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A NUMERICAL METHOD

FOR FRACTAL CONSERVATION LAWS

JÉRÔME DRONIOU

Abstract. We consider a fractal scalar conservation law, that is to say, a
conservation law modified by a fractional power of the Laplace operator, and
we propose a numerical method to approximate its solutions. We make a
theoretical study of the method, proving in the case of an initial data belonging
to L∞ ∩ BV that the approximate solutions converge in L∞ weak-∗ and in
Lp strong for p < ∞, and we give numerical results showing the efficiency of
the scheme and illustrating qualitative properties of the solution to the fractal
conservation law.

1. Introduction

Partial differential equations involving non-local operators are used in several
models, from mathematical finance [23] to dislocation dynamics [5] to gas detona-
tion [13] and anomalous diffusion in semiconductor growth [26]. We consider in this
paper the following model of a non-local scalar conservation law, which appears in
particular in the last two references:

(1.1)

{
∂tu(t, x) + ∂x(f(u(t, x))) + g[u(t, ·)](x) = 0 t > 0 , x ∈ R ,
u(0, x) = u0(x) x ∈ R,

where f : R �→ R is locally Lipschitz continuous, u0 ∈ L∞(R) ∩ BV (R) and g
is a fractional power of order λ/2 of the Laplacian, with λ ∈ ]0, 2[. The natural
definition of g can be written via the Fourier transform g[φ] = F−1(| · |λF(φ)), but
it will be more useful in the sequel to consider the following formula (see [15]): for
all r > 0 and all φ ∈ S(R),

(1.2)

g[φ](x) = −c(λ)

∫
|z|≤r

φ(x+ z)− φ(x)− φ′(x)z

|z|1+λ
dz

−c(λ)

∫
|z|>r

φ(x+ z)− φ(x)

|z|1+λ
dz

= gλ,r[φ](x) + g0,r[φ](x),

where c(λ) =
λΓ( 1+λ

2 )

2
√
ππλΓ(1−λ

2 )
with Γ the Euler function (this value of c(λ) corre-

sponds to the convention F(φ)(ξ) =
∫
R
e−2iπxξφ(x) dx, and gives in fact g =

(2π)−λ(−∆)λ/2); the notation gλ,r and g0,r refer to the order of each term: the
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first term is of order λ (the singularity of the weight in the integral sign necessi-
tates some regularity on φ, of the kind φ(x+ z)−φ(x)−φ′(x)z = o(|z|λ)), whereas
the second term can be applied to any bounded non-regular φ and is therefore of
order 0.

There are several theoretical studies and results regarding such equations. To
our knowledge, [6] presents some of the first results on these problems, mainly
with f(s) = s2 (or other powers) and an Hs or Morrey framework, studying in
particular traveling wave or self-similar solutions; more on self-similar solutions, as
well as time decay estimates, can be found in [8]. In the framework of bounded
solutions, classical for pure scalar conservation laws, the existence and uniqueness
of a regular solution if λ > 1 has been proved in [14]. If λ ≤ 1, the solution is not
smooth in general (see [3]) and obtaining general existence and uniqueness results
for (1.1) requires using an appropriate notion of entropy solution, introduced and
studied in [1]; this notion, which is constructed from the classical notion for scalar
conservation laws [18], relies on the formula (1.2).

Numerical studies of non-local operators in first-order PDE seem more scarce. A
scheme for a Hamilton-Jacobi equation modelling dislocation dynamics and involv-
ing a non-local zero-order velocity is studied in [16] (see also the references therein).
Closer to the framework of scalar conservation laws, [2] studies an equation mod-
elling the formation and movement of dunes, which is (1.1) with an additional term
−∆u and g given by the opposite of (1.2) with λ = 4/3 and an integral sign only
on R

− (the non-local operator is therefore a lower-order term in the PDE); be-
sides theoretical results on the solution to this non-monotone equation, numerical
results are obtained using a simple finite difference scheme (explicit and with cen-
tered discretizations), the study of which remains to be done. Regarding numerical
approximations of (1.1) itself, to our best knowledge the only existing results are
those based on the probabilistic interpretation of this equation (fractal conserva-
tion laws can be, as the classical heat equation, linked with a stochastic differential
equation): [20] and [24] use this interpretation to construct and study, in the case
λ > 1, a numerical method for (1.1); however, in order to avoid having a too noisy
approximation of the solution, the probabilistic method must be applied on the
equation on ∂xu obtained by derivating (1.1) and expressing u as the integral sum
of its derivative (the local non-linearity in (1.1) is thus transformed into a non-local
non-linearity); this technique is easy to implement in dimension 1, but its adapta-
tion to the multi-dimensional case is less straightforward. (The derived equation
becomes a system in which, in order to reconstruct u from its derivatives, one has
to introduce a convolution product with the derivative of the fundamental solution
to the Laplace equation; see [19] for g = −∆. This derivative is however a singular
function and therefore does not seem easy to use, in a numerical method, without
introducing additional errors.)

In this paper, we propose and study a numerical method to directly approximate
the solution to (1.1) for any λ ∈ ]0, 2[. The scheme is based on classical techniques of
numerical approximation of scalar conservation laws and diffusion equations (mono-
tone fluxes, semi-implicit scheme, etc.) and therefore, though we present it for (1.1)
for the sake of legibility, its adaptation to multi-dimensional equations with het-
erogeneous fluxes and source terms (such as ∂tu + div(f(t, x, u)) + g[u(t, ·)](x) =
h(t, x, u)) is straightforward. This approach also allows us to obtain a stable and
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robust method, valid for any λ ∈ ]0, 2[ and which preserves the qualitative prop-
erties of the solution, such as the symmetry, the maximum principle (the solution
takes its values between the upper and lower bounds of the initial datum) or the
smoothing or non-smoothing effects (depending on the position of λ with respect
to 1).

The plan is as follows. In the next section, we present the numerical method,
using only general properties on the discretizations of ∂x(f(u)) and g[u] and cover-
ing therefore a wide range of possible schemes. The study of this method is done in
Section 3, where we prove, thanks to the usual techniques associated with monotone
numerical fluxes for conservation laws, the existence of an approximate solution and
its convergence toward the (entropy) solution to (1.1). An example of discretiza-
tion of g, satisfying the properties used in the theoretical study of the scheme, is
presented in Section 4, along with considerations on the practical implementation;
some numerical results are also provided and show the efficiency of the scheme in
catching known qualitative properties of the solution to (1.1) (such as the presence
of shocks, speed of diffusion, or the asymptotic behavior). A few technical lemmas
are gathered in an appendix (Section 5) which closes the article.

2. Definition of the scheme and main result

Let δt > 0 and δx > 0 be time and space steps. The scheme consists in computing
approximate values un

i of the solution to (1.1) on [nδt, (n + 1)δt[×[iδx, (i + 1)δx[
for n ∈ N and i ∈ Z, thanks to the following relations:

∀i ∈ Z : u0
i =

1

δx

∫ (i+1)δx

iδx

u0(x) dx ,(2.1)

∀n ≥ 0 , ∀i ∈ Z :
δx

δt
(un+1

i − un
i ) + F (un

i , u
n
i+1)− F (un

i−1, u
n
i ) + δxgδx[un+1]i = 0,

(2.2)

where F is a numerical flux corresponding to the continuous flux f and gδx is
a discretization of the non-local term g. Notice that the hyperbolic term of the
equation is discretized using an explicit method; this imposes a CFL condition on
the time and space steps (see (2.4)), but this condition is not very binding and,
more importantly, the explicit discretization has the double advantage of avoiding
the solving of a non-linear equation at each time step and allowing us to consider
as easily more complicated numerical fluxes (see Remark 2.2; higher-order fluxes
are not really adapted to an implicit discretization [10]). On the contrary, since the
non-local operator is linear and has diffusive properties (similar to the ones of −∆),
we use an implicit discretization for g[u] in order not to have to impose, during the
proof of a priori estimates on the approximate solution, a more restrictive condition
than (2.4) on the time and space steps (see however Section 4.3).

Remark 2.1. Non-uniform time and space steps can as easily be considered but, for
the sake of legibility, we only take here uniform δt and δx.
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The numerical fluxes we consider are classical 2-points finite volume monotone
fluxes (see [10]):

(2.3)

F : R2 �→ R is Lipschitz continuous on [infR u0, supR u0]
2,

non-decreasing with respect to its first variable,
non-increasing with respect to its second variable,
and F (a, a) = f(a) for all a ∈ [infR u0, supR u0].

Defining Lip1,u0
(F ) and Lip2,u0

(F ) as the Lipschitz constants of F with respect to

its first and second variable on [infR u0, supR u0]
2, it is known that the following

CFL condition is required to ensure the stability of explicit schemes involving such
monotone fluxes:

(2.4)
δt

δx
≤ 1

Lip1,u0
(F ) + Lip2,u0

(F )
.

Remark 2.2. We write the numerical method and make its theoretical study using
basic 2-points fluxes, but nothing prevents us from using higher-order fluxes (com-
puting f(u) at t = nδt and x = iδx by means of un

i−p, . . . , u
n
i+q instead of only un

i−1

and un
i ), provided that the scheme they define for ∂tu+∂x(f(u)) = 0 is stable with

respect to the L∞ and BV norms (see Section 3). In particular, in Section 4, we
present numerical results involving 4-points MUSCL fluxes.

For our theoretical study, and as for the numerical fluxes above, the discretization
gδx of g does not need to have a specific expression but is only required to satisfy a
series of assumptions (the curious reader can refer to Section 4.1 for an example of
gδx). The first ones are not surprising since the operator g itself satisfies continuous
equivalent formulations of these assumptions (this can easily be seen from (1.2), see
[15]):

gδx : l∞(Z) �→ l∞(Z) is linear,(2.5)

∀v ∈ l∞(Z) , if (ik)k∈N is a sequence in Z such that limk→∞ vik = supj∈Z
vj ,

(2.6)

then lim infk→∞ gδx[v]ik ≥ 0 ,

if τ : l∞(Z) �→ l∞(Z) is the left translation τ (v)i = vi+1, then τgδx = gδxτ .(2.7)

The next assumption is quite natural in the framework of numerical analysis
where, eventually, everything has to be finite in order to be implemented:
(2.8)

∃Aδx > 0 such that, for all v ∈ l∞(Z), gδx[v]0 only depends on (vj)|j|≤Aδx .

