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A numerical framework is presented to simulate rigid and flexible flapping wings. The 

fluid-structure interaction is realized by coupling a Navier-Stokes solver to a geometrically 

nonlinear co-rotational structural solver. In the coupled fluid-structure interaction interface 

the aerodynamic loading and deformed wing surface are shared by two solvers within each 

time step. A remeshing method based on radial basis function is implemented to handle large 

deformations, preserve grid quality, and execute economically. Flexible flapping wing 

operating in both vacuum and air is considered to shed light on inertial and aerodynamic 

loading-induced shape deformation.  Impacts of flapping isotropic wing with single degree of 

freedom rotation on aerodynamic force generation are presented for Re= 1.5×10
3
 and k= 

0.56. The results indicate: 1) the flexibility-induced pitching angle promotes thrust 

generation, and 2) the increase of wing velocity due to large bending motion enhances 

aerodynamic force by increasing pressure differences. For a wing of anisotropic mechanical 

properties, highly three-dimensional wing deformation is observed when the wing 

accelerates or decelerates in absent of aerodynamic loadings.  

Nomenclature    = aspect ratio,       [1]      = element extensional stiffness matrix [Pa m]    = mean wing span  [m]      = membrane-bending coupling stiffness matrix [Pa m
2
]    = lift coefficient,                   [1]    = mean chord length  [m]    = thrust coefficient,                    [1]      = bending stiffness matrix [Pa m

3
]   = Young’s modulus of an isotropic material [Pa]     = Young’s modulus of an orthotropic material in the    direction  [Pa]     = Young’s modulus of an orthotropic material in the    direction  [Pa]   = motion frequency  [1/s]    = distributed external force  [N]     = Shear modulus of an orthotropic material in the      plane  [Pa]    = thickness of a plate  [m]   = reduced frequency,            [1]   = mesh refinement factor [1]    = number of boundary nodes with specified displacements [1]      = number of nodes on structural mesh [1]    = number of internal nodes [1] 
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           = force resultant [N]            = moment resultant [N m]   = pressure  [Pa]      = component of reduced stiffness matrix at  th
 layer    = support radius of compact radial basis functions [m]   = semi-span  [m]    = Reynolds number,             [1]   = wing planform area  [m

2
]    = Strouhal number,          [1]   = time  [s]   = period of flapping motion =     [s]      = mean wing tip velocity,      [m/s]    = velocity vector [m/s]   = volume of a cell [1]    = position vector [m]                 

 = displacement vector of a structural node    
    at time step   of fsi-iteration         

[m]     = position vector on the aerodynamic volume node   [m]      = displacement vector on the aerodynamic volume node   [m]      = position vector on the boundary node   [m]       = displacement vector on the boundary node   [m]     = weight coefficients [m]     = polynomial belonging to the aerodynamic volume node   [1]               = membrane strains in the mid-surface of a plate [1]               = flexural strains in the mid-surface of a plate [1]       = Poisson’s ratio [1]   = dynamic viscosity of fluid  [Pa s]    = effective stiffness of flat plate,                           [1]   = ply angle of unidirectional fiber [degree/radian]    = density ratio,       [1]    = density of fluid  [kg m
-3

]    = density of structure  [kg m
-3

] 

   = radial basis function [1]    = stroke angle [degree/radian]    = full stroke amplitude  [degree/radian]       = coupling matrix from the aerodynamic boundary nodes to volume nodes [1]   = motion angular frequency [1/s]    = out-of-plane displacement of an isotropic plate  [m]      = vertical tip deflection  [m]    = distance from the mid-surface of a plate at  th
 layer [m]      = vertical tip location/position [m]      = normalized variable [1] 

I. Introduction 

ICRO air vehicles (MAVs) are flyers with maximum dimensions of 1.5×10
-1

 m that can lead to revolutionary 

improvements in remote sensing and information gathering capabilities both in military as well in civilian 

applications. As the size of the flyer is orders of magnitudes smaller than a conventional aircraft, the fluid dynamics, 

hence the lift generation, and the flight control governing a MAV change considerably
1, 2

: Smaller sizes and lower 

flight speeds lead to lower Reynolds numbers, and higher sensitivity to wind gust effects. Moreover, wings are in 

general flexible and deform during flight. Consequently, design of a high performance and robust MAV become a 

highly nonlinear complex process that requires solid understanding of aerodynamics, structural dynamics, control, 

and interactions of these. 

M 
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 In the nature, biological flyers, such as insects and birds, share similar dimensions and flight characteristics as 

MAVs
1
. The physics exhibited by these biological flyers thus have potential to be applied in MAV design

1
. 

Unsteady aerodynamic mechanisms such as the generation of a leading edge vortex (LEV), wing-wake interaction, 

and three-dimensional flow features, such as tip vortex-vortex interactions, all contribute significantly to affect the 

aerodynamic force generation
2
. Another remarkable mechanism that the biological flyers seem to be using is the 

wing flexibility.  Studies have been performed to shed light on the interplay between the structural flexibility and the 

resulting aerodynamic forces
3- 6

. For example, Combes and Daniel
7,8

 have shown that a variety of insects exhibit 

anisotropy in their wing structures based on static response tests. The spanwise flexural rigidity was 1 or 2 orders of 

magnitudes larger than the chordwise flexural rigidity. Recent experimental and numerical
4
 show that the chordwise 

flexibility affects the redistribution of the resulting aerodynamic forces in the lift and the thrust directions. For 

example, if the airfoil shape undergoes deformation then the camber of the airfoil may change, leading to an 

effective geometry of the airfoil, and combined with the pitching angle the direction of the net force can be adjusted 

in favor of the thrust generation. Furthermore, for a range of spanwise flexibility, deformed airfoil shapes along the 

spanwise direction and the correct direction of the motion are seen to enhance the thrust of a plunging wing
9,10

. The 

fluid-structure density ratio affects the thrust generation: Zhu
11

 showed numerically that the thrust and the 

propulsive efficiencies increased for a plunging chordwise flexible airfoil in water than immersed in air. Hence it is 

seen that the flexibility, including the density ratio can be utilized to control resulting aerodynamic forces. However 

the precise underlying physics of aeroelastic coupling for flapping wings and its applicability to the MAV designs 

are yet to be understood. Shyy et al.
2
 offer an extensive review on the aerodynamics of rigid and flexible wings. 

