A NUMERICAL METHOD FOR KINETIC SEMICONDUCTOR
EQUATIONS IN THE DRIFT DIFFUSION LIMIT

AXEL KLAR*

Abstract. An asymptotic-induced scheme for kinetic semiconductor equations with the diffusion
scaling is developed. The scheme is based on the asymptotic analysis of the kinetic semiconductor
equation. It works uniformly for all ranges of mean free paths. The velocity discretization is done
using quadrature points equivalent to a moment expansion method. Numerical results for different
physical situations are presented.
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1. Introduction. Kinetic semiconductor equations are used to describe highly
integrated semiconductor devices. The situation for small mean free paths is described
by an asymptotic analysis. The limit equation for small mean free path of the kinetic
equation with the diffusion scaling is the drift-diffusion equation.

In the drift-diffusion limit a very fine and expensive discretization depending on
the mean free path has to be used for standard finite difference or particle methods due
to the stiffness of the equations. This makes these schemes extremely time consuming.
One way to handle the problem are domain decomposition techniques, see, e.g., [14,
16] for the semiconductor case. The basic idea is to use the computationally much
cheaper limit equation where- and whenever it gives a good approximation. In all
other cases the kinetic equation is used. In this approach kinetic semiconductor
and macroscopic equations are solved simultaneously on different subdomains of the
computational domain. A second approach is to develop directly numerical schemes
for the kinetic equation working uniformly for different regimes. In particular, it
should be possible to choose the discretization size independent of the mean free
path. Coarse discretizations should yield a good approximation, if a near equilibrium
situation prevails and the true solution is only varying slowly.

The domain decomposition approach has the advantage that well known and
tested codes can be used. However, work has to be spent on the coupling procedure.
In the second approach the same method can be used in the whole computational
domain with possibly different sizes for the discretization. In this paper we will
consider the second approach.

In recent years there has been a lot of work on numerical methods for kinetic
equations in stiff regimes. For example, stationary transport equations in the diffusion
limit have been considered in [10, 18, 17, 20]. Nonstationary kinetic equations with
a scaling leading to first order hydrodynamic equations and hyperbolic conservation
laws with stiff relaxation terms are treated in [4, 5, 11]. General methods, the so called
relaxation type schemes have been published in [13]. A diffusive relaxation scheme
for discrete velocity models has been obtained in [12]. In the semiconductor case a
moment method coupled with a semiimplicit discretization can be found in [25].

The present work considers an extension of a scheme for transport equations, see
[15], which is suitable for the calculation of situations with small mean free path. The
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different space time scalings involved in the problem are treated in a way proposed
in [15] by using a fractional step method and a semiimplicit discretization. The time
discretization can be choosen in this way independent of the mean free path. Here new
problems arise due to the presence of the electric field. The main problem is to include
it into the approach and to obtain a suitable discretization of the limit equation.
Moreover, a new velocity discretization is introduced: Usually moment methods are
widely used for semiconductor simulations, see [6, 9, 22, 24, 25]. We propose in this
paper a scheme which is not directly based on a moment method. Instead we use a
velocity discretization based on a quadrature method which is essentially equivalent
to a moment method. In particular, the consideration of boundary conditions is more
straightforward for this approach. Including the results of a boundary layer analysis
in the scheme, kinetic boundary layers are also treated in a correct way. This allows
to use coarse spatial grids even in the presence of boundary layers.

Section 2 contains a description of the results of the standard asymptotic proce-
dure. Sections 3 and 4 contain the details of the velocity and time discretization. In
Section 5 the drift-diffusion limit of the scheme is considered. In Section 6 the space
discretization is presented. Section 7 contains numerical results for several examples.