The last assumptions impose the consistency of gδx as δx → 0 and necessitate
introducing a few conventions and notation. If δx is a given space step and v ∈
l∞(Z), we identify v with the function vδx ∈ L∞(R) which is piecewise constant
equal to vi on [iδx, (i+1)δx[ for all i ∈ Z; likewise, gδx[v] is either considered as an
element of l∞(Z) or of L∞(R), depending on the context. If K is a compact subset
of R, C2

K(R) is the space of C2 functions on R with support in K (it is endowed
with the norm ||φ||C2

K
= ||φ||L∞(R) + ||φ′||L∞(R) + ||φ′′||L∞(R)) and, for such a

function φ, we define Φ ∈ l∞(Z) by Φi =
1
δx

∫ (i+1)δx

iδx
φ(x) dx. (gδx)∗ is the formal

adjoint operator of gδx defined by: for all v ∈ l1(Z), (gδx)∗[v]i =
∑

j∈Z
gδx[ei]jvj ,

where ei ∈ l∞(Z) is the sequence which has 1 at the i-th position and 0 elsewhere
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(note that, since g is selfadjoint, it is probable, but not required, that gδx also is
selfadjoint). The assumptions regarding the behavior of gδx as δx → 0 are:

∀K compact in R , ∃θK :]0, 1] → R
+ non-decreasing such that lims→0 θK(s) = 0,

(2.9)

and for all φ ∈ C2
K(R) and all δx ∈ ]0, 1[, ||(gδx)∗[Φ]− g[φ]||L1(R) ≤ ||φ||C2

K
θK(δx) ,

∀r > 0 , gδx = gδxλ,r + gδx0,r where:(2.10)

1) gδxλ,r satisfies (2.5)–(2.8) and (2.9) with g replaced by gλ,r,

2) ∀Q compact in R, ∃γr,Q :]0, 1[→ R
+ such that lims→0 γr,Q(s) = 0 and,

for all δx ∈ ]0, 1[ and all v ∈ l∞(Z), ||gδx0,r[v]− g0,r[vδx]||L1(Q) ≤
||v||l∞(Z)γr,Q(δx).

This last assumption is in fact useful only in the case λ ≤ 1, where we have
to consider entropy solutions to (1.1) (the entropy formulation of this equation
requires cutting g into gλ,r and g0,r).

Time and space steps δt and δx being given, in a similar way as above we
identify a family (un

i )n≥0 , i∈Z with the function uδt,δx : [0,∞[×R → R equal to un
i

on [nδt, (n+ 1)δt[×[iδx, (i+ 1)δx[, and un : R → R is the function equal to un
i on

[iδx, (i+ 1)δx[. Our main result is the following.

Theorem 2.3 (Existence, uniqueness and convergence of the approximate solu-
tion). Assume that (2.3) and (2.5)–(2.9) hold. Then, for all δt > 0 and all δx > 0
satisfying (2.4), there exists a unique bounded solution uδt,δx = (un

i )n≥0 , i∈Z to
(2.1)–(2.2). Moreover, if λ > 1 or if (2.10) holds, then, as δt and δx tend to
0 (while satisfying (2.4)), uδt,δx → u weakly-∗ in L∞([0,∞[×R) and strongly in
Lp
loc([0,∞[×R) for all p < ∞, where u is the unique entropy solution to (1.1).

Remark 2.4. Since the construction and theoretical study of the scheme do not
rely on the precise expression of the non-local term in (1.1), but only on general
properties enjoyed by this term and its discretization1, Theorem 2.3 can easily be
generalized to equations involving, for example, other kinds of Lévy operators (not
only the stable operator g).

3. Theoretical study of the scheme

3.1. Properties of the approximation gδx. The assumptions made above on
gδx allow us to make precise the structure of this discretization of g and to deduce
additional properties.

Lemma 3.1. If gδx satisfies (2.5)–(2.8), then:

1) gδx commutes with the right translation τ−1 : (vi)i∈Z �→ (vi−1)i∈Z.
2) If v ∈ l∞(Z) and (ik)k≥1 are such that limk→∞ vik = infj∈Z vj , then

lim supk→∞ gδx[v]ik ≤ 0.
3) If v ∈ l∞(Z) is a constant sequence, then gδx[v] = 0.
4) There exist non-negative real numbers (µδx

j )j=−Aδx,...,Aδx such that

(3.1) ∀v ∈ l∞(Z) , ∀i ∈ Z : gδx[v]i = −
∑

|j|≤Aδx

µδx
j (vi+j − vi).

1Some of these properties (such as the invariance by translation (2.7)) being moreover stated
and used only to simplify the presentation.
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5) For all v ∈ l∞(Z), all η : R �→ R convex functions and all i ∈ Z, we have

(3.2) gδx[η(v)]i ≤ η′(vi)g
δx[v]i

(if η is not regular, we let η′(vi) denote any sub-differential of η at vi).
6) If v ∈ l∞(Z) and (vm)m≥1 is a bounded sequence in l∞(Z) such that, for

all i ∈ Z, limm→∞ vmi = vi, then (gδx[vm])m≥1 is bounded in l∞(Z) and
limm→∞ gδx[vm]i = gδx[v]i for all i ∈ Z.

7) There exists Cδx ≥ 0 such that, for all v ∈ l∞(Z) and all N ≥ 1,∣∣∣∣∣
N∑

i=−N

gδx[v]i

∣∣∣∣∣ ≤ Cδx sup
N−Aδx≤|i|≤N+Aδx

|vi|.

8) If w ∈ l1(Z) and v ∈ l∞(Z), then (gδx)∗[w] ∈ l1(Z) and

(3.3)
∑
i∈Z

gδx[v]iwi =
∑
i∈Z

vi(g
δx)∗[w]i.

Remark 3.2. It is shown in [9] that operators acting on spaces of functions on R

and satisfying a reverse maximum principle similar to (2.6) have integral represen-
tations, generalizations of (1.2). Formula (3.1) can be seen as a discrete version
of this result (see also Section 4.1 to understand the absence, with respect to the
continuous case, of a discrete derivative in (3.1)) and, as in the continuous case,
the reverse maximum principle (2.6) truly is the key point to the study of the
discretized equation.

Proof of Lemma 3.1. We first notice that Item 1 is evidently true, as a consequence
of (2.7) and of the general fact that if an operator commutes with an isomorphism,
then it also commutes with its inverse mapping. It is also easy to see that Item 2
is a consequence of (2.6) applied to −v instead of v. If v is a constant sequence,
then any i satisfies vi = supj∈Z

vj = infj∈Z vj and, by (2.6) and Item 2, we must

have gδx[v]i ≥ 0 and gδx[v]i ≤ 0, which proves Item 3.
By assumptions (2.5) and (2.8), there exists (βδx

j )j=−Aδx,...,Aδx such that, for all
v ∈ l∞(Z),

gδx[v]0 =
∑

|j|≤Aδx

βδx
j vj .

Let |j| ≤ Aδx, j �= 0 and v ∈ l∞(Z) be defined by vj = −1 and vi = 0 if i �= j;
applying (2.6) with ik ≡ 0 (we have v0 = 0 = supi∈Z

vi), we obtain 0 ≤ gδx[v]0 =
−βδx

j , which proves that, for all j �= 0, βδx
j ≤ 0. From the invariance by translation

((2.7) and Item 1), we also have

gδx[v]i = (τ igδx[v])0 = gδx[τ iv]0 =
∑

|j|≤Aδx

βδx
j (τ iv)j =

∑
|j|≤Aδx

βδx
j vi+j .

But Item 3 implies
∑

|j|≤Aδx βδx
j = 0 and thus βδx

0 = −
∑

j 	=0 β
δx
j , which gives

gδx[v]i =
∑
j 	=0

βδx
j vi+j + βδx

0 vi =
∑
j 	=0

βδx
j vi+j −

⎛⎝∑
j 	=0

βδx
j

⎞⎠ vi

=
∑
j 	=0

βδx
j (vi+j − vi) =

∑
|j|≤Aδx

βδx
j (vi+j − vi).

Item 4 follows if we define µδx
0 = 0 and, for j ∈ [−Aδx, Aδx]\{0}, µδx

j = −βδx
j .
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If η is convex, then η(vi+j) − η(vi) ≥ η′(vi)(vi+j − vi) and Item 5 is thus a
corollary of Item 4. Item 6 is also an immediate consequence of Formula (3.1) and,
to prove Item 7, we simply write

N∑
i=−N

gδx[v]i =
∑

|j|≤Aδx

βδx
j

(
N∑

i=−N

vi+j −
N∑

i=−N

vi

)

=
∑

0≤j≤Aδx

βδx
j

(
N+j∑

i=N+1

vi −
−N+j−1∑
i=−N

vi

)

+
∑

−Aδx≤j<0

βδx
j

⎛⎝ −N−1∑
i=−N+j

vi −
N∑

i=N+j+1

vi

⎞⎠
and thus ∣∣∣∣∣

N∑
i=−N

gδx[v]i

∣∣∣∣∣ ≤ 4
∑

|j|≤Aδx

jβδx
j × sup

N−Aδx≤|i|≤N+Aδx

|vi|.

It remains to prove Item 8. First, by (3.1), it is easy to see that (gδx)∗ satisfies the
same formula with µδx

−j instead of µδx
j ; hence, if w ∈ l1(Z), then (gδx)∗[w] is also in

l1(Z). By definition of (gδx)∗ and linearity of gδx, (3.3) is true if v has only a finite
number of non-zero terms; since we can approximate, term by term, any v ∈ l∞(Z)
by such sequences which stay bounded in l∞(Z), (3.3) for a general v follows from
Item 6. �
3.2. Existence and uniqueness of an approximate solution. We prove in this
section that there exists a unique solution to (2.1)–(2.2), and we establish a first
series of properties of this solution.

Lemma 3.3. Under assumptions (2.5)–(2.8), for all α ≥ 0 and all h ∈ l∞(Z),
there exists a unique solution v ∈ l∞(Z) to

(3.4) ∀i ∈ Z : vi + αgδx[v]i = hi.

Moreover, we have

(3.5) inf
i∈Z

hi ≤ inf
i∈Z

vi ≤ sup
i∈Z

vi ≤ sup
i∈Z

hi

and

(3.6)
∑
i∈Z

|vi| ≤
∑
i∈Z

|hi|.

Proof of Lemma 3.3. Let us first prove (3.5) and the uniqueness of the solution.
Let (ik)k≥1 be a sequence in Z such that limk→∞ vik = supi∈Z

vi; then applying
(3.4) to i = ik and passing to the inferior limit as k → ∞ thanks to (2.6) we find
supi∈Z vi ≤ supi∈Z hi. Doing the same along a subsequence which converges to
infi∈Z vi (see item 2 in Lemma 3.1), we obtain infi∈Z vi ≥ infi∈Z hi and (3.5) is
proved. These inequalities show that if h = 0, then v = 0. System (3.4) being
linear, this proves the uniqueness of its solution.

To prove the existence of a solution we consider, for m ≥ 1, the approximate
problem

(3.7) ∀i ∈ Z : vmi + αgδx[vm]i1[−m,m](i) = hi,
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where 1[−m,m](i) = 1 if |i| ≤ m and 1[−m,m](i) = 0 otherwise. Using the same
argument as before, we notice that any solution to (3.7) also satisfies (3.5) and, in
particular, that this problem has at most one solution. Since (3.7) clearly defines
vmi (equal to hi) if |i| > m, solving this system comes down to solving a finite-
dimensional square linear system (of size 2m + 1); the uniqueness of the solution
therefore ensures its existence.

Since (vm)m≥1 is bounded in l∞(Z) (it satisfies (3.5)), we can assume up to a
subsequence that, for all i ∈ Z, (vmi )m≥1 converges to some vi as m → ∞. We can
then pass to the limit m → ∞ in (3.7) thanks to Item 6 in Lemma 3.1 to see that
(vi)i∈Z ∈ l∞(Z) thus defined satisfies (3.4).