 Recently, systematic methodologies of experiment have been developed to optimize thrust generated by single 

degree-of-freedom (DOF) flapping wing via variation of wing structures
12

. In these studies, several combinations of 

flapping wing frequency, amplitude, and wing structure are examined. The conclusion made from the experimental 

studies is that for flapping wing structure optimization in hovering flight on size scale of humming birds or insects, 

each wing structure must be tailored according to a certain kinematics (with a desired flapping frequency and 

amplitude) and optimized for performance values such as either lift by drag or flight efficiency. Scaling parameters 

resulting from dimensional analysis and by non-dimensionalizing the governing equations by relevant physical 

variables, often give qualitative characteristics of the model as well as the requirement for dynamic similarity of the 

flow
13

. Depending on the type of the model and the governing equations the resulting set of scaling parameters may 

vary. Shyy et al.
1, 2

 have considered the Navier-Stokes equations with out-of-plane motion of an isotropic plate, 

Ishihara et al.
5,14

, the Navier-Stokes equations and the wing structure as a linear isotropic elastic body to study the 

flexibility effect on wing pitch changes in dipteran flapping flight, and Lentink and Dickinson
15

 transformed the 

Navier-Stokes equation in the wing-fitted frame of reference and focused on the rotational motion of the wing. The 

scaling parameters related to the unsteady aerodynamics, such as the Reynolds number, the Strouhal number, or the 

reduced frequency have been explored previously
1,2

, still the parameter-space involving the scaling parameters for 

the fluid-structure interaction needs to be mapped out in a systematic fashion to understand the role of flexibility on 

flapping wing force generation. 

 Different levels of fidelity and diverse numerical algorithms, depending on the objective of the study and 

accuracy and cost of the computations, can be incorporated into a numerical framework of flexible flapping wing 

simulations. High-fidelity framework can be used to evince the rich and complex physics behind flexible flapping 

wing aerodynamics, while a low-fidelity model can be used for quick yet reliable design optimization of a complex 

and multi-dimensional design space. The aeroelastic coupling can be based on a time-domain partitioned process 

where the interaction between the fluid and the solid fields occurs at a shared boundary iteratively at a given time 

step. An advantage is that for the solutions of both fields, which are described by different nonlinear partial 

differential equations, well-established solvers can be used. Tang et al.
16

, Chimakurti et al.
10, 17

, and Aono et al.
4, 18

 

have coupled an in-house finite-volume based Navier-Stokes solver to a beam model
16

, a commercial nonlinear 

finite-element solver, MSC.Marc
10

, a geometrically nonlinear active beam solver
10

, and a co-rotational shell finite 

element model
17,4,18

, respectively. Furthermore, Gordnier et al.
19

 coupled an in-house high-order Navier-Stokes 

solver to a geometrically nonlinear active beam solver, McClung et al.
20

 developed the OVERFLOW Navier-Stokes 

solver to a modal representation of two-dimensional beam, and Stanford et al.
21

 combined a two-dimensional quasi-

steady blade element model to a nonlinear co-rotational beam model.  

 Some of the numerical challenges associated with aeroelastic coupling of highly deformable three-dimensional 

flapping wings are that large number of cells are required to resolve the necessary flow field phenomena such as 

vorticity generation near the wing as well as convection and diffusion of large scale vortical structures away from 

the wing and that large flapping amplitudes and deformations lead to large mesh deformations that require 

numerically robust and efficient remeshing algorithms. To obtain the three-dimensional flow solutions with the 

number of cells in the orders of O(10
6
) a Navier-Stokes equations solver is often parallelized, which introduces 
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obvious implementation challenges for the problems involving moving meshes: how to efficiently communicate 

information between multiple processors about the displacements stored in other processors to remesh the grid; and 

how to provide interface for the communication for the fluid-structure interaction  involving two distinct solvers, 

where one or both solvers are parallelized. Two strategies have been studied for unstructured grids. In the first 

category the computational mesh is considered as an elastic solid, where the new nodal displacements are obtained 

by solving the structural dynamics equations. For example, Stein and Tezduyar
22

 proposed to solve the linear 

elastostatics equations with a stiffening factor to reduce the volumetric distortion to maintain the mesh quality in 

finite element formulation. Smith and Wright
23

 recast the linear elastostatics equations in finite-volume 

discretization, which involves similar terms as the Navier-Stokes equations, so that the remeshing algorithm could 

be implemented based on the readily available momentum equation solver as a template. In the second category the 

nodal displacements are interpolated using Radial Basis Functions (RBF) based on the displacements given at the 

boundary conditions, either prescribed or from the structural dynamics solver. This method, as the cell connectivity 

information is not required, can be applied to structured and unstructured meshes and is seen to keep initial mesh 

qualities well and efficiently
24-27

. 

 Chimakurthi et al.
10

 have presented a computational framework capable of computing flexible flapping wing 

aerodynamics and aeroelasticity. They have detailed fluid and structural solvers as well as the coupling strategies. 

Aono et al.
4
 have further developed the techniques and investigated the dynamic characteristics associated with 

spanwise flexibility of a plunging wing. Chordwise flexibility of a plunging wing is discussed in Shyy et al.
2
. The 

computational framework is restricted to isotropic wing structures. In the present paper, we have advanced the 

computational capabilities presented in Ref 10. Specifically, we have incorporated an unstructured grid Navier-

Stokes solver and an anisotropic structural solver. The interface between fluid and structure solvers is based on that 

reported in Ref 10. Furthermore, new remeshing techniques, similar to that reported by De Boer et al.
24

 and Rendall 

and Allen
25-27

, have been developed and tested. The added capabilities can handle a variety of wing structures with 

large flapping translation and rotation.  In order to shed light on the role of inertial and aerodynamic loading-induced 

shape deformation associated with a flapping flexible wing, wings operating in both vacuum and air are considered. 

To account for the anisotropic nature of wing structures, a composite structural model is implemented based on the 

classical laminate plate theories
39

. Structural dynamic response of flapping anisotropic wing models in vacuum are 

presented and compared with the experimental data
12

. Furthermore, a remeshing method using the RBF interpolation 

is presented that is able to efficiently deform large number of nodes under large wing movements, while keeping the 

initial mesh qualities. The fluid flow obtained by using a finite-volume pressure-based Navier-Stokes solver and the 

structural dynamics solver uses the finite element method with an optimal membrane element and a discrete 

Kirchhoff triangle plate bending element in a co-rotational formulation to effectively simulate a thin flexible wing
17

. 

In the coupled fluid-structure interaction interface the aerodynamic loading and deformed wing surface is shared by 

two solvers within each time step. The relevance of this framework is three-fold. The computed fluid flow field and 

the structural response can be studied to understand the nonlinear coupled field problem for flapping wing flyers, 

also these results can function as a validation for lower order tools or experimental results. Moreover, this 

framework can serve as a tool to construct a quick and reliable design guideline for MAV applications.  