2. The Equations. We consider a domain 2 in R® and the lyinear semiconduc-
tor Boltzmann equation with parabolic band approximation

(21) O + L0 Vel + Va - Vuf) + Q) = G,

where f = f(z,v,t) is the distribution function, z € Q,v € R®, t+ > 0 and e is the
mean free path. ®(z,t) denotes the electric potential,

and

where s is rotationally invariant and fulfills
s(v,w) = s(w,v) > so > 0.
Moreover
Av) = K(M)(v)

with A(v) < Ao, where )Xo is a constant. The collision operator is bounded and
nonnegative on the Hilbert space H = L%(R®, M 1(v)dv), see [23, 25]. It has a
one-dimensional kernel spanned by M. Moreover, the following coercivity estimate
holds:

(2.2) <Qf,f>> oo|f - Pf|?
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with a positive constant oy. Here, we did use the notation

Pf(v) = / f(w)dw M (v)

for the projection onto the kernel of ). Moreover, < -,- > and | - | denote the scalar
product and norm in H. See [23, 25] for further details. G = G(z,v) denotes the
source term. The initial and boundary conditions are

f(z,0,0) = g(z,v), z € Q
and
flz,v,t) = k(z,v,t),xz € 0Q,v-n(zx) <0,

where n(z) is the outer normal at 99 at the point z.
Let h = (hq, hy, h3) be the solution of

Q(h,M) = ’U,’M, /h,’(’l))Md'U =0

for i € {1,2,3}. Since by assumption s is rotationally invariant, it follows that
Vi,j € {1,2,3}:

/vih]-M(v)dv = Dd; ;.

In the small mean free path limit f(z,v,t) is approximated by p(x,t)M (v), where
p(z,t) fulfills the drift-diffusion equation

(2.3) Op— DV, - (Vep —2pV,®) =G,

with G(z) = [ G(z,v)dv, see [23]. Doing a boundary layer analysis, one observes
that the correct zeroth order boundary conditions for the drift-diffusion equation are
given by a kinetic half space problem: Let x*(y,v,t) be the bounded solution of the
following halfspace problem at x € 92

(24) v-n(x)dyx" +Q(x") =0,y € R™
x*(0,v,t) = k(z,v,t),z € 0Q,v-n < 0.

Then
p(.Z',t)M(U) = Xw(—OO,U,t),Z' € 69

Here x*(—o0,v,t)M~1(v) is independent of v.

We mention that the following scheme can be adapted to other situations, like
semiconductor Boltzmann equations, where the §-distributions in energy appearing
in the usual semiconductor scattering cross section are integrated out using the total
energy as a new variable, see, e.g., [6, 9, 22]. In this case an integration over the unit
sphere in R? instead of the whole space R® has to be considered.
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3. The Numerical Scheme: Velocity Discretization. The discretization of
the velocity space R? is done using a quadrature method based on Hermite polyno-
mials. The quadrature method is essentially equivalent to a moment method for the
semiconductor equation. The same approach substituting the expansion in Hermite
polynomials by an expansion in Legendre polynomials can be done for the above
mentioned kinetic semiconductor equation with an integration over the unit sphere.
This is a well known way of proceeding in transport theory, see [19]. For semicon-
ductor equations usually the moment equations are treated directly, see [25] for an
approach treating the moment system associated to equation (2.1) numerically and
an investigation of the convergence of moment methods.

It is assumed that the distribution function can be expanded in Hermite polyno-
mials:

with
K,L,M

(3.1) P(v) = Z Vi t,m Nt m Hp1,m (v)
k,l,m=0

where Hy 1 m(v) = Hi(v1)Hi(v2)Hp(v3) and Ngygm = NpNiNp,. Hj is the one di-
mensional k-th order Hermite polynomial and N2 = 2%16, is the normalization factor.
Yr,1,m is given by

Yram = /¢(U)Hk,z,m(U)Nk,l,mM(U)dU-

The moment equations obtained with this expansion are essentially equivalent to a
velocity discretization based on a quadrature method where the zeros of the Hermite
polynomials and the related weights for Hermite integration [1] are used:

Writ.ingpi = (Uil,?};,?};‘g),i = (7:1,7:2,1.3),2'1 = 0,' ",K,ig = 0," -,L,i3 = 0," ';Ma
where v}!,vi?,v3® are the zeros of Hg.y1,Hr 1, Humy1, and 2¢ for the associated
weights one obtains