We conclude by proving (3.6), assuming that h ∈ l1(Z) (otherwise nothing needs
to be proved). Multiplying (3.4) by sgn(vi) = η′(vi) for η = | · | and using (3.2), we
have |vi| + αgδx[|v|]i ≤ |hi|. Summing on i = −N, . . . , N , we deduce from Item 7
in Lemma 3.1 that
(3.8)

N∑
i=−N

|vi| ≤
N∑

i=−N

|hi|+αCδx sup
N−Aδx≤|i|≤N+Aδx

|vi| ≤
∑
i∈Z

|hi|+αCδx||v||l∞(Z) < +∞.

Hence v ∈ l1(Z) and lim|i|→∞ vi=0. We infer that limN→∞ supN−Aδx≤|i|≤N+Aδx |vi|
= 0 and, letting N → ∞ in the first inequality of (3.8), this concludes the proof of
(3.6). �

We can now prove the existence and uniqueness of the solution to the scheme.

Corollary 3.4 (Existence and uniqueness of an approximate solution). Let δt > 0
and δx > 0. Under assumptions (2.3)–(2.8), there exists a unique bounded solution
(un

i )n≥0 , i∈Z to (2.1)–(2.2). Moreover, it satisfies, for all n ≥ 1,

(3.9) inf
R

u0 ≤ inf
i∈Z

un
i ≤ sup

i∈Z

un
i ≤ sup

R

u0.

Proof of Corollary 3.4. As is usual for schemes involving monotone fluxes, we rewrite
(2.2) in the following way:

un+1
i + δtgδx[un+1]i = un

i − δt

δx
(F (un

i , u
n
i+1)− F (un

i , u
n
i ))

+
δt

δx
(F (un

i−1, u
n
i )− F (un

i , u
n
i ))

= un
i − δt

δx

F (un
i , u

n
i+1)− F (un

i , u
n
i )

un
i+1 − un

i

(un
i+1 − un

i )

+
δt

δx

F (un
i−1, u

n
i )− F (un

i , u
n
i )

un
i−1 − un

i

(un
i−1 − un

i ).

Let us define

ani = − δt

δx

F (un
i , u

n
i+1)− F (un

i , u
n
i )

un
i+1 − un

i

and bni =
δt

δx

F (un
i−1, u

n
i )− F (un

i , u
n
i )

un
i−1 − un

i

(if un
i+1 = un

i or un
i−1 = un

i , we let the corresponding coefficient be equal to zero).
The scheme is thus equivalent to

(3.10) un+1
i + δtgδx[un+1]i = un

i + ani (u
n
i+1 − un

i ) + bni (u
n
i−1 − un

i ) ,
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which comes down to asking that un+1 be the solution to (3.4) with α = δt and
hi = (1− ani − bni )u

n
i + ani u

n
i+1 + bni u

n
i−1. But, under (2.3) and (2.4), if un satisfies

(3.9), then ani ≥ 0, bni ≥ 0 and ani + bni ≤ 1; this means that hi is a convex
combination of (un

j )j∈Z and thus that infi∈Z u
n
i ≤ infi∈Z hi ≤ supi∈Z

hi ≤ supi∈Z
un
i .

Hence, reasoning by induction on n from (2.1), Lemma 3.3 ensures the existence and
uniqueness of a bounded solution to (2.1)–(2.2), which satisfies moreover (3.9). �

3.3. Compactness estimates.

Proposition 3.5 (BV estimates). Let δt > 0 and δx > 0 and assume (2.3)–(2.8).
If (un

i )n≥0 , i∈Z is the solution to (2.1)–(2.2), then, for all n ≥ 1,

(3.11)
∑
i∈Z

|un
i+1 − un

i | ≤ |u0|BV (R).

Proof of Proposition 3.5. Subtracting (3.10) for i+ 1 and for i and since gδx com-
mutes with the translation τ , we obtain, with vni = un

i+1 − un
i ,

vn+1
i + δtgδx[vn+1]i = (1− ani − bni+1)v

n
i + ani+1v

n
i+1 + bni v

n
i−1.

Hence vn+1 is the solution to (3.4) with α = δt and hi = (1 − ani − bni+1)v
n
i +

ani+1v
n
i+1 + bni v

n
i−1 and we deduce from (3.6) that∑

i∈Z

|vn+1
i | ≤

∑
i∈Z

|1− ani − bni+1| |vni |+
∑
i∈Z

|ani+1| |vni+1|+
∑
i∈Z

|bni | |vni−1|.

But the CFL confition (2.4) and Estimate (3.9) ensure that 1 − ani − bni+1 ≥ 0,
ani+1 ≥ 0 and bni ≥ 0 and we therefore find, by reindexing the last two sums,∑

i∈Z

|un+1
i+1 − un+1

i | ≤
∑
i∈Z

|un
i+1 − un

i |.

This estimate allows us to conclude the proof by induction on n (because (3.11) is
true for n = 0 from the definition of u0 in (2.1); see [10]). �

Proposition 3.6 (Time estimates). Let δt > 0 and δx ∈ ]0, 1[. Assume that (2.3)–
(2.9) hold and let uδt,δx = (un

i )n≥0 , i∈Z be the solution to (2.1)–(2.2). Define ũδt,δx

as the affine by parts time interpolate of (un
i )n≥0 , i∈Z:

∀t ∈ [nδt, (n+ 1)δt] , ∀x ∈ R : ũδt,δx(t, x) =
t− nδt

δt
un+1(x) +

(n+ 1)δt− t

δt
un(x).

Then for all compact subsets K of R, there exists MK ≥ 0 not depending on δt or
δx such that

(3.12) ||∂tũδt,δx|L∞(]0,∞[ ;(C2
K(R))′) ≤ MK .

Remark 3.7. If λ < 1, then (1.2) shows that g[φ] ∈ L1
loc(R) as soon as φ ∈ L∞(R)∩

BV (R). Hence, since Proposition 3.5 gives space BV estimates on uδt,δx, the choice
of a proper approximation gδx and the scheme (2.2) could allow us to deduce, in
the case λ < 1, time-BV local estimates on uδt,δx (stronger estimates than (3.12)).
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Proof of Proposition 3.6. We have ∂tũ = un+1−un

δt on [nδt, (n+1)δt]×R. LetK be a

compact subset in R and φ ∈ C2
K(R); define Φ ∈ l∞(Z) by Φi =

1
δx

∫ (i+1)δx

iδx
φ(x) dx.

From (2.2) we deduce, for t ∈ [nδt, (n+ 1)δt],∫
R

∂tũδt,δx(t, x)φ(x) dx =
∑
i∈Z

δx

δt
(un+1

i − un
i )Φi

=
∑
i∈Z

(F (un
i−1, u

n
i )− F (un

i , u
n
i+1))Φi −

∑
i∈Z

δx gδx[un+1]iΦi.(3.13)

Using (2.3), we have |F (un
i−1, u

n
i ) − F (un

i , u
n
i+1)| ≤ C1(|un

i+1 − un
i | + |un

i − un
i−1|)

with C1 not depending on δt, δx, n or i, and (3.11) therefore gives

(3.14)

∣∣∣∣∣∑
i∈Z

(F (un
i−1, u

n
i )− F (un

i , u
n
i+1))Φi

∣∣∣∣∣ ≤ 2C1|u0|BV (R)||φ||L∞(R).

Formula (1.2) clearly shows that g is continuous W 2,1(R) → L1(R) and thus, since
C2

K(R) is continuously embedded in W 2,1(R), there exists EK not depending on φ
such that ||g[φ]||L1(R) ≤ EK ||φ||C2

K
; using Item 8 in Lemma 3.1, (2.9) and (3.9), we

deduce ∣∣∣∣∣∑
i∈Z

δx gδx[un+1]iΦi

∣∣∣∣∣ =

∣∣∣∣∣∑
i∈Z

δx un+1
i (gδx)∗[Φ]i

∣∣∣∣∣
≤ ||u0||L∞(R)||(gδx)∗[Φ]||L1(R)

≤ ||u0||L∞(R)(θK(1) + EK)||φ||C2
K
.(3.15)

The proof is concluded by plugging (3.14) and (3.15) into (3.13). �

Corollary 3.8 (Compactness of the approximate solution). Assume that (2.3) and
(2.5)–(2.9) hold. Then as δt > 0 and δx > 0 tend to 0 while satisfying (2.4), up to
a subsequence the solution uδt,δx to (2.1)–(2.2) converges in L1

loc([0,∞[×R).

Proof of Corollary 3.8. Let δt > 0 and δx ∈ ]0, 1[ satisfy (2.4) and define ũδt,δx as
the affine interpolate of (un

i )n≥0,, i∈Z as in Proposition 3.6. Estimate (3.11) shows
that, for all n ≥ 0, |un|BV (R) ≤ |u0|BV (R); since, for all t > 0, ũδt,δx(t, ·) is a convex

combination of un and un+1 (for some n ≥ 0), we deduce that |ũδt,δx(t, ·)|BV (R) ≤
|u0|BV (R) and, by (3.9), that ||ũδt,δx||L∞(]0,∞[×R) ≤ ||u0||L∞(R).

For all compact K ⊂ R, the set S = {ũδt,δx | δt > 0 and δx > 0 satisfy (2.4)} is
therefore bounded in L∞([0,∞[ ;L∞(K)) and, by Proposition 3.6, the time deriva-
tives of the functions in this set are bounded in L∞([0,∞[ ; (C2

K(R))′). Since L∞(K)
is compactly embedded in (C2

K(R))′ (because C2
K(R) is compactly and densely em-

bedded in L1(K)), we deduce that S is bounded in W 1,∞([0,∞[ ; (C2
K(R))′) and,

by Aubin-Simon’s compactness theorem (see [4, 21]), that S is relatively compact
in L1

loc([0,∞[ ; (C2
K(R))′).

For all t ≥ 0, denoting by n the integer such that t ∈ [nδt, (n + 1)δt[, we have
uδt,δx(t, ·) = ũδt,δx(nδt, ·), and the bound in W 1,∞([0,∞[ ; (C2

K(R))′) thus shows
that ||uδt,δx(t, ·) − ũδt,δx(t, ·)||(C2

K(R))′ ≤ C2δt with C2 not depending on δt or δx.

The compactness of S in L1
loc([0,∞[ ; (C2

K(R))′) therefore shows that, as δt → 0,
uδt,δx is also relatively compact in this space.
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By (3.11), for all t ≥ 0 we have |uδt,δx(t, ·)|BV (R) ≤ |u0|BV (R), which implies, by
a classical result on BV functions, for all ξ ∈ R,

||uδt,δx(t, ·+ ξ)− uδt,δx(t, ·)||L1(R) ≤ |u0|BV (R)|ξ|.

Associated with the relative compactness, as δt → 0, of uδt,δx in L1
loc([0,∞[ ;

(C2
K(R))′) for all K ⊂ R compact, this estimate makes it possible to apply Lemma

7.5 in [11] (or more precisely the technique of proof of this lemma) to conclude that
this relative compactness also holds in L1

loc([0,∞[ ;L1
loc(R)). �

Remark 3.9. If u0 does not belong to BV (R), then it is not possible in general to
directly prove strong space BV estimates, and thus strong compactness, for uδt,δx.
In this situation, one has to invoke the convergence of uδt,δx in the non-linear L∞

weak-∗ sense (i.e. in the sense of Young measures) to prove that the limit of uδt,δx

is an entropy process solution to (1.1) (this is done thanks to some space weak BV
estimates on uδt,δx) and to check, following [1], that this entropy process solution
is unique (see the general method for pure scalar conservation laws in [10]).