II. Methodology 

A. Computational fluid dynamics 

1. Governing equations 

The governing equations for the fluids are unsteady three-dimensional Navier-Stokes equations with constant 

density and viscosity shown in Eqs. (1) and (2), 

           (1)                                            (2) 

 

where    is the velocity vector,    is the position vector,   is the time,   is the pressure,    is the fluid velocity, and   

the viscosity of the fluid. The Eqs (1) and (2) are solved with in-house codes
18, 28, 29

, which are three-dimensional 

pressure-based finite-volume solvers. The parallelization is realized using the Loci framework
30

. It employs implicit 

first or second order time stepping and treats convection terms using the second order upwind-type scheme
28, 31, 32

, 
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pressure and viscous terms using second order schemes. The system of equations resulting from the linearized 

momentum equations are handled with the symmetric Gauss-Seidel
33

 solver which has relatively low memory 

requirements. The pressure correction equation
28, 35

 is solved with the GMRES linear solver with Jacobi 

preconditions provided by PETSc
35

. The geometric conservation law, a necessary consideration in domains with 

moving boundaries, is satisfied
36, 37

. The mesh deformations are realized using either Radial Basis Function (RBF) 

or thin plate spline interpolations
16-18

. 

 

2. Remeshing 

De Boer et al.
24

 and Rendall and Allen
25-27

 have shown the effectiveness of using RBF interpolation method to 

remesh the unstructured grids. There are two distinctive advantages: i) Connectivity information is unnecessary for 

the RBF interpolation method, that means any arbitrary order of nodal information will result in the same mesh. 

However, ordering the nodes based on the distances between the nodes will make the linear system more diagonally 

dominant for the compact RBFs
24

, which will reduce the computational time. ii) The resulting mesh keeps the 

original mesh quality, especially the orthogonality near the moving boundary surface
24, 25

 which is important in 

viscous fluid computation where the cells are usually stretched and clustered to capture small length scale flow 

phenomena. 

Given the boundary displacement vector       at the node  , with the position      either on the aerodynamic 

surface mesh of a flexible body, or any other prescribed boundary surface, for instance zero displacements at the 

tunnel wall, the displacement vector,     , of a node  , with the position    , of the aerodynamic volume mesh with 

respect to the initial grid, is given by Eq. (3) with summation of repeated indices as 

                     (3) 

 

where index   represents the three components in three-dimensional space,       is the coupling matrix from the 

aerodynamic surface nodes to the aerodynamic volume nodes given as 

                        
 

with     being the Euclidean distance measure acting on the index        ,   is a radial basis function, and     is a 

polynomial. If the radial function is conditionally positive definite, and     is a linear polynomial, then a unique 

remeshing will result
24, 38

. In the current study a linear polynomial will be used: 

                    
 

For remeshing the compact    RBF constructed by Wendland
38

 will be used in the current study motivated by 

the previous results
24, 25, 38

 that showed it to be computationally efficient while being able to retain the mesh 

qualities, given by Eq. (4) as 

 

                      (4) 

 

where   is the support radius of this compact function. As the support radius increases a node acquires more 

information about the displacements of neighboring nodes, leading to better approximation. On the other hand if the 

support radius is small the resulting linear system will be sparse, hence the computational cost would decrease. 

However if   is too small, negative jacobian or volume of a cell might occur. All RBFs, compact and global, listed 

in Ref. 24 are available in the current framework for interpolation purposes. 

The unknowns in Eq. (3) are the weight coefficients,     (                ), and the polynomial 

coefficients,    , that can be solved by the requirements that the prescribed nodal displacements must be recovered 

by the RBF interpolation at these nodes, i.e., 

                                          
 

and the additional requirement for unique solution
38

,  
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where    is a summation vector that sums all elements along  ,    the zero vector over the index  , and     the zero 

matrix over the index   . In vector notation the resulting linear system is shown in Eq. (5) and is exactly the same as 

found in Refs 24, 38: 

 

                          (5) 

 

with for each   index 

                     , 

               , 
       ,         ,              . 

 

This linear system is solved using PETSc’s GMRES iterative solver with Jacobian preconditioner using multiple 

processors. 

To capture the three-dimensional flow phenomena the number of cells is typically in the order of millions. To 

enhance the computational speed the fluid-solver is parallelized using MPI where the computational domain is 

decomposed optimally for the computation of velocity and pressure fields. This implies that the boundary nodes on 

the moving surfaces are randomly distributed among the processors. To implement the RBF interpolation remeshing 

method efficiently in parallel the following steps are taken by noting that the nodal coordinates on the boundary 

surfaces,     , stay stationary in time: 

1. Preprocessing step: 

a.        : identify the local nodes on the boundary surfaces. Using ALLGATHER operation 

assemble and distribute the coordinates of all nodes on the boundary surfaces into a matrix   . 

b.                               : iterate over the local nodes on the boundary surface 

and by computing the distances to all elements in    construct the local partition of the system 

matrix having a sparse matrix structure provided by PETSc. 

2. Remeshing: 

a.            : solve the linear system to obtain the weight and the polynomial coefficients 

locally. Using the ALLGATHER operation, distribute the coefficients globally. 

b.                     : Compute the nodal displacements for all volume nodes by applying 

Eq. (3). 

Since the assembly of the system matrix is performed before the time integration begins, and the parallel 

communication during the computation is only needed for the linear solver and for the ALLGATHER operation of 

the coefficients,    and   , this method is suitable for parallelization. Further improvements can be obtained by 

using the Schur-complement techniques which involve the inversion of      has the potential to accelerate the 

remeshing process since      is a positive-definite symmetric matrix so that well-known iterative solvers can be 

used such as PCG, and during the time integration only matrix multiplications are needed to obtain the new 

displacements for the volume nodes
25

. 

 

B. Structural dynamics 

The nonlinear structural dynamics are solved using a flexible multi-body type finite element analysis of a 

flapping wing using triangular facet shell elements. The rigid-body motions are prescribed in the global frame of 

reference in addition to a co-rotational framework to account for the geometric nonlinearities. By applying the co-

rotational frame transformations the motion of an element is decomposed into the rigid-body motion part and the 

pure deformation part. By using the linear elasticity theory for the latter part, the co-rotational formulation can 

efficiently solve for the structural dynamics with small strains, yet large rotations. A linear combination of an 

optimal membrane element and a discrete Kirchhoff triangle plate bending element is employed for the elastic 
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stiffness of a shell element. Full details of this algorithm can be found in Ref. 17. For example, the governing 

equations related to out-of-plane displacement of an isotropic flat plate may be given by Eq (6), 

                                                                (6) 

 

where    is the displacement in the    direction,    is the density of the flat plate,    is the thickness of the plate,   

is the Young’s modulus of the material,   is the Poisson’s ratio of the plate, and    the distributed transverse load on 

the plate.  

