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Abstract 

In this paper, a novel direct method called the stress compensation method (SCM) is proposed 

for limit and shakedown analysis of large-scale elastoplastic structures. Without needing to 

solve the specific mathematical programming problem, the SCM is a two-level iterative 

procedure based on a sequence of linear elastic finite element solutions where the global 

stiffness matrix is decomposed only once. In the inner loop, the static admissible residual 

stress field for shakedown analysis is constructed. In the outer loop, a series of decreasing 

load multipliers are updated to approach to the shakedown limit multiplier by using an 

efficient and robust iteration control technique, where the static shakedown theorem is 

adopted. Three numerical examples up to about 140,000 finite element nodes confirm the 

applicability and efficiency of this method for two-dimensional and three-dimensional 

elastoplastic structures, with detailed discussions on the convergence and the accuracy of the 

proposed algorithm. 

Keywords Direct method; Shakedown analysis; Stress compensation method; Large-scale; 

Elastoplastic structures 

 

1 Introduction 

In many fields of technology, such as petrochemical, civil, mechanical and space engineering, 

structures are usually subjected to variable repeated loading. The computation of the 

load-carrying capability of those structures beyond the elastic limit is an important but 
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difficult task in structural design and integrity assessment. The full step-by-step elastic-plastic 

analysis procedure may be used to estimate the long term behavior of a structure, such as 

shakedown, alternating plasticity, incremental plasticity or instantaneous collapse, by the 

acquired evolution of stresses and strains. Generally, the method is cumbersome and 

time-consuming, and needs the exact knowledge of the loading histories that often are 

uncertain in practical engineering situations. A better alternative is to perform the limit and 

shakedown analysis of structures using the direct methods [1,2], which just need to know the 

interval of these applied loads. 

Most of the direct methods are based on the lower bound theorem by Melan [3] or the 

upper bound theorem by Koiter [4], both of which rest on the assumptions of perfectly plastic 

material, small displacements, negligible inertia and negligible creeping effects [5]. Since the 

two pioneering works, the subsequent researches have been along two different routes [6]. 

The first route of these researches is concerned with the extensions of shakedown theorem, 

where the material hardening [7-12], geometric nonlinearities [13,14], non-stationary loads 

[15,16], creeping effect [17,18] and frictional contact [19] are considered respectively. The 

second route of these researches is concerned with the development of efficient and robust 

numerical methods [20-30] towards the solution of the shakedown problem, which is also the 

major objective of this article. 

Based on the lower or upper bound theorem, the limit and shakedown analysis of a 

structure is normally transformed into a mathematical programming problem that aims to 

minimize or maximize a goal function under excessive independent variables and constraint 

conditions. Different optimization approaches like the nonlinear Newton-type iteration 

algorithm [21,29,31], the second order cone programming (SQCP) [32,33] or the interior 

point method (IPM) [30,34-37] are widely used for solving the programming problem. Instead 

of using the standard finite element method, some researchers combine shakedown analysis 

with some other computational methods. The articles about the numerical shakedown analysis 

based on the boundary element method [38,39], the cell/edge/node-based smoothed element 

method (CS-FEM, ES-FEM or NS-FEM) [40-43], the element free method [44,45], the nodal 

natural element method [46,47] and the isogeometric analysis [48] are occasionally reported. 

However, when practical engineering problems are investigated, the finite element 
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discretization or the node arrangement will lead to a tremendous mathematical programming 

problem due to the significant number of variables and constraints, which may limit the 

application of these methods. In order to reduce the scale of the shakedown problem, some 

techniques such as the basis reduction technique [9,44,49] or subspace iteration are employed. 

Noteworthy, although the numerical methods mentioned above are based on mathematical 

programming, there are some other approaches for limit and shakedown analysis in literatures. 

A group of elastic modulus adjustment methods [22-24,50-56], including the generalized local 

stress strain (GLOSS) r-node method [50], the m(alpha)-method [51], the elastic 

compensation method [22,23,52,53], and the linear matching method (LMM) [24,54-56], 

were systematically developed. Using more physical arguments, these methods match the 

linear behavior to the nonlinear plastic behavior by performing a sequence of linear solutions 

with spatially varying moduli. As the origin of these methods, the elastic compensation 

method (ECM) [52] was early put to use for calculating limit loads of pressure vessels. Then 

Ponter and Carter [22,23] demonstrated an initial implementation of this technique and also 

provided a rigorous theoretical proof for the existence of the monotonically reducing upper 

bounds. Finally, a more generalized and practical code called the LMM [24,55-58] was 

developed to be used for limit, shakedown and ratchet analyses of engineering structures by 

making full use of the commercial finite element software ABAQUS. Further, Garcea et al. 

[25,26] propsoed an incremental-iterative solution method which has analogies with the Riks 

path-following algorithm to plane frames and two-dimensional flat structures. Another direct 

method termed as the residual stress decomposition method for shakedown (RSDM-S) was 

presented [28]. Based on the cyclic nature of the residual stress in the steady cycle, the 

residual stress at every Gauss point is decomposed into Fourier series in time. This method 

was used for evaluating the shakedown loads of some simple two-dimensional structures. 

As described above, both the traditional mathematical programming and iterative method 

with more physical agreements can be used for calculating the limit and shakedown loads. It 

is worth noting that many of the proposed methods appear to aim at academic purpose or to 

solve some specific simple problems but are not suitable for general engineering applications. 

Even through the shakedown analyses of some complex engineering structures using the IPM 

and the LMM were reported in recent years, the computing time of the IPM is still long when 
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solving large-scale shakedown problems and the finite element models reported in literatures 

have no more than 100,000 nodes. From the mathematical point of view, the elastic modulus 

adjustment method is not completely satisfactory, because it requires a complete elastic finite 

element analysis procedure that includes the assemblage of the stiffness matrix and its 

decomposition during every iteration [25]. 

In this work, a novel direct method named as the stress compensation method (SCM) for 

limit and shakedown analysis of large-scale engineering structures is proposed. The method 

adopts a two-level iterative strategy where a series of decreasing cyclic loading solutions 

based on linear elastic finite element analysis are generated. Over the numerical procedure, 

only one decomposition of the global stiffness matrix is required, and the residual stresses are 

directly calculated in a very small number of load vertices, which largely enhances the 

computational efficiency of the proposed algorithm. By using an efficient and robust iteration 

control technique, the convergence and the accuracy of the SCM are ensured. The layout of 

this paper is as follows: shakedown criterion and basic theorems for shakedown analysis are 

introduced in Sect. 2, followed by description of the formulation of the SCM in Sect. 3. Then 

the detailed numerical algorithm of the SCM for shakedown analysis is presented in Sect. 4. 

