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A NUMERICAL EMPIRICAL BAYES PROCEDURE FOR FINDING AN INTERVAL ESTIMATE

Summary

A numerical procedure is outlined for obtaining an interval estimate

of a parameter in an empirical Bayes estimation problem. The ease where

each observed value x has a binomial distribution, conditional on a

parameter is the only case considered. For each x the parameteT

estimated is the expected value of given x The main purpose is to

throw some light on the effectiveness of empirical Bayes estimation in

samples of various sizes. Illustrative numerical results are presented.

1. Introductory Numerical Exam le

The following example illustrates a type of situation in which the

usual estimator for a binomial parameter can be very misleading. A sample

of n = 10 independent observations was drawn from a Bernouilli distri-

bution with probability of success A This was repeated for N = 10,000

different values of A these being obtained by random sampling from a

prechosen distribution of Als. The sample proportion p of successes

was found for each of the 10,000 samples. The resulting sample distribution

Nf(p) of the 10,000 values of

.0 .1 .2 .3

Nf(p) 7 102 477 1140

(g)Tc) .189- .469-

.505 505

p is shown below:

4 .5 .6

2053 2476 2027

490- .493-

.505 .509

.7

117.)

.8

437

.493-
.527

.9

98

1.0

10

.493-
.840

The usual estimator of the value of It giving rise to any particular

sample of 10 is the observed p for that sample, this being a sufficient
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statistic if the sample of 10 is considered by itself. For even values of

10p 1 the table also shows interval estimates (7c,R) of the regression of

g on p , obtained by the empirical Bayes approach to be described in this

paper.

The purpose of the above numerical example is to display the disagree-

ment between the usual estimates p of g and the empirical Bayes interval

estimates shown. The reason for such sharp disagreement is that the popula-

tion distribution of g chosen to generate these artificial data, until now

concealed from the reader, actually had a negligible standard deviation so

that Nf(p) is in effect a random sample of 10,000 from a binomial distri-

bution with g = 0.5 . Although this informition was not available for

estimation purposes, the empirical Bayes estimation procedure partially

recovered equivalent information from the sample Nf(p) . A pleasing

result is that each interval estimate here turns out to include the true

value g = 0.5 .

2. Mathematical Formulation

Suppose that for each randomly drawn observation, there is not only

an observed value x of the discrete random variable X , but also a

correSponding unobservable value t of the continuous random variable

Z For any given x is drawn at random from the binomial distri-

bution

h(xlt) 5 Prob(X = xlt) = (i)(1 - On-x x = 01,..., n 1 (1)

where n 4.s known. Given randomly drawn observations xl,x2,..,xN , the
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t corresponding to any particular observation xa can be estimated by

empirical Bayes point-estimation methods (for example; Robbins, 1956;

Maritz, 1966; Copas, 1969; Griffin & Krutchkoff, 1971). More needs to be

known about the effectiveness of such methods where n and N are not

both very large.

Denote by G() the unknown cumulative distribution function of Z

for the population from which the unobservable values are drawn. In view

of (1), it will be assumed that the range of is 0 < < 1 . Ordinarily,

G() is thought of as continuous, but we will not exclude the possibility

that it is a step function.

The (unconditional) probability distribution of X for the population

can be written

1

G
(x) = fh(xlt) do(t) x = 0, 1; .. , n (2)

The observed sample distribution of xl,x2,...,xN to be denoted by f(x) ,

is the distribution of a random sample from

If G() were known, the value of corresponding to any observed

x would in common practice be estimated by the regression function

1

P.zlx
r eG(Zlx) = T-c.426-cT f h(xit) dG()

0

usually called the Bayes estimator. When G(t) is unknown, as here, the

problem of finding a point estimator for the t corresponding to an

observed x is a standard empirical Bayes problem. Typically, a point

7
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estimate (I.LZIx

a

I say) of e(ZIx
a

) 1 the regression of Z on x evalu-

ated at x
a

, is used as the empirical Bayes estimator of t for observa-

tion a . The binomial case considered here is of particular interest

(as compared, for example, to the Poisson) since in the binomial case G(t)

is unidentifiable--complete knowledge of 0G(x) is sufficient to determine

only the first n moments of G(t) (Skellam, 1948).