To extend the isotropic structural model to an anisotropic structural model, extension stiffness, membrane-

bending coupling stiffness, and bending stiffness are constructed based on the classical laminate theories
39

 and the 

global stiffness matrix is assembled from both isotropic and orthotropic materials. A layer of unidirectional material 

is considered with directions (      ), the plane (    ) being identified with the plane of the layer and the 

direction    with the direction of fibers as shown in Figure 1. In order to characterize the elastic properties of a layer, 

expressing them in the reference axes (     of the laminate, the direction of the fibers making an angle   with 

the direction  . This reference system is usually referred to as the system (   ). The relationship between the 

off-axis reduced stiffness constants and those written in terms of the principal axes only bring in 1, 2, and 6 

components of the stresses and strains. The reduced stiffness constants of a unidirectional or orthotropic composite, 

off its principal directions may be written as:  

                                                                                                                                                                                                                                                                                                                                                                    
 

where                           ,                           ,              , and           respectively. The 

force-strain relationship for a thin laminate plate based the classical laminate theory
39

 is 

 

    
                     

              
    
                          

   
 

 

 

where                and               are the membrane and flexural strains in the mid-surface of the plate.            and            are the force resultants and moment resultants, respectively.   ,   and    

are the extensional stiffness matrix, membrane-bending coupling stiffness matrix, and bending stiffness matrix, 

respectively
39

 :                      
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where   is measured from the mid-plane surface. It should be noted that in current study membrane-bending 

coupling matrix is set to zero because symmetric laminates are considered. Then, the stiffness matrix for the 

composite shell element is obtained as a superposition of the stiffnesses corresponding to that of the optimal 

membrane element (OPT) and a discrete Kirchoff triangle (DKT) plate-bending element. 

 

 
Figure 1 The principal directions (      ) of a laminate layer, and the reference system (   ) of the lamiante. Ply 

angle (   of a fiber is defined as an angle about    axis.  

 

C. Fluid-structure interaction interface  

The FSI analysis is based on a time-domain partitioned solution process in which the nonlinear partial 

differential equation governing the fluid and the structure are solved independently and spatially coupled through the 

interface between the fluid and the structure. An interface module has been added to the fluid solver to communicate 

the flow solutions on the three-dimensional wetted surface to and from the structural solver. In current study, an 

implicit coupling method is used. At each time step the fluid and the structural solvers are called one after the other 

until sufficient convergence on the displacements on the share boundary are reached in an inner-iteration before 

advancing to the next time step. Figure 2 illustrates the flow chart of FSI process of current study. . The convergence 

of a FSI-iteration loop is determined by Eq. (7) where at least two communications between the fluid and the 

structural solvers are needed,  

                                                           (7) 

 

where      is the number of nodes on the CSD interface mesh,                 
 is the nodal displacement vector on the 

CSD node   at the time step   and iteration fsiloop. 
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Figure 2 Diagram for time marching loop of fluid-structure interaction. 

 

 

D. Dimensional analysis for a Newtonian fluid and isotropic plate 

Dimensional analyses along with flapping wing aerodynamics have been discussed in Refs [2, 3]. Current study 

focuses on the interaction between a Newtonian fluid and an isotropic plate. The relevant physical quantities are the 

density,    and the viscosity,  , of the fluid; the reference velocity,      , of the fluid flow; the half span,  , the 

mean chord,   , and the thickness,   , of the wing geometry; the structural density,   , the Young’s modulus,  , 

and the Poisson’s ratio,  , of the wing structure; the flapping amplitude,   , the angular flapping frequency,  , the 

pitching angle,  , of the wing kinematics; and finally the resulting aerodynamic force,  . There are 13 variables and 

3 dimensions leading to 10 non-dimensional parameters. With   ,     , and    as the basis variables the dimensional 

analysis leads to the following non-dimensional parameters: 

 

Reynolds number              Ratio between the inertial and the viscous forces in the fluids 

Aspect ratio         Wing span normalized with the chord 

Normalized thickness           Thickness normalized with the chord 

Density ratio          Ratio between the structural density and the fluid density 

Poisson’s ratio   Ratio between the transverse and the axial strain 

Effective stiffness                        
Ratio between the elastic bending forces and the 
aerodynamic force 

Reduced frequency            Measure of unsteadiness by comparing the spatial 
wavelength of the flow disturbance with the chord 
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Strouhal number          Ratio between the flapping speed and the reference velocity 

(effective) angle of attack   
Curvature of the streamlines leading to pressure changes on 
the wing surface 

Force coefficient                        Aerodynamic force normalized with the dynamic pressure 

and the wing surface area 

 

If the reference velocity,     , is chosen as the velocity scale, inverse of the motion frequency,     , as the time 

scale, and the mean chord,   , as the length scale, the governing equations Eqs (2) and (6), and the motion 

kinematics typically given as 

                  
 

(8) 

 

where       is the instantaneous flapping angle,    the flapping amplitude, and   the motion angular frequency, are 

normalized as, see also Ref 2, 

                                                        
                                                                      
                     
 

The non-dimensional variables that appear in the governing equation for the wing structures apart from the 

reduced frequency are   ,   , and   . The instantaneous lift and thrust coefficients are defined as 

                         
                         
 

where   is the planform area of the wing,   is the lift, and   the thrust, such that for the resulting force,   , we have      and      . 

 

III. Results and Discussions 

A. Remeshing: rigidly moving flat plate in a square box 

To assess the performance in terms of the mesh qualities, and domain scalability of the RBF interpolation 

remeshing method, two test cases previously reported by Stein et al. 
22

 and Smith and Wright
23

 are computed. The 

initial mesh consists of a computational domain in a square shape with length of two and a two percent thick flat 

plate of chord length one in the center of the domain, see Figure 3. In all solutions shown in the current study the 

new mesh is obtained after one time step. For the RBF the Wendland’s C2 polynomial is used with a support radius 
of 2.0. The linear solver converged to the imposed absolute tolerance level of 1.0×10

-30
. In the first case the flat plate 

is rotated 60 deg around its mid-chord point of the plate. The order of this angle corresponds to typical flapping 

angle amplitudes
1
. In the second case the flat plate translates half chord length upwards. Note that the mesh is three-

dimensional with unit span length with one cell in spanwise direction to simulate two-dimensional fluid flow in a 

three-dimensional fluid solver. This doubles the number of grid nodes from the two-dimensional situation. 
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Figure 3 Initial mesh of a two percent thick flat plate in a square domain. Total number of cells, nodes, and boundary 

nodes are 1224, 1384, and 520, respectively. 