Three numerical examples including two-dimensional (2D) and three-dimensional (3D) 

large-scale engineering structures are considered to verify the availability of the proposed 

procedure, and the results are also compared to the reference solutions as well as calculations 

with the LMM and the step-by-step procedure to illustrate the accuracy and the efficiency of 

the SCM in Sect. 5. Finally, the discussion and conclusions are presented in Sect. 6. 

2 Shakedown criterion and basic theorems 

2.1 Static shakedown theorem by Melan 

A lower bound evaluation of the load-carrying capability of an elastic-perfectly plastic 

structure under cyclic loading can be obtained by performing the shakedown analysis based 

on the static shakedown theorem. The classical conditions of shakedown theorem, such as 

small displacement gradient, time-independent material behavior without consideration of 

material damage and creeping effect, ignoring inertia effect are assumed here, although these 
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extensions are in reach. What’s more, the convex yield surface and the normality rule are 

assumed so that the material is stable in Drucker’s sense [30]. 

The statement of the static shakedown theorem is as follows [59]: a structure will shake 

down to the variable repeated loading, i.e. its behavior after a number of initial loading cycles 

will become purely elastic, if there exists a time-independent distribution of residual stress 

field  ρ x  such that its superposition with the fictitious elastic stress field  ,E
tσ x , results 

in a safe stress state  ,tσ x  at any point of the structure under any combination of loads 

inside the prescribed domain. 

        , , 0E
f t f t t     ，σ x σ x ρ x x V   (1) 

Here,  f   is the yield function;  ,tσ x  is the actual stress;  ,E
tσ x  is the fictitious 

elastic stress that occurs if the structure responds to the prescribed loads in a purely elastic 

manner;  ρ x  represents a self-equilibrated residual stress field that should satisfy the 

equilibrium conditions within the body V and the boundary conditions on the part 
tΓ  of the 

surface, i.e. 

 
in  

on  t

 
 
ρ 0 V

ρ n 0 Γ
  (2) 

where   denotes the divergence operator; n  is the unit outward normal to the boundary 

tΓ . 

2.2 Load domain and specified loading path 

Structures are often subjected to many types of loads at the same time, and generally, the 

loads vary randomly. If a finite number of the external loads obeying their own rules vary in a 

domain, the loading history  ,tP x  can be described as the superposition of these external 

loads with different loading sets    , , 1, ,i t i NP x . The each loading set  ,i tP x  can be 

decided by time-dependent multiplier  i t  and the normalized basis load  0

iP x . 

        0

1 1

, ,
N N

i i i

i i

t t t
 

  P x P x P x   (3) 

Considering the bound values of each multiplier are given as follows: 
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  i i it       (4) 

Eq. (3) describes a domain Ω  of these loads. The load domain Ω  is a polyhedron defined 

by m vertices 1 2, , , m
B B B  in the space of load parameters. It is worth noting that the load 

domain Ω  may not be convex and the detailed descriptions of load domain for complex 

load conditions can be seen in Ref. [60]. As shown in Fig. 1(a), a load domain with five load 

vertices is taken as an example. 

 

Fig. 1  Load domain and loading path: (a) arbitrary loading path; (b) specified loading path 

Although the exact loading history is unknown and the loads may vary in an arbitrary 

manner within a domain Ω , the domain Ω  is usually known in practical engineering 

problems. In order to determine the shakedown behavior of the structure under the load 

domain Ω , König [5] proposed a relevant theorem which is stated as follows: 

If a given structure shakes down over a certain cyclic loading path which contains all the 

m vertices 1 2, , , m
B B B  of the hyper-polyhedral load domain Ω , the structure shakes 

down in an arbitrary loading history defined by Eq. (3). 

On the other hand, if the structure does not shake down in a certain cyclic loading path 

containing some of the vertices, the direct evidence can be obtained so that the domain Ω  is 

not a shakedown domain of the structure. 

The above statement provides a good strategy to estimate whether or not a given structure 

will shake down over any loading path within the domain Ω . We define a specified loading 

path  tP  which contains all the vertices of the hyper-polyhedral load domain Ω , as 
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illustrated in Fig. 1(b). If the structure shakes down under this loading path, then it must shake 

down within the load domain defined by all these vertices. 

It should be pointed out here that the shakedown analysis will degenerate to the limit 

analysis and the plastic limit load can be calculated when the number of the vertices of the 

load domain equals to one. 

2.3 Steady cyclic stress state 

We assume that a body of volume V is subjected to cyclic mechanical loads on a part of the 

surface S. The expression of the mechanical loads is as follows: 

    , ,t t nT P x P x   (5) 

where  ,tP x  has the same definition as that in Eq. (3); t is the current time point measured 

from the beginning of the cycle; T is the period of the cycle; 1, 2, n   denotes the number 

of full cycles; x  denotes the coordinates of a material point in the body. 

We suppose that the material of a structure is elastic-perfectly plastic and obeys the 

Drucker’s postulate. The actual stress  ,tσ x  in the structure is decomposed into two parts: 

the fictitious elastic stress part    ,
k E

t σ x  and the residual stress part  ,tρ x , i.e. 

        , , ,
k E

t t t σ x σ x ρ x   (6) 

where 
 k  is a load multiplier. 

The corresponding strain rate can also be decomposed into two parts: 

        , , ,
k E

rt t t ε x ε x ε x   (7) 

where the first term  ,E
tε x  on the right of the equation is the elastic strain rate 

corresponding to the fictitious elastic stress rate  ,E
tσ x  and the second term  ,r tε x  on 

the right of the equation is the residual strain rate. It should be noted that the residual strain 

rate  ,r tε x  consists of the plastic part  ,p
tε x  and the elastic part  ,e

r tε x , and  ,e

r tε x  

is required so that the total strain rate  ,tε x  satisfies the deformation compatibility over the 

whole body. Then, Eq. (7) can be written as 

          , , , ,
k E p e

rt t t t  ε x ε x ε x ε x   (8) 
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According to the constitutive law of the elastic-perfectly plastic material with an 

associated flow rule, the following equations are obeyed: 

    , ,E E
t t σ x D ε x   (9) 

    , ,e

rt t ρ x D ε x   (10) 

    
,

,

p f
t

t
 




ε x
σ x

  (11) 

where D is the elastic stiffness matrix; f is the yield function;  ,p
tε x  is the plastic strain 

rate whose direction is along the outer normal of the yield surface; and   is the plastic 

multiplier. Because of the convexity of the yield surface, the following inequality holds 

referring to the Drucker’s postulate: 

   0a p  σ σ ε   (12) 

where σ  is the stress at yield surface associated with the plastic strain rate pε  and aσ  is 

an admissible stress. 

