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ABSTRACT

In gravitationally stratified fluids, length scales are normally much greater in the horizontal
direction than in the vertical one. When modelling these fluids it can be advantageous to use
the hydrostatic approximation, which filters out vertically propagating sound waves and thus
allows a greater time-step. We briefly review this approximation, which is commonplace in
atmospheric physics, and compare it to other approximations used in astrophysics such as
Boussinesq and anelastic, finding that it should be the best approximation to use in context
such as radiative stellar zones, compact objects, stellar or planetary atmospheres and other
contexts. We describe a finite-difference numerical scheme which uses this approximation,
which includes magnetic fields.

Key words: hydrodynamics – MHD – methods: numerical – stars: atmospheres – stars:
interiors – X-rays: bursts.

1 IN T RO D U C T I O N

In magnetohydrodynamical (MHD) simulations, a set of partial
differential equations is numerically integrated forwards in time.
This is done in stages, with the time increasing in small increments
called the ‘time-step’. When the basic MHD equations are used,
the time-step is subject to a range of limits to do with the speed of
propagation of information; all numerical explicit schemes become
unstable if information is allowed to propagate further than some
fraction of a grid spacing in one time-step. For instance, a simple
Cartesian hydrodynamical code might have the following time-step:

�t = min

[

C�x

|ux | + cs
,

C�y

|uy | + cs
,

C�z

|uz| + cs

]

, (1)

where �x, �y and �z are the grid spacings in the three dimen-
sions, u is the gas velocity, cs is the sound speed and C is some
dimensionless constant whose value will depend on properties of
the numerical discretization scheme, but might be for instance 0.5.
This would ensure that no information can propagate more than 0.5
grid spacings in any direction during one time-step. Other codes
will have additional, similar restrictions from the propagation of
Alfvén waves and from diffusion; for instance, the sound speed cs

in the expression above might be replaced by the fast magnetosonic
speed.

By studying the context in which we wish to use simulations, it
is often possible to make approximations in order to remove some

⋆E-mail: jonathan@astro.uni-bonn.de

modes of propagation of information, allowing a larger time-step.
Adopting implicit schemes is one efficient way of removing waves.
Among the explicit schemes, as well as the basic constant density
incompressible approximation, in which sound and buoyancy waves
are both absent, the anelastic (Ogura & Phillips 1962) and Boussi-
nesq approximations are commonplace (see e.g. Lilly 1996, for a
review and comparison). Both are widely used in astrophysical hy-
drodynamics, for instance in studies of convection in planetary and
stellar interiors (e.g. Chen & Glatzmaier 2005; Browning 2008).
They can be used in situations where the thermodynamic variables
depart only slightly from a hydrostatically balanced background
state, so for instance the density perturbation δρ/ρ0 ≪ 1. There are
some other requirements, such as that the frequency of the motions
is much less than the frequency of sound waves and that the ver-
tical to horizontal length scale ratio or the motion is not too large.
The two approximations are rather similar, the difference being
that the Boussinesq approximation is used where the vertical scale
of the motions is much less than the density scale height and where
the motion is dominated by buoyancy. It can be shown that the
continuity equation, whose standard form is ∂ρ/∂t + ∇ · ρu = 0,
reduces to the forms ∇ · ρ0u = 0 and ∇ · u = 0 in the anelastic and
Boussinesq approximations, respectively. The result of this is that
sound waves are filtered out and the time-step is no longer restricted
by their propagation. Buoyancy waves are still allowed.

In atmospheric physics, it is common to make the approxima-
tion of hydrostatic equilibrium (equation 8), in which we assume
perfect vertical force balance. This is applicable in contexts where
a constant gravitational field causes strong stratification, where the
length scales in the vertical direction are much smaller than in
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3266 J. Braithwaite and Y. Cavecchi

the horizontal, and where the fluid adjusts to vertical force balance
on a time-scale much shorter than any other time-scale of inter-
est – on the time-scale of sound waves propagating in the vertical
direction (Richardson 1922). The consequence is that vertically

propagating sound waves are filtered out, as well as high-frequency
internal gravity waves, and the z-component of the time-step restric-
tion (equation 1) can be removed. This is an obvious advantage in
any situation where the vertical length scales present in the system
are much smaller than the horizontal length scales and adequate
modelling therefore requires that �z ≪ �x, �y.

The hydrostatic approximation reduces the number of indepen-
dent variables in the system. For instance, in a system where the
gas has two thermodynamic degrees of freedom, in ‘raw’ hydro-
dynamic equations there are these two thermodynamic variables
plus the three components of velocity. In the equivalent hydrostatic
system the vertical component of the velocity is no longer indepen-
dent, but calculated by integration of equation (8) (see Section 2);
furthermore, one of the thermodynamic variables is lost. In the as-
trophysical context we often want to model conducting fluids with
magnetic fields. Note that although the hydrostatic approximation
filters out vertically propagating sound waves, vertically propagat-
ing magnetic waves are not entirely filtered; a magnetohydrostatic
scheme is therefore of use only in the case where the plasma β is
high, i.e. where the Alfvén speed is much less than the sound speed.

There are various ways in which the hydrostatic approximation
can be implemented, resulting in different sets of equations and in-
dependent variables. The vertical coordinate can be physical height,
pressure, entropy or some combination of those (see e.g. Kasahara
1974; Konor & Arakawa 1997, for a review of coordinate systems).
It turns out, for instance, that a change of the vertical coordinate
from height z (as used in other systems) to pressure P simplifies
the equations. This can be seen by noting that in hydrostatic equi-
librium, the pressure at any point is simply equal to the weight of
the column of gas above that point and that each grid box (which
has a constant pressure difference �P from top to bottom) will
contain constant mass. The continuity equation therefore becomes
∂ux/∂x + ∂uy/∂y + ∂ω/∂P = 0, where ω ≡ DP/Dt the full
Lagrangian derivative, which has the same form as the familiar
incompressible equation ∇ · u = 0 where vertical velocity uz ≡
Dz/Dt has been replaced by ω. Entropy coordinates (also known as
isentropic coordinates) are also commonplace, the main advantage
being that the vertical ‘velocity’ Ds/Dt is small, a function only
of heating and cooling, which reduces numerical diffusion in the
vertical direction.

The best choice of vertical coordinate often depends on the de-
sired upper and lower boundary conditions. In weather forecasting,
for instance, it is necessary to have the lower boundary fixed in
space. Using pressure coordinates, implementation of this is chal-
lenging. It is for this reason that Kasahara & Washington (1967)
produced a hydrostatic numerical scheme using height coordinates,
but owing to advances in hybrid coordinate systems which allowed
also for topographical features – mountain ranges and so on – this
scheme never became popular. However, when magnetic fields are
added, height coordinates z will be simpler than either pressure or
entropy coordinates and may regain an advantage in some contexts.

In more astrophysical contexts, such as neutron star, stellar or
planetary atmospheres, we may want a lower boundary fixed in
space, and to be more precise, fixed at a particular height (unlike
in the terrestrial context, mountain ranges and so on need not be
included). It is often desirable to have the upper boundary fixed in
pressure, if the temperature, and therefore also the pressure scale
height, varies by a large factor. For instance, during X-ray bursts

on neutron stars the temperature increases by about a factor of 10
so that an upper boundary fixed in space would mean insufficient
resolution of the relevant layers in cold areas, and extremely low
densities and high Alfvén speeds.1 Entropy coordinates are unsuit-
able since convection may appear, and in any case the entropy of
a comoving fluid element is expected to change rapidly, removing
any advantages of this system. In this context, therefore, the natu-
ral choice is the σ -coordinate system, a pressure-related coordinate
first proposed by Phillips (1957).