The present note is explicitly concerned with an interval estimator

(14axliaax) of pzix 1 x = 0111 In 1 G(t) being unknown. Given the

empirical Bayes model already specified and a sample with the observed

distribution f(x) 1 what range of values for iqzix 1 x = 0111 ...In 1

is reasonably consistent with the observed f(x) ?

Consider the set Pa consisting of all distribution functions G(t)

2 ,

such that the chi square ( X
G

) between 0
G
(x) defined by (2)1 and the

given f(x) is less than X
2

'

the 1 - percentile of the chi squarei-a
distribution:

,2
n [f(x) - 0

G
(x)] 2

= E
G

x=0
0
G (x)

For each possible value of x I find liax Max(0.71x) and 1.1401x e Min(lAzix) )

"a a
the maximum and minimum values of (3) in 1101 . For any given x , any value

of ilzix in the interval ( is consistent with the data; values

outside this interval will be considered implausible.

The foregoing is not an ideal way to set up an interval estimate.

Until better methods are implemented, however, it can throw Some light on

the accuracy of empirical Bayes point estimation. For the standard empirical

Bayes problem of estimating t 1 any point estimate t in the interval

8
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cx'ax ) would minimize the squared errors of estimation for some G()
-

in Any estimate outside this interval would not.

If desired, the interval described above can be interpreted as a con-

fidence interval for
2,7 xP* I

with confidence level > 1 - a This may be

seen as follows. For any given G() Pa is a random variable so de-

fined as to include G(t) 1 - a of the time. Thus

include the true pzix at least 1 - a of the time.

(P. )-ax ax

3. Bounds for the Regression of Z on x

SUbstituting (1) in (2) and expanding, we have

1

(0(x) . (121c) f tx(1 -
)n-x

dG(t)

0

n-x
E in - xi (..1Nr fl,

%x/ r / / "r+x )

r=0

must

X = 0,1).000. , (5)

where 4; is the moment about the origin of order s for the distribution

G(t) . Ruling out the degenerate case where Z takes no values other than

0 or 1 (and where consequently (0(x) = 0 unless x = 0 or n ), we have

that 4; > 0 for all s . Similarly, from (3),

n-x
E 0.1 - xl (..1)" at r tn - xl (m1)11mx ut

r
' r-r+x+1 %11 % 11+1

r=u R=x
_

n-

0

x

E (n x) (ml)4'
R=x

r E (g 32cc) (-1)R2cr+x "R
r=

X = 0.11).)n

(6)



Consider first a restricted case where p.1,.1.11...,p,ny are fixed. In

this special case, (6) is seen to be maximized (minimized) by maximizing

(minimizing) L if n - x is even, by minimizing (maximizing) 1.1.11'4.1 if

n - x is odd. A theorem of Markov (see Posse, 1886, sections V8 and V9; or

Karlin & Shapley, 1953) shows that if p.121.1.1...41.;1 (considered fixed) are the

moments of some frequency distribution, then the maximum (minimum) value of

p.' is uniquely attained when G(t) is a certain specified step function.n+1

If n is even, all the frequency is concentrated at exactly n/2 + 1 dif-

ferent values of including = 1 if p.' is maximized, = 0 if
n+1

p.' is minimized. The situation for odd n is similar, but need not ben+1

detailed here.

