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Abstract—This paper presents a fatigue damage model to es-
timate fatigue lives of microelectromechanical systems (MEMS)
devices and account for the effects of topological randomness of
material microstructure. For this purpose, the damage mechanics
modeling approach is incorporated into a new Voronoi finite-
element model (VFEM). The VFEM developed for this inves-
tigation is able to consider both intergranular crack initiation
(debonding) and propagation stages. The model relates the fatigue
life to a damage parameter “D” which is a measure of the gradual
material degradation under cyclic loading. The fatigue damage
model is then used to investigate the effects of microstructure
randomness on the fatigue of MEMS. In this paper, three differ-
ent types of randomness are considered: 1) randomness in the
microstructure due to random shapes and sizes of the material
grains; 2) the randomness in the material properties considering
a normally (Gaussian) distributed elastic modulus; and 3) the
randomness in the material properties considering a normally dis-
tributed resistance stress, which is the experimentally determined
material property controlling the ability of a material to resist
the damage accumulation. Thirty-one numerical models of MEMS
specimens are considered under cyclic axial and bending load-
ing conditions. It is observed that the stress-life results obtained
are in good agreement with the experimental study. The effects
of material inhomogeneity and internal voids are numerically
investigated. [2009-0076]

Index Terms—Damage mechanics, fatigue behavior, material
microstructure, microelectromechanical systems (MEMS) devices,
numerical simulation.

I. INTRODUCTION

DURING THE past two decades, microelectromechanical
systems (MEMS) have found growing applications (e.g.,

accelerometers [1], angular rate sensors [2], and RF MEMS
switches and varactors [3]). As MEMS become more popular in
electronic devices and their manufacturing processes improve,
their size is reduced in order to improve their performance.
Hence, they will be subject to higher deflections, stress lev-
els, and frequencies. These operating conditions increase their
probability of fatigue failures. These issues are attracting in-
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creasing attention from researchers interested in fatigue behav-
ior of MEMS devices.

Brown et al. [4] were among the first to introduce an electro-
statically actuated fan-shaped test rig to test MEMS in fatigue.
They showed that with increasing stress amplitude, number of
cycles to fatigue decreased. Later, Muhlstein et al. [5] used
finite-element method (FEM) to calculate the maximum stress
in the same specimens as Brown et al. [4] did. They concluded
that the life of polysilicon structures increases with decreasing
stress amplitude. Kahn et al. [6] actuated a notched specimen
with an array of electrostatic comb drives. They conducted
a comprehensive series of tests and clearly demonstrated the
increase in life with decrease in applied stress. In addition,
they attributed the reduction in the nominal toughness under
cyclic loading to subcritical growth of sharp cracks from the
micromachined notches in the specimens. Kapels et al. [7]
developed a thermal actuation test arrangement that permitted
both monotonic loading and tension–tension fatigue testing.
Again, although their lives were only up to one million cycles
in contrast to the billion or more of the other two methods,
their results showed the same trend as the previous findings.
Connally and Brown [8] developed a resonant structure from
single-crystal silicon that actuated a beam in out-of-plane defor-
mation. They illustrated that as a crack grows, the resonant fre-
quency decreases. They also postulated that static failure of the
native surface silica layer is the mechanism for crack growth.
Minoshima et al. [9] obtained fatigue lives ranging from less
than 17 cycles to more than 50 000 cycles for relatively large
single crystal cantilever beams using a small electromagnetic
actuator and a differential transformer displacement transducer.
There have been other researchers investigating fatigue be-
havior of single crystal silicon or polysilicon (Ye et al. [10],
Tsuchiya et al. [11], Fedder and Blanton [12], Bagdahn and
Sharpe [13]). Sharpe and Bagdahn [14] reviewed the test de-
vices developed by different research groups for polysilicon.
Their comparison of different experimental data revealed a
significant amount of scatter between the fatigue lives obtained
by different groups. Kahn et al. [15] pointed out that among
the fatigue mechanisms proposed for MEMS devices, the most
likely candidate is one that involves mechanically induced dam-
age as a result of cyclic stresses. Muhlstein et al. [16] studied
the mechanisms for the delayed failure of 2-µm-thick structural
films of polycrystalline silicon under high-cycle fatigue loading
conditions. They concluded that the mechanism of the apparent
fatigue failure of thin-film silicon involves sequential oxidation
and environmentally-assisted crack growth solely within the
native SiO2 layer (reaction-layer fatigue mechanism).

Mohr et al. [17] used an electromagnetic actuator arrange-

ment to subject bulk nickel to fully reversed bending fatigue

stress. Their experiments led to stress-life (S-N) data for
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microstructures with critical dimensions greater than 10 µm

which were comparable to the data found in the literature for

annealed and hardened nickel specimens. Dual et al. [18] de-

termined the relationship between the decrease in resonant fre-

quency and crack length using a structure consisting of a small

specimen excited by a piezoelectric element. Buchheit et al.

[19] investigated the effects of microstructure on the deforma-

tion and fatigue failure of the LIGA Ni MEMS devices. They

obtained a fatigue limit of 200 MPa which is about 40% of

their measured tensile stress of 550 MPa. They also suggested

a tie between microstructure and crack initiation, specifically in

grains which have soft deformation directions oriented favor-

ably with respect to the applied stress direction. Aktaa et al.