(32) wk,l,m = /¢(U)Hkil’m(U)NkJ’mM(U)dU = ijHl‘z,l,meﬁl,mszj
J

with M7 = M (v?),¢? = ¢ (v?) and H] ;= Hy,1,m(v?). The last equality is exact due
to the properties of Hermite integratibh, since the degree of the polynomial ¥ Hj, i,
is small enough. For the collision operator we get, using first (3.1) and then (3.2) and
defining

Shim = / H g () M (10)3(0", w)duo

the following

K(4M) (@) = / (0%, W)t (w) M (w)dw

= Z Nk,l,mlbk,l,m/Hk,l,m(w)M(w)s(vi,w)dw

k,l,m=0
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K,L.M

i
> " Netm®kt,mShm

k,l,m=0

= ZW«%’,;‘

J

with
K,L,M

L= [ 2 J Jngd
Sij = E : k0, m Ve, m Hig 1, m 2" M7 -
k,l,m=0

This is exact, if the coefficients s};’,’m are evaluated exactly. The derivative with
respect to the velocity variable is approximated by

K,L .M

611177[} :61)1( Z ¢k,l,mHk,l,me,l,m)
k,l,m=0
K LM

= > ) rym2kHe 1 HiHp N gm
k=11,m=0

due to (3.1) and since the Hermite polynomials fulfill H; = 2kH}_,. Therefore,
using (3.2) we have

Bu (v') =D e
J

with
K LM
1 _ Z Z i 2 J J,i
Ci,j = 2ka—1,l,me,l,mHk,l,mM z7.
k=11,m=0
yy, Dys are treated in the same way yielding the coefficients ¢ ;, ¢} ;. Using
9, 9,

Vo (M) = MV ¢ — 2gvM

this yields the velocity discretized version of equation (2.1) at the discretization point

v*:

O + (T + Vo (Vo) — 200 VoBy) + (N — (KWM))) = G
with
(Vo) = (Z ,(/chzl,ja Z ,(/)jczz,j ) Z ch,j)
J J J
(K@M)= sy
A Jz A(v).
In terms of the distribution function f we have

(3 Af 4 WV e (V) + 5 QU) =G

€
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with

= 1)
(vvf)Z = (va)zMz — 2’Ui1ﬂiMi
Q)" = N9 — (K (M) ) M*.

The matrices ¢';,n = 1,2,3 and s;,; are computed in advance using the recursion
properties of the Hermite polynomials.

4. Time Discretization. In this section we develop a time discretization that is
able to treat varying mean free paths € with a fixed discretization. It is not necessary
to adapt the time step once the mean free path tends to 0. Moreover, the scheme is
in the limit € — 0 a good discretization of the drift diffusion equation.

We proceed similiar as in [15] and use the asymptotic procedure and a fractional
step scheme with a semiimplicit discretization. The aim of the procedure is to treat
exactly those terms for which it is necessary in an implicit way. One writes f as
f = fo + ef1 and collects suitable terms together, such that only terms on the scale
% are involved:

Let (fo, f1) be the solution of the set of equations

(4.1) Oifo+v-Vofr +V, -8V, fi = —G%Q(fo)+G(w)

Oufi = (-0 Vefo=Vad-Vafo - QU
We take inital and boundary values
fo(z,v,0) + efi(2,v,0) = g(z,v),r € Qv e R®
and
(4.2) fo(z,v,t) + efi(x,v,t) = k(z,v,t),z € 0N, v-n <O0.
The second boundary condition for the system (4.1) is
fo(z,v,t) — efi(z,v,t) = q(z,v,t),2 € N,v-n >0

with ¢ arbitrary. One observes that fo + €f fulfills the original equation (2.1) and
the initial and boundary conditions. It is therefore the desired solution of the original
problem.

The results of the boundary layer analysis, see, e.g. [3, 23], are included in the
scheme by choosing ¢ in the following way:
Let x*(y,v,t) be the solution of the halfspace problem (2.4). Since the outgoing
function at the boundary for the kinetic problem (2.4) for € tending to 0 is the same
as the outgoing solution of the half space problem, we define

q(z,v,t) = x"(0,v,t),z € 0Q,v-n > 0.