In Section 2 we present the basic equations, before describing
the finite-difference numerical method in more detail in Section 3,
presenting simple test cases in Section 4 and summarizing in Sec-
tion 5.

2 BASI C EQUATI ONS

In this section we describe the σ -coordinate system and how mag-
netic fields are incorporated.

First of all, we describe the standard MHD equations2 and then
go on to the additional equations coming from the hydrostatic ap-
proximation. Writing down the horizontal part of the velocity as u,
the horizontal part of the momentum equation is

ρ
Du

Dt
= −∇hP +

1

4π
[∇ × B × B]h + Fvisc,h, (2)

where the subscript h denotes the horizontal component of a vector,
and D/Dt ≡ ∂/∂t + u · ∇h + uz∂/∂z is the Lagrangian derivative.
Fvisc is the viscous force per unit volume. Writing down the conti-
nuity, energy and induction equations and the equation of state (i.e.
the perfect gas law), we have

∂ρ

∂t
= −∇h · (ρu) −

∂

∂z
(ρuz), (3)

cP

DT

Dt
=

1

ρ

DP

Dt
+ Q, (4)

∂B

∂t
= ∇ × (u × B − cEvisc), (5)

P = ρRT , (6)

where uz is the vertical component of the velocity, Q is the heating
rate per unit mass (including that from heat conduction), cP is the
specific heat at constant pressure, R is the gas constant (the universal
gas constant divided by the mean molecular weight of the gas in
question) and other quantities have their usual meanings. In this
system the vertical coordinate is a quantity σ related to the pressure
P and the pressure at the top and bottom boundaries PT and PB by

σ ≡
P − PT

P∗
, where P∗ ≡ PB − PT. (7)

One of the important main features of this scheme is that here the
upper boundary is fixed at pressure PT (where σ = 0) rather than
being fixed at a particular height. The lower boundary at σ = 1
is fixed in space. Now, the standard set of MHD equations would
also contain the z-component of the momentum equation (2) but in
the hydrostatic approximation we instead assume that the pressure

1 It is for this reason that Boussinesq and anelastic schemes are unsuitable
here, since they cope with only small variations about a constant reference
state.
2 We use cgs units throughout.
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A numerical hydrostatic MHD scheme 3267

gradient and gravity are always in perfect balance, i.e. we have the
equation of hydrostatic equilibrium:

∂P

∂z
= −gρ, (8)

neglecting the vertical component of the Lorentz force – which is
much smaller than the pressure and gravity forces in this high-β
regime.

In this scheme the fundamental variables which are evolved in
time are the horizontal part of the velocity u, the temperature T and
the pressure difference P∗, plus optional quantities such as heating
rate Q which we include here. Note that while T(x, y, σ ) and other
variables are three-dimensional, P∗(x, y) is only two-dimensional.

The density, or rather its inverse α ≡ 1/ρ, is calculated from the
equation of state (EOS), which in the ideal gas case is

α =
RT

σP∗ + PT
. (9)

This can easily be modified to more complex EOS, for example
around the transition between ideal gas and degenerate (electron)
gas. As before, the vertical component of the momentum equation
is replaced by the equation of hydrostatic equilibrium (8) which
takes the form

g
∂z

∂σ
= −αP∗, (10)

which we integrate from the lower boundary upwards to give height
z and potential φ:

φ = gz = P∗

∫ 1

σ

α dσ ′. (11)

In some sense the quantity P∗ can be considered a ‘pseudo-density’
as it takes the role of density in the equations – the continuity
equation is

∂P∗

∂t
+ ∇σ · (P∗u) + P∗

∂σ̇

∂σ
= 0, (12)

where ∇σ represents the gradient at constant σ (unlike ∇h which
is at constant height). This equation has an obvious similarity to
the familiar form ∂ρ/∂t + ∇ · (ρu) = 0. The equivalent of the
vertical component of the velocity is σ̇ ≡ Dσ/Dt . Note that P∗ is
not a function of σ and so comes outside of the derivative in the
third term above. Given the boundary conditions that σ̇ = 0 at both
upper and lower boundaries, we can integrate equation (12) from
σ = 0 downwards to give

σ
∂P∗

∂t
+ I + P∗σ̇ = 0, where I ≡

∫ σ

0
∇σ · (P∗u) dσ ′, (13)

so that integrating to the lower boundary σ = 1 gives a predictive
equation for P∗:

∂P∗

∂t
= −Iσ=1. (14)

Substituting this back into equation (13) allows calculation of the
vertical velocity σ̇ :

P∗σ̇ = σIσ=1 − I . (15)

Taking the Lagrangian derivative of the definition of σ (equa-
tion 7) and multiplying by P∗ gives

P∗σ̇ =
DP

Dt
− σ

DP∗

Dt
, (16)

where the Lagrangian derivative is defined in the usual way

D

Dt
≡

∂

∂t
+ u · ∇σ + σ̇

∂

∂σ
(17)

which we can also use to express the time derivative of P∗ as

DP∗

Dt
=

∂P∗

∂t
+ uσ=1 · ∇P∗. (18)

Substituting this, equations (14) and (15) into equation (16) gives
us an expression for DP/Dt:

DP

Dt
= σ uσ=1 · ∇P∗ − I (19)

which we need to evaluate the time derivative of temperature from
the thermodynamic equation

cP

DT

Dt
= α

DP

Dt
+ Q, (20)

where Q, the rate of heating per unit mass, includes all heating,
cooling and conductive terms.

What remains now is the (horizontal part of the) momentum
equation:

Du

Dt
= −∇σ φ − σα∇P∗ − 2� × u + Fvisc,h, FLor,h, (21)

where FLor,h is the horizontal part of the Lorentz force. It is not
immediately obvious how best to go about adding magnetic fields
to this scheme, since calculating real-space gradients in the vertical
direction necessitates first calculating the gradient ∂/∂σ and then
multiplying by ∂σ/∂z = −g/αP∗, and also because the grid points
themselves are moving in the vertical direction.

The best way is to start by making a switch of the independent
variable from B = (Bx, By, Bz) to

B
∗ ≡

(

Bx

∂z

∂σ
,By

∂z

∂σ
,Bz

)

, (22)

the equations can be significantly simplified, mainly since the time
derivative (∂z/∂t)σ is not required; what we do require is just the
derivative ∂z/∂σ , which we have already from equation (10). Fur-
ther defining ∇∗ = (∂/∂x, ∂/∂y, ∂/∂σ ) and u∗ = (ux, uy, σ̇ ), we
have
(

∂B
∗

∂t

)

x,y,σ

= ∇∗ × (u∗ × B
∗ − E

∗
visc). (23)

This system ensures conservation of flux. Details of the viscous part
of the electric field are given in Section 3.4.3.

The Lorentz force is calculated by first dividing the x and y

components of B
∗ by ∂z/∂σ to find the actual magnetic field B,

then finding the current J from ∇ × B in the usual way (where
the vertical derivatives are of the form (∂σ/∂z)∂/∂σ , and simply
taking the cross-product of the current with the magnetic field, i.e.

FLor =
[(

∂

∂x
,

∂

∂y
,
∂σ

∂z

∂

∂σ

)

× B

]

× B.

3 N U M E R I C A L I M P L E M E N TAT I O N

We now describe how the above equations are integrated numeri-
cally, describing the grid, time-stepping and the diffusion scheme.