[20] studied high cycle fatigue behavior of electrodeposited

LIGA Ni structures using stress-controlled cyclic loading and

fractography. Their fatigue results for LIGA Ni under fully re-

versed loading condition (R = −1), predicted that the MEMS

LIGA Ni behaved as the commercial pure bulk Ni. Their frac-

tographical observations showed intergranular fatigue cracking

which was explained by the predominantly ultrafine-crystalline

microstructure of the LIGA Ni investigated. Allameh et al. [21]

studied the effects of specimen thickness on S-N behavior and

fatigue fracture modes in LIGA Ni MEMS structures. They

concluded that the thinner 70-µm-thick structures had a higher

endurance limits than the 270-µm-thick structures. In the case

of the thinner structures, more extensive plastic deformation

and stage II fatigue crack growth were observed. On the other

hand, lower levels of plastic deformation were observed in

the thicker structures along with corner crack nucleation, flat

near-threshold fracture modes, and fatigue striations. Using a

fixed-free cantilever beam subjected to fully reversed bending,

Boyce et al. [22] found a ratio of endurance limit to ultimate

tensile strength of 37% for LIGA Ni MEMS thin films. They

suggested that fatigue cracks nucleate from oxide films which

form on the surfaces of slip bands induced on the surfaces of

cyclically deformed LIGA Ni microspecimens. Yang et al. [23]

studied the mechanisms of fatigue in LIGA Ni MEMS thin

films. They discovered that the mechanisms of crack nucleation

and growth are the formation of slip bands and surface oxides,

and crystallographic surface/subsurface crack nucleation and

growth in the columnar grain structures. They also indicated

that nanoscale grain films show surface and corner crack nucle-

ations from preexisting defects. They confirmed that the thicker

films have comparable fatigue life to annealed Ni, while the

thinner films have comparable fatigue life to wrought Ni.

Fatigue mechanism, in general, consists of three stages:

1) crack initiation; 2) crack propagation; and 3) final

catastrophic failure. Initial fatigue cracks occur at the mi-

croscale; therefore, in order to study their behavior accurately,

the microstructure of materials needs to be taken into account.

Miller [24] showed that the scatter in fatigue lives needs to be

studied by considering the effect of material microstructure on

early crack growth. Most of the materials are polycrystalline

in nature and consist of grains with various crystallographic

orientations, shapes, and sizes. Ito and Fuller [25] showed that

grains of a polycrystalline material can be represented to a good

degree of accuracy by using the Voronoi tessellation process.

Zavattieri [26] and later, Zavattieri and Espinosa [27] showed

that Voronoi polygons having random shapes and sizes can be

used to simulate the grain structure of polycrystalline mate-

rials and its consequent effects on the fatigue life. Recently,

using the Voronoi tessellation in a discrete element framework,

Slack et al. [28] proposed a discrete damage mechanics model

to study the fatigue of MEMS devices. They assumed that much

of the fatigue life is spent in the initiation stage and therefore

only considered this stage.

In this investigation, a Voronoi finite element (FE) fa-

tigue damage model is developed to investigate the fatigue

of MEMS devices and effects of topological randomness of

MEMS material microstructure. For this purpose, damage me-

chanics approach developed by Kachanov [29], Robotnov [30],

Chaboche [31], Memon et al. [32], and Slack et al. [28] is incor-

porated into a Voronoi finite element model (VFEM) developed

by Jalalahmadi and Sadeghi [33]. The model developed for this

investigation relates the fatigue life to a damage parameter D

which is a measure of the gradual material degradation under

cyclic loading. Using the Voronoi FE framework gives the

advantage and ability to calculate the deformation and stress

distribution of domains with arbitrary microstructural topology.

In addition, the current model considers both crack initiation

and propagation stages, and concludes that much of the fatigue

life is spent in the initiation stage, as described by Slack et al.

[28]. In this investigation, 31 MEMS specimens with different

microstructural distributions are considered under the cycling

loading to estimate their fatigue lives and evaluate the scatter

existing between the lives due to the different randomness

sources. In addition, the effects of internal voids and inhomoge-

neous material properties on the fatigue lives are investigated.

The results obtained from the VFEM indicate that the S-N

curve obtained is in good agreement with the experimental

results.

II. VORONOI FINITE-ELEMENT MODELING

Suppose that a set of points is given in the plane [for example,

dark points in Fig. 1(a)]. The number of points is assumed to

be finite, and they are all distinct such that no points coincide

in the plane. Considering this point set, every location in the

plane is assigned to the closet member in the point set. If

a location is equally close to two or more members of the

point set, it is assigned to those members. Therefore, the set

of locations assigned to each member in the point set forms

its own region. The resulting regions are completely covering

the plane because every location in the plane is included in

at least one region. The set of locations assigned to two or

more members in the point set forms the boundaries of the

regions [lines in Fig. 1(a)]. Hence, the adjacent regions overlap

only on their boundaries. Therefore, these regions form a tes-

sellation because they are collectively covering every location

of the plane, and they do not have common locations but

their boundaries. This tessellation is referred to as the planar

ordinary Voronoi tessellation or simply Voronoi diagram and

the regions constituting the Voronoi diagram are called the

Voronoi polygons or Voronoi cells. A general reference for the

properties of Voronoi tessellation can be found in [34] and a

more mathematical formulation in [35].
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Fig. 1. (a) Discretizing a domain with the Voronoi elements. (b) Dividing a
Voronoi element to finer triangular elements.

At microlevel, materials consist of grains which are ran-

dom in size and shape. Ito and Fuller [25], Zavattieri and

Espinosa [27], and Jalalahmadi and Sadeghi [33] showed that

the Voronoi diagram can be used to simulate the topology of the

material microstructure. Their reasoning for using the Voronoi

diagram was that consider some random nucleation points in

the crystallization process of a one-phase metal, if all grains

start to grow simultaneously from these nucleation points at

the same rate, microstructure produced will be in the form of

a Voronoi diagram. Because of randomly chosen locations of

the nucleation points, the grains can have random sizes. In

VFEM, first, the domain is divided into Voronoi cells using

the Voronoi tessellation, and then the geometrical center of

each Voronoi element is determined. Since Voronoi elements

are convex polygons, the center of each element is always

located within the element. This property is used to divide the

Voronoi element into finer triangular elements by connecting

the nodes to the center. Fig. 1 shows the process of discretizing

a domain into the Voronoi elements and then dividing a Voronoi

element to finer triangular elements. A two-step assembly

process is used to obtain the global stiffness matrix (K). In the

first step, assuming linear shape functions for each triangle,

its stiffness matrix is obtained, and then the stiffness matrix

for each Voronoi element can be set up using the stiffness

matrices for each individual triangle. In the second step, the

global K matrix is assembled using the stiffness matrices of

the Voronoi elements. In VFEM, the strain energy method is

used to extract the stiffness matrix for the triangular elements.