This leads to the key conclusion that in order to find G() maximizing

or minimizing (6) for fixed x when are given it is only
2' n

necessary to determine M E n/2 unknown values .16.1 or

" together with the corresponding M unknown frequencies

Or . It is not. necessary to admit to consid-____

eration any of the continuous frequency distributions on (0,1) nor any

discrete distribution with more than M unknown values of

In our actual problem, we wish to find the probability distribution

Eax) sey, maximizing (6) or the a_. () minimizing (6) subject to the
-Rux

restriction that the corresponding cumulative distribution function is in

r This restriction does not change the key conclusion stated above,a
since holding 1.1.12q, ...11.tnt fixed also holds

2fixed, because of (5), and thus fixes XG Thus the extremizing G()

will still be a step function with exactly M + 1 different values of

as before. (For example, let pi, , 11:1 be the first n moments of

1 0



g . Markov's theorem states that the minimizing G() with these mo-
-ax

ments is of the special form described. Thus if a__
x

exists, it is of
A..x

this special form.)

It is, of course, always possEble that ra is empty. This situation

has not yet arisen in practical application. The smaller the value of a

chosen, the less likely it is that ra will be empty.

For a discrete G(t) such as ikix(t) the first line of (5) can

written

M4(x) grrK(l - cn-x
m.0

where either go = 0 or gm =0 . Similarly, (3) becomes

iuzlx E 1(0(x gratin (

(Pi m x+1

m=0

(7)

(8)

Formulas derived by Markov (not given here) provide the explicit solu-

tion (if any) to the extremization problem when
,

1112 1.1.4

n
are fixed.

2"'"

These formulas do not help with the more general problem to be solved here,

which seems to require the numerical methods of mathematical programming.

4 Numerical Methods

Note that the use of a step function for G(t) here is required by

the problem itself, not imposed for the convenience of the writer. For'

simplicity, the following discussion deals only with minimization.

Maximization is essentially similar.
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Thanks to Markov, our problem is now to find tin and a

111 = 0,1,...,M - 1 or m = 1,2,...,M , so as to minimize (8), subject to

the restrictions

0 < tin < , gin > 0 and Egm < (9)

and also subject to (4). The problem thus stated can be solved numerically

for any given set of data by mathematical programming techniques.

Actually, the inequality ( < ) restriction in (4) can without loss of

generality be replaced by equality. A proof is given in the appendix for

situations where at least tw or three of the gm are nonzero.

The writer is indebted to Martha Hamilton who developed the computer

program to carry out the required minimizations and maximizations numerically

for various sets of data. The program implements a sequential unconstrained

minimization technique (SUMT) of Fiacco and McCormick (1968, chapter 4).

The constraint on X
2

was handled by use of a penalty function; other

constraints were dealt with by simpler means. The unconstrained minimiza-

tions required for SUMT were carried out by a program developed by

J8reskog (1967, section 8) and modified by Hamilton, implementing the

Fletcher-ltwell-Davidon (1963) method.

All computer runs were made in double precision on an IBM 360/65.

As a check, each of the 44 extremization problems dealt with in Table 1

was run with two different starting points, one of which was completely

random within the limitations 0 < gm and 0 < < 1 ( m = 0,1,...,M )

and Egm = 1 When N = 12,990 the agreement between the !lax or
'ax

reached fram two different starting points was to at least four decimal

12
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places; when N = 130 , the agreement was to at least three decimal places.

This suggests that the intervals obtained represent global, not just local,

maxima and minima, at least to a three-decimal-place approximation.

Hundreds of' other checks were made to be sure that small changes in

or in a_ (t) would not give more extreme 14.:xx
;

or a respec-
Ax( -14ux .Clx

tively. All such checks were satisfied.

5. Numerical Results

The procedure described was applied to the real data shown in the

second column of Table 1. This column shows the frequency distribution

of N = 12,990 independent observations (actually, test scores of 12,990

students--their nurber of correct answers on a psychological test composed

f n = 20 questions). A separate study (see below) shows that this

distribution is compatible with the mathematical model given by (1) and

(2).