It has been elucidated [59,61,62] that a cyclically loaded elastoplastic structure made up 

of material obeying Drucker’s postulate will reach a steady cyclic state, that is, the stresses 

and the strain rates will gradually stabilize from cycle to cycle. The stress distribution in the 

steady cycle does not depend upon the initial stress state and is unique in those regions where 

the plastic strain rates are non-vanishing [59]. However, it should be noted that the 

time-independent residual stress field within the elastic regions in the steady cyclic state is not 

unique [62]. 

3 Description of the SCM 

To provide simply and rapidly the steady cyclic stress state for an elastic-perfectly plastic 

structure with von Mises yield model, the stress compensation method abbreviated with the 

SCM is presented here. 

We suppose that a structure is discretized into finite element meshes. All the strains and 

the stresses are calculated at the Gauss points of the element. The strain rate  ,tε x  at the 

Gauss point is related to the nodal displacement rate  tu  of the element: 
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      ,t t ε x B x u   (13) 

where  B x  is the strain-displacement matrix. 

Substituting Eq. (8) into (10), the residual stress rate  ,tρ x  at the Gauss point is written 

as 

           , , , ,
k E p

t t t t   ρ x D ε x ε x ε x   (14) 

Since the residual stress rate field  ,tρ x  is self-equilibrated and the strain rate  ,tε x  is 

kinematically admissible, the principle of virtual work can be adopted as follows: 

    T , , 0
V

t t dV   ε x ρ x   (15) 

where the superscript T denotes the symbol of transpose and  ,tε x  is the virtual strain 

rate. 

Substituting Eqs. (13) and (14) into Eq. (15), we get 

            T T , , 0
k E p

V
t t t t dV       u B D B u ε x ε x   (16) 

Since Eq. (16) holds for any virtual displacement rate  tu , the integral formula consisting 

in this equation must vanish, that is 

          , ,
kT T E T p

V V V
dV t t dV t dV          B D B u B D ε x B D ε x   (17) 

For an elastoplastic structure, the exact solution of the plastic strain rate  ,p
tε x  may be 

obtained by the elastic-plastic analysis using the traditional incremental method. Instead, we 

adopt another approach [28] to deal with it here. We replace the term  ,p
tD ε x  with 

 ,C
tσ x  which is named as the compensation stress in this article, and substitute Eqs. (9) and 

(13) into (17) and (14). Then Eqs. (17) and (14) give, respectively 

        , ,
k T E T C

V V
t t dV t dV     K u B σ x B σ x   (18) 

          , , ,
k E C

t t t t    ρ x D B u σ x σ x   (19) 

where T

V
dV  K B D B  is the global stiffness matrix of the structure. The value of 

 ,C
tσ x  may be obtained by performing the iterative procedure as follows. 

For the iteration n: 
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1) The total stresses at all the Gauss points in a body are calculated for a given load vertex 

of the specified loading path. 

            , , ,
n k nE

t t t σ x σ x ρ x   (20) 

2) We check whether the total stress    ,
n

tσ x  exceeds the von Mises yield surface at 

every Gauss point in the body. As illustrated in Fig. 2, the sum of the residual stress vector 

OD  (  ,tρ x ) and the fictitious elastic stress vector DC  (    ,
k E

t σ x ) is the total stress 

vector OC  (    ,
n

tσ x ). The part in excess of the von Mises yield surface is the 

compensation stress vector AC  (    ,
nC

tσ x ) which is calculated by the following formulae: 

 

           

   

   
   

    
    

, , ,

,
,

,,

0 ,

n n nC

n

y n

ynn

n

y

t t t

t
t

tt

t



 
 



 

 

 
 

 

，σ x x σ x

x
x

xx

x

  (21) 

3) Substituting Eq. (21) into (18), the nodal displacement rate    n
tu  is obtained by 

solving the equilibrium equations in Eq. (22). The residual stress rate can be calculated by Eq. 

(23). Then the residual stress    ,
n

tρ x  for the next load vertex can be updated by Eq. (24). 

 
           , ,
n k C nT E T

V V
t t dV t dV     K u B σ x B σ x   (22) 

 
               , , ,
n n k C nE

t t t t    ρ x D B u σ x σ x   (23) 

 
           , , ,

t t
n n n

t
t t t t dt


    ρ x ρ x ρ x   (24) 

4) Repeat steps 1-3 for every load vertex. 

5) Check the convergence of the value of compensation stress, and repeat the steps 1-4 till 

the convergence of iteration is achieved. 
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Fig. 2  von Mises yield surface and stress superposition schematic in the deviatoric plane 

According to the theorem on existence and uniqueness of a steady stress cycle by 

Gokhfeld and Cherniavsky [59], the above procedure will evaluate a steady cyclic stress 

state of the structure, and the evolution of compensation stress  ,C
tσ x  is also obtained. It 

should be noted that although the value of  ,C
tσ x  may be different from that of 

 ,p
tD ε x , they are going to vanish at the same time if it happens. Thus, the compensation 

stress can be considered as a symbol for estimating whether the structure shakes down, i.e., 

whether the structure responds to the subsequent cyclic loads in a purely elastic manner. 

4 Numerical algorithm of the SCM for shakedown analysis 

As discussed in Sect. 2, the shakedown behavior of a structure subjected to repeated loads 

varying arbitrarily in a load domain can be determined by estimating the behavior of the 

structure under a specified loading path which includes all the load vertices, and the existence 

of the steady cyclic stress state of a structure with the elastic-perfectly plastic material 

obeying the Drucker’s postulate is demonstrated. Instead of using a standard elastic-plastic 

finite element analysis, an approximated steady cyclic stress state is assessed by using the 

SCM, as elaborated in Sect. 3. 

In this section, a numerical procedure well suitable for shakedown analysis is proposed by 

performing a sequence of linear elastic finite element analyses over some cyclic loading 
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process, and the flowchart of the procedure is illustrated in Fig. 3. 

 

Fig. 3  Flowchart of the proposed SCM procedure for shakedown analysis 
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4.1 Evaluation of an initial load multiplier 

The numerical procedure commences by calculating the fictitious elastic stress field  ,E
tσ x  

at each extreme point in the specified loading path and by constructing an initial load 

multiplier ini . The fictitious elastic stress field can be easily obtained via the elastic finite 

element analysis. However, the initial load multiplier must be chosen as a value above the 

shakedown limit, from which the decreasing load multiplier may be generated after each outer 

iteration. According to the description in Ref. [24], the upper bound load multiplier 

 

 

   
1ini

1

, ,

m

y i
V

i

m
E E

i i
V

i

dV

t t dV

 
 



 
 
 

 
 

 





x

σ x ε x

  (25) 

must be an appropriate initial load multiplier. Here,  ,E

itε x  is the elastic strain 

corresponding to the fictitious elastic stress  ,E

itσ x  at load vertex 
it , m  is the number of 

the load vertices, and  i x  is the effective strain of  ,E

itε x . 