For more detailed information about the VFEM, please refer

to [33].

III. FATIGUE DAMAGE MODEL

Damage mechanics deals with the gradual degradation of

materials which are subjected to loading. This deterioration

includes the initiation, growth, and coalescence of microcracks

or microvoids resulting to the initiation and growth of cracks

[29]–[32]. The effects of damage on the mechanical response

of a material have been recognized by employing a damage

variable D in the constitutive equations. In general, the damage

variable is a tensor, but under the assumption of isotropic dam-

age, it reduces to a scalar variable D. In order to define the 1-D

damage parameter, Kachanov [29] considered a representative

volume element (RVE) in a damage body under the uniaxial

loading and found the most damaged plane perpendicular to the

loading direction inside the RVE. Then, the damage variable

was defined as

D =
δSD

δS
(1)

where δS is the area of the intersection of the plane with the

RVE, and δSD is the effective area of the intersections of all

microcracks or microcavities which lie in δS. D can range

from 0 to 1; a value of zero means an undamaged material

while the value of one corresponds to a completely damaged

material resulting in complete loss of stiffness in tension that

signifies crack initiation. Considering this definition of the

damage variable, Rabotnov [30] defined the effective stress, σ̃,

on the damaged material in tension

σ̃ =
σ

1 − D
(2)

and in compression

σ̃ =
σ

1 − hD
(3)

where σ is the usual uniaxial stress in the undamaged material,

h is a crack closure parameter. In compression, h is equal to

one if the microcracks in the damaged material remain open.

However, for most of the materials and loading conditions,

the defects may close in compression. If the defects close

completely, the area which effectively carries the load in com-

pression is equal to the undamaged area. This means that h is

equal to zero. In practice, the real defects of complicated shapes

do not close completely; hence, the crack closure parameter

is introduced to account for this effect. The value of h is one

in tension (all of the microcracks open) and in compression

0 ≤ h ≤ 1. The value of h can be determined from the mea-

surements of elasticity modulus in tension and in compression

on a damaged material, as explained by Lemaitre [36]. Using a

micromechanical model, Lemaitre [36] found out that the value

of h = 0.2 often gives results close to the experiments. In the

current model, h = 1 in tension and following Lemaitre [36]

h = 0.2 in compression. Regarding the effective stress defined,

Lemaitre [36] defined the elasticity modulus of the damaged

material as

Ẽ = E(1 − D) (4)

where E is the elastic modulus of the undamaged material.

Therefore, 1-D damaged coupled elasticity law takes the form

σ = (1 − D)Eε. (5)
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Fig. 2. Jump-in-cycles method. Damage evolution is assumed to be piecewise
linear with respect to the number of cycles.

Constitutive equations for the damage accumulation have

been formulated according to the underlying micromechanical

damage mechanism. This mechanism is constrained to satisfy

the laws of thermodynamics for fatigue damage, ductile dam-

age, and creep damage [36]. In high cycle fatigue, a commonly

used form for the evolution of D is [37]–[40]

dD

dN
=

[

σa

σr(1 − D)

]m

(6)

where

σr = M0

(

1 − b
σm

σu

)

(7)

where N is the cycle number, σa and σm are the stress

amplitude and mean stress (depend on loading conditions),

respectively, and M0, b, m, and σu (ultimate stress) are material

properties that have to be experimentally identified. M0, b,

and m are material dependent as described by Lemaitre [36],

Xiao et al. [38], and Bolotin [40]. σr is called the resistance

stress [40] since it is the parameter that controls the ability

of a material to resist the damage accumulation. Note that σr

which generally is a function of the mean stress would be equal

to the constant value of M0 if the material is loaded by a

completely reversed stress field (σm = 0). The damage variable

is implemented within the current finite element modeling

framework through affecting the elastic modulus of individual

elements

E = E0(1 − hD) (8)

where E0 is the undamaged elastic modulus.

IV. NUMERICAL IMPLEMENTATION OF THE

DAMAGED COUPLED EQUATIONS

The fatigue analysis involves the simultaneous solution of the

damage evolution (6), stiffness degradation (8), and constitutive

equations for each element to account for the coupling between

damage and the material constitutive behavior. Therefore, an

iterative method was employed to solve the constitutive equa-

tions and update the damage evolution in each element within

the computational domain. Since simulations are conducted in

the high cycles fatigue regime, it is computationally expensive

to choose the iterative step length equal to one loading cycle.

In order to overcome this problem, the procedure developed by

Lemaitre [36], called the “jump-in-cycles” method, is employed

here. The method assumes a piecewise periodic, constant am-

plitude loading, i.e., the stress field is assumed to remain

unaltered over a finite number of cycles ∆N constituting a

loading block i. During this loading block, the damage of each

individual element can be assumed constant and equal to Di
j ,

where j is element number and i indicates a block of cycles.

Hence, the damage evolution is assumed to be piecewise linear

with respect to the number of cycles, as shown in Fig. 2.