3.1 Numerical grid

The grid is staggered, which improves the conservation properties of
the code and is worth the modest extra computational expense; dif-
ferent variables are defined in different positions in the grid boxes.
The horizontal components of the velocity are face-centred, de-
fined half of one grid spacing from the centre of each grid box

C© 2012 The Authors, MNRAS 427, 3265–3279
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3268 J. Braithwaite and Y. Cavecchi

Figure 1. The grid, showing the positions within each grid box at which
the fundamental quantities are defined: T , centres of grid boxes, dark circle;
Ux, σ and y centred, x face-centred, open circles; Uy, σ and x centred, y

face-centred, open circles. P∗(x, y) is defined at the same x and y locations
as T; any additional thermodynamic variables such as the heating rate Q, are
defined in the same locations as T . Bx is defined at the same positions as Ux;
By at the same as Uy. Bz and σ̇ are x and y centred, but face-centred in the
σ direction. The arrows represent positive directions for all the respective
vector Kittie’s, but σ̇ has the opposite sign. See text for definitions. Above
and below the central box, the upper and lower boundaries are also shown.

Figure 2. The so-called C-grid. Projection on the horizontal plane. Veloc-
ities are face-centred (dark circles); the open circles in the centre of each
grid box represent all of the other non-magnetic variables. Note that this
diagram gives no information regarding the vertical positions.

(see Figs 1 and 2), whilst all other variables are defined either in
the centre of the grid box or vertically above/below it. Temperature
and any other thermodynamic variables such as Q, and potential φ

are defined at the centre of each grid box.3 P∗ is a function of x and
y only and is defined in the centre of the grid box, not displaced in
the x or y directions. Bx, By and Bz are face-centred, defined half
of a grid spacing from the box centre in the x, y and z directions,
respectively.

At various times while evaluating the time derivatives in the
partial differential equations given above, it is necessary to find

3 The staggering in the vertical is known as the Lorenz grid (Lorenz 1960).
The alternative is the Charney–Phillips grid (Charney & Phillips 1953)
where these quantities are face-centred, displaced half a grid spacing in the
vertical from grid-box centre.

the spatial derivatives of various quantities, to evaluate a quantity
at a position other than that where it is defined (e.g. half a grid
spacing displaced in some direction) and to integrate a quantity in
the vertical direction. The derivatives, interpolations and integrals
are evaluated to fifth, sixth and fifth order, respectively, meaning
that the values of the given quantity at six grid points are used to
calculate the required quantity/derivative/integral at each grid point
(for details see Lele 1992).

For instance, if a quantity f is defined displaced half a grid spacing
in the x-direction from the centre of the grid box and its value is
required at the grid-box centre the value is calculated thus:

fi =
75

128

(

fi+ 1
2

+ fi− 1
2

)

−
25

256

(

fi+ 3
2

+ fi− 3
2

)

+
3

256

(

fi+ 5
2

+ fi− 5
2

)

,

(24)

and if the spatial derivative with respect to x is required at the same
location, it is calculated thus:

�x f ′
i =

225

192

(

fi+ 1
2

− fi− 1
2

)

−
25

384

(

fi+ 3
2

− fi− 3
2

)

+
3

640

(

fi+ 5
2

− fi− 5
2

)

.

(25)

Note that this method of calculating interpolations and derivatives
is also used in the ‘stagger code’ (Nordlund & Galsgaard 1995;
Gudiksen & Nordlund 2005).

In addition to this, however, we need to integrate various quanti-
ties in the vertical direction – for instance to integrate a body-centred
quantity f (indices 1/2, 3/2, etc.) from the upper boundary (where
coordinate σ = 0) downwards to an arbitrary position σ , and to
return the result at face-centred locations (indices 0, 1, 2 etc.) we
first perform a first-order integration,

I 1st
i = I 1st

i−1 + �σ fi− 1
2
, (26)

and then increase the order with the following operation to add parts
on to either end of the integration:

Ii = I 1st
i + b

(

f− 1
2

− f 1
2

)

+ c
(

f− 3
2

− f 3
2

)

+ d
(

f− 5
2

− f 5
2

)

+ b
(

fi+ 1
2

− fi− 1
2

)

+ c
(

fi+ 3
2

− fi− 3
2

)

+ d
(

fi+ 5
2

− fi− 5
2

)

,

(27)

where b = 0.0543134�σ , c = −0.00484768�σ and d =
0.000379257�σ .

In addition, a body-centred integrand must sometimes be inte-
grated from the upper boundary (σ = 0) to body-centred positions.
As before, a first-order result is obtained first:

I 1st
i+ 1

2
= I 1st

i− 1
2

+
�σ

2

(

fi− 1
2

+ fi+ 1
2

)

, (28)

and a higher order result for just the point half a grid spacing from
the upper boundary:

I 1
2

= a1f 1
2

+ b1f 3
2

+ c1f 5
2

+ a2f− 1
2

+ b2f− 3
2

+ c2f− 5
2
,

(29)

where the coefficients have the values

a1 = 0.41410590�σ, a2 = 0.14283854�σ,

b1 = −0.036306424�σ, b2 = −0.028276910�σ,

c1 = 0.0041015625�σ, c2 = 0.0035373264�σ.
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A numerical hydrostatic MHD scheme 3269

These are used to produce the final result:

Ii+ 1
2

= I 1st
i+ 1

2
+ I 1

2
− af 1

2

− b
(

f 3
2

− f− 1
2

)

− c
(

f 5
2

− f− 3
2

)

+ b
(

fi+ 3
2

− fi− 1
2

)

+ c
(

fi+ 5
2

− fi− 3
2

)

,

(30)

with a = (1/2)�σ , b = −(41/720)�σ and c = (11/1440)�σ . In
other situations, it is convenient to perform this integration in the
other direction, in which case the equivalent can be done, running
the loops in the opposite order.

It can be seen above that for interpolations, derivatives and inte-
grations, the values of quantities are required beyond the boundaries
of the computational domain; this is described below in Section 3.2.

3.2 Boundaries

In the horizontal directions, the simplest boundaries to implement
are obviously periodic boundaries, but there is the possibility of
switching one of the two directions to some other boundary con-
dition. Another possibility is to have ‘mirror’ conditions in one
direction, in order to avoid modelling the same thing twice in sym-
metric configurations. These conditions are symmetric in T and
other scalars, and antisymmetric in the perpendicular component of
the velocity.

In the vertical direction, periodic boundaries are impossible, so
symmetric conditions are used in T (and other thermodynamic vari-
ables) and the parallel components of velocity. These represent all
of the independent variables, as the vertical component of velocity
is a derived quantity. The zero condition (and antisymmetry) for the
vertical velocity ensures that no mass can flow across the vertical
boundaries.

As for the magnetic field, mathematically our boundaries are
no different from the ‘pseudo-vacuum’ boundaries used by many
other researchers, the difference is just we evolve B

∗ using ∇∗ and
u∗ which have different meanings (see equation 22), but the time
derivative is still calculated as the curl of a vector. Our quantity
∇∗ · B

∗ is therefore conserved just as well as ∇ · B in other codes,
as are the fluxes.