Two grid measures are computed to assess the mesh qualities: non-smoothness, which measure the cell volume 

change in space, defined as 

non-smoothness =                        
 

where   is the cell volume,   is the cell area. To measure the skewness of a cell the following quantities are 

determined 

 

skewness =                                                                  
 

For both mesh quality metrics high values would result in worse accuracy of the fluid flow solutions and small 

values are desired. The domain scalability of the current remeshing method with respect to the mesh size is 

measured by refining the initial mesh by multiplying the number of nodes on the boundary faces by   = 2, 4, 8, and 

16, see Table 1. 

 
Table 1 Number of cells, number of nodes, and number of boundary nodes depending on the multiplication factor  .   Number of cells Number of nodes (  ) Number of boundary nodes (  ) 

1 1224 1384 520 

2 3272 3592 1040 

4 10142 10782 2080 

8 35896 34616 4160 

16 127496 130056 8320 

 

As the RBF interpolation remeshing method acts on the distances, the cells near the flat plate being more influenced 

by the motion of the flat plate than the cells away, the cells around the flat plate move almost rigidly, see Figure 4. 

Figure 5 shows the non-smoothness and the skewness of the cells on the initial mesh and the resulting mesh under 

the rotation and translation for the baseline case ( =1) and the maximally refined case ( =16). The focus is given to 

how well the initial mesh qualities are preserved under remeshing process. In small region between the edge of the 

flat plate and the outer boundary of the computational domain both non-smoothness and skewness suffer due to the 

shearing effect between the moving flat plate and the non-moving outer boundary. However, overall, both the non-

smoothness and the skewness near the flat plate are well preserved. On the refined mesh the cells are so small that 

the smoothness remains intact, which was also observed for   = 2, 4, and 8. Regarding the skewness, again due to 

the shearing behavior, the skewness increases between the flat plate and the boundaries of the computational 

domain, still the mesh qualities remain well near the flat plate which is important to capture smaller near-wall flow 

phenomena accurately. 
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(a) initial distribution (b) after rotation (c) after translation 

Figure 4 Mesh distribution near the trailing-edge of the flat plate on (a) the initial grid, (b) after rotation, and (c) after 

translation for the baseline grid ( =1). 

 

 

   =1  =16  =1  =16  

    

initial 

    

rotation 

    

translation 

(a) non-smoothness (b) skewness  
Figure 5 Non-smoothness and skewness of the cells on the initial mesh and the rotated mesh for the mesh scalability 

factors   = 1 and 16 of a flat plate in a non-moving square shaped outer boundary under the rotational and translational 

motions. Note that on the   = 16 grid the mesh distribution is not shown for visibility purposes. 

The domain scalabilities are shown in Figure 6, which is defined as 

                                  
 

On a single processor the domain scalability is assessed for the rotation and translation cases. The complexity of the 

linear solver scales with     and the RBF evaluation process of Eq. (3) with       where       . If the number of 

boundary nodes is doubled, i.e.  =2, then the domain scalability would be      , which is confirmed in Figure 6. 
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Figure 6 Domain scalabilities of a flat plate in a non-moving square domain under rotation and translation. 

 

Finally, the influence of the support radius,  , on the resulting computational time and mesh qualities are 

assessed by varying the radius from 2 to 1 and 3 on the  =8 grid using single processor for the translational motion. 

For the compact radial basis functions, such as Wendland’s    function, Eq. (4), used here, the support radius sets 

the radius influence by setting the radial basis function value to zero if the distance between two points becomes 

larger than the radius. Table 2 shows the computational time taken for different support radius. By reducing the 

support radius from   = 2 to   = 1 the computational cost reduces because the coupling matrix      in Eq. (5) is 

sparser. On the other hand, increasing   to 3 introduces more coupling between the boundary nodes and results in 

23% increase in computational time. However, for smaller  , the influence of the moving nodes is propagated only 

for smaller distances and the resulting mesh distortions remain close to the flat plate. This behavior is shown in 

Figure 7 where the skewness is shown for   = 1, 2, and 3. For   = 1 the deformation occurs close to the flat plate and 

the cells are more clustered, while for   = 3 the skewness is smoothened out over larger area. 

 
Table 2 The computational time in components for the translating flat plate in a square domain on the   = 8 mesh using 

single processor.   Linear solve (s) Applying Eq. (3) (s) Total time (s) 

1 0.30 6.1 6.4 

2 0.76 12 13 

3 1.8 14 16 

 

   
(a)   = 1 (b)   = 2 (c)   = 3 

Figure 7 Skewness of the cells on the   = 8 grid of a flat plate in a non-moving square shaped outer boundary under the 

translational motion. Black lines represent the mesh distribution. 
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B. A rigid rectangular wing prescribed with plunging excitation in free-stream at   = 3.0×10
4
 and   = 0.20 

A rectangular wing prescribed with prescribed pure plunging excitation is simulated and compared with previous 

experimental study
9
. The computational result is obtained using the parallel version NS solver with radio basis 

function interpolation remeshing method. A schematic of the computational setup is the same as Refs. 4 and 8 and is 

shown in Figure 8. The computational wing model has semi-span length of 0.3 m and a chord of    = 0.1 m. A C-O 

type grid around a NACA0012 wing of aspect ratio 6 is used (Figure 8 (b)). The number of grid points is 120×56×60 

in the tangential, radial, and spanwise directions, respectively. The grid refinement and time step sensitivity analyses 

have been performed to identify a suitable grid configuration in terms of the number of points, and the time step 

increment in Ref. 4.  

 

  
(a) Overview of grid topology and domain size (b) wing grid 

Figure 8 Computational setup for a rectangular wing prescribed with pure plunging excitation. Purple plane indicates 

symmetrical plane. (a) Overall grid topology, (b) near wing. The direction of free-stream is   -axis. The wing plunges in    direction.  

  

 

 As to the prescribed wing motion, the leading edge of the wing root is actuated by a sinusoidal plunge 

displacement profile. The amplitude and frequency of plunging motion is 0.175    and 1.74 Hz. For the boundary 

conditions at the inlet, the free-stream velocity of 0.3 ms
-1

 is prescribed, and for the outlet, the pressure is set to zero. 