However, it is to be noted that the shape of the damage evolution

curve is not predefined, but it is an outcome of the numerical

simulations due to the stress-damage coupling. In each loading

block i, the material model and damage accumulation history

obtained from the previous loading blocks are used to determine

the current stress distribution in the domain. Knowing the stress

amplitude for each element, its damage evolution rate can be

calculated by

(

dD

dN

)i

j

=

[

(σa)
i
j

σr

(

1 − Di
j

)

]m

. (9)

Note at the first loading block, i = 1, damage is zero for all of

the elements, D1
j = 0. After calculating the damage evolution

rate for all elements, the maximum one is determined. This

is the critical element in this loading block and determines

the number of cycles ∆N i spent in this loading block. The

increment in damage ∆D is assumed to be constant over the

block of cycles so the number of cycles in the current loading

block is computed as

∆N i =
∆D

(

dD
dN

)i

crit

(10)

where

(

dD

dN

)i

crit

= Max

∣

∣

∣

∣

∣

(

dD

dN

)i

j

∣

∣

∣

∣

∣

. (11)

The total number of cycles is updated as

N i+1 = N i + ∆N i. (12)

Having the damage evolution rate for each element, its

damage can be updated as

Di+1
j = Di

j +

(

dD

dN

)i

j

∆N i. (13)

Now, the elastic modulus of each element should be updated

according to the damage accumulated in that element, by

Ei
j = E0(1 − hD) (14)

and the procedure is repeated for the next block of cycles.

As previously mentioned, if the element is under tension,
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Fig. 3. S-N curve reported by Buchheit et al. [19] for LIGA Ni tensile
specimens under the completely reversed loading condition along with a power
law fit.

h = 1, and if it is under compression, h = 0.2. In addition,

when damage becomes larger than one in some element, for

subsequent calculations, the damage variable in that element is

set to one and will not change further. This means the element

loses the ability to support normal tensile loads, however,

the element can still support compressive loads through crack

closure effect (h = 0.2). The number of cycles spent for the

first element to reach damage equal to one will be considered

as the initiation life. Later, the failed elements, the ones with

D = 1, constitute a damaged zone. The crack propagation

phase is modeled through joining the damaged zones which

correspond to multiple microcracks coalescing together to form

longer cracks.

V. EVALUATION OF MATERIAL FATIGUE

DAMAGE PROPERTIES

As described earlier, the damage evolution rate equation

(6) introduces two new material parameters σr (= M0, when

σm = 0) and m that have to be experimentally determined.

One evaluation method for these parameters, employed here,

is the use of experimental S-N data (S-N curve) available

in literature. The general equation for an S-N curve under

completely reversed loading takes the form of a power law fit

σa = AN b (15)

where N is the number of cycles required to failure at the stress

amplitude σa, A and B are material constants. For this investi-

gation, we use the fatigue data reported by Buchheit et al. [19]

for LIGA Ni tensile specimens under the completely reversed

loading condition. Fig. 3 shows their S-N data along with a

power law fit, resulting

A = 1031.5 MPa b = −0.112. (16)

Assuming the stress amplitude to be unchanged, (6) can be

integrated from the undamaged condition to the fully damaged

condition which corresponds to the fatigue life Nf at the stress

Fig. 4. (a) On dimensions of tensile specimens used in the numerical simula-
tions. (b) Statistical distribution of number of sides of Voronoi elements in one
of the generated specimens. (c) Statistical distribution of the Voronoi elements’
area.

amplitude σa. From (6) and considering that under the com-

pletely reversed loading condition σr = M0, it yields

Nf
∫

0

dN =

1
∫

0

{

M0(1 − D)

σa

}m

dD ⇒ Nf

=

[

M0

σa

]m (

(1 − D)m+1

−(m + 1)

)1

0

(17)

Nf =
1

(m + 1)

[

M0

σa

]m

⇒ σa

=
M0

(m + 1)
1

m

N
−

1

m

f
. (18)

Comparison of (15) and (18) reveals

−
1

m
= b

M0

(m + 1)
1

m

= A (19)

or

m = −
1

b
M0 = A

(

1 −
1

b

)−b

. (20)
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TABLE I
NUMERICAL PARAMETERS USED FOR THE MEMS SPECIMENS

UNDER THE CYCLIC AXIAL LOADING

Fig. 5. Crack propagation (damage evolution) in the MEMS tensile speci-
men under the cyclic loading. (a) Initiation at N = 8708 cycles. (b) N =
8819 cycles. (c) N = 8934 cycles. (d) Final failure at N = 8937 cycles.

Substituting from (16), we have

m = 8.93 σr = M0 = 1334 MPa. (21)

VI. APPLICATION OF THE FATIGUE DAMAGE MODEL

TO TENSILE MEMS SPECIMENS

In this section, we apply the fatigue damage model developed

in the previous sections to the MEMS beams subject to com-

pletely reversed axial loading condition. Since the depth (into

the page) of the beam is small as compared to its height, we con-

sider the problem as a 2-D plane stress problem. Here, the beam

is 500 µm in length and 50 µm in height. Fig. 4(a) shows the

beam modeled and used to examine the fatigue damage model.

Fig. 6. (a) Damage evolution as a function of the number of cycles for the first
failed element. (b) Experimental fatigue damage evolution of AISI 316 stainless
steel.

Statistical distributions of number of sides of Voronoi elements

and their areas are shown in Fig. 4(b) and (c), respectively,

for the beam modeled. Voronoi tessellation results in a normal

distribution of number of sides for Voronoi elements with most

elements having five, six, or seven sides. As shown, distribution

of the elements’ area follows again a normal distribution for the

generated domains. Ito and Fuller [25] similarly obtained the

normal distributions for Voronoi elements’ area and the number

of element sides. Table I lists the numerical parameters em-

ployed in this investigation. In order to apply the desired axial

loading condition on the specimen, the x-direction degrees of

freedom on one end are fixed while the other end is moved in

the x-direction (displacement controlled loading). Fig. 5 shows

the damage evolution in the specimen including the failed

elements, which are indicative of the crack propagation. The

damage evolution as a function of the number of cycles for the

first failed element is shown in Fig. 6(a). The damage evolution

rate increases with increasing number of cycles indicating

localization in the effective stress due to damage accumulation.

This observation is in line with the experimental findings re-

ported by Lemaitre [36] for fatigue damage evolution of AISI

316 stainless steel measured by means of elasticity changes, as

shown in Fig. 6(b). Please note that Fig. 6 shows a qualitative

comparison of the shape of two damage-life results. Hence,

the damage-life results produced by the current model are

qualitatively following the trend expected from Lemaitre [36].
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Fig. 7. Comparison of the results obtained for the MEMS specimens under the
cyclic axial loading using the current model with the experimental S-N curve.