3.4. Convergence. We can now prove the convergence of the solution of (2.1)–
(2.2) toward the solution of (1.1), as δt and δx tend to 0 while satisfying (2.4). By
Corollary 3.8 and since uδt,δx is bounded in L∞([0,∞[×R), up to a subsequence we
can assume that it converges toward some u weak-∗ in L∞([0,∞[×R) and strongly
in Lp

loc([0,∞[×R) for all p < ∞. We now show that any such limit u of uδt,δx is
the unique (entropy) solution to (1.1), which implies that the whole family uδt,δx

converges to this solution and concludes the proof of Theorem 2.3.

Let φ ∈ C2
c ([0,∞[×R) and define Φn

i = 1
δx

∫ (i+1)δx

iδx
φ(nδt, x) dx. Multiplying

(2.2) by δtΦn
i and summing on n and i (all these sums are finite since Φn

i is equal
to zero for n or |i| large), we obtain T1 + T2 + T3 = 0, where

T1 =
∑
n≥0

∑
i∈Z

δx(un+1
i − un

i )Φ
n
i ,

T2 =
∑
n≥0

δt
∑
i∈Z

(F (un
i , u

n
i+1)− F (un

i−1, u
n
i ))Φ

n
i

and

T3 =
∑
n≥0

δt
∑
i∈Z

δxgδx[un+1]iΦ
n
i .

Let us study the limit of each of these terms. We have

T1 =
∑
n≥1

δt
∑
i∈Z

δxun
i

Φn−1
i − Φn

i

δt
−
∑
i∈Z

δxu0
iΦ

0
i

=

∫ ∞

0

∫
R

uδt,δx(t, x)Ψδt,δx(t, x) dtdx−
∫
R

u0(x)Φ
0(x) dx,

where Ψδt,δx is equal to 0 on [0, δt[×R and to
Φn−1

i −Φn
i

δt on [nδt, (n+1)δt[×[iδx, (i+
1)δx[ for all n ≥ 1 and all i ∈ Z. By regularity of φ, as δt and δx tend to 0, Ψδt,δx

and Φ0 converge respectively to −∂tφ in L1([0,∞[×R) and to φ(0, ·) in L1(R). The
weak-∗ convergence of uδt,δx then shows that

(3.16) T1 → −
∫ ∞

0

∫
R

u(t, x)∂tφ(t, x) dtdx−
∫
R

u0(x)φ(0, x) dx.
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To handle T2 we write, thanks to (2.3),

(3.17)

T2 =
∑
n≥0

δt
∑
i∈Z

δxF (un
i , u

n
i+1)

Φn
i − Φn

i+1

δx

=
∑
n≥0

δt
∑
i∈Z

δxf(un
i )

Φn
i − Φn

i+1

δx

+
∑
n≥0

δt
∑
i∈Z

δx(F (un
i , u

n
i+1)− f(un

i ))
Φn

i − Φn
i+1

δx

=

∫ ∞

0

∫
R

f(uδt,δx(t, x))Θδt,δx(t, x) dtdx

+
∑
n≥0

δt
∑
i∈Z

δx(F (un
i , u

n
i+1)− F (un

i , u
n
i ))

Φn
i − Φn

i+1

δx
,

where Θδt,δx =
Φn

i −Φn
i+1

δx on [nδt, (n + 1)δt[×[iδx, (i + 1)δx[ for all n ≥ 0 and all

i ∈ Z; as δt and δx tend to 0, this function converges to −∂xφ in L1([0,∞[×R)
by regularity of φ. Moreover, by local Lipschitz continuity of f , uniform bound
on uδt,δx and convergence of this function toward u in L1

loc([0,∞[×R), f(uδt,δx) →
f(u) in L1

loc([0,∞[×R) while staying bounded in L∞([0,∞[×R); the convergence
of f(uδt,δx) thus also holds in L∞([0,∞[×R) weak-∗ and we therefore see that the
first term on the right-hand side of (3.17) tends to −

∫∞
0

∫
R
f(u(t, x))∂xφ(t, x) dt dx.

Regarding the second term, we invoke (3.11) and the regularity of φ to write∣∣∣∣∣∣
∑
n≥0

δt
∑
i∈Z

δx(F (un
i , u

n
i+1)− F (un

i , u
n
i ))

Φn
i − Φn

i+1

δx

∣∣∣∣∣∣
≤ Lip2,u0

(F )C3

∑
0≤n<T/δt

δt
∑
i∈Z

δx|un
i+1 − un

i |

≤ Lip2,u0
(F )C3T |u0|BV (R)δx,

where C3 only depends on φ, and T is such that supp(φ) ⊂ [0, T ] × R (so that
Φn

i = 0 if n ≥ T/δt). This last right-hand side tends to 0 with δx and we conclude
that

(3.18) T2 → −
∫ ∞

0

∫
R

f(u(t, x))∂xφ(t, x) dt dx.

The convergence of T3 is pretty straightforward from Item 8 in Lemma 3.1 and
assumption (2.9): we have

(3.19) T3 =
∑
n≥0

δt
∑
i∈Z

δxun+1
i (gδx)∗[Φn]i =

∫ T

0

∫
R

uδt,δx(t+δt, x)Ωδt,δx(t, x) dtdx,

where Ωδt,δx = (gδx)∗[Φn]i on [nδt, (n + 1)δt[×[iδx, (i + 1)δx[ for all n ≥ 0 and
all i ∈ Z and T is as before. Let φδt : [0,∞[×R → R be the function equal
to φ(nδt, ·) on [nδt, (n + 1)δt[×R for all n ≥ 0. From (2.9) we have, for all
t ≥ 0, ||Ωδt,δx(t, ·) − g[φδt(t, ·)]||L1(R) ≤ ||φ||L∞([0,∞[ ;C2

K(R))θK(δx), where K is a

compact set such that supp(φ) ⊂ [0,∞[×K. As δt → 0, the regularity of φ en-
sures that φδt → φ in L∞([0, T ];C2

K(R)), and thus in L∞([0, T ];W 2,1(R)); since
g : W 2,1(R) → L1(R) is linear continuous (see Formula (1.2)), this shows that
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g[φδt] → g[φ] in L∞([0, T ];L1(R)). We deduce that, as δt and δx tend to 0,
Ωδt,δx → g[φ] in L∞([0, T ];L1(R)) ↪→ L1([0, T ]× R). Passing to the limit in (3.19)
by weak-∗ convergence in L∞([0,∞[×R) of uδt,δx, we find

(3.20) T3 →
∫ T

0

∫
R

u(t, x)g[φ(t, ·)](x) dtdx.

Gathering (3.16), (3.18) and (3.20) in T1 + T2 + T3 = 0 leads to∫ ∞

0

∫
R

u(t, x)∂tφ(t, x) dtdx+

∫ ∞

0

∫
R

f(u(t, x))∂xφ(t, x) dtdx

−
∫ ∞

0

∫
R

u(t, x)g[φ(t, ·)](x) dtdx =

∫
R

u0(x)φ(0, x) dx.

This proves that u is a weak solution to (1.1). If λ > 1, this weak solution is in fact
the unique solution in the sense of Duhamel’s formula, and thus also the unique
smooth strong solution (see [14]), and the proof is complete. If λ ≤ 1, we must
modify the preceding reasoning to show, using (2.10), that u is an entropy solution
to (1.1).

Under assumptions (2.3) and (2.4), (2.2) can be written as

un+1
i = un

i − δt

δx
F (un

i , u
n
i+1) +

δt

δx
F (un

i−1, u
n
i )− δtgδx[un+1]i

= H(un
i−1, u

n
i , u

n
i+1)− δtgδx[un+1]i

where H is non-decreasing with respect to each of its variables on [infR u0, supR u0]
3

and, for all κ ∈ [infR u0, supR u0], H(κ, κ, κ) = κ. Denoting a�b = max(a, b),
we have in particular H(un

i−1, u
n
i , u

n
i+1) ≤ H(un

i−1�κ, un
i �κ, un

i+1�κ) and κ ≤
H(un

i−1�κ, un
i �κ, un

i+1�κ) and we deduce, examining separately the cases un+1
i ≤ κ

and un+1
i > κ,

un+1
i �κ ≤ H(un

i−1�κ, un
i �κ, un

i+1�κ)− 1]κ,∞[(u
n+1
i )δtgδx[un+1]i.

Similarly, if a⊥b = min(a, b), then

un+1
i ⊥κ ≥ H(un

i−1⊥κ, un
i ⊥κ, un

i+1⊥κ)− 1]−∞,κ[(u
n+1
i )δtgδx[un+1]i

and therefore

un+1
i �κ− un+1

i ⊥κ ≤ H(un
i−1�κ, un

i �κ, un
i+1�κ)−H(un

i−1⊥κ, un
i ⊥κ, un

i+1⊥κ)

−
(
1]κ,∞[(u

n+1
i )− 1]−∞,κ[(u

n+1
i )

)
δtgδx[un+1]i.

Defining ηκ(s) = |s− κ| = s�κ− s⊥κ, we have η′κ(s) = 1]κ,∞[(s)−1]−∞,κ[(s) (this
selects the subdifferential of ηκ equal to 0 at s = 0) and the definition of H thus
leads to

δx

δt
(ηκ(u

n+1
i )− ηκ(u

n
i ))+

(
F (un

i �κ, un
i+1�κ)− F (un

i ⊥κ, un
i+1⊥κ)

)
−
(
F (un

i−1�κ, un
i �κ)− F (un

i−1⊥κ, un
i ⊥κ)

)
+ δxη′κ(u

n+1
i )gδx[un+1]i ≤ 0.
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Taking r > 0, applying (2.10) and using (3.2) for gδxλ,r (which satisfies the assump-

tions of Lemma 3.1), we find

δx

δt
(ηκ(u

n+1
i )− ηκ(u

n
i )) +

(
F (un

i �κ, un
i+1�κ)− F (un

i ⊥κ, un
i+1⊥κ)

)
−
(
F (un

i−1�κ, un
i �κ)− F (un

i−1⊥κ, un
i ⊥κ)

)
+δxgδxλ,r[ηκ(u

n+1)]i + δxη′κ(u
n+1
i )gδx0,r[u

n+1]i ≤ 0.(3.21)

These inequalities (for all r > 0) are discrete versions of the entropy inequalities
for (1.1), and it is quite straightforward to deduce from them that the limit u of
uδt,δx satisfies the entropy inequalities for (1.1). Indeed, taking a non-negative
φ ∈ C2

c ([0,∞[×R), defining Φn
i from φ as before, multiplying (3.21) by δtΦn

i and
summing on n and i, we obtain T4 + T5 + T6 + T7 ≤ 0, where

• T4 is T1 with un
i replaced by ηk(u

n
i ),

• T5 is T2 with F (un
i , u

n
i+1) replaced by F (un

i �κ, un
i+1�κ)−F (un

i ⊥κ, un
i+1⊥κ)

and F (un
i−1, u

n
i ) replaced by F (un

i−1�κ, un
i �κ)− F (un

i−1⊥κ, un
i ⊥κ),

• T6 is T3 with gδx replaced by gδxλ,r and un+1 replaced by ηk(u
n+1)

and

T7 =
∑
n≥0

δt
∑
i∈Z

δxη′κ(u
n+1
i )gδx0,r[u

n+1]iΦ
n
i .

