 U. S. Army Behavior and Systems Research Laboratory
Commonwealth Building, Room 239
1320 Wilson Boulevard
Arlington, Va. 22209
1 Director of Research
U. S. Army Armor Human Research Unit
Attn: Library
Bldg. 2422 Morande Street
Fort Knox, Ky. 40121
1 Commanding Officer
Attn: LTC Cosgrove
USA CDC PASA
Ft. Harrison, Ind. 46249
1 Dr. Vincent Cieri Education Advisor
U. S. Army Signal Center and School

Fort Monmouth, N. J. 07703
1 Mr. Harolà A. Schultz
Educational Advisor-ATIT-E
CONARC
Fort Monroe, Va. 23351
1 Director
Behavioral Sciences Laboratory
U. S. Army Research Institute of Environmental Medicine Natick, Mass. 01760

1 Division of Neuropsychiatry Walter Reed Army Institute of Research
Walter Reed Army Medical Ceniter Washington, D. C. 20012

1 Dr. George S. Harker, Director Experimental Psychology Division U. S. Army Medical Research Laboratory Fort Knox, Ky. 40121

1 AFHRL (TR/Dr. G. A. Eckstrand) Wright-Patterson Air Force Base Ohio 45433
1 AFHRL (TRT/Dr. ROSS L. Morgan) Wright-Patterson Air Force Base Ohio 45433

1 AFHRL (TRR/Dr. Melvin T. Snyder) Air Force Human Resources Lab. Wright-Patterson Air Force Base Ohio 4.5433

1 AFSOR (NL)
1400 Wilson Boulevard
Arlington, Va. 22209
1 Lt. Col. Robert R. Gerry, USAF
Chief, Instructional Technology Programs
Resources \& Technology Division
(DPTBD DCS/P)
The Pentagon (Room 4C244)
Washington, D. C. 20330
1 Headquarters, U. S. Air Force Chief, Personnel Research and Analysis Division (AFlDPXY)
Washington, D. C. 20330
1 Personnel Research Division (AFHRL)
Lackland Air Force Base
San Antonio, Tex. 78236
1 Commandant
U. S. Air Force School of Aerospace Medicine Attn: Aeromedical Library Brooks AFB, Tex. 78235

1 Headquarters, Electronics Systems Division
Attn: Dr. Sylvia Mayer/MCDS
L. G. Hanscom Field

Bedford, Mass. 01730
1 Lt. Col. Austin W. Kibler
Director, Behavioral Sciences (Acting)
Advanced Research Projects Agency, DDR\&E
1400 Wilson Boulevard
Arlington, Va. 22209
1 Director of Manpower Research
OASD (M\&RA) (M\&RU)
Room 3D960
The Pentagon
Washington, D. C. 20330
1 Mr. Joseph J. Cowan, Chief Psychological Research Branch (P-1) U. S. Coast Guard Headquarters 400 Seventh Street, S. W. Washington, D. C. 20591

1 Dr. Alvin E. Goins, Chief Personality and Cognition Research Section
Behavioral Sciences Research Branch National Institute of Mental Health 5454 Wisconsin Ave., Room 10 AOL
Bethesda, Md. 20014
1 Dr. Andrew R. Molnar Computer Innovation in Education Section
Office of Computing Activities
National Science Foundation
Washington, D. C. 20550
1 Dr. Richard C. Atkinson Department of Psychology Stanford University Stanford, Cal. 94305

1 Dr. Bernard M. Bass University of Rochester Management Research Center Rochester, N. Y. 14627

1 Dr. Lee R. Beach Department of Psychology University of Washington Seattle, Washington 98105

1 Dr. Mats Bjorkman University of Umea Department of Psychology Umea 6, SWEDEN

1 Dr. Jaime R: Carbonell Bolt, Beranek \& Newman, Inc. 50 Moulton Street Cambridge, Mass. 02138

1 Dr. Lee J. Cronbach School of Education Stanford University Stanford, Cal. 94305

1 Dr. Marvin D. Dunnette University of Minnesota Department of Psychology Elliot Hall Minneapolis, Minn. 55455

1 Division of Analytical Studies and Services
Educational Testing Service
Rosedale Road
Princeton, N. J. 08540
1 Dr. Robert Glaser Learning Research and Development Center
University of Pittsburgh
Pittsburgh, Pa. 15213
1 Dr. Albert S. Glickman American Institutes for Research
8555 Sixteenth Street
Silver Spring, Md. 20910
1 Dr. Bert Green
Department of Psychology Johns Hopkins University Baltimore, Ma. 21218

1 Dr. Harold Gulliksen Department of Psychology Princeton University Princeton, N. J. 08540

1 Dr. Duncan N. Hansen Center for Computer Assisted Instruction Florida State University Tallahassee, Fla. 32306

1 Dr. Richard S. Hatch Decision Systems Associates, Inc. 11428 Rockville Pike Rockville, Md. 20852

1 Dr. M. D. Havron
Human Sciences Research, Inc.
Westgate Industrial Park 7710 Old Springhouse Road McLean, Va. 22101

1 Dr. Albert E. Hickey Entelek, Incorporated 42 Pleasant Street Newburyport, Mass. 01950

1 Human Resources Research Organization Library
300 North Washington Street Alexandria, Va. 22314

1 Human Resources Research Organization Division \#3
Post Office Box 5787 Presidio of Monterey, Cal. 93940

1 Human Resources Research Organization Division \#4, Infantry
Post Office Box 2086 Fort Benning, Ga. 31905

1 Human Resources Research Organization Division \#5, Air Defense
Post Office Box 6021
Fort Bliss, Tex. 77916
1 Human Resources Research Organization Division \#6, Aviation (Library)
Post Office Box 428
.. Fort Rucker, Ala. 36360
1 Dr. Robert R. Mackie Human Factors Research, Inc. Santa Barbara Research Park 6730 Cortona Drive Goleta, Cal. 93017

1 Dr. Stanley M. Nealy Department of Psychology Colorado State University Fort Collins, Colo. 80521

1 Mr. Luigi Petrullo 2431. North Edgewood Street Arlington, Va. 22207

1 Psychological Abstrects American Psychological Association 1200 Seventeenth Street, N. W. Washington, D. C. 20036

1 Dr. Diane M. Ramsey-Klee
R-K Research \& System Design
3947 Ridgemont Drive
Malibu, Cal. 90265
1 Dr. Joseph W. Rigney Behavioral Technology Laboratories University of Southern California
University Park
Los Angeles, Cal. 90007
1 Dr. George E. Rowland
Rowland and Company, Inc. Post Office Box 61 Haddonfjeld, N. J. 08033

1 Dr. Arthur I. Siegel
Applied Psychological Services Science Center
404 East Lancaster Avenue Wayne, Pa. 19087

1 Dr. Ledyard R Tucker University of Illinois
Psychology Building
Urbana, Ill. 61820