In order to validate the fatigue damage model developed

with the experimental S-N data used, four specimens with

identical dimensions and uniform material properties (Table I)

but with different microstructural topology (different Voronoi

distributions) are considered at different stress amplitudes (σa).
Under the assumption of uniform material properties the only

source of randomness is topological randomness due to the geo-

metrical variations in the microstructure of specimens produced

using the Voronoi tessellation process. Fig. 7 shows the fatigue

lives obtained by the current model for the four specimens, each

subjected to five different stress amplitudes, with the experi-

mental data. This figure shows that there is a good agreement

between the simulated and experimental results.

A. Effect of Topological Material Disorder on Fatigue Life

In order to investigate the effect of topological disorder

of material microstructure on fatigue life, 31 specimens with

different microstructural distribution were considered. The ma-

terial properties for all 31 specimens are assumed to be ho-

mogenous and isotropic (Table I) so that the only difference

between the specimens is the difference in microstructural

topology. It should be noted that the difference in the mi-

crostructures is caused by different distributions of the Voronoi

elements which have different sizes, shapes, areas, and orienta-

tions. When generating the different microstructures, only the

average size of the Voronoi elements is controlled, and the

random distributions of the elements’ shapes, sizes, and ori-

entations are outputs of Voronoi tessellation algorithm used to

generate the domains. Fig. 8 shows the values of the maximum

tensile stress (σx) for the 31 different domains at the beginning

of simulation when they are undamaged. As shown, they range

from 347.9 to 367.2 MPa with the average value of 354.8 MPa.

This average value is slightly higher than the applied stress

of 350 MPa since we are considering the maximum tensile

stress in each specimen and not the average tensile stress. It

should be noted that the variation observed in the figure is

caused by the microstructural topology disorders. Fig. 9 shows

the values of the total fatigue lives as well as their fraction

Fig. 8. Values of the maximum tensile stress (σx) for the 31 different
specimens under axial loading when they are still undamaged.

spent in the initiation stage for the 31 domains considered. As

shown, in uniaxial loading most of the fatigue life is spent in

the initiation stage. It can be explained with considering that

there is a uniform stress field under the tensile loading, so once

an element fails (crack initiates), the neighbor elements will fail

shortly after that (the crack grows fast). This observation is in

good agreement with Grandt [41] who showed in the case of

high cycle fatigue much of the life is spent in the crack initiation

stage.

In order to analyze the scatter existing between the results

calculated here, we employ the two-parameter Weibull distrib-

ution plot. The slope of the Weibull distribution plot provides a

scale of scatter of the data. For more information on the Weibull

distribution, please refer to [42], [43]. Fig. 10(a) shows the

scatter in initiation lives calculated from the current model. This

indicates that the results follow a two-parameter Weibull plot

with a slope of 20.19 and the Weibull strength, indicating the

number of cycles for which the probability of failure is 63.2%,

of 9228 cycles. The Weibull plot for the total lives calculated

here is shown in Fig. 10(b). The Weibull slope is 20.00 and

the Weibull strength is 9527 cycles, as listed in Table II. The

large values of the Weibull slope indicate that there is very little

scatter in the uniaxial tension results. This can be attributed to

the fact that in this part of investigation the material is assumed

to be pristine with uniform material properties and no voids or

flaws along the grain boundary.

B. Effect of Material Inhomogeneity on Fatigue Life

In this section, the approach used to introduce inhomogeneity

in the material properties, and its effects on the fatigue lives

are discussed. To take into account randomness of material

properties in the microlevel, we assumed two different types

of material inhomogeneity: 1) variation of elastic modulus

between the different elements and 2) variation of resistance

stress over the different elements.

Previously, we used the (undamaged) elastic modulus equal

to 175 GPa for all of the elements, but here, in order to

introduce material inhomogeneity in the model, we employ
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Fig. 9. Values of the initiation and propagation lives of the 31 specimens under the axial cyclic loading.

Fig. 10. Comparison of the Weibull distributions of (a) initiation lives,
(b) total lives of the 31 MEMS specimens for cases of the same material prop-
erties, normal distribution of elastic modulus, normal distribution of resistance
stress, and the internal voids.

the normal Gaussian distribution for the elastic modulus in

each specimen with a variation of 10% about the average

value of 175 GPa. It should be noted that the normal dis-

tribution of elastic modulus assumed in this investigation is

used simply as a modeling tool to incorporate randomness of

material properties at the microstructural level, (i.e., elastic

anisotropy and material defects). Fig. 11(a) shows the normal

distribution of the elastic modulus employed for studying the

effects of inhomogeneity on the stress distribution and the

fatigue life of specimen 1. Using the different normal distri-

bution of the elastic modulus for each numerical domain, the

maximum tensile stresses shown in Fig. 11(b) are obtained

for the 31 considered specimens while they are undamaged.

For comparison purposes, this figure also shows the results

obtained for the same specimens with using the uniform elastic

modulus. The average value of maximum tensile stress (σmax)
calculated with using the inhomogeneous elastic modulus is

385.2 MPa which is larger than the average value of 354.8 MPa

obtained from the specimens having the uniform elastic modu-

lus. This indicates that introducing inhomogeneity causes σmax

to increase because adjacent elements having different elastic

modulus interact with each other and create some local stress

concentrations. The Weibull plots of the initiation and total

lives of the 31 specimens obtained using the normal distri-

bution of elastic modulus are also shown in Fig. 10(a) and

(b), respectively. In addition, Table II lists the Weibull slopes

and strengths obtained. As expected, the values of both the

Weibull slope and strength obtained using the inhomogeneous

elastic modulus is lower than the ones calculated using the

uniform elastic modulus, which is similar to the results of

Slack et al. [28]. The Weibull slope of initiation lives of the

specimens with inhomogeneous elastic modulus is equal to

8.77 which is significantly lower than the value 20.19 obtained

for the uniform elastic properties. Considering total lives, the

Weibull slope for the uniform elastic modulus reduces from

19.99 to 13.68 for the normally distributed the elastic modulus.