It is obviously not reasonable to determine the outgoing function by solving the half-
space problem. This would need too much computing time. Here a fast approximate
scheme as in [7] or [14] is needed. For example, a first approximation is given by
choosing simply an approximation ¥®(—o0,v,t) of the asymptotic value x*(—o0,v,t)
of the halfspace problem as the outgoing function:

(4.3) qg(z,v,t) = X°(—o0,v,t),x € 0Q,v-n > 0.
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The simplest approximation of x®(—o0, v, t) is given by equalizing the half range fluxes
of the halfspace problem at 0 and oo:

w - nk(z,w,t)dw
w - nM (w)dw

(44) >~<$(—00avat) = fw.n<0

Jum<o M(v) = k(z,v,1).

A more sophisticated approximation for g, see [14], is given by

(4.5) X (=00, v,t) = k(z,v,) +

% /w-n<0(w . n)2 [k(.’L‘, w,t) — ];:(_r, w7t)] dwM (v)

and

(46) q(.fL',U,t) = )‘Zz(—OO,U,t)

s ) [ ) - S
[k(z,w,t) — x*(—o00,v,t)|dw

for x € 0, v-n > 0. We remark that a correct treatment of the boundary conditions
is important, in particular, if zeroth order kinetic boundary layers are present and
one is using a coarse spatial grid not resolving the layer. Using (4.3,4.4) or (4.5,4.6)
one obtains a good approximation of the solution with a first order boundary layer
even if only a very coarse grid is used. See Figure 7.4 in Section 7 or reference [15]
for some examples. Higher order approximations of the half space problem may be
useful in certain situations as well.

The system of equations (4.1) will be solved with a fractional step scheme:

Step 1:

ath"'U'vzfl"'v:mq)'vvfl = G(SL')
O fr 0

Step 2:

Oifo = —6% (fo)

Oufi = (-0 Vafo= VaB Vafo— QUf)

For Step 1 an explicit discretization will be used, Step 2 is discretized semi-implicitely
to treat the stiffness of the equations in a correct way.

Let At denote the time step and f§, ff,k =0,---,n = 2 the approximations of
Jo(z,v, kKAL), fi(z,v, kAt). The initial and boundary values are given as above. The
time discretization is then given by the following:

Step 1:

(4.7) S5 At(o- Vo fF + VB Vo fF) + GAL

k+3 k
1 2 :fl
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Step 2:

@) =t S eouEty - P+ P

k+1 k+31
1+ f 2

At 1
SV, f"“ Vol Vof§t = QUET) = PAY + PR

Rewriting (4.8) we obtain

At k
éc+1+6_2(Q( k+1)+Pfk+1) f0+2 +—Pf +3
and
At
I QU + PATY

At
- f1+2+—Pfk+2 -5V, FEL LV, 8- v, fET,.

This leads to
Step 2:

(4.9) M= AT BT
B = AT P v, i - V,8 - v, R,

where the operator A is defined by

A= u+éﬂQ+m) — (v Qep)
At At
and
At € 1
B= G—QA_(EI+Q+P)
Here I denotes the identity. The operator
(—I +Q+P)

At

is positive and invertible for all € > 0, At > 0 due to the above properties of ). The
coercivity estimate (2.2) gives

tI+Q+P)g\ |g] ><(—I+Q+P)g,g>

|(A Al

2
2 Pal? + |Pal? c 2
> Atlgl +oolg = Pgl” +1Pgl” 2 (5 +0) gl

with o = min(1,0¢). This gives

1
€2’

U+B

(4.10) SI1+Q+P)' <

=
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For example in the case of a relaxation model with M K = P and A = 1 we obtain

and

In this case the semi-implicit scheme has a very simple formulation. In general, in
each time step we have to solve in Step 2 two linear Fredholm integral equations of
the form

62

(AtI+Q+P)f:g'

This may be achieved by standard methods [2, 8]. If the number of velocity discretiza-
tion points is not too large, i.e. the degree of the expansion into Hermite polynomials
is not too high, one can invert the matrix derived from the velocity discretization of
2—1[ + @ + P in advance with a direct method. The resulting matrix is stored for the
computation. This gives a very efficient method to handle the Fredholm equation.