3.3 Time-stepping

The time-stepping uses a third-order low-storage Runge–Kutta
scheme (Williamson 1980), which in practice means that during
each time-step the time derivatives on the left-hand sides of the
partial differential equations are evaluated three times, with three
different values of the quantities on the right-hand sides. If the quan-
tities f , g, etc. are to be evolved in time from time t = t0, at which
the quantities have values f 0, g0, etc., each time-step consists of the
following steps (just including variable f for brevity):

(i) calculates time derivatives f ′
0 from f 0;

(ii) finds time-step �t according to various Courant conditions
(see below);

(iii) evaluates new values f 1:

f1 = f0 + �t b1f
′
0;

(iv) evaluates new time derivatives f ′
1 from f 1 and averages with

previous one:

f ′
1.5 = a2f

′
0 + f ′

1;

(v) updates new values for second step:

f2 = f1 + �t b2f
′
1.5;

(vi) calculates time derivatives f ′
2 from f 2 and averages with

previous ones:

f ′
2.5 = a3f

′
1.5 + f ′

2;

(vii) calculates final time-step values f 3:

f3 = f2 + �t b3f
′
2.5,

and so f 3 is the value at the end of the time-step. The coefficients
are a2 = −0.641874, a3 = −1.31021, b1 = 0.46173, b2 = 0.924087
and b3 = 0.390614. The advantage of this type of scheme is that the
results from the previous evaluations need not be stored in memory,
therefore, making the code less demanding in terms of memory
usage and faster on systems with limited amount of ram.

The time-step is limited by the various Courant conditions given
by the different quantities that are evolved. First define

�s ≡ min (�x, �y, �σ/
√

νσ ), (31)

A ≡ (6.2 × 3/2)
�t

�s2
. (32)

The coefficients in A come from the following: the 6.2 from the max-
imum value of the second derivative with this sixth-order scheme,
the 3 from the worst-case 3D chequered scenario and the 1/2 to
normalize (since there is a factor 2 in the diffusive term); see for
instance Maron & Mac Low (2009) and references therein.

Then, we have the following Courant parameters:

Cu = max(cs + |u|)
�t

�s
, (33)

Cp = max

(
∣

∣

∣

∣

1

T

∂T

∂t

∣

∣

∣

∣

)

�t, (34)

Cν = A max[3 max(ν), max(νs)], (35)

Cu is the limiting factor from velocities (both physical and sound
velocity cs), Cp the one from temperature changes, while Cν is the
one from kinetic diffusion (see Section 3.4). Finally, the time-step
is fixed according to

�t =
C�t�t

max(Cu, Cν, Cp)
, (36)

where C�t is some numerical factor, which we generally set to 0.3.

3.4 Diffusion

In this section we describe how the scheme handles kinetic, thermal
and magnetic diffusivities.

The code includes both pure physical diffusion as well as a ‘hyper-
diffusive’ scheme, designed to damp structure close to the Nyquist
spatial frequency while preserving well-resolved structure on larger
length scales. Often it is possible, by assessment of their relative
magnitudes (also treating the horizontal and vertical directions sep-
arately) to switch off one or the other. The kinetic, thermal and
magnetic diffusivities ν, κ and η all have dimensions of length
squared over time.

It can be shown that with the physical ‘textbook’ diffusion equa-
tions, the computational demands sometimes become prohibitively
expensive. For instance, using a kinetic diffusivity ν high enough
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3270 J. Braithwaite and Y. Cavecchi

to handle shocks would result in unacceptable damping of low-
amplitude sound waves unless one were able to use an unrealisti-
cally high resolution. Moreover, in constructing the fluid equations
we made approximations based on the assumption that all relevant
length scales in the system were much larger than the mean-free-
path of the molecules, but the same fluid equations produce shocks
which physically have a thickness comparable to the mean-free-
path, i.e. the equations have predicted their own invalidity. To allow
shock handling without prohibitively high diffusivity in the entire
volume, there is an additional viscosity in the vicinity of shocks.
The two viscosities are one based on the sound speed and one on the
divergence of the (horizontal) velocity – the latter is very negative
in a shock. They are

ν = ν1(cs + |u|) max(�x, �y), (37)

νs = ν2 smooth[max(−∇ · u, 0)] max(�x, �y)2, (38)

where smooth is a linear average defined over a cube of 3 × 3 × 3
points centred on the current one and max is defined over a cube of
5 × 5 × 5 points. Both coefficients ν1 and ν2 are dimensionless, but
ν2 is generally much larger in value; despite that, the second term
above is negligible except in shocks.

In addition to such a method of shock handling, many general-
purpose codes use some kind of artificial diffusion scheme which
can handle discontinuities and damp unwanted ‘zig-zags’. Here,
we use a ‘hyperdiffusive’ scheme, based on that of Nordlund &
Galsgaard (1995), where the diffusion coefficients are scaled by
the ratio of the third and first spatial derivatives of the quantity in
question, which has the effect of increasing the diffusivity seen by
structures on small scales where the third derivative is high, damping
any badly resolved structure near the Nyquist spatial frequency,
while allowing a low effective diffusivity on larger scales. The way
this works in practice is via diffusive flux operators:

f ′
i = dfi +

max(|d3i+i |, |d3i |, |d3i−1|)
max(|dfi+i |, |dfi |, |dfi−1|)

, (39)

where dfi =
(

fi+ 1
2

− fi− 1
2

)

/�x (40)

and d3i = dfi+1 − 2dfi + dfi−1. (41)

These flux operators replace the derivatives of quantities on which
the diffusion is operating, such as inside the brackets in equation (42)
below. For some kinds of diffusion we use these hyperdiffusive
derivatives, and for other kinds we use the standard derivatives
to give a more physical result. In addition, because of the very
different length scales and grid spacings, diffusion in the vertical
and horizontal directions must often be treated differently.

3.4.1 Kinetic diffusion

Assuming that bulk viscosity is zero (a good approximation in
monatomic gases), the result of viscosity is to add the following
viscous force (per unit mass) to the momentum equation (2):

F visc
i =

1

ρ

∂

∂xj

[

ρν

(

∂ui

∂xj

+
∂uj

∂xi

−
2

3
δij∇ · u

)]

, (42)

using Einstein summation notation. Furthermore, in many applica-
tions it can be shown that the divergence term is very much smaller
than the other terms, and we drop this term here, as it does not
contribute in any case to numerical stability. Moreover, in many as-
trophysical applications including those for which this code has so

far been used, the kinetic diffusivity is much smaller than the other
two diffusivities and it is desirable to reduce the ‘effective’ viscos-
ity as much as possible whilst preserving the stability of the code.
For this reason, kinetic diffusion uses hyperdiffusive derivatives
(described above) inside the brackets in equation (42); the deriva-
tive outside the square brackets remains a standard high-order
derivative to preserve momentum conservation. However, the hy-
perdiffusive derivatives are used only with the standard viscosity
(equation 37) and the normal derivatives are used with the shock
viscosity (equation 38).

The vertical and horizontal directions require different treatment.
First, note that the vertical component of the viscous force is ig-
nored, as we are not considering the vertical part of the momentum
equation. Secondly, all terms in equation (42) which contain the
vertical velocity are dropped. Thirdly, all derivatives with respect to
the vertical coordinate must be scaled by a factor �σ /�x or �σ /�y.
The viscous force (per unit mass) is

F visc
x =

1

P∗

{

∂

∂x

[

P∗ν
∂

∗ux

∂x
+ P∗νs

∂ux

∂x

]

+
∂

∂y

[

P∗ν

2

(

∂
∗ux

∂y
+

∂
∗uy

∂x

)

+
P∗νs

2

(

∂ux

∂y
+

∂uy

∂x

)]

+
∂

∂σ

[

P∗ννσ

2

∂
∗ux

∂σ
+

P∗νsνσ

2

∂ux

∂σ

]}

, (43)

F visc
y =

1

P∗

{

∂

∂y

[

P∗ν
∂

∗uy

∂y
+ P∗νs

∂uy

∂y

]

+
∂

∂x

[

P∗ν

2

(

∂
∗uy

∂x
+

∂
∗ux

∂y

)

+
P∗νs

2

(

∂uy

∂x
+

∂ux

∂y

)]

+
∂

∂σ

[

P∗ννσ

2

∂
∗uy

∂σ
+

P∗νsνσ

2

∂uy

∂σ

]}

, (44)

where the asterisks with the derivative signify a hyperdiffu-
sive differentiation as detailed above, and where νσ is equal to
�σ 2/min (�x, �y)2. These values of νσ ensure not only that the
units of the different terms are the same, but also that a given
zig-zag structure is damped on the same number of time-steps, in-
dependently of the grid spacing in the three directions. Finally, note
the role of P∗, the pseudo-density4 – its presence in this way in the
equations ensures conservation of momentum.