The fifth column shows interval estimates of
l

u_i
x

, obtained for these
-L

data by the method outlined, with a . .05 . These empirical Bayes intervals,

unlike ordinary interval estimates, are wider at extreme values of x than

at middle values. In the middle, the intervals shown for N = 12,990 are

happily short.

Although it is not obvious from a look at the table, no straight-line

regression of t on x can be fitted inside the intervals shown for

N = 12,990 . The indicated nonlinearity is not rigorously demonstrated

by the methods described here. However, linearity of regression implies

13
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Table 1. Observed frequency distributions f(x) and corresponding interval
estimates ( a = .0 5 ) for the regression of Z on x

x LEW. CIZIx
Interval Estimate of PzIx

N = 12.19 N = 130 N . 12,990 N = 130

20 63 2 .898 .852-.952 .690-1.000

19 141 2 .863

18 220 2 .823 .780-.846 .615-.943

17 319 2 773

16 424 6 .716 .690-.743 .573-.855

15 622 4 .663

14 776 8 .619 .605-.646 .510-.749

13 1001 4 .583

12 1203 9 553 .534-.564 .440-.636

11 1443 19 .526

10 1550 13 .500 .485-.511 .404-.556

9 1409 12 .475 .461-.487

8 1235 13 .4 52. .436-.463 .363-.491

7 1052 18 .426

6 696 8 .402 .387-.420 .305-.491

5 471 4 379
4 226 3 .356 .340-.399 .199-.491

3 98 1. .334

2 27 0 .314 .233-.383 .049-.491

1 12 0 .296 .107-.380

0 2 0 .280 .010-.374 .000-.491

12,990 130

7 4



that 0
G
(x) is a negative hypergeometric distribution (Lord & Novick,

1968, section 23.6); thus linearity can be tested by determining whether

f(x) can be considered a random sample from such a distribution.

In order to investigate the effects of sample size, a random sample

of 130 observations was drawn from the 12,990. The resulting f(x) is

shawn in the table along with the corresponding interval estimates of

4Z Ix
The intervals are of course much wider than for N = 12,990 1 but

fortunately not 10 times as wide. (Grouping of frequencies was used in the

calculations where necessary so that the denominator of (4) should never

be less than 1.)

The fourth column of the table is included as a partial check on the

validity of the intervals obtained. This column.shows the regression of

t on x corresponding to a certain G(t) which was found (in a separate

stucly) to provide a good fit to the f(x) in column two, the obtained

chi square between G (x) and f(x) being near the 50th percentile

of the tabled distribution of chi square for 20 degrees of freedom. It

is pleasant to find that these regression values all lie well within the

interval estimates shown in column five.

This research was supported in part by the Office of Naval Research.
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Appendix

It will be shown here that gax(f) 1 the G(f) that minimizes (6)

2 2

1

or (8) subject to (4) and (9) must lie on the boundary where X

To avoid tediousness, the proofs are limited to situations where at least

two or three (as convenient) of the f
m

are distinct and have nonzero

frequency.

It will be shown first that
kZlx I

considered as a function of the

gm and the fial 1 has no unrestricted minimum satisfying (9). This is proved

by showing that if we are given any set with K > 2 of gm and fim satis-

fying (9), we can reduce the gzix computed from (8) by a change in the gm

and fim that does not violate (9). Thus if a restricted minimum with K > 2

is found by the methods of section 4, it must lie on the only remaining bound-

ary ( )(1 = )(21u )1 imposed by restriction (4), since otherwise kmx could

still be reduced by the methods outlined. We will treat explicitly only

the case where x is even. Thus f = 0 by Markov's theorem. (Similar
0

proofs will apply when x is odd.) Let fl < < tK be the K > 2

distinct nonzero values at which gux(f) has nonzero frequency.

All possibilities mill now be covered by the following four cases.

Case 1: 40 > 0 < x < n .