5. The Small Mean Free Path Limit. In this section we investigate the
behaviour of the time discretized scheme as € tends to 0 for fixed At.

As € — 0 the operators A and B have the following behaviour: We have for At
fixed and € small due to (4.10)

e €2 €2 1 €2
Al = —|(—T P < ——" _ = —
Al = (g T+ @+ P S o =05y
and
B-@+P) = [(C1r@+P) @+ P
At AL
2 1 2
S o
tO'((7+A—t) t

Using these estimates we get that the scheme reduces in the diffusion limit, €
tending to 0, to the following

Step 1:
k41
1+2 = f{c
Step 2:
= QPP
B = (Q4 P)UPAE .V, - V,8. 0, £

Moreover, we have

(Q+P)Pf=Pf,
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(Q + P)(h(v)M(v)) = vM(v)
with h defined in Section 2,
Vofo ™ = Vo(Pfet!) = —20Pf3+!

due to the definintion of P and

(5.1) P(Vusf) = [ Vustaodr) =o.
This yields

Step 2:
(5.2) ML= ppyts

k41
o= PRTT = h) - (Vo (Pf§T) = Vo 22PfH)
Considering Step 2 and Step 1 together we obtain for e = 0

é‘i-i-l — Pféﬂ-i-l — Pfé’“‘%
= Pff—At(V, - P(wff)+V,®-P(V,fF)) + GAt.

Using (5.1) and
P(vff) = —D(V,Pff -2V, ®Pfk)
one obtains
Pfstl = pfk + AtDV, - (V,Pft — 2V, ®PfE) + GAt
or

(5.3) o't = ©F + AtDV, - (V,0F — 2V,80F) + GAL.

This is an explicit time discretization for the drift-diffusion equation. The bound-
ary conditions for the drift-diffusion equation that are given in the limit by the solution
of the halfspace problem (2.4) fit to the boundary conditions for the kinetic scheme

as defined in the last section.

6. Space Discretization. We restrict from now on for notational simplicity to
the case, where fo and f; depend only on the first space coordinate: The domain

under consideration is [0, L].

We define a staggered grid z; = iAz,i = 0,---, N with N = ﬁ, and T =

(i—$)Az,i=0,---,N+1.
We use the notation

f& = f60) ~ fo(iAz, v, kAt),

7= FEG) ~ il — 5)Aa,v, kA
and

® = 3(i) ~ B(iAz).
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The discretization of the initial values is straightforward. The boundary conditions
are discretized by

FEO) + S(FEO) + ££(1) = k(0,0,8), 01 >0
F50) = SO + D) = 4(0,0,1), v <0
and
TEN) + S(EN) + FE(N + 1) = k(L 0,0), v <0
Q) = SUHEWO) + (N + 1) = g(L, v, 1), v > 0.
Let the operators D} and D_ be defined as

Dy f() = f(i+1) - f(i)
D_f(i)=f@@) - fi-1)

and S¢,S% by

SYf@) = B(®(i +1) = ®(0))f(i + 1) = B(®(i — 1) — ®(0)) (i)

STf(i) = B(®(i) — (i — 1)) f(i) — B(®(i — 1) — 8(i)) f(i — 1)
with

B(z) ==(1-

m_]_)'

We mention that for  small B(z) ~ §. Discretizing in (4.7) and (4.9) 0, fo with
P
D_, 8, f1 with D, and approximating V,® - V, fo by i—;(vag) and V,® -V, f1 by
D
i—;(vv f1) yields the following scheme

Step 1:
(6.1) $TE = fh = At(nr fl <v ) +Gat
= b
Step 2:
(6.2) Ji = aphts  ppgkts
k+1 k+3 k+3 D_ k+1 52 k+1
1 = Afl +B[Pf _UIA—x 0 Az (V f )]

In the limit for small € we obtain the space discretized diffusion equation
1 D
ktl _ ppktl — prits _ pgk AtZEP(ouff) + GAL
z
At

=Pfk+ WDD+(D,pf§ —28%PfE) + GAt
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or

At

k+1 _ gk
C] oF + Bz

DD, (D_0OF —25%0*%) + GAL.