In addition to the viscous stress, viscosity heats the fluid. The
magnitude of this heating (per unit mass) is

Qvisc =
1

P∗
Sij

∂ui

∂xj

, (45)

where Sij is the viscous stress tensor, i.e. the contents of the square
brackets in equations (43) and (44). The index i is equal to x and y,
but the index j is x, y and σ . Units are taken care of by the presence
of νσ inside the Sxσ and Syσ parts of the stress tensor.

3.4.2 Thermal diffusion

The code includes two kinds of thermal diffusion: hyperdiffusive
(similar to the momentum diffusion) and ‘physical’, both of which
are simply added to the heating per unit mass Q. The hyperdiffusive
thermal diffusion is

Qtherm =
1

P∗
∇ ·

[

P∗cp(κ∇∗T + κs∇∗T )
]

, (46)

4 The right term should be P∗ /g, but g, being a constant, simplifies out of
the equations.
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A numerical hydrostatic MHD scheme 3271

where the asterisk signifies a hyperdiffusive derivative as described
above. The vertical derivatives are scaled with �σ 2/�x2 as before.
The diffusivities κ and κ s are calculated simply by multiplying ν

and νs by a number, normally unity.
It is sometimes desirable to have a larger thermal diffusion to

model an actual physical process. To this end, the code also in-
cludes a physical thermal diffusion, which is simply the same as
equation (46) but with standard spatial derivatives. In the vertical
direction, derivatives with respect to σ are scaled with ∂σ/∂z. In
principle, there are also cross-terms originating from the fact that
surfaces of constant σ are not horizontal. Generally though, these
terms are tiny and can be dropped. Furthermore, the difference of
length scales in the horizontal and vertical often means that the
physical thermal diffusion in the horizontal direction is too small
to provide numerical stability, and so a hyperdiffusive horizontal
diffusion is required; likewise, in many applications the physical
diffusion in the vertical direction is much larger than the minimum
required for stability and the vertical hyperdiffusion can be switched
off.

3.4.3 Magnetic diffusion

Finite conductivity gives rise to an extra electric field in the in-
duction equation (5) since in a medium with finite conductivity, an
electric field in the comoving frame is required to drive a current
according to Ohm’s law J = σ E, where σ is the electrical conduc-
tivity. Remembering that J = (c/4π)∇ × B and that the magnetic
diffusivity is defined as η ≡ c2/(4πσ ), this extra field is

E
visc =

η

c
∇ × B. (47)

The code contains a hyperdiffusive scheme rather like that described
above for momentum diffusion. The electric current is calculated
with the standard derivatives but the diffusivity η is scaled. The
expression for the electric field is

E
visc =

4π

c2
{ηh( J) + ηs J} , (48)

where the hyperdiffusive operator h is

hx =
Jx

|Jx |

(

�y2

∣

∣

∣

∣

∣

∂
2Jx

∂y2

∣

∣

∣

∣

∣

+ �σ 2

∣

∣

∣

∣

∣

∂
2Jx

∂σ 2

∣

∣

∣

∣

∣

)

(49)

with corresponding values for the y and z components.
The value of η is given by multiplying ν by some number, nor-

mally unity. We determine ηs by a similar method to that used in
determining νs, with the difference that we use the divergence not of
the velocity field u but of the part of the velocity field perpendicular
to the magnetic field, u⊥.

The energy consequently lost from the electromagnetic field ap-
pears as heat, the so-called Joule heating given by (per unit mass)

QJoule =
1

ρ
J · E

visc. (50)

3.4.4 Diffusion of other variables

In addition to horizontal velocity, temperature and magnetic field,
it is often necessary in the σ -coordinate scheme to apply a hy-
perdiffusive scheme to the other main variable, P∗. This works in
exactly the same way as for the other variables, except that being
two-dimensional it is somewhat simpler. The diffusivities ν and νs

are first averaged over σ and multiplied by some number, normally
unity, then a term is added to the partial differential equation (14):

∂P∗

∂t
= · · · + ∇ ·

(

ν̄∇∗P∗ + ν̄s∇P∗
)

, (51)

where the gradients are two-dimensional. This diffusion helps to
damp unwanted zig-zag behaviour where it occurs.

Any additional variables must generally also have some added
diffusion: this works in exactly the same way as the hyperdiffusion
on other variables. Normally the diffusivity can be lower, though, if
the variable is a passive tracer with no feedback on other variables.

3.5 Parallelization and horizontal coordinates

The code has been parallelized using Open Multiprocessing
(OPENMP), which can be used on a shared-memory machine. Paral-
lelization for a distributed memory machine using Message Passing
Interface (MPI) is planned in the medium term.

Also planned for the medium term is an extension to spherical
coordinates, with a view to modelling oceans and atmospheres on
stars and planets.

4 TEST CASES

In this section we describe the numerical tests used to validate the
code. We simulate the development of a shock from a wave, the
Rossby adjustment problem and the Kelvin–Helmholtz and inverse
entropy gradient instabilities. We also test the propagation of Alfvén
waves and the Tayler instability for the magnetic field.

All simulations have periodic horizontal boundary conditions.
We assign the pressure via PT, which is constant at all times, and
P∗ (see equations 7 and 14). We also assign the temperature and the
initial velocity fields. When initial prescriptions are better expressed
in terms of density, we assign temperature such that the right density
is regained (see equation 9).

One point has to be noted about the vertical coordinate in the
figures. Given that we use the σ -coordinate system, neither phys-
ical height nor gravity enters the equations (see equations 11 and
21); only the product of the two is present. What is really relevant
is the ratio between the scale height and the physical height of the
model. What this means is that gravity g is essentially a free scal-
ing factor which allows us to translate our simulations to different
physical settings and the choices of gravity made here are arbitrary.
However, when magnetic fields are added physical height becomes
meaningful in its own right.

4.1 Wave developing into a shock

As a first test we start with a wave developing into a shock. These
runs were performed in 2D, x and σ . The experiment is set-up
with a uniform temperature RT = 106 erg g−1 and a perturbation in
pressure (i.e. in P∗) such that the resulting perturbation in the height
is sinusoidal:

δH/H0 = 0.1 cos(2πx/λ), (52)

where we used λ equal to the extent of the domain (1 cm).
The three resolutions used to check convergence were 50 × 50,

100 × 100 and 200 × 200 (Fig. 3). The wave develops into a shock
after ∼5 crossing times in all three simulations. We further use this
set-up to check if the shock jump conditions are met (see below)
and to do this we also run a new simulation of a strong shock at
resolution 200 × 200 increasing the height perturbation amplitude
to 0.7 times the background value (Fig. 4).
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3272 J. Braithwaite and Y. Cavecchi

Figure 3. Top: initial snapshot of the wave simulation 200 × 200 (Sec-
tion 4.1). Units of the velocity colour scale in cm s−1. Bottom: snapshot at
t = 2.44 × 10−3 s, first crossing time. Units of the velocity colour scale
in cm s−1. Superimposed is the initial height profile. The configuration is
symmetrical with respect to the initial one.