A no-slip condition on the flow velocity is assigned to the wing surface. The nodes on the outer boundary surfaces 

are fixed in space and time. For the support radius of the radio basis function 0.5 is chosen which is of the same 

order of magnitude but larger than the half span length of 0.3. Because both the boundary nodes on the outer 

boundary surfaces with zero displacements and the prescribed wing displacements construct the coupling matrix      in Eq. (5) the computational cost to remesh consist about 55% of the total computational time. A simple 

method to increase the computational efficiency is presented in the section III A. The computation is run for 

approximately 10 cycles (i.e. 5100 time steps) using 16 Intel® Xeon® E5540 (8M Cache, 2.53 GHz, 5.86 GT/s 

Intel® QPI) processors. Per time step, the linear solver took 20 seconds to solve the linear system for the remeshing, 

and 17 seconds on the slowest processor to apply Eq. (3).  
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(a-1) at mid-span: current study  (b-1) at mid-span: experiment 

  
(a-2) near tip: current study  (b-2) near tip: experiment 

  

(a-3) at mid-span: current study (b-3) at mid-span: experiment
9
 

  
(a-4) near tip: current study (b-4) at near tip: experiment

9
 

Figure 9 Comparison of spanwise vorticity contours in two selected wing sections (i.e. mid-span and 93% span) between 

current study and experiment9 at the beginning (a-1,2 and b-1,2) and middle (a-3,4 and b-3,4) of the downstroke (i.e.    = 

0.0 and 0.25). The wing is moving downward. (  = 3.0×104 and   = 0.20). Vorticity is normalized by 
      . 

Figure 9 illustrates a comparison of spanwise vorticity contours at two selected wing sections (mid-span, near 

tip) between the current study and experimental result
9
 at the beginning and middle of downstroke. Overall, the large 

scale flow structure computed by the current numerical framework is comparable, although, experimental result 

shows a cluster of smaller vortices near the wing. Figure 10 shows a comparison of aerodynamic forces between the 

current study and experiment
9
. It is found that the time histories of thrust and lift coefficient of the current study 

show good agreement with the previous numerical and experimental studies.  

 

Trailing edge 

Trailing edge 

Trailing edge 

Trailing edge 

Trailing edge 

Trailing edge 

Trailing edge 

Trailing edge 
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(a) Lift coefficient (b) Thrust coefficient 

Figure 10 Time histories of lift and thrust coefficient for a rectangular wing prescribed with pure plunging excitation at   = 3.0×104 and   = 0.20. Solid red line indicates the result of current study. Open circles are from the result of 

experimental study9. 

 

C. An anisotropic elliptic wing prescribed with single DOF flap rotation in vacuum 

 In order to be able to investigate effects of anisotropic wing on aerodynamic force generation, it is necessary to 

validate a composite wing structure model first. In the current study, a composite wing structure model is 

implemented based on the classical laminated theories
39

. In this section, structural dynamic response of composite 

flapping wing in vacuum will be compared with the experimental data
12

 for validation purpose.  

 Figure 11 shows design of anisotropic wing and setup of computational composite wing models. The wing 

planform is Zimmerman elliptic, the aspect ratio is 7.65, and the mean chord length of the wing is 19.6×10
-3

 m. The 

wing are built with unidirectional carbon fiber to form the skeleton and Capran® as the membrane. As shown in 

Figure 11, two simulated wings are made of the same structural layout: reinforced leading edge, root triangle, and 

reinforced chordwise battens. There is no reinforcement of the trailing edge. Figure 11 (a) presents layup schemes: 

the lines represent the number of layers for layup – leading edge varies from 3 to 1 layers of unidirectional carbon 

fiber and chordwise batten varies from 2 to 1 layers. Therefore, the wings are named L(m)B(n) with L for leading 

edge, m for number of layers in leading edge, B for chordwise batten and n for chordwise layer numbers More detail 

of the wing structures and the experimental setup can be found in Ref. [11]. In the current study, L2B1 and L3B1 are 

considered and the total number of structural mesh is 767 elements. The prescribed flapping excitation is given at 

the root triangle and its profile is sinusoidal. The structural and geometrical information of carbon fiber and 

Capran® membrane are given in Table 3. For simple purpose, membrane-bending coupling effect of stiffness matrix 

is ignored. Generalized- method is utilized to integrate in time. Flapping amplitude is ±35 deg and flapping 

frequency is 25 Hz
12

. 

 Figure 12 shows a comparison between the computed results and experimental data in terms of vertical tip 

deflection and vertical tip location. The vertical tip deflection is measured with respect to the undeformed wing 

configuration at corresponding flapping angle, and the vertical tip location is determined with respect to inertial 

frame as illustrated in Figure 12 (a). Both quantities are normalized by the mean chord length. The experimental 

data are acquired during one flapping cycle. The instantaneous computed wing tip deflections of L2B1 and L3B1 

show overall agreement with the experimental data
12

. It is found that the maximal tip deflection of L2B1 doubles 

compared to that of L3B1. Also trajectory of tip deflection of L2B1 generates considerably larger enclosed area than 

that of L3B1. These observations indicate that adding one more layer of reinforced leading edge batten has 

significantly impacts on the structural dynamic response. Regarding the vertical wing tip locations, the computed 

results of L2B1 and L3B1 show good agreement with the experimental data
12

. Compared to vertical tip deflection, 

the vertical wing tip location is not as much affected by the change of number of reinforced leading edge batten. 

Still, the influence of wing deformation is observed when the wing accelerates or decelerates. In addition to these 

observations the computed results show cycle to cycle variations. Furthermore, due to mechanical constraints, the 

flapping motion in the experiment doesn’t exactly follow a sinusoidal pattern. These issues are being investigated 

and will be further clarified in the future.  
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(1) Schematic of reinforcement layout of the anisotropic wing [12] 

 
(2) Computational model (767 elements) 

Figure 11 Design of anisotropic wings and setup of computational composite wing models. 

 
Table 3 Material properties and geometrical information of structure40 

Carbon fiber     233 GPa,      23.1 GPa,      15.5 GPa,       0.05,    1740 kg/m
3
,     1.0 ×10

-4
 m,    0 deg. for the leading edge batten;    90 deg for the chordwise batten 

Capran® Membrane  = 2.76 GPa,  = 0.489,    1384 kg/m
3
,     1.5 ×10

-5
 m 

 

Figure 13 shows instantaneous wing configuration of computed results at the ends of strokes. It can be seen the 

local deformation is mostly due to the anisotropic wing structure constructed with a membrane and carbon fibers. 