This can be written as
At

ol —of + WDDJS?@’“ + GAt,

where 52 is defined analogously to S® with

~ z
Ble) = et —1

instead of B. This is an explicit Scharfetter-Gummel type discretization, see [21], of
the drift diffusion equation. In particular, we obtain independent of the size of the
discretization Az a good discretization of the limit equation for all ranges of the mean
free path. We observe, that, assuming G = 0, we need in the limit a relation like

(Ax)? 1
6.3 At < -
(63 2D B AeBer)

with
0P
Emaz = Squ|$($)|
as for the explicitely differenced drift-diffusion equation, to obtain positivity and

stability of our scheme. For small electric fields this reduces to the standard restriction
on the time step for the diffusion equation

(Ax)?
. < .
(6.4) At < 5D
For Az small (6.3) is approximately
(Az)? Az
< — —).
At < 5D (1— Emaz 5 )

Condition (6.3) may be relaxed for € large to a standard CFL-condition for the
transport equation.

7. Numerical Results and Examples. In this section a numerical study of
the scheme is presented. We restrict to slab geometry, i.e. =z € [0,L],L = 1 and
consider MK = P,\ = 1, i.e. a relaxation time approximation. The solutions are
computed with the semi-implicit scheme derived above for different space and velocity
discretizations.

The velocity discretization is done using Hermite discretization points as ex-
plained in section 3. For comparison a uniform velocity discretization is implemented
as well, see Figure 7.1 and 7.2.

To obtain positivity and stability of the semi-implicit scheme in the limit € tending
to 0 one has to take - for a fixed space discretization Az - a time step At of the size
given by (6.3). In particular, this means that the size of At can be chosen independent
of €. In general, the CPU time needed for one time step for the semiimplicit scheme is
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about two times as large as the CPU time needed for one time step of a straightforward
explicit discretization of (2.1). Since the time step for the explicit discretization has
to be chosen of the order €2 this yields a considerable gain of computation time in
situations with small mean free path compared to the fully explicit discretization.
For e small the relation of the CPU time for the semiimplicit and the fully explicit
discretization is in the present case approximately given by

2 (Ax)? 1

7.1 2 § ,
(7.1) T2 B(—AcEn.)

if the desired accuracy does not require a smaller time step than the one that can be
used for the semiimplicit scheme. This means, that - at least for not too large Az
and FE,,q; - one obtains an advantage in CPU time if the number of mean free paths
per cell is larger than approximately 2. For a detailed comparison of the scheme for
transport equations with explicit and fully implicit schemes see [15]. In particular,
the size of the time step to achieve a certain accuracy has been determined there for
different situations and the CPU time has been compared in more detail.

The solution of the kinetic equation computed by the scheme derived above is
in the following computed for different physical situations. The figures show that -
in case the physical situation allows coarse discretizations - the scheme gives a good
resolution of the true solution, if such discretizations are used. In particular, in the
presence of boundary layers coarse discretization not resolving the layer may be used
without loosing accuracy in the bulk of the domain.

Example 1: In this example the electric potential is choosen to be 0 except in
a potential well located in the left half of the slab. The maximal electric field is
10. G is equal to 0. The initial condition is M (v) except in the right half of the
slab, where the density is increased in the beginning. The boundary conditions are
f(0,v) = M(v),v1 >0, f(L,v) = M(v),v1 <0. This is a nonequilibrium solution due
to the large Knudsen number. The boundary conditions are equilibrium conditions.

Example 2: We consider the same situation as in Example 1, but with boundary
conditions f(0,v,t) = v1M(v),v1 > 0. The solution of this problem has a kinetic
boundary layer at = 0. This is an equilibrium situation in the bulk of the domain
and a nonequilibrium situation at the boundary.

Example 3: As Example 2, but the electric field is constant equal to 1. The
initial condition is constant equal to M. The boundary conditions are f(0,v,t) =
v M(v),v1 > 0, f(L,v,t) = 0,v1 < 0. The solution of this problem has a kinetic
boundary layer at z = 0 as in Example 2.