4.1.1 Conserved quantities

At this stage it is useful to check the conservation properties of the
numerical scheme, in terms of mass, momentum and energy.

We calculate the integrals as (remember that P∗/g is ‘equivalent’
to ρ)

Mtot =
∫

P∗

g
dx dy dσ =

1

g

∫

P∗ dx dy, (53)

px/y,tot =
∫

ux/y

P∗

g
dx dy dσ, (54)

E =
∫

(

u2
x + u2

y

2
+ cP T

)

P∗

g
dx dy dσ. (55)

In the last equation (see Kasahara 1974, equation 5.18) (u2
x +u2

y)/2
represents the kinetic energy and cPT is the specific enthalpy. Note
that there is no term for the gravitational potential energy – that is
because as a whole, that energy is built into the enthalpy cPT . To
see this, imagine ‘inflating’ the ocean from (close to) absolute zero
whilst retaining the vertical ordering of each fluid element; for each
fluid element one needs just the eventual internal energy and the
P dV work which is used in pushing the overlying fluid upwards,
and the sum of these two is simply the enthalpy; the pressure of
each fluid element remains constant during this process.

We do not plot Mtot conservation, because it is conserved to
machine accuracy in all simulations. Fig. 5 shows the evolution in
time of (E − E0)/E0 for the three resolution simulations, where E0

Figure 4. The wave simulation 200 × 200, case of the strong shock (Sec-
tion 4.1). Units of the velocity colour scale in cm s−1. The three frames are
a time sequence at t = 0, 3.56 × 10−3 and 4.34 × 10−3 s. Superimposed on
the latter two frames is the initial height profile. The shock develops and is
then reflected off the boundary.

is the initial energy. Energy is conserved to about one part in 105.
In these wave simulations the conservation of energy is essentially
independent of resolution. Momentum conservation is looked at in
Section 4.3, since here the total momentum is zero and a fractional
conservation is tricky.

4.1.2 Wave speed

We now study the velocity of the wave: considering only half the
domain, since the horizontal velocity field ux is zero at the bound-
aries, before the non-linear effects become important and the shock
develops, we may regard it as a standing wave of n = 1 (the fun-
damental). The velocity of the wave propagation in the medium is

C© 2012 The Authors, MNRAS 427, 3265–3279
Monthly Notices of the Royal Astronomical Society C© 2012 RAS

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

/4
2
7
/4

/3
2
6
5
/9

7
3
4
4
1
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



A numerical hydrostatic MHD scheme 3273

Figure 5. Relative variation of E for the wave simulation at resolution
200 × 200 (Section 4.1.1).

(see Pain 2005)

cw = ωL/π, (56)

where L is the extent of the domain (0.5 cm) and ω the wave fre-
quency (2π/�T , �T its period).

The initial condition for the velocity is to be zero everywhere,
we therefore choose an arbitrary position in space (x = 0.01 cm)
and measure the time it takes for ux to reach its minimum before
rising again. This corresponds to �T/4. We then compute the value
of cw. We limit ourselves to this early stage only to avoid non-linear
effects. The values we measure are 200.774 cm s−1 for the 50 ×
50 simulation, 200.793 cm s−1 for the 100 × 100 simulation and
200.797 cm s−1 for the 200 × 200 one. These are very close to the
expected value for a gravity wave with speed given by

√
gH =

200 cm s−1 in shallow water approximation, although of course we
are not modelling shallow water here but shallow compressible gas.
However at this modest amplitude the compressibility has only a
small effect. In the case of the strong shock we find 192.197 cm s−1,
which is less accurate, but the perturbation is higher and the shock
sets in at the first crossing, therefore, the linear approximation is
definitely not valid.

4.2 Rossby adjustment problem

We also simulate the Rossby adjustment problem. This is a 2D
problem (one vertical and one horizontal dimension) similar to the
dam break, with the addition of the effects of the rotation of the
reference frame. The fluid is assumed to be confined and at rest,
until at t = 0 s it is let free to move. The initial conditions correspond
to a central ‘bump’ in the fluid which will try to spill laterally
under the action of pressure/gravity. Coriolis force will oppose this
motion and the fluid should adjust to an equilibrium configuration
with a sloping interface that extends for ∼6RR in the horizontal (x)
direction; RR is the Rossby radius defined as (see Pedlosky 1987)

RR =
√

gH

4�
, (57)

where � is the angular velocity of the reference frame; note that
below we use the Coriolis parameter f = 2�.

The set-up for these simulations is g = 103 cm s−2, PT =
104 erg cm−3, P∗ = (e − 1)PT and RTmax = 2 × 106 erg g−1. We
add an initial perturbation of the fluid temperature as

δT /Tmax =
(2η/Hmax − 1) exp [(x − x0)/δx]

1 + exp [(x − x0)/δx]
. (58)

Figure 6. Snapshot of the Rossby adjustment simulation 200 × 200 (Sec-
tion 4.2) at times t = 0 and 1.52 × 10−3 s. Units of the velocity colour scale
in cm s−1. The transient waves are visible.

This perturbation goes from 0 to 2η/Hmax − 1 over an interval δx,
being η/Hmax − 0.5 at x0. x0 is chosen to be at 75 per cent of the
domain, δx is 0.2 per cent of it and 2η/Hmax = 0.5. We measure the
average height H0 at x0. With these choices Hmax = 4 × 103 cm,
H0 = 3 × 103 cm and η = 103 cm. Again, we simulate only half of
the domain (480 km, 240 km) to save computational time and then
mirror the results and we try three resolutions of 50 × 50, 100 ×
100 and 200 × 200 at f = 10−3 s−1 (Fig. 6).

4.2.1 Adjustment

Our simulations never reached the steady state, which was to be
expected given the reflecting boundary conditions and the fact that
the time to relax can be extremely long (see Kuo & Polvani 1997). In
order to have a measure of the asymptotic configuration we average
the profile of the simulations after t = 5 × 103 s when only steady
gravity waves are left. The theoretical prediction for the asymptotic
shape of the profile in shallow water approximation should be (see
Boss & Thompson 1995; Kuo & Polvani 1997)

h =

⎧

⎪

⎨

⎪

⎩

H1 −
√

H1
g

A exp [ (x − xa)/R1] x ≤ xa,

H2 −
√

H2
g

A exp [−(x − xa)/R2] x ≥ xa,

(59)

uy =

{

A exp [ (x − xa)/R1] x ≤ xa,

A exp [−(x − xa)/R2] x ≥ xa,
(60)

ux = 0, (61)
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3274 J. Braithwaite and Y. Cavecchi

Figure 7. Left-hand panel: comparison of numerical results [for the Rossby adjustment simulation (Section 4.2.1) at resolutions 50 × 50 dashed line, 100 ×
100 dotted line and 200 × 200 solid line] with theoretical prediction (equation 59, dot–dashed line) for the height profile. The abscissas are rescaled with respect
to the RR and are centred on x0, see equation (58), where the initial configuration height was H0. Right-hand panel: for the same simulations, a comparison of
numerical results (dashed, dotted and solid lines) with theoretical prediction (equation 60, dot–dashed line) for the uy profile.

but note of course that this is not completely applicable here as our
gas is compressible. H1 = H0 + η and H2 = H0 − η are the maximal
and minimal initial heights, R1 =