Using the same techniques as in the study of convergence of T1, T2 and T3, the
strong convergence of uδt,δx to u allows us to see that, as δt and δx tend to 0,

T4 → −
∫ ∞

0

∫
R

ηκ(u(t, x))∂tφ(t, x) dtdx−
∫
R

ηκ(u0(x))φ(0, x) dx,(3.22)

T5 → −
∫ ∞

0

∫
R

(f(u(t, x)�κ)− f(u(t, x)⊥κ)) ∂xφ(t, x) dtdx(3.23)

and

(3.24) T6 →
∫ ∞

0

∫
R

ηκ(u(t, x))gλ,r[φ(t, ·)](x) dtdx.

Regarding T7, we have

(3.25) T7 =

∫ ∞

0

∫
R

η′κ(uδt,δx(t+ δt, x))Vδt,δx(t, x)Φδt,δx(t, x) dtdx,

where Vδt,δx = gδx0,r[u
n+1]i and Φδt,δx = Φn

i on [nδt, (n + 1)δt[×[iδx, (i + 1)δx[ for
all n ≥ 0 and all i ∈ Z. By (2.10), for all compact Q and all t ≥ 0, taking
n ≥ 0 such that t ∈ [nδt, (n + 1)δt[, we have ||Vδt,δx(t, ·) − g0,r[u

n+1]||L1(Q) ≤
||un+1||L∞(R)γr,Q(δx) ≤ ||u0||L∞(R)γr,Q(δx). From the definition of g0,r and the

convergence of uδt,δx to u we see that the function defined by g0,r[u
n+1] on [nδt, (n+

1)δt[×R converges to g0,r[u] in L1
loc([0,∞[×R), and we therefore deduce that, as δt

and δx go to 0, Vδt,δx also converges to g0,r[u] in L1
loc([0,∞[×R). The convergence

of uδt,δx to u in L1
loc([0,∞[×R) shows that uδt,δx(· + δt, ·) also converges in this

space to u and thus, up to a subsequence, a.e. on ]0,∞[×R; but, for a.e. κ ∈ R, the
measure of {(t, x) ∈ ]0,∞[×R , u(t, x) = κ} vanishes and, since η′κ is continuous
on R\{κ}, we have, for such κ, η′κ(uδt,δx(· + δt, ·)) → η′κ(u) a.e. on ]0,∞[×R.
Combined with the fact that |η′κ| ≤ 1, the convergence of Vδt,δx to g0,r[u] in L1

loc,
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the uniform convergence of Φδt,δx to φ and the fact that the support of Φδt,δx stays
in a compact subset of [0,∞[×R, this allows us to pass to the limit in (3.25) to find

(3.26) T7 →
∫ ∞

0

∫
R

η′κ(u(t, x))g0,r[u(t, ·)](x)φ(t, x) dtdx.

Gathering (3.22), (3.23), (3.24) and (3.26) in T4 + T5 + T6 + T7 ≤ 0, we conclude
that

(3.27)

∫ ∞

0

∫
R

ηκ(u(t, x))∂tφ(t, x) dtdx

+

∫ ∞

0

∫
R

(f(u(t, x)�κ)− f(u(t, x)⊥κ))∂xφ(t, x) dtdx

−
∫ ∞

0

∫
R

ηκ(u(t, x))gλ,r[φ(t, ·)](x) dtdx

−
∫ ∞

0

∫
R

η′κ(u(t, x))g0,r[u(t, ·)](x)φ(t, x) dtdx

+

∫
R

ηκ(u0(x))φ(0, x) dx ≥ 0,

where we recall that ηκ(s) = |s − κ| and η′κ(s) = 1]κ,∞[(s) − 1]−∞,κ[(s). This
inequality has been proved up to now only for almost every κ ∈ R; but for any κ ∈ R

we can choose (κm)m≥1 and (κ̃m)m≥1 such that (3.27) is valid with κ = κm and
κ = κ̃m and such that κm ↗ κ and κ̃m ↘ κ, and we have then 1

2 (ηκm
+ ηκ̃m

) → ηκ
and 1

2 (η
′
κm

+ η′κ̃m
) → η′κ on R as m → ∞, all these functions staying bounded on

bounded subsets of R; we can therefore take the mean value of (3.27) applied to
κm and κ̃m and let m → ∞ to see that (3.27) is also satisfied with κ. This shows
that u is the unique entropy solution to (1.1) (see [1]) and concludes the proof.

Remark 3.10. We could as well consider the multi-dimensional form of (1.1) (i.e.
with N space dimensions instead of one); on Cartesian grids, the adaptation of the
preceding reasoning is straightforward; on unstructured grids, however, the schemes
for scalar conservation laws are not necessarily TVD (total variation decreasing)
and it is therefore not possible to directly prove Corollary 3.8: even if u0 ∈ BV (RN ),
we have then to rely on the techniques sketched in Remark 3.9.

4. Implementation of the numerical method

4.1. A few words on the resolution procedure.

4.1.1. Example of gδx. A space step δx > 0 being chosen, Formula (1.2) makes it
easy to write a discretization of g: we approximate each integral sign using a basic
quadrature rule on the mesh ([jδx, (j + 1)δx[)j∈Z (for example the right rectangles
for z > 0 and the left rectangles for z < 0; this avoids the singularity of 1/|z|1+λ

at z = 0 and preserves the symmetry between z > 0 and z < 0) and we use
a finite difference approximation of the derivative (for example a centered one).
However, such an approximation would use all the (vj)j∈Z in order to compute
gδx[v]i; in practical applications, the considered functions are usually constant near
−∞ and +∞: it is therefore safe to assume this when discretizing g and to use the
mesh ([jδx, (j + 1)δx[)j∈Z only up to |z| = Jδxδx (for some integer Jδx such that
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Jδxδx → +∞ as δx → 0), approximating the remaining parts with two unbounded
space steps ]−∞,−Jδxδx] and [Jδxδx,+∞[. This leads to

(4.1)

gδx[v]i = −c(λ)
∑

0<|j|≤r/δx

δx
vi+j − vi − vi+1−vi−1

2δx jδx

|jδx|1+λ

− c(λ)
∑

r/δx<|j|≤Jδx

δx
vi+j − vi
|jδx|1+λ

− c(λ)
vi−Jδx−1 − vi
λ(Jδxδx)λ

− c(λ)
vi+Jδx+1 − vi
λ(Jδxδx)λ

.

But
∑

0<|j|≤r/δx
j

|jδx|1+λ = 0 by symmetry, and we can in fact drop the discretiza-

tion of the derivative:

gδx[v]i = −c(λ)
∑

0<|j|≤r/δx

δx
vi+j − vi
|jδx|1+λ

−c(λ)
∑

r/δx<|j|≤Jδx

δx
vi+j − vi
|jδx|1+λ

− c(λ)
vi−Jδx−1 − vi
λ(Jδxδx)λ

− c(λ)
vi+Jδx+1 − vi
λ(Jδxδx)λ

(4.2)

= −c(λ)
∑

0<|j|≤Jδx

δx
vi+j − vi
|jδx|1+λ

− c(λ)
vi−Jδx−1 − vi
λ(Jδxδx)λ

− c(λ)
vi+Jδx+1 − vi
λ(Jδxδx)λ

.(4.3)

This dropping of the discretization of the derivative is in concordance with the rea-
son behind the existence of φ′(x) in (1.2); in fact, g is essentially the principal value

of (| · |1−λ)′′ and g[φ] is therefore the limit as ε → 0 of −c(λ)
∫
|z|≥ε

φ(x+z)−φ(x)
|z|1+λ dz

(see [15]); the term φ′(x)z is introduced on ] − r, r[ because, by symmetry, it does
not modify this integral sign but makes it possible to write the limit as ε → 0 as an
integral sign on R. In the framework of numerical analysis, there is no such ques-
tion of principal value and integrability at 0, and the disappearance of the discrete
derivative is therefore not surprising.

It is easy to prove the first properties (2.5)–(2.8) for gδx defined by (4.3). Indeed,
if limk→∞ vik = supj vj , then, for all ε > 0 and for k large enough, vik+j − vik ≤ ε
for all j ∈ Z and thus

gδx[v]ik ≥ −c(λ)ε
∑

0<|j|≤Jδx

δx
1

|jδx|1+λ
− 2c(λ)ε

λ(Jδxδx)λ
= −C(δx)ε

and (2.6) is obtained by taking the lim infk→∞ of this inequality and then letting
ε → 0. The linearity (2.5), the invariance by translation (2.7) and the dependence
on a finite number of values (2.8) are obviously satisfied. The proof of Proper-
ties (2.9) and (2.10) is way more technical and is therefore given in the appendix
(Lemma 5.1).

4.1.2. Choice of the parameters. The practical implementation of the scheme
(2.1)–(2.2) requires us to make some choices of truncation parameters. First of all,
we cannot obviously compute the approximate solution on the whole of [0,∞[×R;
we have to select a bounded domain on which we intend to obtain the solution:
assume that this domain is [0, T ]× [−D,D]. To simplify the presentation, we also
assume that δt = T/Nδt and δx = D/Nδx for some integers Nδt and Nδx.

If we forget for a moment the operator gδx in (2.2), we notice that the calculation
of (un+1

i )|i|≤Nδx
(in order to obtain the approximate solution at time step n + 1
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on [−D,D]) necessitates knowing (un
i )|i|≤Nδx+1 (or (un

i )|i|≤Nδx+2 in the case of 4-
points numerical fluxes instead of 2-points fluxes). Hence, the hyperbolic part of
the scheme imposes to begin at t = 0 with the indexes |i| ≤ Nδx+Nδt (or Nδx+2Nδt

in the case of the 4-points scheme) in order to obtain the approximate solution at
time t = T on [−D,D]; this is the discrete counterpart of the well-known finite
speed propagation of the scalar conservation laws.