Since approximately 80% of the wing area consists of a membrane, resulting bending motion of the leading edge 

batten affects the deformation of the membrane significantly. At the end of the downstroke, larger vertical wing tip 

deflection of L2B1 induces larger twisting motion of the wing (see Figure 13 (a-1) and (b-1)). At the beginning of 

the downstroke, the L3B1 shows more twist than L3B1 (Figure 13 (a-2) and (b-2)) because of weaker influence of 

the leading edge batten to the membrane. These observations suggest that the deflection and movement of leading 

edge batten are the main driver of the wing motion, whereas the influence of deformations in other parts is observed 

at the end and start of the strokes. Therefore three-dimensional wing deformation becomes very complex when the 

wing accelerates or decelerates. 

 



 

American Institute of Aeronautics and Astronautics 
 

 

18 

 
(a) Schematic of wing tip deflection and coordinate system 

  
(b-1) L2B1 (c-1) L2B1 

  

(b-2) L3B1 (c-2) L3B1 
Figure 12 Wing tip deflection and location of L2B1 and L3B1 over flapping cycle. Fourth, fifth, and sixth cycle of 

prescribed flapping excitation are shown. 
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(a-1) L2B1 (Flap angle at tip = -35 deg) (b-1) L3B1 (Flap angle = -34.5 deg) 

End-of-downstroke 

  
(a-2) L2B1 (Flap angle at tip = 33.2 deg) (b-2) L3B1 (Flap angle = 35.66 deg) 

End-of-upstroke 

  
Figure 13 Wing deformation and vertical displacement of L2B1 and L3B1 in vacuum at end of strokes. Contour indicates 

vertical displacement with respect to inertial frame. 

D. A Zimmerman elliptic wing prescribed with pure flap rotation in hovering at Re= 1.5×10
3
 and k= 0.56 

1. Rigid wing 

A hovering rigid Zimmerman elliptic wing prescribed with pure flapping excitation    = 1489 and  = 0.56 is 

simulated. The computational result is obtained using the parallel version NS solver with radial basis function 

interpolation remeshing method. The Zimmerman planform, shown in Figure 14, flaps in a single degree of freedom 

motion in still air.  

 A mixed structured and unstructured grid was used, which is the same as used in Ref. 18: the number of points in 

the converged grid configuration is 0.5 million approximately. The computational setup is presented in Figure 15 

and a summary of key parameters of this case are furnished in Table 4. The motion is excited at the rigid square at 

the leading edge of the wing with a sinusoidal motion; see Eq. (8). For the boundary conditions for the outlet, the 

pressure is set to zero. A no-slip condition on the flow velocity is assigned to the wing surface. The nodes on the 

symmetry plane, the purple colored plane in Figure 15, are set to zero displacements. To assess the effect of 

including the boundary nodes on the outer boundary surface in the remeshing system setup, in contrast to the results 

presented in Section A, these boundary nodes are set to move freely in space and time. The radial basis function 
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support radius is 0.075, the half span length. By letting the outer boundary surfaces freely to move and taking 

smaller support radius the computational efficiency is seen to be 20%. 

 

 

 
Figure 14 Geometry of a Zimmerman planform. 

 

  
(a) Overview of grid topology and size (b) wing grid 

Figure 15 Computational setup for a flapping Zimmerman elliptic wing. (a) Overview of grid topology and 

size; (b) Near the wing. 

 
Table 4 Dimensional and dimensionless parameters for a Zimmerman elliptic wing prescribed with single DOF flap 

rotation. 

Parameter Value Dimensionless Parameter Value 

Semi-span at quarter chord [m] 0.075 Chord-based Reynolds number 1489 

Mean chord length [m] 0.0196 Reduced frequency 0.56 

Flow velocity [m/s] 1.1 (mean tip speed) Aspect ratio 7.65 

Air density [kg/m
3
] 1.23

 
  

Flapping amplitude [deg] 21   

Flapping frequency [Hz] 10   

 

Figure 16 shows time history of lift and drag coefficients for first three flapping cycle. It can be seen that the 

drag coefficient is almost zero because of the wing kinematics considered in this study (i.e. symmetrical flapping 

motion and no variation of angle of attack in time). Instantaneous lift peak is observed at early downstroke. Both 

curve profiles of instantaneous lift and drag coefficient are comparable to the results of the stiffest wing case 

presented in Ref. [18]. Figure 17 presents flow fields around the elliptic Zimmerman wing undergoing pure flapping 

motion at the beginning and middle of downstroke. Three-dimensional vortical structures are visualized by iso-

vorticity magnitude and two-dimensional vortical structure is plotted by spanwise vorticity contours. Clearly, there 

is three-dimensional vortical structure around the wing and an interaction between the flapping wing and vortex 
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wake. Interestingly, it can be seen that ring-shaped like wake structure beneath the wing (see Figure 17 (a)) that 

generated by previous stroke. Similar three-dimensional vortical structures were observed in flow structures 

generated by biological flapping flyers
1, 2, 41

. Moreover, it is found that leading and trailing edge vortices interact 

with shed vortices generated in previous stroke (see Figure 17 (b)).  

 

 

 
Figure 16 Time history of lift and drag coefficient for first three flapping cycle. Solid red and dashed dotted lines 

are lift and drag coefficient. Flow fields around the wing at time instants (a) and (b) will be presented in next figure.  

  
(a) begging of downstroke (b) middle of downstroke 

Figure 17 Flow visualization around the Zimmerman elliptic wing undergoing pure flapping motion. Line plots presented 

in left top indicate the time history of flapping wing kinematics. Two-dimensional contours show spanwise vorticial field 

at the section of 70 % wing length for the wing root. Iso-voricity magnitude surface is employed to visualize three-

dimensional flow feature around the wing.  

 

2. Isotropic wing 

In order to investigate the impact of flapping isotropic wing on the aerodynamic force generation, an isotropic 

Zimmerman elliptic wing prescribed with pure flapping motion in a still air at     = 1489 and  = 0.56 is simulated. 

The computational result is obtained using the serial version NS solver with thin plate spline interpolation remeshing 
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method
18

. The motion is excited at the rigid square at the leading edge of the wing with a sinusoidal motion; see Eq. 

(8). In this study, two effective stiffnesses are considered: 1.4×10
3
 and 35.5×10

3
. The density ratio and thickness 

ratio of structure is 2.7 and 2.0×10
-2

, respectively. 