√
gH1/f , R2 =

√
gH2/f , the

Rossby radii of the two heights, and xa = R1 − R2, A = fxa.
As it can be seen from Fig. 7, the approximation of the theoret-

ical results improves quite well with the resolution. This is to be
expected, since the relevant length scale RR corresponds to only
∼1.8 grid cells in the 50 × 50 simulation, while it improves to
∼3.6 in the 100 × 100 one and to 7.2 in the 200 × 200 one. We
measure the root-mean-square (rms) difference5 between the the-
oretical prediction for the profile and the numerical results: it is
1.20 × 10−1, 3.92 × 10−2, and 2.22 × 10−2: definitely improv-
ing. Also the approximation of the value of xa increases: relative

accuracy is 63.88 per cent (50 × 50), 60.30 per cent (100 × 100)
and 53.50 per cent (200 × 200). Fig. 7 (right-hand side) confirms
this trend: the rms difference between the theoretical prediction
equation (60) for Uy and the numerical results is 6.42 × 10−2,
3.68 × 10−2 and 1.99 × 10−2. Note that due to the diffusive high-
order nature of the code, we cannot reproduce the sharp peak in
the theoretical prediction and this explains the higher discrepan-
cies. Anyway, the approximation of the maximum value improves
steadily: relative accuracies are 58.48 per cent (50 × 50), 39.02 per
cent (100 × 100) and 17.78 per cent (200 × 200).

A Fourier analysis of the height of the surface of the gas shows
the presence of strong oscillations in addition to red noise at low
frequencies. The peaks start above f /2π, indicated as vertical line
in Fig. 8, which is in good agreement with the theoretical dispersion
relation for the waves (see Pedlosky 1987):

ν =

√

(

f

2π

)2

+
gH

λ2
, (62)

where λ is the wavelength of the wave.
Finally, as an example, Fig. 9 shows the time evolution of the

height profile for the simulation at resolution 200 × 200.

5 We do not use the relative difference to avoid divergences when the theo-
retical value is 0.

Figure 8. Time Fourier analysis of the height at a fixed horizontal position
(x = 2.1 × 107 cm) for the Rossby adjustment simulation f = 10−3 Hz
at resolution 200 × 200 (Section 4.2.1). The vertical line indicates the
frequency corresponding to f /2π.

4.3 Kelvin–Helmholtz instability

This is a shear instability where two fluids are moving parallel to
each other with different velocities. We ran a simulation at resolution
200 × 200 × 16 with a central section (accounting for one-third of
the volume) moving with a velocity uy = 5 × 103 cm s−1 and the
remaining two-thirds of the domain moving with equal and opposite
velocity. Initially, the temperature and P∗ are both constants (sound
speed cs ∼ 104 cm s−1), and P∗ is equal to PT, so that a little under
one scale height is modelled. We follow the locations of the two
fluids with the aid of a passive tracer variable. Finally, to get the
instability started we give the fluid an initial kick, giving the x-
component of the velocity with perturbations of the form ux =
50 cos(2πy/λ) cm s−1. In the following example, five wavelengths
are perturbed at once, the largest five wavelengths fitting into the
domain. The output of these simulations is plotted in Fig. 10.

In this simulation, mass is conserved to machine precision as
usual, as in the simulation mentioned previously. As for momentum
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Figure 9. Time evolution of the height profile for the Rossby adjustment simulation with f = 5 × 10−4 Hz at resolution 200 × 200 (Section 4.2.1).

conservation, which was not tested previously, the fractional change
in total momentum in the y-direction is plotted in Fig. 11. It is
conserved here to within about one part in 106.

We now measure the growth rate of the instability taking the
Fourier transform of ux in the y-direction along the line x = 1.7 ×
10−1 cm (i.e. at the initial position of the interface between the two
flows). The initial perturbation should grow at a rate exp (ωt).

Under the assumptions of no stratification and incompressibility
ω is given by (see Choudhuri 1998)

ω =
2π

λ

√

ρ1ρ2

(

Uy,2 − Uy,1

ρ1 + ρ2

)2

. (63)

Although these assumptions are not trickily true for our simula-
tions, still they are good approximations and indeed looking at the
amplitudes of the five perturbed modes, we see that (as is already
obvious from Fig. 10) the shortest wavelength grows the fastest, as
predicted – see Fig. 12.

4.4 Inverse entropy gradient instability

A common case in astrophysics is when thermal conduction is not
enough to bring heat from a lower layer to an upper one. This sit-
uation leads to an inverse gradient of entropy and consequently to
convection. This kind of instability can be thought of as a general-
ization of the standard text book Rayleigh–Taylor instability and the
driving force is still basically buoyancy, the main difference being

the compressibility of the gas. The criterion for stability in the case
of adiabatic motion of the fluid elements is known as Schwarzschild
criterion (see Clayton 1984):

ds/dz ≥ 0, (64)

where s is the specific entropy and z the height. In the σ -coordinate
system this translates in to

ds/dσ ≤ 0. (65)

In the case of an ideal gas we have

s ∝ ln

(

P

ργ

)

, (66)

where γ = cP/cV , which can also be rewritten, with the use of
equation (6), as

T ∝ P 1−1/γ es/γ . (67)

For our simulation, we set

RT

1 erg g−1
=

(

P

1 erg cm−3

)1−1/γ

e0.003σ (68)

which ensures a gradient for entropy of ds/dσ = 0.003γ > 0 in
violation of condition (65). PT = 1 erg cm−3 and P⋆ = (e − 1)PT,
so that we simulate 1 scale height. The average sound speed is
∼1.5 cm s−1. To start the instability we perturb the initial velocity
field as

ux = 1 × 10−6
12

∑

i=1

sin

(

2π

λi

x + ϕi

)

cm s−1, (69)
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Figure 10. A simulation of the Kelvin–Helmholtz instability in a square
box with resolution 200 × 200 × 16 (Section 4.3). In the initial conditions
there are perturbations at five different wavelengths: λ = 1/1, 1/2, 1/3, 1/4,
1/5 cm. Top-left: initial conditions, uy. The other three frames are at t = 8.86
× 10−4 s: top-right: passive tracer used to follow the locations of the two
fluids; bottom-left: uy and bottom-right: ux. (Note that these snapshots are
taken at a later time than the maximum time of Fig. 12.)

Figure 11. Relative variation of py for the Kelvin–Helmholtz instability
simulation at resolution 200 × 200 × 16 (Section 4.3).

where λi = 1/i cm and ϕi is a set of random phases. The domain
extent is 1 cm.

In order to make sure that the motion of fluid elements is as adi-
abatic as possible we include just the hyperdiffusive thermal con-
duction (see Section 3.4.2). This test is run in 2D with a resolution
of 200 × 800 and Fig. 13 shows the initial conditions and the evo-
lution of the entropy profile: after ∼20 s the profile has completely
overturned.

The growth rate of the instabilities in the linear regime is of order

ω ∝
√

gHp (∇ad − ∇)

λ
, (70)

where ω and λ have the same meaning as in Section 4.3, g is the grav-
itational acceleration, Hp is the scale height. ∇ = dlog (T)/dlog (P)
and ∇ad is the derivative in the adiabatic case (for a perfect gas
∇ad = 0.4). Therefore, smaller wavelengths should develop first.
This is indeed the case and in Fig. 14 we show the time evolution
of the Fourier powers and logarithms of the powers while the simu-
lation is still in the linear regime. The growth rate (the slope of the
log plots) is proportional to the wavenumber 1/λ.