But we must also consider the operator gδx, which makes of the scheme a non-
trivial infinite linear system. The proof of Lemma 3.3 however gives a way to
approximate the solution to (2.2): hi being the right-hand side of (3.10) and α
being equal to δt, an approximation of (un+1

i )i∈Z is given by the solution to (3.7)
for m “large enough”... but which m? It is not obvious to give an analytical answer
to this question: it is possible, from (4.3), to estimate the convergence as m → ∞
of the solution of (3.7) to the solution of (3.4); however, this general estimate is

very slow (of order ξ
m/Jδx

δx for some ξδx < 1) and imposing m using this error bound
leads to unreasonable values. The same holds for the choice of Jδx in the definition
of gδx: it is easy to see that the difference between gδx defined by (4.3) and the
same expression with an infinite series (Jδx = +∞) is of order ||v||l∞(Z)(Jδxδx)

−λ

and thus, if we take Jδx = ε−1/λ

δx , that the error, in the definition of gδx, due to
the truncation of the sum at Jδx is of order at most ε. However, the value thus
chosen for Jδx is not reasonable, especially if λ is small. These general findings are
in concordance with the estimate on the infinite speed propagation phenomenon of
(1.1): it is proved in [1] that the influence of u0(x) on u(1, y) decreases as |x− y|−λ

(i.e. very slowly).
However, in practical situations, things behave much better than the preceding

reasoning might let one believe (partly because the above bounds are quite rough;
partly because the considered initial conditions are not any kind of function). Con-
sider for example T = 0.5, D = 1, λ = 0.5, a Burgers flux f(s) = s2/2 and a
Riemann initial condition u0(x) = 1 if x < 0 and u0(x) = −1 if x > 0 (we also use
a 4-points MUSCL method based on the Godunov numerical flux, see [17], instead
of a simple 2-points flux in (2.2)). Due to the hyperbolic part of the equation,
we compute the solution for at least the indexes |i| ≤ Nδx + 2Nδt, and it seems
wise to take this value as a lower bound for the choice of m in (3.7) (in order that
the non-local operator influences all the terms coming from the hyperbolic part
of the equation). To understand if a higher value of m can improve the precision
of the approximate solution, we show in Table 1, for various values of Nδt and
Nδx (all satisfying the CFL condition associated with the MUSCL scheme), the
difference between these solutions computed with the values m = Nδx + 2Nδt and
m = 3(Nδx + 2Nδt) (and in either case for Jδx large enough to have a minimal
interference): the very small difference between the two solutions shows that the
choice m = Nδ + 2Nδx is sufficient to obtain, in most cases, a good approximate
solution to the scheme.

As for Jδx, a minimal value appears to be 2m in order that, when solving (3.7),
the computation of gδx[vm]i takes into account all the (vmj )j∈Z which are influenced

by gδx in this system of equations. Here again, there is in fact little gain to be found
in using a much larger value for Jδx than this estimated minimum, as shown by
Table 2 (in which we present the L∞ difference of the solutions computed with
m = Nδx + 2Nδt and either Jδx = 2m or Jδx = 6m). Fixing Jδx = 2m seems
sufficient to obtain acceptable numerical approximations.
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Table 1. L∞ difference between the approximate solutions com-
puted with m = Nδt + 2Nδx and with m = 3(Nδt + 2Nδx) (and
Jδx = 4m in either case).

Nδx Nδt m L∞ difference
50 100 250 and 750 2.02E-4
100 200 500 and 1500 2.05E-4
150 300 750 and 2250 2.06E-4

Table 2. L∞ difference between the approximate solutions com-
puted with Jδx = 2m and with Jδx = 6m (and m = Nδ + 2Nδx in
either case).

Nδx Nδt Jδx L∞ difference
50 100 500 and 1500 1.76E-5
100 200 1000 and 3000 8.82E-6
150 300 1500 and 4500 5.88E-6

Notice that, once m and Jδx are chosen, we know exactly which indexes are
to be considered in the implementation: the indexes |i| ≤ m + Jδx + 1 (this can
be seen from (3.7), since the computation of gδx[vm]i for all |i| ≤ m uses only
(vmj )|j|≤m+Jδx+1).

4.1.3. Efficient numerical computation of the solution. Once the truncation pa-
rameters m and Jδx are chosen, computing an approximate solution to the scheme
requires solving the following systems of the kind (3.7):

(4.4) ∀i ∈ Z : un+1
i + δtgδx[un+1]i1[−m,m](i) = hn

i ,

where hn is obtained by an iteration of the scheme for the pure scalar conservation
law, i.e. hn

i = un
i +

δt
δxF (un

i−1, u
n
i )− δt

δxF (un
i , u

n
i+1). This system imposes un+1

i = hn
i

for |i| > m; defining then v = (hn
i 1Z\[−m,m](i))|i|∈Z and W = (un+1

i )|i|≤m, (4.4)
reduces to a square system of size 2m+ 1 on W :

(4.5) W + δtGδxW = (hn
i − δtgδx[v]i)|i|≤m,

in which the matrix Gδx comes from gδx (GδxW = (gδx[W̃ ]i)|i|≤m with W̃i = Wi

if |i| ≤ m and W̃i = 0 if |i| > m). It is easy to see from the definition of gδx

that Gδx is a symmetric semi-definite positive (it is diagonal-dominant) Toeplitz
matrix, and thus that the matrix I + δtGδx of (4.5) is symmetric definite positive
Toeplitz; solving this system can therefore be done in an extremely fast way by
using a preconditioned Conjugate Gradient method and multiplication algorithms
coming from the FFT framework (see [12, 25] and also [22] for a possible adaptation
to “more local” operators). Moreover, because of the Toeplitz form of gδx, it is also
possible to use FFT-based algorithms to achieve a very fast computation of the
right-hand side of (4.5).

Hence, the scheme (2.1)–(2.2) is not only a proper theoretical approximation
of (1.1), but also a very efficient one in terms of computational cost. We now
give some numerical results to show that this scheme also provides nice practical
approximations of solutions to fractal conservation laws.
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4.2. Numerical results. In the following numerical tests, we consider a Burgers
flux f(s) = s2/2 and, in order to avoid introducing too much numerical diffusion,
we use a 4-points MUSCL method based on the Godunov flux [17] to compute the
numerical fluxes associated with f . Except in Section 4.2.3, we present snapshots of
the approximate solutions2 at time T = 0.5 on the domain [−1, 1], computed with
a space step δx = 6.67 × 10−3 and a time step δt = 1.67 × 10−3 (with our choices
of initial conditions, these values satisfy the CFL condition associated with the
MUSCL method); we use gδx given by (4.3), the parametersm and Jδx being chosen
according to the discussion in the preceding section (δx and δt correspond to the
choices Nδx = 150 and Nδt = 300, so m = Nδx+2Nδt = 750 and Jδx = 2m = 1500).

Note that δx = 6.67×10−3 and δt = 1.67×10−3 are not very small steps; thanks
to the algorithms mentioned in Section 4.1.3, each of the following numerical tests
only takes a few seconds on a personal computer, and it would not be a strong
computational issue to reduce the size of the time-space grid. We choose to present
the results using these values of δx and δt in order to show that the numerical
outputs of the scheme are quite good even without using a very fine grid.

4.2.1. Shock preservation and creation. If λ > 1, the solution to (1.1) is C∞-regular
for any bounded initial data (see [14]). If λ < 1, however, it is proved in [3] that
the diffusion properties of g are not always strong enough, when in the presence of
a Burgers flux, to smoothen discontinuous initial data; moreover, in this situation,
even C∞-regular initial data can give rise to discontinuous solutions.

These two different behaviors (smoothing or shock preservation) with respect
to a discontinuous initial condition are illustrated in Figure 1 (in which the initial
condition is of Riemann type: u0(x) = 1 if x < 0 and u0(x) − 1 if x > 0). The
figure clearly shows that the solution corresponding to λ = 0.3 presents a shock at
x = 0, whereas the solution for λ = 1.5 is smooth.

-1.00 1.00

1.00

Solution at T = 0.5 for λ = 1.5

-1.00

-1.00 1.00

Solution at T = 0.5 for λ = 0.3

1.00

-1.00

Figure 1. Smoothing effect for λ > 1 and preservation of shock
for λ < 1 (the dotted line is the common initial condition of these
tests).

The phenomenon of shock creation if λ < 1 is shown in Figure 2; in this test, we
take a kind of initial data, which, although Lipschitz continuous, ensures that the

2Or rather of affine interpolates of the constant-by-parts approximate solutions (these affine
interpolates also converge to the solution of (1.1)).
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solution develops a shock in finite time (see [3]): u0(x) = min(1,max(−3x,−1)) (u0

is in fact piecewise linear, with a strong negative slope around 0 which provokes
the creation of a shock; we could have smoothen u0 around its slope discontinuities
at x = −1/3 and x = 1/3 without much changing the behavior of the solution).

-1.00 1.00

1.00

Initial condition
Solution at T = 0.5 for λ = 0.3

-1.00

Figure 2. Creation of shock for λ < 1.

4.2.2. Speeds of diffusion. Let us consider for a moment the pure fractal equation,
i.e. f = 0 in (1.1). It is known that, for any λ ∈ ]0, 2[, the solution to ∂tu+g[u] = 0
is regular. The diffusive effects of the operator g, which explains this regularizing
effect, however depend on the value of λ; indeed, taking the Fourier transform of
∂tu + g[u] = 0 we see that ∂tF(u) + |ξ|λF(u) = 0: thus, during the evolution,
the larger λ, the more high frequencies are reduced and the less low frequencies are
diffused. This property explains in particular the different behaviors in the presence
of a Burgers flux with respect to shocks (Section 4.2.1), but is also illustrated, for
the pure fractal equation, in Figure 3: the initial data used in this test (−1 if x < 0,
+1 if x > 0) has mainly low frequencies and is globally less diffused for a higher λ,
except around the discontinuity (high frequency) where the smoothing is stronger
(the slope of the solution is smaller).

The presence of a flux can also interact with the different diffusive properties of
g for various λ. If, keeping the same non-decreasing discontinuous initial data, we
add a Burgers flux (i.e. we consider (1.1) with f(s) = s2/2), then the hyperbolic
part of the equation generates a rarefaction wave: the initial shock is transformed
into a piecewise-linear solution; the high frequencies are therefore killed by the flux
and it can be seen in Figure 4 that the behaviors of the solutions for various λ no
longer differ around the initial shock (in fact, from (1.2) we can see that g vanishes
on affine functions for any λ). The stronger diffusive effect for low λ is however still
perceptible in the zones of lower frequencies of the solution.
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-1.00 1.00

-1.00

Solution at T = 0.5 for λ = 1.5
Solution at T = 0.5 for λ = 0.5

Initial condition

1.00

Figure 3. Solutions, for various λ and an initial shock, to the
pure fractal equation ∂tu+ g[u] = 0.

-1.00 1.00

-1.00

Initial condition
Solution at T = 0.5 for λ = 1.5
Solution at T = 0.5 for λ = 0.5

1.00

Figure 4. Solutions, for various λ, to (1.1) in the case of an initial
data and a flux f(s) = s2/2 generating a rarefaction wave.
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4.2.3. Asymptotic behavior. In [7], the asymptotic behavior as t → ∞ of the so-
lution to ∂tv + ∂x(f(v)) + g[v] − ∆v = 0 is studied; the addition, with respect to
(1.1), of the Laplacian term provokes little disturbance in the long-time behavior
of the solution, and the results of this reference are also valid for (1.1). Let us try
to illustrate them with the help of the numerical scheme.

We take λ = 0.5, and an initial data u0 equal to 1 on [−0.2, 0.2] and to 0
elsewhere; the time-space domain of discretization is [0, 30]× [−1, 1] and, to avoid
that the rarefaction wave and the shock generated by a Burgers flux for u0 leave
the domain of study, we reduce the strength of the flux by taking f(s) = s2/6.
Denoting by K(t, x) the kernel of ∂t + g = 0 (i.e. ∂tK(t, x) + g[K(t, ·)](x) = 0 and
K(t, ·) → δ0 as t → 0), it is proved in [7] that t1/λ[u(t)−K(t) ∗ u0] → 0 in L∞(R)
as t → ∞.