4.2 The proposed numerical procedure for shakedown analysis 

As illustrated in Fig. 3, the procedure consists of two iteration loops. The inner one controlled 

by iteration n is used to obtain the approximately steady cyclic stress, and the outer one 

controlled by iteration k is used to calculate the shakedown load multiplier. 

For the inner loop, the value of    ,
n

t x  (Eq. (21)) is examined: 

 
       1

, , 1
n n

t t tol   x x   (26) 

where tol1 is a tolerance parameter which dynamically reduces from 10
-3

 to 10
-4

 according to 

the value of 
   ,
n

t x . The maximum value of 
   ,
n

t x  at all the Gauss points for all load 

vertices is updated at the end of each loading cycle, that is 

 
      max max ,
k n

t  x   (27) 

where 
 
max

k  is the maximum value during the outer iteration k. 
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Before calculating the load multiplier by the following expression: 

       1

max1
k k k        (28) 

where   is a convergence parameter with an initial value 0.1~0.5,  1k 
 is the previous 

load multiplier and  k  is the updated load multiplier, a probable overshooting below 

shakedown limit will be examined by the following judgment: 
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where tol2 usually takes 0.1~0.2; the initial value of  0

max  is 1.0. If Condition (29) is satisfied, 

the previous load multiplier must be modified by 

 
 

   

  

1

max

max

1
2

1

k k

k

k

 


 

    
 
 

  (30) 

and then the convergence parameter   is halved: 

 
2

    (31) 

In final, a desired tolerance tol3 (e.g. 10
-4

~10
-3

) is given to estimate whether  
max

k  approaches 

to zero or not 

  
max 3

k
tol    (32) 

If Condition (32) is satisfied, it means that the calculated load multiplier becomes the 

shakedown limit multiplier sh , i.e. 

  
sh

k    (33) 

otherwise, a new outer iteration starts and the inner iteration number resets to 1. In fact, the 

criterion shown in Condition (32) is equivalent to the following form: 

 
   

 
 

1

max1

k k
k

k

   







    (34) 

where the value of   is not more than 0.5. Thus, the relative error of the calculated 

shakedown limit multiplier is not more than 0.1%. 
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4.3 Convergence and accuracy considerations 

An iterative strategy shown in Eq. (28) will allow the proposed procedure to produce a 

sequence of decreasing cyclic loading solutions and to end up with the limiting value of 

loading parameters at which shakedown takes place. The relevant mathematical proof on the 

uniqueness of stress state at the limiting cycle has been presented by Gokhfeld and 

Cherniavsky [59]. Thus, if the iterative control technique and some tolerance parameters are 

adopted appropriately in the SCM procedure, a series of decreasing load multipliers will 

approach smoothly to the shakedown limit multiplier. 

The value of tol1 used to control and stop the inner loop is a key factor that influences the 

accuracy and efficiency of the algorithm. Considering that the accuracy of the calculated 

shakedown limit multiplier is mainly determined by the finally convergent solution and has 

little relation to the solution in the intermediate process, a dynamically varying value of tol1 is 

used to balance the accuracy and the efficiency. A final value of 41 10tol
  proves enough 

for a good calculation accuracy of the steady stress cycle. 

The iteration strategy shown in Eq. (28) with 0.5   might not strictly prohibit the load 

multiplier from overshooting below the target solution at shakedown. To deal with this 

problem, the numerical scheme shown through Eqs. (29)-(31) is followed, and then even 

though the overshooting might still occur, its value must be small enough to be ignored. Once 

Condition (29) is satisfied, the calculated load multiplier will increase until above the 

shakedown limit multiplier, and then the iterative process continues. The described 

convergence procedure of the SCM for shakedown analysis is vividly depicted in Fig. 4. By 

doing so, the method can ensure that the load multiplier approaches to the actual shakedown 

limit multiplier 
actual  from above. Since the adopted shakedown criterion is based on the 

Melan’s static shakedown theorem and all the conditions of the static theorem are satisfied 

when the iterative procedure converges, the calculated shakedown limit multiplier in this 

paper is a lower bound to the actual shakedown solution with the predefined tolerance tol3. 
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Fig. 4  Convergence procedure of the SCM for shakedown analysis 

5 Numerical examples 

A significant advantage of the provided method is its ability to be implemented into 

commercial finite element software that have the facility to allow the users to establish finite 

element models easily and conveniently. The described numerical algorithm in Sect. 4 has 

been implemented into ABAQUS [63] via user subroutines UAMT and URDFIL. In order to 

illustrate the performance of the present algorithm, three numerical examples of limit and 

shakedown analysis are considered. It is mentioned here that limit analysis is considered as a 

special case of shakedown analysis when the number of load vertices is reduced to one. 

In all examples, the materials are assumed homogeneous, isotropic and elastic-perfectly 

plastic with the von Mises yield criterion. All material parameters are constant over time and 

independent of temperature. All the calculations are carried out on the personal computer with 

16 GB RAM and Intel Core i7 at 3.39 GHz using single processor. 

5.1 Square plate with a circular central hole 

Fig. 5 shows a square plate with a circular central hole subjected to biaxial loads P1 and P2, 

which is a common benchmark example for numerical limit and shakedown analysis 

[24,26,28,30,31,38,41,44,55,64-70]. The mechanical material data are given in Table 1. The 

ratio between the diameter D of the circular hole and the length L of the plate is 0.2. The ratio 

between the thickness d of the plate and its length L is 0.05. 

Considering the symmetry of the structure and the loading, only one quarter model is 
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established for the analysis. Since the thickness d of the plate is much smaller than its length L, 

both a plane stress problem and a three-dimensional problem are analyzed here. The 2D and 

3D finite element models of the plate are shown in Fig. 6. Four hundred 8-node quadratic 

plane stress elements (ABAQUS CPS8) with 3×3 Gauss integration points are used for the 

plane stress problem in Fig. 6(a), and twelve hundred 20-node quadratic brick elements 

(ABAQUS C3D20) with 3×3×3 Gauss integration points are used for the three-dimensional 

problem in Fig. 6(b). 

 

Fig. 5  Geometry of the holed plate under biaxial loading 

 

 

Fig. 6  Finite element models: (a) for the plane stress problem; (b) for the three-dimensional 

problem 
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Table 1  Material properties of the plate

Young’s modules E (GPa) Poisson’s ratio v Yield stress y  (MPa) 

200 0.3 360 

This benchmark problem has been studied by several authors, since it was first 

investigated by Belytschko [67]. Some comparative studies have been presented in their 

literatures, such as [24,28,30,31,38,44,55,69,70]. As a result, there is no exact solution that is 

generally accepted and the shakedown load is relevant to the loading mode. So four different 

loading histories are considered, as illustrated in Fig. 7. For loading path a, P1 and P2 vary 

independently. For loading path b, P1 and P2 vary proportionally. For loading path c, P1 keeps 

constant and P2 varies from nil to a certain value. For loading path d, P1 keeps constant and P2 

varies from minus to plus. 