 All structured grid around the Zimmerman wing of aspect ratio 7.65 is used and the number of points in the 

converged grid configuration is 0.7 million approximately
18

. The basic computational setup is similar to one 

presented in Figure 11. For the outlet boundary condition, the pressure is set to zero. A no-slip condition on the flow 

velocity is assigned to the wing surface. The nodes on the symmetry plane, the purple colored plane in, are set to 

zero displacements. 

 

  
(1) Normalized vertical tip displacement (2) Lift and drag coefficient 

Figure 18 Structural and aerodynamic response of isotropic flapping wing. Tip displacement is normalized by the mean 

chord length. Blue and red lines correspond to effective stiffness of 1.4×103 and 35.5×103, respectively. 

 

    
(a-1) 25 % span (a-2) 50 % span (a-3) 75 % span (a-4) 25% chord 

(a)     35.5×10
3
 

    
(b-1) 25 % span (b-2) 50 % span (b-3) 75 % span (b-4) 25% chord 

(b)     1.4×10
3
 

Figure 19 Comparison of pressure distributions around flexible wings at maximum thrust generation during the 

donwstroke. L.E. and T.E. indicate leading and trailing edge of the wing.  

 

Figure 18 presents the time histories of vertical tip displacement and aerodynamic coefficients of two flapping 

isotropic wing models over one flapping cycle. It is observed that the amplitude of instantaneous vertical tip 

displacement in the case of     1.4×10
3
 increases, while the period of tip motion remains the same. Therefore, the 

vertical tip velocity increases due to the wing flexibility. Coordination between the prescribed wing motion and the 

L.E. T.E. 

L.E. T.E. 

Tip 

Tip 
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resultant tip movement shows in-phase motion during most of the stroke (see Figure 18 (a)). Previously Aono et al.
4
. 

showed for plunging spanwise flexible wing that coordinated motion between the deformed wing and the rigidly 

excited root is the underlying key mechanism for the flexibility enhanced aerodynamic force generation. Looking at 

time histories of lift and drag coefficients, clearly, the case of     1.4×10
3
 produces thrust and larger lift than that 

of     35.5×10
3
. (see Figure 18 (b)). This difference in the force generation is elicit in Figure 19 that shows the 

pressure distributions at the three selected chordwise sections (25%, 50%, 75%) and one spanwise section (25%) 

when the wing generates high thrust. It is found that for the case of     1.4×10
3
 flexibility induces positive 

pitching angle (see Figure 19 (b-1, 2, 3)). This pitching angle changes the direction of resulting aerodynamic force 

contributed by pressure favorable for the thrust generation. It should be mentioned that there is almost no camber of 

the wing due to wing flexibility. This is consistent with the previous findings by Shyy et al.
2
 that the chordwise 

flexibility elevates thrust generation by increased projected area of the deformed wing perpendicular to the 

freestream. Figure 20 illustrates the pressure distributions at the same selected chordwise and spanwise sections 

when the wing generates the maximal lift. Due to the larger bending of the wing tip (see Figure 18 (a)) the wing tip 

velocity increases, producing stronger vortex generation (i.e. leading edge, trailing edge, and tip vortices) and hence 

lower pressure region on the suction side of the wing surface. This results in larger resulting aerodynamic force 

generation. It can be seen that the flexibility-induced pitching angle is almost zero (see Figure 20 (b-1, 2, 3)). 

Therefore, most of the resultant aerodynamic force is projected to the direction perpendicular to the chord, the lift.  

 

    
(a-1) 25 % span (a-2) 50 % span (a-3) 75 % span (a-4) 25% chord 

(a)     35.5×10
3
 

    
(b-1) 25 % span (b-2) 50 % span (b-3) 75 % span (b-4) 25% chord 

(b)     1.4×10
3
 

Figure 20 Comparison of pressure distributions around flexible wings at maximum lift generation during the downstroke. 

L.E. and T.E. indicate leading and trailing edge of the wing. 

 

IV. Summary and Conclusion 

Refining the computational framework reported in Ref 10, in present effort, we have incorporated an unstructured 

grid Navier-Stokes solver, significantly improved remeshing techniques, and anisotropic structural modeling 

capabilities. A remeshing method based on radial basis function interpolation shows to capable of handling large 

deformations, retaining initial grid qualities, and being computationally efficient. Flexible flapping wings operating 

in both vacuum and air are analyzed to shed light on inertial and aerodynamic loading-induced shape deformation. 

For the study of a flapping anisotropic wing in vacuum, a composite structural model is implemented based the 

classical laminated plate theories
39

 to account the anisotropic nature of wing structure. Results show good agreement 

with the experimental data
12

 in terms of instantaneous vertical tip deflection and location. Furthermore, the 

deflection and movement of the leading edge batten are seen to be the main driver of the overall wing motion, 

whereas the influence of deformations in the membrane and the chordwise batten is significant at the end and start of 

the strokes. Therefore, highly three-dimensional wing deformations are observed when the wing accelerates or 

decelerates in the absent of aerodynamic forces.  

L.E. T.E. 

L.E. T.E. 

Tip 

Tip 
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 For the flapping Zimmerman rigid wing in still air at   = 1.5×10
3
 and   = 0.56 the aerodynamic force 

generation is coupled with the vortex generation due to the wing motion. For the flapping isotropic Zimmerman 

wing in still air, impacts of wing flexibility on the aerodynamic force generation is investigated. Two effective 

stiffnesses are considered: 1.4×10
3
 and 35.5×10

3
. The density ratio and thickness ratio of structure are 2.7 and 

2.0×10
-2

, respectively. In Refs 2 and 4, the implications of chordwise
2
 and spanwise

4
 flexibility on aerodynamics 

were investigated. Overall, the thrust generation consists of contributions due to both leading edge suction and the 

pressure projection of the chordwise deformed rear foil. Even though the effective angle of attack and the net 

aerodynamic force are reduced due to chordwise shape deformation, both mean and instantaneous thrust can be 

enhanced due to the increase of projected area normal to the flight trajectory. For the spanwise flexible case, 

correlations of the motion from the root to the tip play a role. Within a suitably selected range of spanwise 

flexibility, the effective angle of attack and thrust forces of a plunging wing are enhanced due to the wing 

deformations. These findings are in broad agreement with those observed in the present study: For an isotropic wing 

two consistent mechanisms which can enhance thrust and lift are identified, namely  

1) higher wing velocity due to larger bending motion can enhance the aerodynamic force,  

2) flexibility-induced pitching angle can elevate thrust. 
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