Therefore, when the elastic modulus is varied, a new random-

ness is introduced in addition to the randomness caused by

the microstructure. This consequently reduces the fatigue lives

and increases their scatter compared with the homogeneous

property condition.

Now, we keep all the material properties uniform as in the

previous section except the resistance stress. Instead of uniform

resistance stress equal to 1334 MPa for all of the elements,
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TABLE II
WEIBULL SLOPES AND STRENGTHS OBTAINED FOR THE Ni SPECIMENS UNDER THE CYCLIC

AXIAL LOADING FOR THE DIFFERENT SIMULATION CONDITIONS

Fig. 11. (a) Normal distribution of the elastic modulus employed for the
specimen 1 with 10% variation of the average value of 175 GPa. (b) Values
of the maximum tensile stress obtained for the 31 specimens with the different
microstructures using the uniform elastic modulus and its normal distribution.

a normal Gaussian distribution of the resistance stress with

a variation of 10% about the average value of 1334 MPa is

used for each specimen; the one used for specimen 1 is shown

in Fig. 12. It should be mentioned that there is no need to

compare the values of maximum tensile stress obtained in this

part of investigation at the commencement of simulation for

Fig. 12. Normal distribution of the resistance stress applied to the specimen 1
with 10% variation of the average value of 1334 MPa.

the undamaged specimens with the values obtained for the

homogeneous undamaged specimens since they are exactly

same. The reason can be understood by remembering that the

resistance stress is a fatigue parameter which enters to the

computations after the first loading cycle and does not affect

the behavior of undamaged specimens. In addition, Fig. 10(a)

and (b) shows the Weibull plots of the initiation and total

lives of the 31 specimens obtained in this part of investigation.

The Weibull slope of initiation lives of the specimens with

the inhomogeneous resistance stress is equal to 9.61, and their

Weibull strength is 4200 cycles. For total lives, we obtain the

Weibull slope equal to 8.65 and the Weibull strength equal

to 5671 cycles. As observed, again the values of both the

Weibull slope and strength obtained using the inhomogeneous

material properties is lower than the ones calculated using the

homogeneous property condition. Hence, again, the variation of

resistance stress is another randomness causing the reduction

of the fatigue lives and the increase of their scatter compared

with the homogeneous property condition. Table II summarizes

the results obtained throughout this section. It should be noted

that there is a larger reduction in fatigue lives and more scatter

between them using the variation of resistance stress than using

the variation of elastic modulus. This larger effect of resistance

stress on the fatigue life can be explained by the fact that

the resistance stress variable is related directly to the fatigue

strength of the elements and is explicitly included in (6).
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Fig. 13. (a) Initial void introduced to specimen 1. (b) Stress distribution
around the void (applied stress is equal to 350 MPa). (c) Magnified view.

C. Effect of Internal Voids on Fatigue Life

The effects of initial internal voids on fatigue life are dis-

cussed in this section. In order to be able to compare the results

obtained for the flawless domains and the ones obtained for the

domains having the initial voids, the same 31 specimens previ-

ously generated are used again. One internal void is distributed

randomly inside the domains at the beginning of simulations to

investigate the effects of initial internal voids on fatigue life.

This is implemented in the model by randomly removing one

Voronoi element from each domain. Considering the average

size of element sides (5 µm), the average size of void sides is

5 µm as well. However, because of different microstructural

distributions, the exact size, location, and orientation of these

internal voids vary among different domains which cause ad-

ditional randomness in domains creating more scatter in the

obtained fatigue lives. Fig. 13(a) shows one initial internal

void introduced to specimen 1. The axial stress distribution

influenced by this internal void is shown in Fig. 13(b) and

(c). As expected, the void acts as the internal source for stress

concentration. In order to obtain a better understanding of how

the internal voids can affect the crack propagation, Fig. 14

shows a comparison between the crack paths developed in

specimen 1 in presence and absence of the internal void. As

shown, when there is a void in the material, fatigue crack

nucleates and grows near to this weak point, which agrees with

the fatigue experimental studies [41].

The values of maximum tensile stresses for the 31 specimens

with and without internal voids are shown in Fig. 15. As

observed, the influences of the internal voids on the maximum

tensile stress are significantly different between different spec-

imens caused by the random nature of internal voids simulated

here by their random size, location and orientation, as indicated

before. While in some cases, the internal void does not change

the value of maximum σx, it increases the maximum stress

Fig. 14. Influence of the internal void on the crack propagation path. (a) Crack
path in the specimen 1 without any void. (b) Crack path in the specimen 1
having an internal void.

Fig. 15. Comparison of values of the maximum tensile stress obtained using
the 31 specimens with two internal voids and no internal voids.

TABLE III
NUMERICAL PARAMETERS USED FOR THE MEMS SPECIMENS

UNDER THE CYCLIC BENDING LOADING

more than twice in some specimens. Overall, the average value

of σmax increases significantly from 354.8 to 482.7 MPa when

the internal voids are introduced. The Weibull plots for the

initiation and total lives calculated using the domains including

the internal voids are shown in Fig. 10(a) and (b), respectively.

The slope of total lives distribution reduces from 20.00 to 1.99,

and its Weibull strength decreases to 5219 cycles. Considering

the initiation lives, the effects of the internal voids are still more

noticeable, the Weibull slope is 0.77, and the strength decreases

from 9228 cycles to 1732 cycles. As expected, the introduction

of the internal voids decreases dramatically the fatigue lives and

increases their scatter, as observed by Slack et al. [28]. Table II

summarizes the results obtained in this section.