Figures 5 and 6 illustrate this property, by showing on one side the functions
x �→ u(t, x) and x �→ K(t)∗u0(x) for various times, and on the other side the plot in
a log-log scale of the L∞-norm of t1/λ[u(t)−K(t)∗u0] on [−1, 1] versus the time; the
approximations of u and K ∗ u0 (solution to (1.1) with f = 0) used to draw these
figures have been computed on [0, 30] × [−1, 1] using the numerical scheme with
Nδx = 100 and Nδt = 4000. It is proved in [7] that the next term in the asymptotic
expansion of u(t) is of order t−2/λ, i.e. that ||t1/λ[u(t)−K(t)∗u0]||L∞(R) = O(t−1/λ)

as t → ∞, and the reference slope t �→ t−1/λ in Figure 6 confirms this (see below
regarding the change of behavior after t = 10).

In fact, the second term in the asymptotics of u(t) is known: it is proportional to
∂xK(t) (see [7]); the numerical capture of this term is however quite challenging. In-
deed, since K(t, x) = t−1/λK(1, t−1/λx), we have ∂xK(t, x) = t−2/λ∂xK(1, t−1/λx)
and ∂xK(t) is of order t−2/λ in L∞(R) but, as ∂xK(1, 0) = 0, its maximal ab-
solute values are attained at points x which go to ±∞ with t1/λ; restricted to
[−1, 1], ∂xK(t) is in fact of order t−3/λ and can thus interact with a possible third
(and yet unknown) term in the expansion; this behavior is in concordance with
the acceleration of convergence which clearly appears in Figure 6: restricted to
[−1, 1], t1/λ[u(t)−K(t) ∗ u0] seems to be asymptotically more of order t−2/λ than
t−1/λ. Numerically illustrating the second term in the asymptotics of u(t) would
therefore require approximating this solution on a large time-space scale (includ-
ing the extremal values of ∂xK) and with a very high degree of precision (so that
the numerical error is negligible with respect to t−2/λ), which is beyond standard
computational power.

Notice that this problem does not appear for the first term K(t) ∗ u0 in the
asymptotic expansion: its maximum absolute value is of order t−1/λ and is attained
in [−1, 1] for all t > 0; a reasonable approximation of u(t) on [−1, 1] thus suffices to
capture this term. This is shown in Figure 6, and also confirmed if we look at the
relative L∞-error on [−1, 1] between u(t) and K(t) ∗ u0: for t = 1, this computed

error
||u(t)−K(t)∗u0||L∞([−1,1])

||K(t)∗u0||L∞([−1,1])
is around 0.63, whereas it is around 0.047 for t = 10

and around 0.0014 for t = 30. We are thus confident that the numerical scheme
really has captured the proximity of u(t) and K(t) ∗u0 for t large, not only a small
quantity due to the difference of two small functions.
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Figure 5. Initial condition u0 (dotted line), K(t) ∗ u0 (dashed
line) and u(t) solution to ∂tu + ∂x(u

2/6) + g[u] = 0 (continuous
line), for λ = 0.5 and various times.

4.3. About the explicit scheme. The explicit form of the scheme consists in
replacing (2.2) with
(4.6)

∀n ≥ 0 , ∀i ∈ Z :
δx

δt
(un+1

i − un
i ) + F (un

i , u
n
i+1)− F (un

i−1, u
n
i ) + δxgδx[un]i = 0.

The computation of the approximate solution to this scheme, on the contrary to
the implicit scheme, does not require solving a linear system at each time step (a
truncation parameter m is however still needed for the practical implementation),
but it is known that the CFL condition, ensuring the L∞-stability of the method, is
usually more binding than in the implicit case. Using Formula (3.1), we can make
this condition precise: with the same notation as in the proof of Corollary 3.4, and
since the index j = 0 in (3.1) plays no role, the equivalent of (3.10) for the explicit
scheme gives

un+1
i =

⎛⎝1− ani − bni − δt
∑

0<|j|≤Aδx

µδx
j

⎞⎠un
i +ani u

n
i+1+bni u

n
i−1+δt

∑
0<|j|≤Aδx

µδx
j un

i+j .
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4 5 3010 203
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Figure 6. Plot in log-log scale of t �→ ||t1/λ[u(t) − K(t) ∗
u0]||L∞([−1,1]) (continuous line) and of t �→ t−1/λ (dashed line), for

λ = 0.5, u0(x) = 1[−0.2,0.2](x) and u a solution to ∂tu+∂x(u
2/6)+

g[u] = 0.

A sufficient condition for the L∞-stability of the scheme is that un+1
i is a convex

combination of (un
j )j∈Z, which is, from the definition of ani and bni , ensured by the

preceding relation if

δt

δx

(
Lip1,u0

(F ) + Lip2,u0
(F )

)
+ δt

∑
0<|j|≤Aδx

µδx
j ≤ 1.

For the particular example of gδx given by (4.3), this comes down to

(4.7)
δt

δx

(
Lip1,u0

(F ) + Lip2,u0
(F )

)
+

δt

(δx)λ
c(λ)

⎛⎝ ∑
0<|j|≤Jδx

1

|j|1+λ
+

2

λJλ
δx

⎞⎠ ≤ 1.

This condition on the time and space steps is more restrictive than (2.4), but in
general not terribly more since c(λ) is small (c(0.5) ≈ 0.08, c(1) ≈ 0.05, c(1.5) ≈
0.02); this is especially true if λ < 1: asymptotically as the space step tends to 0, the
term coming from the hyperbolic part of the equation is then leading in (4.7). This
is however the opposite if λ > 1, and this CFL condition is also very sensitive to the
ratio diffusion/hyperbolic flux: if the hyperbolic flux is smaller than the diffusion
term (e.g. if Lipu0

(f) is small, which entails in general that Lip1,u0
(F )+Lip2,u0

(F )
is also small, or if we multiply g in (1.1) by a coefficient), (4.7) can be much more
demanding than (2.4); at the level of discretization used in the preceding tests and
for λ > 1, a ratio of 5 between the coefficient of g and Lipu0

(f) is enough to find a
noticeable difference between these two CFL conditions (recall also that the g we
used is in fact g = (2π)−λ(−∆)λ/2).

From a practical point of view, if the parameters are chosen so that the explicit
scheme is stable (in which case the implicit scheme is of course also stable), the
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solutions given by both forms (explicit and implicit) of the scheme are very simi-
lar: for example, in the preceding numerical tests, the relative L∞-norm of their
difference is lower than 3× 10−4.

Since the explicit scheme demands to compute gδx[un] at each time step, its
implementation can take advantage of FFT-based algorithms as in Section 4.1.3.
In fact, as explained in this section, the implicit scheme also requires such a com-
putation at each time step, and the difference of cost between the explicit and
implicit methods therefore lies in the preconditioned CG iterations needed to solve
the system in the implicit case. Although very fast, these CG iterations are not
negligible in the overall cost and, in situations where (4.7) is not much more de-
manding than (2.4), the explicit scheme is clearly faster than the implicit scheme.
However, for a diffusion-dominated problem (for example f(s) = s2/2, λ = 1.5 and
(2π)λg = (−∆)λ/2 instead of g), (4.7) can impose a much smaller time step than
(2.4) and the implicit method then remains way more efficient than the explicit
method.

5. Appendix: technical lemmas

Lemma 5.1. If Jδx is such that Jδxδx → +∞ as δx → 0, then gδx defined by (4.3)
satisfies (2.9) and (2.10).

Proof of Lemma 5.1.
Step 1: Proof of (2.9).
We notice first, from (4.3), that (gδx)∗ = gδx. Let K be a compact subset of

R and define Aδx : C2
K(R) → L1(R) by Aδxφ = gδx[Φ] − g[φ], where Φ is defined

from φ as before (2.9)3. Proving (2.9) is equivalent to proving that Aδx → 0 in
L(C2

K(R);L1(R)) as δx → 0, which we intend to do by applying Lemma 5.3 (stated
after this proof).

Let r > 0 and x ∈ R; by definition, choosing i ∈ Z such that x ∈ [iδx, (i+ 1)δx[
we have

gδx[Φ](x) = −c(λ)
∑

0<|j|≤r/δx

δx
Φi+j − Φi

|jδx|1+λ
− c(λ)

∑
r/δx<|j|≤Jδx

δx
Φi+j − Φi

|jδx|1+λ

−c(λ)
Φi−Jδx−1 − Φi

λ(Jδxδx)λ
− c(λ)

Φi+Jδx+1 − Φi

λ(Jδxδx)λ

= −c(λ)
∑

0<|j|≤r/δx

δx

|jδx|1+λ

1

δx

∫ (i+1)δx

iδx

φ(ξ + jδx)− φ(ξ) dξ

−c(λ)
∑

r/δx<|j|≤Jδx

δx

|jδx|1+λ

1

δx

∫ (i+1)δx

iδx

φ(ξ + jδx)− φ(ξ) dξ

−c(λ)
1

λ(Jδxδx)λ
1

δx

(∫ (i−Jδx)δx

(i−Jδx−1)δx

φ(ξ) dξ −
∫ (i+1)δx

iδx

φ(ξ) dξ

)

−c(λ)
1

λ(Jδxδx)λ
1

δx

(∫ (i+Jδx+2)δx

(i+Jδx+1)δx

φ(ξ) dξ −
∫ (i+1)δx

iδx

φ(ξ) dξ

)
.

3It might not be straightforward that Aδx takes its values in L1(R), because of the term gδx[Φ],
but this will be made clear by the reasoning to come.
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The same way we went from (4.1) to (4.2), we can add to each term in the first sum

of the right-hand side anything of the form pi
jδx

|jδx|1+λ without changing the value

of the sum (these additional terms cancel out each other by symmetry). We choose

to add −
∫ (i+1)δx

iδx
φ′(ξ) dξ jδx

|jδx|1+λ and we obtain

gδx[Φ](x) = −c(λ)
∑

0<|j|≤r/δx

δx

|jδx|1+λ

1

δx

∫ (i+1)δx

iδx

φ(ξ + jδx)− φ(ξ)− φ′(ξ)jδx dξ

−c(λ)
∑

r/δx<|j|≤Jδx

δx

|jδx|1+λ

1

δx

∫ (i+1)δx

iδx

φ(ξ + jδx)− φ(ξ) dξ

−c(λ)
1

λ(Jδxδx)λ
1

δx

(∫ (i−Jδx)δx

(i−Jδx−1)δx

φ(ξ) dξ −
∫ (i+1)δx

iδx

φ(ξ) dξ

)

−c(λ)
1

λ(Jδxδx)λ
1

δx

(∫ (i+Jδx+2)δx

(i+Jδx+1)δx

φ(ξ) dξ −
∫ (i+1)δx

iδx

φ(ξ) dξ

)
= T δx,r

8 [φ](x) + T δx,r
9 [φ](x) + T δx

10 [φ](x) + T δx
11 [φ](x).