 

Fig. 7  Four loading histories for shakedown analysis: (a) loading path a; (b) loading path b; 

(c) loading path c; (d) loading path d 

5.1.1 P1 and P2 vary independently 

The plate is subjected to biaxial uniform loads P1 and P2 that vary independently in the 

following ranges: 

 
1 1 0

2 2 0

0

0

P P

P P




 

 
  (35) 
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The shakedown limits calculated by the SCM are compared to the mentioned results 

[24,26,28,30,31,38,41,44,64-70] for the three special loading cases 
2 0  , 

2 10.5   and 

2 1   in Table 2. The values of shakedown limits in Table 2 are normalized with the ratio 

0 yP  . As explained in Ref. [30], the partly-analytical solution by Zhang [68] can be 

considered as the reference solution. 

Table 2  Comparison of different numerical results for shakedown analysis 

Authors and References 

Loading cases 

2 1   
2 10.5   

2 0   

Belytschko [67] 0.431 0.501 0.571 

G. Zhang [68] 0.431 0.514 0.596 

Groß-Weege [69] 0.446 0.524 0.614 

Carvelli et al. [64] 0.518 -- 0.696 

Chen and Ponter [24] 0.492 -- 0.666 

Chen and Ponter (3D) [24] 0.532 -- 0.709 

Zhang and Raad [65] 0.494 -- 0.574 

Zouain et al. [31] 0.429 0.500 0.594 

Garcea et al. [26] 0.438 0.508 0.604 

Liu et al. [38] 0.477 0.549 0.647 

Akoa et al. (3D) [66] 0.466 -- 0.637 

Krabbenhøft et al. [70] 0.430 0.499 0.595 

Chen et al. [44] 0.480 0.553 0.649 

Tran et al. [41] 0.434 -- 0.601 

Simon and Weichert (3D) [30] 0.458 0.531 0.627 

Spiliopoulos and Panagiotou [28] 0.522 -- 0.700 

Reference solution 0.431 0.514 0.596 

Present solution (ABAQUS CPS8) 0.440 0.510 0.607 

Relative error (ABAQUS CPS8) 2.09% 1.05% 1.85% 

Present solution (ABAQUS C3D20) 0.434 0.504 0.600 

Relative error (ABAQUS C3D20) 0.70% 2.21% 0.50% 

(3D) denotes that the results are obtained from three-dimensional model, and the other results are 

obtained from plane stress model. 
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As we can see, the different numerical results in Table 2 show that our solution is in great 

agreement with the values from the reference solution where the maximum relative error is 

only 2.09% for plane stress problem and 2.21% for three-dimensional problem. It should be 

noted that there is a relatively large range among those numerical results. The discrepancy is 

attributed not only to the different methods but also to the different types of finite elements 

and sizes of the element meshes used for the initial elastic solution. A simple way to illustrate 

the influence of finite elements is the existing difference of the maximum elastic stress 

between in this paper and in Ref. [24] under same single loading P1. The maximum elastic 

stress is 3.297P1 when the finite element meshes in this paper are used but is 2.891P1 when 

the element meshes in Ref. [24] are used. What’s more, the maximum relative error is only 

0.49% between the present solution for plane stress problem and the solution by Garcea [26], 

whose finite element model has the most approximate mesh size with the finite element model 

in Fig. 6(a). 

After calculating the shakedown limits for various ratios of 
1 2   by using the SCM, 

the shakedown domain was obtained. As illustrated in Fig. 8, these points of shakedown limits 

align in two straight-line segments and the results coincide well with the reference solution. 

Furthermore, the shakedown boundary in Fig. 8 is dominated by alternating plasticity. 

 

Fig. 8  Shakedown domains of the square plate for loading path a 

Fig. 9 shows the typical convergence procedure of shakedown analysis for the holed plate 
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under loading case 
2 0  . The horizontal line segment in the Fig. 9 indicates that the 

procedure is being carried out for the steady cyclic state, and the decreasing values indicate 

the procedure is being carried out for the iterative process of the load multipliers. Although, 

with the increase of iteration number, the calculated load multipliers do not strictly decrease 

monotonically, the solutions converge to the stable one which is the actual solution with a 

specified tolerance (10
-4

) by using the reasonable iterative control technique. 

The crucial idea of the Melan’s theorem for shakedown analysis is to find an optimal 

time-independent self-equilibrated residual stress field. As a result, a final residual stress field 

of the holed plate is shown in Fig. 10. It should be noted that, the calculated residual stress 

field by the SCM is non-unique and related to the initial load multiplier, but the calculated 

shakedown limit multipliers are the same for different initial load multipliers, which verifies 

the discussions in Sect. 2.3. 

In order to illustrate the efficiency of the proposed procedure for shakedown analysis, the 

computing time for some cases with different number of finite elements is compared in Table 

3. For the finite element model with 400 8-node quadratic plane stress elements in Fig. 6(a), 

the amount of CPU time ranges from 6 s for the case of 
2 0   to 11 s for 

2 1  . 

Specially, for a large-scale three-dimensional finite element problem with 20000 20-node 

quadratic brick elements (ABAQUS C3D20), the computing time is only 2558 s. 

 

Fig. 9  Convergence procedure of the SCM for loading case a ( 2 0  ) 
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Fig. 10  Equivalent residual stress field of the holed plate for loading case a ( 2 0  ) 

Table 3  Computing time for shakedown analysis of the holed plate 

Finite Elements   Loading cases 1  
2  CPU time (s)    

400 CPS8 2 0   0.607 0 6 

400 CPS8 21   0.440 0.440 11 

400 CPS8 21 1.25   0.466 0.373 10 

1200 C3D20 21   0.434 0.434 131 

20000 C3D20 21   0.429 0.429 2558 

 

5.1.2 P1 and P2 vary proportionally 

The shakedown analysis of the holed plate with P1 and P2 varying proportionally is also 

considered by using the SCM. The same case has already been analyzed by some authors 

[26,28,53] and the present results are compared in Fig. 11. It is worth noting that, for the 

present results in Fig. 11, the straight-line portion of the shakedown boundary curve is 

dominated by alternating plasticity, and the rest portion of the curve is due to the plastic 

collapse. 
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Fig. 11  Shakedown domain of the square plate for loading path b 

5.1.3 P1 is constant and P2 is cyclic 

The SCM is used to calculate the shakedown limits of the plate under loading path c and 

loading path d (Fig. 7). These two shakedown problems have been considered by Chen and 

Ponter [55]. In order to exclude the discrepancy of the mesh discretization, the comparison of 

the calculated results by the SCM and those by the LMM is based on the same finite element 

model. Fig. 12 and Fig. 13 give the shakedown domains of the square plate under loading 

path c and loading path d, respectively. Each figure of them includes the shakedown domains 

by the SCM with two different kinds of mesh discretization, the shakedown domain by the 

LMM, and the results from Ref. [55]. The mark “mesh 1” in the legend denotes that the mesh 

displayed in Fig. 6(a) is used, and the mark “mesh 2” denotes that the mesh from Ref. [55] is 

used. 