VII. APPLICATION OF THE FATIGUE DAMAGE MODEL

TO MEMS CANTILEVER BEAMS

Here, we apply the fatigue damage model developed to

the MEMS cantilever beams under the completely reversed
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Fig. 16. Crack propagation (damage evolution) in the MEMS specimen
under the cyclic bending loading. (a) Initiation at N = 80 239 cycles.
(b) N = 120 088 cycles. (c) N = 121 418 cycles. (d) Final failure at N =
122 306 cycles.

bending loading. In order to model the cantilever beams, we

consider the 31 specimens created in the previous section how-

ever, subject to bending instead of axial loading. The beams are

again 500 µm long and 50 µm thick [Fig. 4(a)]. Table III lists

the numerical parameters employed in this part of investigation.

In order to model the desired bending condition on the speci-

men, the degrees of freedom on one end are completely fixed

while the other end is moved in the y-direction (displacement

controlled loading). Fig. 16 shows the crack path for completely

damaged elements for specimen 1. It should be noted in the

case of axial loading, fatigue crack can start some point along

the beam which has a weak microstructure (Fig. 5) since in this

case all the points experience a theoretically the same stress.

However, because there is nonuniform stress field in the case of

cantilever beam, higher stresses are generated close to the fixed

end. In addition, cracks generally start close to this fixed end as

shown in Fig. 16.

Next, we consider the same four specimens, considered in

previous section, under the cyclic bending loading to obtain S-N

data using the fatigue damage model developed and compare

them with the experimental results. The comparison of the

experimental data and the initiation and total lives obtained

using the current model is shown in Fig. 17. As shown, the

initiation lives obtained agree well with the experimental results

as well as with the fatigue lives obtained for the same specimens

under the cyclic axial loading (Fig. 7). However, the total

Fig. 17. Comparison of the results obtained for the MEMS specimens under
the cyclic bending loading using the current model with the experimental S-N
curve.

Fig. 18. Comparison of values of the maximum tensile stress obtained using
the 31 MEMS specimens under the cyclic bending loading for cases of the same
material properties, normal distribution of elastic modulus, and the internal
voids.

lives predicted are slightly higher than the experimental values.

This observation can be explained by considering the different

stress gradients resulting from axial and bending loads. An

axial push–pull specimen has a uniform stress over the speci-

men cross section, whereas a bending specimen sees a tensile

stress on one side of the specimen, a compressive stress on

the opposite side, and zero stress at the neutral axis. Thus, a

bend specimen with the same dimensions as an axially loaded

specimen and subjected to the same peak cyclic stress actually

has a smaller volume of highly stressed material and by the

weakest link concept often has a longer fatigue life [44]–[47].

A. Effect of Topological Disorder on Fatigue Life

Fig. 18 shows the values of the maximum tensile stress (σx)
for the 31 different domains, generated in the previous section,

under the first completely reversed bending loading cycle,

i.e., when they are undamaged. As a conclusion of different
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Fig. 19. Values of the initiation and propagation lives of the 31 specimens under the cyclic bending loading.

microstructural topologies, the maximum tensile stresses range

from 300.9 to 320.7 MPa with an average value of 308.7 MPa.

As previously mentioned, we employ displacement controlled

loading. The theoretical maximum stress in the cantilever

beams corresponding to the applied displacement should be

315 MPa. As noted, the average value obtained here is in

good agreement with the theoretical one. Again, it should be

noted that the variation observed in the figure is caused by

the microstructural topological disorders. The total fatigue lives

obtained here for different 31 specimens as well as their fraction

spent in the initiation stage are shown in Fig. 19. Again much

of the life is spent in the initiation stage but not as much as

the initiation fraction in the uniaxial loading condition. This

less initiation fraction is due to the nonuniform stress field

existing in the bending case unlike with the uniform stress field

existing in the uniaxial loading, as mentioned in the literature

[44]–[47]. The Weibull distribution of the initiation and total

lives calculated for the 31 specimens are shown in Fig. 20(a)

and (b), respectively. A Weibull slope of 7.12 and the Weibull

strength of 78 679 cycles is obtained for the initiation lives,

and for the total lives the slope is 7.54 and the strength is

117 210 cycles. It is noted that the Weibull slopes obtained here

for the homogeneous specimens under the bending loading are

smaller than the ones obtained for the same specimens under the

uniaxial loading in the previous section. Again, this higher scat-

ter can be related to the nonuniform stress distribution, which

magnifies the effects of microstructural topology, existing in the

specimens under the bending loading.

B. Effect of Material Inhomogeneity and Internal

Voids on Fatigue Life

Now, in order to study the effects of material imperfec-

tion on the fatigue lives of MEMS cantilever beams, we

consider three different sources of additional randomness

introduced in the previous section. These sources are the

following: 1) normal distribution of elastic modulus with

a variation of 10% about the average value of 175 GPa;

Fig. 20. Comparison of the Weibull distributions of (a) initiation lives,
(b) total lives of the 31 Ni MEMS specimens under the cyclic bending
loading for cases of the same material properties, normal distribution of elastic
modulus, normal distribution of resistance stress, and the internal voids.



1028 JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, VOL. 18, NO. 5, OCTOBER 2009

TABLE IV
WEIBULL SLOPES AND STRENGTHS OBTAINED FOR THE Ni SPECIMENS UNDER THE CYCLIC BENDING

LOADING FOR THE DIFFERENT SIMULATION CONDITIONS

Fig. 21. Comparison of the S-N data obtained for the silicon MEMS speci-
mens under the cyclic axial loading using the current model and the experimen-
tal curve.

2) normal distribution of resistance stress with a vari-

ation of 10% about the average value of 1334 MPa;

and 3) introduction of the internal voids in the specimens.

In order to observe the effects of the internal voids, they are

distributed randomly in the left one-forth of the beams, i.e., in

the maximum distance of 1/4 beam length from the fixed end

since there is a nonuniform stress distribution in the bending

problem.