We then define the operators Aδx
0,r and Aδx

2,r by

Aδx
0,rφ = T δx,r

9 [φ] + T δx
10 [φ] + T δx

11 [φ]− g0,r[φ] and Aδx
2,rφ = T δx,r

8 [φ]− gλ,r[φ].

The definition of g0,r clearly shows that Aδx
0,rφ is defined for any φ ∈ C0

K(R). For
all x ∈ R we have

|T δx
10 [φ](x) + T δx

11 [φ](x)|

≤ c(λ)

λ(Jδxδx)λ

(
sup

|s|≤δx

|φ(x− Jδxδx− δx+ s)|+ 2 sup
|s|≤δx

|φ(x+ s)|

+ sup
|s|≤δx

|φ(x+ Jδxδx+ δx+ s)|
)
,

which shows, integrating and using some changes of variables, that

||T δx
10 [φ] + T δx

11 [φ]||L1(R) ≤
4c(λ)

λ(Jδxδx)λ

∫
R

sup
|s|≤δx

|φ(z + s)| dz

≤ 4c(λ)

λ(Jδxδx)λ
||φ||L∞(R)mes(K + [−δx, δx])

and thus, since Jδxδx → ∞ as δx → 0,

(5.1) T δx
10 + T δx

11 → 0 in L(C0
K(R);L1(R)) as δx → 0.

We let I(j, δx) = [jδx, (j + 1)δx[ if j > 0 and I(j, δx) = ](j − 1)δx, jδx] if j < 0,
and we define Hδx : R → R by: for all r/δx < |j| ≤ Jδx, H

δx = 1
|jδx|1+λ on I(j, δx),

and Hδx = 0 on R\
⋃

r/δx<|j|≤Jδx
I(j, δx). By regularity of z → |z|−1−λ on |z| ≥ r,

we have, if δx < r/2,

∀z ∈
⋃

r/δx<|j|≤Jδx

I(j, δx) :

∣∣∣∣Hδx(z)− 1

|z|1+λ

∣∣∣∣ ≤ (1 + λ)δx sup
|s|≤δx

1

|z + s|2+λ

≤ δx
1 + λ

(|z| − r/2)2+λ
.
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Since
⋃

r/δx<|j|≤Jδx
I(j, δx) = {z ∈ R | r + αr,δxδx ≤ |z| < Jδxδx + δx} for some

αr,δx ∈ [0, 1], we deduce that Hδx → 1
|z|1+λ in L1(|z| > r) as δx → 0; for all

φ ∈ C0
K(R) and all x ∈ R, by uniform continuity of φ we infer that

(5.2) T δx,r
9 [φ](x) → −c(λ)

∫
|z|>r

φ(x+ z)− φ(x)

|z|1+λ
dz = g0,r[φ](x) as δx → 0.

Moreover, still assuming that δx < r/2,
(5.3)

|T δx,r
9 [φ](x)| ≤ c(λ)

∫
|z|>r

Hδx(z)

(
sup
|s|≤r

|φ(x+ z + s)|+ sup
|s|≤r/2

|φ(x+ s)|
)

dz,

and, by convergence of Hδx in L1(|z| > r), the right-hand side of (5.3) converges, as
a function of x, in L1(R) as δx → 0. The dominated convergence theorem and (5.2)

then show that T δx,r
9 [φ] → g0,r[φ] in L1(R) and, together with (5.1), this proves

that Aδx
0,r satisfies Item 1 in Lemma 5.3.

Since (Hδx)δx∈]0,r/2[ is bounded in L1(|z| > r), (5.3) gives ||T δx,r
9 [φ]||L1(R) ≤

C4||φ||L∞(R)mes(K + [−r, r]) with C4 not depending on φ or δx ∈]0, r/2[; recalling
(5.1) and since g0,r ∈ L(C0

K(R);L1(R)) (see the definition of g0,r), this shows that
Aδx

0,r satisfies Item 2 in Lemma 5.3.

Let us now turn to Aδx
2,r. Writing φ(x + z) − φ(x) − φ′(x)z =

∫ 1

0
(1 − s)φ′′(x +

sz)z2 ds, we have

(5.4) ||gλ,r[φ]||L1(R) ≤ c(λ)||φ′′||L1(R)

∫
|z|≤r

|z|1−λ dz ≤ ||φ′′||L1(R)
2c(λ)

2− λ
r2−λ.

We handle T δx,r
8 [φ] in a similar way: integrating its definition with respect to x and

using a comparison between discrete and integral sums, we find that

||T δx,r
8 [φ](x)||L1(R) ≤ c(λ)

∑
0<|j|≤r/δx

δx

|jδx|1+λ

∫
R

|φ(ξ + jδx)− φ(ξ)− φ′(ξ)jδx| dξ

≤ c(λ)
∑

0<|j|≤r/δx

δx

|jδx|1+λ
||φ′′||L1(R)|jδx|2

≤ ||φ′′||L1(R)c(λ)

∫
|z|≤r+δx

|z|1−λ dz

≤ ||φ′′||L1(R)
2c(λ)

2− λ
(r + δx)2−λ.

Together with (5.4), this proves that Aδx
2,r satisfies Item 3 in Lemma 5.3 and con-

cludes the proof of (2.9).
Step 2: Proof of (2.10).
The cutting of gδx in gδxλ,r and gδx0,r is of course the one given by (4.2), gδxλ,r being

the first sum and gδx0,r the rest of the right-hand side. The proof that gδxλ,r satisfies

(2.5)–(2.8) and (2.9) with gλ,r instead of g is done exactly as for gδx (the proof
of (2.9) is done by cutting the sum defining gδxλ,r at a level r′/δx with r′ < r, by
introducing the derivative of φ in the lower part of the sum and by replacing, in
the reasoning of Step 1 above and in Lemma 5.3, r with r′).
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Let us study gδx0,r. For all v ∈ l∞(Z) and all x ∈ R, choosing i ∈ Z such that
x ∈ [iδx, (i+ 1)δx[ we have
(5.5)

gδx0,r[v](x) = −c(λ)
∑

r/δx<|j|≤Jδx

δx
vi+j − vi
|jδx|1+λ

−c(λ)
vi−Jδx−1 − vi
λ(Jδxδx)λ

−c(λ)
vi+Jδx+1 − vi
λ(Jδxδx)λ

.

Let |j| > r/δx. We have x + z ∈ [(i + j)δx, (i + j + 1)δx[ (which implies v(x +
z) = vi+j) if and only if z ∈ [jδx, (j + 1)δx[+(iδx − x) =: Ej(i, x), in which case
|z − jδx| ≤ δx and, if δx ≤ r/4,∣∣∣∣ 1

|z|1+λ
− 1

|jδx|1+λ

∣∣∣∣ ≤ (1 + λ)δx sup
|s|≤δx

1

|z + s|2+λ
≤ δx(1 + λ)

1

(|z| − r/4)2+λ

(notice that if z ∈ Ej(i, x), then |z| > r/2). We deduce∣∣∣∣∣δxvi+j − vi
|jδx|1+λ

−
∫
Ej(i,x)

v(x+ z)− v(x)

|z|1+λ
dz

∣∣∣∣∣
≤ 2||v||l∞(Z)δx(1 + λ)

∫
Ej(i,x)

dz

(|z| − r/4)2+λ

and, plugging this into (5.5) and defining E(i, x) =
⋃

r/δx<|j|≤Jδx
Ej(i, x) ⊂ {|z| >

r/2},∣∣∣∣∣gδx0,r[v](x) + c(λ)

∫
E(i,x)

v(x+ z)− v(x)

|z|1+λ
dz

∣∣∣∣∣ ≤ 2||v||l∞(Z)δx(1 + λ)

∫
|z|>r/2

dz

(|z| − r/4)2+λ

+
4c(λ)||v||l∞(Z)

λ(Jδxδx)λ
.

But E(i, x) = [−Jδxδx+ρ′1δx,−r+ρ1δx[∪[r+ρ2δx, Jδxδx+ρ′2δx[ with (ρ1, ρ
′
1, ρ2, ρ

′
2)

∈ [−1, 1] and the symmetric difference between E(i, x) and {|z| > r} is therefore
contained in {r − δx ≤ |z| ≤ r + δx} ∪ {|z| ≥ Jδxδx− δx}; we conclude that

|gδx0,r[v](x)− g0,r[vδx](x)|

≤ 2||v||l∞(Z)δx(1 + λ)

∫
|z|>r/2

dz

(|z| − r/4)2+λ
+

4c(λ)||v||l∞(Z)

λ(Jδxδx)λ

+2c(λ)||v||l∞(Z)

∫
r−δx≤|z|≤r+δx

1

|z|1+λ
dz

+2||v||l∞(Z)c(λ)

∫
|z|>Jδxδx−δx

1

|z|1+λ
dz

and Item 2 of (2.10) follows, the estimate being in fact valid in L∞(R) and not only
in L1(Q). �

Remark 5.2. It is also possible, by some direct estimates rather than using the
abstract Lemma 5.3, to give an explicit θK such that (2.9) holds; such an expression
could be useful, for example, to establish error estimates for the scheme (2.1)–(2.2).
However, getting this θK is much more technical than the arguments used in Step
1 of the preceding proof.
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Lemma 5.3. Let K be a compact subset of R and denote by C0
K(R) (resp. C2

K(R))
the space of continuous (resp. twice continuously differentiable) functions with sup-
port included in K. Assume that (Aδx)δx>0 is a family of linear continuous oper-
ators C2

K(R) → L1(R) such that, for all r > 0, we can write Aδx = Aδx
0,r + Aδx

2,r

with Aδx
0,r : C0

K(R) → L1(R) and Aδx
2,r : C2

K(R) → L1(R) linear continuous operators
satisfying:

(1) for all r > 0 and all φ ∈ C0
K(R), Aδx

0,rφ → 0 in L1(R) as δx → 0,

(2) for all r > 0, lim supδx→0 ||Aδx
0,r||L(C0

K(R);L1(R)) < +∞,

(3) limr→0 lim supδx→0 ||Aδx
2,r||L(C2

K(R);L1(R)) = 0.

Then Aδx → 0 in L(C2
K(R);L1(R)) as δx → 0.

Proof of Lemma 5.3. We take φδx ∈ C2
K(R) such that ||φδx||C2

K(R) ≤ 1 and

||Aδx||L(C2
K(R);L1(R)) ≤ ||Aδxφδx||L1(R) + δx. Using the compactness of the em-

bedding C2
K(R) ↪→ C0

K(R), we can assume that φδx converges in C0
K(R) to some φ

as δx → 0. We then take r > 0 and write

||Aδx||L(C2
K(R);L1(R)) ≤ ||Aδx

0,rφ
δx||L1(R) + ||Aδx

2,rφ
δx||L1(R) + δx

≤ ||Aδx
0,rφ||L1(R) + ||Aδx

0,r||L(C0
K(R);L1(R))||φδx − φ||C0

K(R)

+||Aδx
2,r||L(C2

K(R);L1(R)) + δx,

and the conclusion follows by taking first the upper limit as δx → 0 and then the
limit as r → 0. �
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[7] Biler P., Karch G. and Woyczyński W., Asymptotics for conservation laws involving
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