Figure 12. Time evolution for the powers of λ = 1/1 . . . 5 cm−1 for the
Kelvin–Helmholtz instability simulation at resolution 200 × 200 × 16
(Section 4.3) with seeds at different λs (1 solid, 1/2 dotted, 1/3 dashed,
1/4 dot–dashed and 1/5 dot–dot–dashed). The smallest λ (1/5) is the first to
grow. (Note that the snapshots of Fig. 10 are taken at a later time.)

4.5 Magnetic field tests

In this section the implementation of magnetic fields is tested by
propagating Alfvén waves and by modelling the Tayler instability
in a toroidal field.

4.5.1 Alfvén waves

We test here the propagation of a plane Alfvén wave in the vertical
direction. The initial magnetic field is simply a uniform field Bz =
B0, and it is set in motion with an initial velocity field ux = u0 max
(0, (σ − σ 0)/(1 − σ 0)), which is just a ‘hockey-stick’ shape with
non-zero value at σ between σ 0 and 1. We set σ 0 = 0.92, so we have
a kick at the bottom of the domain. Periodic boundaries are used in
the two horizontal directions; in the vertical, we use antisymmetric
conditions for B‖ and symmetric for B⊥, which, as we said, are sim-
ilar to the ‘pseudo-vacuum’ boundaries. The computational domain
has a height equal to one scale height, and the temperature is uni-
form. As can be seen in Figs 15–18, the wave propagates upwards,
growing in amplitude as it does so in response to the lower density
higher up, reflects from the upper boundary and propagates back
downwards. We follow the propagation through a number of jour-
neys between top and bottom, finding that the wave is damped only
rather slowly. The speed of propagation of the wave is compared
to the local Alfvén speed (Choudhuri 1998) vA = B0/

√
4πρ in
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Figure 13. Snapshots of the entropy field at t = 0, 9.49, 22.6 s for the inverse
entropy gradient simulation 200 × 800 (Section 4.4). Note that entropy is
not fully conserved, due to mixing.

Fig. 17, where we can see that the agreement is close. The vertical
flux is conserved perfectly in this simple set-up.

4.5.2 Tayler instability

This is an instability of a toroidal magnetic field (Tayler 1957, 1973).
The free energy source is the field itself and the energy is released by
an interchange of fluid with weaker toroidal magnetic field Bφ with
fluid containing stronger toroidal field at greater cylindrical radius
̟ . In a field given in the usual cylindrical coordinate notation by
Bφ = B0̟ /̟ 0 we expect the m = 1 azimuthal mode to be unstable

Figure 14. Time evolution for the powers of λ = 1/9 . . . 12 cm−1 (solid,
dotted, dot–dashed, dot–dot–dashed) for the linear regime of the inverse
entropy gradient simulation 200 × 800 (Section 4.4). The growth rate is
proportional to the wavenumber 1/λ.

and the growth rate to be roughly equal to the Alfvén frequency
given by ωA ≡ vA/̟ = B0/(̟0

√
4πρ). The instability can be

modelled in a square computational box containing a magnetic field
of the form Bφ = B0(̟ /̟ 0)/{1 + exp [(̟ − ̟ 0)/�̟ ]}, the latter
function simply being a smooth taper so that the field goes towards
zero at the edge of the box. We use the same boundary conditions
as in the previous case.

The horizontal size of the box is 4 × 4 cm2 and we set ̟ 0 =
4/3 cm, �̟ = 0.12 cm, B0 = 0.1 G, the temperature at the beginning
is uniform and of value RT = 1 erg g−1 and we set g = 1 cm s−2, so
that the scale height Hp = 1 cm. The vertical extent of the model is
0.01Hp, which means that all vertical wavelengths are expected to be
unstable – a strong stratification stabilizes the longer wavelengths. A
resolution 72 × 72 × 72 is used. The code successfully reproduces
the instability at all expected wavelengths, and the growth rate
measured corresponds to that expected (Fig. 19). Finally, the rms
value of ∇∗ · B

∗ (see equation 22) is at most 2 × 10−5 of the rms of
Bz or of the rms of Bxdz/dx, confirming again the good conservation
of ∇∗ · B

∗.

5 SU M M A RY

We have described a numerical MHD scheme designed to model
phenomena in gravitationally stratified fluids. This scheme uses the
σ -coordinate system, a system which basically employs pressure
as the vertical coordinate. In order to do this the code assumes
hydrostatic equilibrium in the vertical direction. Our code is tailored
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Figure 15. Simulation of the propagation of a plane Alfvén wave in the
vertical direction (Section 4.5.1) – a time sequence of B∗

x (left) and ux

(right). The first six points in time (solid, dotted, dashed, dot–dashed, dot–
dot–dashed, long dashed) near the bottom of the plot are at times t = 0, 46,
93, 139, 186 and 232 s. The next two – the solid lines half way up – are at
times t = 487 and 835 s. The final six (with the same line styles as the first
six) are at times t = 1171, 1218, 1264, 1310, 1357 and 1403 s. Note how
the amplitude of the wave increases as lower density is reached, as viewed
in B∗

x .

Figure 16. Simulation of the propagation of a plane Alfvén wave in the
vertical direction (Section 4.5.1) – the position (in terms of coordinate σ )
of the peak of the wave, as it propagates back and forth between top and
bottom.

for problems that fulfil the following conditions. First, the fluid
under consideration should have strong gravitational stratification,
with much greater length scales in the horizontal than in the vertical
direction (perhaps greater than the scale height Hp). Secondly, the
time-scales of interest should be longer than the vertical acoustic
time-scale (Hp/cs). Finally, in the magnetic case, a high plasma-β
is required so that Alfvén wave propagation in the vertical direction
does not limit the time-step.

Figure 17. Simulation of the propagation of a plane Alfvén wave in the
vertical direction (Section 4.5.1) – the speed of propagation of the wave
(solid line) compared to the theoretical prediction (dashed line). The two
agree very closely, except when the wave bounces off the boundaries at
t ∼ 1300 s, when it is impossible to measure the propagation speed properly.

Figure 18. Simulation of the propagation of a plane Alfvén wave in the
vertical direction (Section 4.5.1) – the amplitude of the wave (as measured
by peak ux) against time, showing a gradual decay. This decay is reduced at
higher resolution and/or smaller diffusion coefficients.

Figure 19. Simulation of the Tayler instability (Section 4.5.2). The lines
show the positions of comoving fluid surfaces as they intersect the y = 0 cm
plane at five different times: ωAt = 0, 1.55, 2.10, 2.63 and 3.20 represented,
respectively, by the solid, dotted, dashed, dot–dashed and dot–dot–dashed
lines. The horizontal extent of the computational domain in both x and y is
from −2 to +2 cm; only the central part of the y = 0 cm plane is plotted
here as nothing is happening towards the edges of the box.
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The code has been successfully validated. It is capable of repro-
ducing very different phenomena like the Kelvin–Helmholtz and
the inverse entropy gradient instabilities, waves and shocks, the
Rossby adjustment problem as well as the propagation of Alfvén
waves and the Tayler instability. The code converges well to the
analytic solutions and conserves mass, energy and momentum very
accurately.

This demonstrates our numerical scheme to be both highly flexi-
ble and the natural choice for many astrophysical contexts such as
planetary atmospheres, stellar radiative zones, as well as neutron
star atmospheres. We have already used it to investigate flame prop-
agation in Type I X-ray bursts on neutron stars: results from this
study will be presented elsewhere (Cavecchi et al., in preparation).
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