Fig. 18, also, shows a comparison between the values of the

maximum tensile stress at the first loading cycle (no damage

accumulated yet) in the 31 specimens obtained using the homo-

geneous material properties, the normal distribution of elastic

modulus, and the internal voids. This figure does not show the

maximum stress values for the normal distribution of resistance

stress since they are exactly similar to the values obtained in the

homogeneous specimens, as previously mentioned. Introducing

inhomogeneity of elastic modulus and internal voids causes the

increase in the maximum stress values in most of the specimens,

as a conclusion of local stress concentrations. The average value

of 308.7 MPa for the homogeneous specimens increases to

317.1 MPa in the presence of inhomogeneous elastic modulus

and to 310 MPa with introduction of the internal voids.

The Weibull plots of the initiation and total lives of the

31 specimens obtained using the homogeneous condition and

three additional sources of randomness previously mentioned

Fig. 22. Comparison of the Weibull distributions of (a) initiation lives,
(b) total lives of the 31 silicon MEMS specimens under the cyclic axial
loading for cases of the same material properties, normal distribution of elastic
modulus, normal distribution of resistance stress, and the internal voids.

are shown in Fig. 20(a) and (b), respectively. Table IV lists

the Weibull slopes and strengths obtained for different condi-

tions. As expected, introduction of the inhomogeneous material

properties (variation of E and σr) and internal voids increases

the scatter of initiation and total lives of the 31 specimens,

because now there are additional sources for randomness in the
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TABLE V
WEIBULL SLOPES AND STRENGTHS OBTAINED FOR THE Si SPECIMENS UNDER THE CYCLIC AXIAL

LOADING FOR THE DIFFERENT SIMULATION CONDITIONS

specimens than just the topological disorders. In addition, the

variation of the resistance stress has a more significant effect on

the fatigue life than the variation of the elastic modulus, because

its direct influence in the damage evolution rate equation (6), as

explained before. Variation of the resistance stress and introduc-

tion the internal voids reduces both initiation and total lives. In

addition, the internal voids have less effect on the fatigue lives

in the bending case than in the uniaxial problem considered in

the previous section. Since there is a nonuniform stress field

in the bending loading, the effect of the internal voids is more

dependent on their location. As they are closer to the high-stress

zones (corners close to the fixed end), they have larger effect on

the fatigue life.

VIII. SILICON TENSILE MEMS SPECIMENS

In order to investigate the applicability of the fatigue damage

model for other materials, in this section, we apply the fatigue

damage model to silicon MEMS specimens. For this purpose,

the specimens generated in Section VI are used; however,

instead of using the material properties of Ni calculated in

Section V, S-N data obtained by Muhlstein et al. [16] for

silicon thin films under the fully reversed tension-compression

loading is used to extract material properties of Si required

for the fatigue damage model. Fig. 21 shows Muhlstein et al.

[16] S-N data and power law fitted to the results. Using the

approach explained in Section V, these properties are calculated

for silicon

m = 33.33 σr = M0 = 6068 MPa. (22)

Using these material properties and the fatigue damage

model, S-N data are obtained for four of the previously gener-

ated specimens under the cyclic axial loading. Fig. 21 shows

the experimental data and the fatigue lives obtained using

the current model. As illustrated, there is a good agreement

between the results.

Now, effects of material imperfections on the fatigue lives of

silicon MEMS specimens are studied, using the four different

sources of randomness introduced in the previous sections.

These include the following: 1) topological disorder using the

31 different domains previously generated; 2) normal distri-

bution of elastic modulus with a variation of 10% about the

average value of 163 GPa; 3) normal distribution of resistance

stress with a variation of 10% about the average value of

6068 MPa; and 4) introduction of the internal voids in the

specimens as explained in Section VI-C. The Weibull plots

of the initiation and total lives of the 31 specimens under the

fully reversed tension-compression loading obtained using the

four sources of randomness previously mentioned are shown in

Fig. 22(a) and (b), respectively. In addition, Weibull slopes and

strengths obtained for different conditions are listed in Table V.

Again, introduction of the inhomogeneous material properties

(variation of E and σr) and internal voids reduces the initiation

and total lives and increases their scatter, because in these cases

there are more sources of randomness in the specimens than just

the topological disorders. There is a larger reduction in fatigue

lives using the variation of resistance stress than using the

variation of elastic modulus, which is explained in Section VI.

In addition, the significant effect of the internal voids on the

fatigue lives, and their scatter can be easily seen. Comparing

Sections VI–VIII, it can be observed that the current model

works well for both Si and Ni specimens.

IX. CONCLUSION

In this paper, a new fatigue model based on the damage

mechanics approach and Voronoi FEM was developed to study

fatigue lives of MEMS devices and their scatter caused by the

topological randomness and inhomogeneous material proper-

ties. The model is able to consider both crack initiation and

propagation stages. Here, four different sources of randomness

are considered: 1) microstructural topology; 2) the normal

distribution of elastic modulus; 3) the normal distribution of

resistance stress (σr); and 4) the internal voids. Thirty-one

MEMS specimens were simulated under cyclic axial and bend-

ing loading, and it was shown that the different stress gradients

resulted by the different type of loading can affect the fatigue

life. Since there is a nonuniform stress field in the bending load-

ing, effect of microstructural distribution is more significant in

the bending than axial loading. It was observed that the values

of the maximum tensile stress varied between the different

domains due to the effect of the microstructural topology, but

their average value agreed well with the theoretical applied

stress. The fatigue lives predicted are in good agreement with

the experimental S-N curves of Ni and Si MEMS specimens.

Again, due to the linear stress gradient existing in the bending

case, the fatigue lives of specimens are generally higher than the

ones obtained for the axial loading. Applying inhomogeneous

material properties and internal voids to the specimens created

local stress concentration and consequently changed the crack
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growth path. In addition, nonuniform resistance stress and inter-

nal voids reduced the fatigue lives and increased their scatter.
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