Consider the derivative of (8) with respect to fi :

'vzix
37 gifI(1 ti)n-x-l(x +1 - (n + l)fi] E g_ff(1

m=0 lu

ti)n-x-1(x gion4+10. In-x
111,

m=0

18
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g1t1-1(1 e In-x-1

E egtat:(1 tm)n-x[titx
m.0

1 sii

+ 1 (n + 1)til - c(x - nti)]

E gimtl:(1 - tin)n-x[ti(1 - ti) + (ti - tin)(x - nti)] (Al)
m.0

Take i = 0 and suppose for the moment that K > 2 and that to (= 0)

is replaced by a very small positive quantity. The first term in the

brackets can be neglected. The second term in the brackets is zero when

m = 0 but is negative otherwise. Since all quantities outside the brackets

are nonnegative and some, at least, are positive, the derivative (Al) will

be negative. Thus u_i can be reduced by replacing to by a small posi-
-41x

tive quantity (this can also be seen intuitively).

Case 2: go .0, 0<x<n.

Consider the effect on u_i of a small change in g
i

and a small

compensating change in gK , holding all other fixed. Treating
gK

as a function of gi defined by the equation

K-1

E gm
m=0

and using the formula

41Zix 6P'ZIx 6/1ZIx dgK
dgi 7i-37.7 dgi

9

(A2 )

( A3 )
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we find from (8) that when the gm (n / ilK) are fixed,

d K
+1 -x-LIX t.xfi tidn-x(tI+10.

dgi

K
- E gmc1717-1-(1 - fm)n-x(fI(1 - fi)n-x - f;(1 - fidn-x]
m=0

tm)n-x(e1+1(1

m=0

eicc+10.

m E gm:(1 - fm)11-x[fI(1
m=1

)n-x(ti

tx(1 t )n-x(t t )1K K mK
The last expression in (A4) makes use of the fact that since go = 0 for

Case 2, any summation in (A4) can be written either including or excluding

111 = 0

The second term in the brackets is never positive. Now take i = 1 .

The first term in brackets is now zero when m = 1 and negative otherwise.

All quantities outside the brackets are nonnegative; if either tK < 1 1

or if K > 3 , then some of these quantities are positive. If so, the

derivative of (A4) is necessarily negative for i = 1 . Thus pzix Carl

be reduced by shifting some frequency from fl to f
K

(If tK = 1 aLd K . 2 1 all terms under the sumnation in (A4) are

zero. This special case can be dealt wittL by using (A1) again with i = 1 .

Since go = 0 1 1 - tK = 0 1 and fi - fl = 0 , the last expression in

20



(Al) simplifies to
dgZ1x/citlm g21t1((L- tl)

2n-2x
This derivative of

P2Ix
is necessarily positive for x < n . Thus

PZIx
can be reduced by

decreasing tl .)

x = 0

In this case (8) becomes

E gmtm(1 tidn
m=0

4Z1x M

m=0

Using (A2 ) and (A3) as before, but with i = 0 1 we find, since to . 0 ,

that

dk,' m
"nx m E gm(1 - im)n[ - tK(1 - tidn]
dgo

- E gmtm(1 - tm)n[(1 - to)n - (1 - tK)
n

]

m=0

m E gm(1 - tm)n[ - tK(1 - ti)n - + tm(1
in

m=0

m gm(1 im)11[ tK)111

m=0

Since (A5) is always negative, an increase in go together with a cor-

responding decrease in gK will reduce
PZIx

in Case 3.

21
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Case 4: x n .

In this case

m=1 gmt:+1
Z ix

giJm

Using (A2) and (A3) as before with 1 = 0 we have

41Zix n n4-I M
dg

0
cc E gmtm(-tK ) E

m=1

m gA.am
m=1

gliga4-1(0

(A6)

Since (A6) is always negative, an increase in g
0

together with a com-

pensating decrease in gK will reduce pz ix in Case 4.

The four cases listed are exhaustive, provided K > 2 Similar proofs

could be written to eliminate this proviso. Consequently, a minimum for

tiz ix cannot occur except on the boundary established by (4).
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