We can observe from Fig. 12 and Fig. 13 that the results obtained by the SCM and the 

LMM agree very well with each other for the same mesh model, which verifies the validity of 

the two methods. Nevertheless, for the different mesh models, there are obvious differences in 

the plateaus of shakedown boundary curves, while the rest of the curves are very agreeable. 

The differences are in fact due to the different failure modes of the structure. In both Fig. 12 

and Fig. 13, the plateau portions of these shakedown boundary curves are dominated by 
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alternating plasticity, for which the shakedown limit is relevant to the local maximum stress. 

Thus, the difference in the local maximum stress due to the inconsistent mesh leads to the 

different shakedown limits. However, if the structure fails due to incremental plasticity, as is 

the rest portion of these shakedown boundary curves in Fig. 12 and Fig. 13, the shakedown 

limit is insensitive to the mesh. 

 

Fig. 12  Shakedown domains of the square plate for loading path c 

 

Fig. 13  Shakedown domains of the square plate for loading path d 

In the above examples, the shakedown domains are all obtained by the SCM under 

different loading paths. The present results by the proposed method are all in agreement with 
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those by other methods. 

5.2 Defective pipeline 

Pipelines, which are generally made up of ductile steel, are widely used in various fields, such 

as petrochemical industry, energy, nuclear industry, and electric power engineering, etc. 

During their operation, many defects such as part-through slots can be produced by 

mechanical damage, corrosion or abrading surface cracks. These defects may jeopardize the 

integrity (i.e. reduce the load-carrying capacity) of pipelines and sometimes even lead to 

severe industrial accidents. The integrity assessment of pipelines with part-through slots is a 

very important research subject with significant and extensive application background in the 

industry. Plastic limit and shakedown analysis plays a significant role in the integrity 

assessment of defective pipelines. In this paper, through some computational examples and 

analyses, the effects of small and large area slots on the load-carrying capacity of pipelines are 

investigated and evaluated. 

These examples adopted here are three-dimensional defective pipelines under internal 

pressure and axial tension [24]. The geometry of the structure is shown in Fig. 14. The 

mechanical material data are given in Table 4. It should be noted that the applied total axial 

loads consist of the independent axial tension N and the additional axial tension N1 induced by 

independent internal pressure P. The additional axial tension N1 is equal to 2

iP R , where Ri 

is the inner radius of pipeline. Here a small spherical slot and a large area slot are considered 

for limit and shakedown analyses. The geometric parameters of the slotted pipelines are 

presented in Table 5. 

 

 

Fig. 14  Geometry of pipeline with part-through slot subjected to internal pressure and axial 

tension 
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Table 4  Material properties of pipelines 

Young’s modules E (GPa) Poisson’s ratio v Yield stress y  (MPa) 

200 0.3 245 

 

Table 5  Geometric parameters of pipelines with different defect types (mm) 

Defect type Ri Ro L α A1 A B C 

Small slot 17 21 250 0 2 2 2 2 

Large area slot 17 21 250 45
°
 2 10 2 2 

 

Due to the symmetry of the structure and the loading, only a quarter of the defective 

pipeline is considered. The corresponding displacement constraints are imposed on the 

symmetric boundaries. The 3D finite element mesh discretization of the pipeline is shown in 

Fig. 15, where the 20-node quadratic brick elements (ABAQUS C3D20) with 3×3×3 Gauss 

integration points are used. In order to optimize the efficiency and accuracy of the calculation, 

the finite elements around the slots should be distributed appropriately to make them as much 

neat and fine as possible. The numbers of finite elements used to discretize the pipelines with 

a small slot and with a large area slot are 1905 and 1658, respectively. 

The SCM is used to calculate the shakedown limits of the defective pipeline under axial 

tension and internal pressure with five different loading paths, as shown in Fig. 16. For 

loading path a, the single load N varies from nil to a certain value. For loading path b, the 

single load P varies from nil to a certain value. For loading path c, three vertices of the 

loading path are included, in which the maximum independent axial tension N (replaced by 

the equivalent uniform tension) is four times of the maximum internal pressure P. For loading 

paths d and e, the single load N and P keep certain value, respectively. The loading paths d 

and e are used to calculate the limit loads of the defective pipeline subjected to independent 

axial tension and internal pressure, respectively. 
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Fig. 15  3D finite element meshes for slotted pipeline: (a) with a small slot; (b) with a large 

area slot 

 

Fig. 16  Five different loading paths for shakedown analyses 

As we all know, the shakedown limit of elastoplastic structure under proportional load is 

the minimum one of its plastic limit load and its double elastic limit load. Thereby, the 

shakedown limit of the defective pipeline can be determined via an elastic-plastic incremental 

analysis and a linear elastic analysis using the finite element software ABAQUS. 

As a powerful direct method, the liner matching method was proposed by Chen and 
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Ponter [24], and was used for the shakedown and limit analyses of three-dimensional 

structures. In this paper, the shakedown and limit loads of the defective pipelines under axial 

tension and internal pressure with the five loading paths shown in Fig. 16 are calculated by 

the above three different methods, i.e., the SCM, the method of ABAQUS and the LMM. 

It should be explained that the defective pipelines considered here have the same 

geometry, mechanical material data and load conditions as those in Ref. [24], but are different 

in mesh discretization with the reference. In order to compare the performance of the SCM 

and the LMM reasonably, the same finite element model must be considered. The present 

numerical results by the LMM for defective pipelines are based on the finite element models 

in Fig. 15, which has a slight difference with the results in Ref. [24]. 

Table 6 and Table 7 show the numerical results of shakedown analysis for the pipelines 

with a small slot and with a large area slot, respectively. It can be seen that the shakedown 

limits obtained by the SCM are in excellent agreement with the solutions by the method of 

ABAQUS and the LMM. As a general result, the linear matching method is an upper bound 

method, by which the calculated shakedown loads are bigger than that by the other two 

methods. For the pipeline with a large area slot under the five different loading histories, the 

maximum deviation of the shakedown loads between the results calculated by the SCM and 

that by the method of ABAQUS is 2.9%. 