The solutions are plotted using different space discretization with Az ranging
from 0.005 to 0.1 and a velocity discretization with a number of quadrature points
ranging from 2 to 16 for the semi-implicit scheme. The time discretization is chosen
due to the stability condition (6.3) for e small. For large € the restriction on the time
step is relaxed to a CFL-type condition for the kinetic equation (2.1).

Example 1 is used to investigate the influence of the order of the velocity dis-
cretization. A large number of space discretization points, Az = 0.005, is used. The
reference solution is the solution with a very fine discretization. The solution of the
drift diffusion equation is computed by the limit explicit scheme (5.3). We plot in
Figure 7.1 (¢ = 1.0) and Figure 7.2 (¢ = 0.1) the solutions computed by the semi-
implicit scheme with Hermite quadrature with different numbers of quadrature points
and the solution computed by a scheme with uniform velocity discretization with 8
discretization points. Here, one observes a clear advantage of the discretization de-
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rived by the moment expansion method. 8 or 16 quadrature points already yield a
reasonable approximation. In this example no CPU time is gained compared to the
explicit scheme due to the large Knudsen numbers.

In Figure 7.3 the situation in Example 2 is considered with € = 0.001. For the
space discretization we use Az = 0.01, i.e. we have 10 mean free paths per cell. Here
one observes that a lower degree of expansion into Hermite polynomials is sufficient to
obtain good accuracy, at least outside of the kinetic layer. A discretization with only
4 quadrature points leads already to good results outside the kinetic layer. We plot
the reference solution and the solution of the drift-diffusion equation with boundary
coefficients derived from the halfspace problem. The boundary values for the semi-
implicit scheme are found by determining approximately the outgoing distribution of
the halfspace problem (2.4) using (4.5,4.6). In this example the explicit scheme with
the same space discretizatioin needs about 25 times more CPU time than the present
scheme. Moreover, the present scheme is as accurate as the explicit one.

Example 3 is used to study the influence of the space discretization. € is again
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EXAMPLE 2
1.5 T

[ ™ diffusion --—--—-—-—-——- _
. hermite8 -----------
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1.5
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o.os [N\
6.0 , N
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F1G. 7.3. Density for ¢ = 0.001,¢t = 0.03.

EXAMPLE 3
T

diffusion

————————————
semi-impliciti10-1 -
semi-implicitio-2 =

F1G. 7.4. Density for ¢ = 0.001,¢t = 0.1.

0.001. The number of velocity points that is used is 16. Since the electric field and the
initial distribution are uniform in the whole domain a fine space discretization is not
necessary. We use only 10 spatial cells in the whole domain. The boundary values
for the semiimplicit scheme are found by determining approximately the outgoing
distribution of the halfspace problem (2.4) using the two methods described in section
3,i.e. (4.3,4.4) and (4.5,4.6). The results are denoted in Figure 7.4 by ’semi-implicit10-
1’ and ’semi-implicit10-2’, respectively. One observes in Figure 7.4 that even for a
coarse diffusive discretization (100 mean free paths per cell) the solution is found with
very good accuracy despite the fact that the kinetic boundary layer is not resolved.
Moreover, one observes that the accuracy is improved using formula (4.6). We mention
that other approaches to obtain the correct discrete boundary conditions using coarse
space discretizations for stationary transport equations can be found in [10, 17]. The
scheme developed here is in this example about 250 times faster as the explicit scheme
with the same space discretization.



16 A. KLAR

8. Conclusions. The scheme presented in this work has the following properties:
¢ A natural velocity discretization is given by a Hermite quadrature correspond-
ing to a moment expansion into Hermite polynomials.

e The semiimplicit time discretization allows to take a fixed time step indepen-
dent of the order of the mean free path.

e The limiting scheme for small mean free paths is an explicit Scharfetter-
Gummel type discretization of the drift diffusion equation.

e Boundary layers are included in the scheme by solving approximately a half
space problem.

e The scheme allows to take coarse velocity, time and space discretizations, if
the physical situations is allowing them. This means it is suitable for the
computation of limit situations.
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