Table 6  Shakedown limit for the pipeline with a small slot under five different loading 

paths using three different methods 

Loading 

paths 

Shakedown limit (MPa) for the load domain 

SCM ABAQUS LMM 

Case a (0,0), (229.6,0) (0,0), (229.8,0) 
1
 (0,0), (229.7,0) 

Case b (0,0), (0,56.8) (0,0), (0,57.0) 
1
 (0,0), (0,57.1) 

Case c (0,0), (172.0,0), (0,43.0) --- (0,0), (173.3,0), (0,43.32) 

Case d (0,0), (242.1,0) (0,0), (244.5,0) (0,0), (244.8,0) 

Case e (0,0), (0,57.4) (0,0), (59.1,0) (0,0), (0,59.7) 

( ) 
1
, the superscript indicates the shakedown load is determined by the double elastic limit load. 

( ) 
2
, the superscript indicates the shakedown load is determined by the plastic limit load. 



29 

 

Table 7  Shakedown limit for the pipeline with a large area slot under five different loading 

paths using three different methods 

Loading 

paths 

Shakedown limit (MPa) for the load domain 

SCM ABAQUS LMM 

Case a (0,0), (168.7,0) (0,0), (168.7,0) 
1
 (0,0), (169.9,0) 

Case b (0,0), (0,38.4) (0,0), (0,39.3) 
2
 (0,0), (0,39.5) 

Case c (0,0), (142.8,0), (0,35.7) --- (0,0), (143.8,0), (0,35.9) 

Case d (0,0), (208.2,0) (0,0), (212.6,0) (0,0), (215.3,0) 

Case e (0,0), (0,38.7) (0,0), (0,39.3) (0,0), (0,39.5) 

( ) 
1
, the superscript indicates the shakedown load is determined by the double elastic limit load. 

( ) 
2
, the superscript indicates the shakedown load is determined by the plastic limit load. 

 

Fig. 17  Convergence procedure of the SCM towards the shakedown load for the defective 

pipeline with a large area slot under loading case b 
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Fig. 18  Equivalent residual stress field of the defective pipeline with a large area slot under 

loading case b 

 

Under the proposed five loading paths, all the calculations for shakedown analysis of 

these defective pipelines have good convergence condition. As an example, the convergence 

procedure of the SCM towards the shakedown load for the defective pipeline with a large area 

slot under loading path b is shown in Fig. 17. Moreover, this case generates the maximum 

number of iteration for the five cases considered here. It should be noted that the increase of 

the shakedown multiplier during the process of the iteration indicates that an overshooting of 

the shakedown limit has occurred in the previous iteration. However, the shakedown 

multiplier still converges to the final result by halving the convergence parameter  . The 

final equivalent residual stress field is shown in Fig. 18. 

Assuming the axial tension and internal pressure vary independently, the SCM is used to 

calculate the shakedown limits of the pipeline for various ratios of the applied axial tension 

and internal pressure. Then shakedown domains of the defect-free pipeline as well as the 

defective pipelines with a small slot and with a large area slot are presented in Fig. 19. 

In order to demonstrate the computational efficiency of the SCM for complex 

three-dimensional problem, the LMM and the step-by-step procedure are also used to 

calculate the shakedown load of the pipeline for same ratios of the applied axial tension and 

internal pressure. Without loss of generality, five load domains are considered and the 

corresponding computed results are displayed in Fig. 19 additionally. The CPU times for 
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shakedown analysis of the defective pipelines under three load domains by the SCM, the 

LMM and the step-by-step procedure are compared in Table 8. It can be seen from Table 8 

that, with necessary accuracy of calculations (see Fig. 19), the CPU time by the step-by-step 

procedure is 20 times more than that by the SCM while the computational efficiency of the 

SCM is higher than that of the LMM. 

As a by-product, the strain history of the pipeline under cyclic loading is also obtained 

from the incremental elastic-plastic calculation. In Fig. 19, the load conditions marked with 

capital letters “A” and “B” are acted on the defective pipelines with a small slot while the 

load conditions marked with capital letters “C” and “D” are acted on the defective pipelines 

with a large area slot. Fig. 20 shows the effective plastic strains of the pipeline with a small 

slot over the first 10 load cycles for point “A” and point “B”. It can be seen that the pipeline 

with a small slot exhibits alternating plasticity behavior for point “A” and shakedown 

behavior for point “B”. Fig. 21 shows the effective plastic strains of the pipeline with a large 

area slot over the first 15 load cycles for point “C” and point “D”. The pipeline with a large 

area slot shakes down after 11 load cycles for point “D”, but failures due to the incremental 

plasticity mechanism for point “C”. 

 

 

Fig. 19  Shakedown domains of the defect-free pipeline and the defective pipelines with a 

small slot and with a large area slot 
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Table 8 CPU time (s) for shakedown analysis of the defective pipeline under different load 

domains by the SCM, the LMM and the step-by-step procedure 

Load domains (MPa) 

0 300sin

0 100cos

N

P




 
 

  

With a small slot With a large area slot 

SCM LMM Step-by-step SCM LMM Step-by-step 

θ = 30
°
 324 660 6211 319 480 6735 

θ = 45
°
 291 635 5984 303 493 6612 

θ = 60
°
 325 611 6121 311 562 6786 

 

 

Fig. 20  Effective plastic strains of the pipeline with a small slot over the first 10 load cycles 

for point “A” and point “B” 

 

Fig. 21  Effective plastic strains of the pipeline with a large area slot over the first 15 load 

cycles for point “C” and point “D” 
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5.3 Header component 

The third numerical example is a header component, which is typically used in an advanced 

gas-cooled reactor (AGR) power plant. In the cooling and reheating process of the AGR, the 

header often experiences complex load conditions due to its interaction with the rest of the 

piping system. Here, a schematic of the header component is shown in Fig. 22, where the 

main pipe has two vertical branch pipes with the same geometric dimension. In the present 

paper, some typical loading cases are considered and the shakedown boundaries of the header 

component under different load domains are calculated by the SCM. 

The header component is depicted by some characteristic dimensions in Fig. 22, and the 

values of these dimensions are listed in Table 9. For the convenience of calculation, the 

material properties are assumed constant over time and independent of temperature. The 

detailed mechanical material data of the header component are given in Table 10. 

 

 

Fig. 22  Geometry of the header component 

 

Table 9Geometric parameters of the header component (mm) 

Dimension  A B C D E F G 

Value 600 20 350 10 1000 3000 500 
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Table 10  Material properties of the header component 

Young’s modules E (GPa) Poisson’s ratio v Yield stress y  (MPa) 

200 0.3 165 

 

Three groups of different loads are applied to the header component, whose fundamental 

loads are listed in Table 11. For the first group, the internal pressure 3.64 MPaiP   is 

applied to all internal surfaces of the structure, and the internal pressure leads to additional 

tensions at ends of the main and branch pipes. For the second group, the axil force F, which 

has been replaced by the equivalent uniform pressure 40 MPaFP  , is applied to the 

outboard main pipe end. For the third group, the bending moment 240 kN mmxM    and 

160 kN mmyM     are applied to the outboard main pipe end, and the bending moment 

9.6 kN mbzM     is applied to the inboard branch pipe end. It should be noted that these 

three bending moments are assumed to vary synchronously. Hence, the amplitudes of the 

three group loads can be determined by three dimensionless load factors, i.e. P0, F0 and M0. 

In order to balance the efficiency and accuracy of the calculation, the 20-node quadratic 

brick elements with reduced integration (ABAQUS C3D20R) are used to discretize the 

structure, and the meshes around the area of stress concentration are refined properly. As 

shown in Fig. 23, the mesh discretization consists of 27540 elements and 139251 nodes. The 

reference points and kinematic coupling constraints are used to apply the bending moments 

and boundary conditions to the model. 

 

Table 11 Fundamental loads applied to the header component 

Load 

P0 F0 M0 

Internal 

pressure 

Pi (MPa) 

Main 

tension Pma 

(MPa) 

Branch 

tension Pbr 

(MPa) 

FP  

(MPa) 

mxM  

( kN m ) 

myM  

( kN m ) 

bzM  

( kN m ) 

Value 3.64 -24.60 -29.15 40 240 -160 -9.6 
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Fig. 23  Finite element model of the header component 

Here, two types of combinations of two loadings are considered. 

(1) Combination I 

We consider the load factor F0 equals to zero, and then the load domains of interest are 

dominated by the load factor P0 and M0, as displayed in Fig. 24. 

 

Fig. 24  Four different load domains for combination I: (a) domain a; (b) domain b; (c) 

domain c; (d) domain d 

The SCM is used to calculate the shakedown limits of the header component for various 

loading cases. As results, four shakedown boundaries corresponding to the four load domains 

are presented in Fig. 25. For the load domains a and b, alternating plasticity is the critical 

failure mode. However, for the load domains c and d, the critical failure mode consists of 



36 

 

alternating plasticity (curve 1 and curve 4 in Fig. 25) and incremental plasticity (curve 2 and 

curve 3 in Fig. 25). It should be noted that the load history is dominated by one parameter in 

the load domain b, thus, the shakedown load is the double elastic limit load. For comparison, 

the elastic boundary is also presented in Fig. 25. The shakedown boundary curve for the load 

domain b has the same shape and twice values in amplitude as the elastic boundary curve. 

 

Fig. 25  Shakedown domains of the header component for combination I: P0 versus M0 

(2) Combination II 

 

Fig. 26  Four different load domains for combination II: (a) domain a; (b) domain b; (c) 

domain c; (d) domain d 
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Here, we consider that the load factor M0 equals to zero. The load domains of interest are 

dominated by the load factor P0 and F0, as displayed in Fig. 26. 

The SCM is used to calculate the shakedown limits of the header component. Four 

shakedown boundaries corresponding to the four load domains and the elastic boundary are 

all presented in Fig. 27. It is obvious that the shapes of the four calculated shakedown 

boundaries for the combination II are very similar to these for the combination I. Furthermore, 

the same critical failure modes dominating the shakedown boundaries are observed for the 

two types of load combinations. 

 

Fig. 27  Shakedown domains of the header component for combination II: P0 versus F0 

To the authors’ best knowledge from literatures, until now, the shakedown problem of this 

comparable scale has never been solved before. In this paper, about one hundred calculations 

have been completed to demonstrate the performance of the SCM for shakedown analysis of 

the large-scale header component under various load conditions. All iterative procedures of 

the SCM for shakedown analysis present good convergence. The convergence tolerances are 

all met within 270 increments, and the CPU time is not more than 40 minutes. The equivalent 

residual stress field of the header component is also obtained conveniently, as shown in Fig. 

28. 
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Fig. 28  Equivalent residual stress field of the header component 

6 Discussion and conclusions 

A novel direct method so-called the stress compensation method (SCM) for the application of 

limit and shakedown analysis to large-scale elastoplastic structures has been proposed, where 

a two-level iterative procedure is performed by a series of linear elastic finite element 

analyses and the conventional mathematical programming problem does not need to be solved. 

The global stiffness matrix is decomposed only once during the whole procedure, which 

contributes to the high efficiency of the SCM, especially for large-scale problems. By 

adopting an efficient and robust iteration control technique, the convergence and the accuracy 

of the SCM are ensured. Since all the conditions of the static shakedown theorem can be 

satisfied when the iterative process converges, the shakedown limit calculated by the SCM is 

a lower bound approximate to the actual solution with predefined tolerance. 

Comparing the SCM with the residual stress decomposition method for shakedown 

(RSDM-S) [28], one may note that the RSDM-S decomposes the residual stresses into Fourier 

series with respect to time and thus requires many time points inside the cycle to represent the 

applied loading. After each iteration of the numerical procedure, these Fourier coefficients 

need to be calculated at all Gauss points by performing the numerical integration of residual 

stress rate over all time points of the cycle. The RSDM-S is suitable to solve shakedown 

problem of 2D structures at present. However, the SCM makes full use of the basics of 
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shakedown theory. The residual stresses are just directly calculated in a relatively small 

number of load vertices of a loading history and the novel iteration control technique is 

adopted to speed up the convergence, which improves greatly the computational efficiency of 

the SCM. The calculation scheme of load multiplier makes the SCM capable of solving 

effectively shakedown problems of complex 2D and 3D engineering structures. 

The SCM has been well implemented into the commercial finite element software 

ABAQUS and then becomes a general-purpose computational tool for complex engineering 

structures. Three 2D and 3D numerical examples considering various loading paths are 

presented to demonstrate the performance of the SCM. The iterative procedures of the 

numerical examples all present good convergence. All the results of examples are in good 

agreement with the analytical solutions and the results from different numerical methods or in 

literatures. The direct comparison of CPU time for same shakedown analysis under the same 

computing environment shows that the SCM presents more than 20 times the computational 

efficiency of the step-by-step procedure. The SCM proves to be numerically stable, very 

efficient and highly accurate, and is well suitable for shakedown analysis of large-scale 

engineering structures. 

Although the current calculations are restricted to structures with elastic-perfectly plastic 

material of von Mises yield surface under mechanical loading, the extensions to other 

structures that consider the material hardening and temperature-dependent material property 

under thermomechanical loading are in progress, and the results will be presented in 

forthcoming works. 
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