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Abstract: In this paper, a numerical method for solving LNFODE (Linear Non-homogenous Fractional Ordinary Differential Equa-
tion) is presented. The method presented is based on Bernstein polynomials approximation. The operational matrices of integration,
differentiation and products are introduced and utilized to reduce the LNFODE problem in order to solve algebraic equations. The
method is general, easy to implement, and yields very accurate results. Illustrative examples are included to demonstrate the validity
and applicability of the technique.
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1. Introduction

One of the major advantages of fractional calculus is that it
can be considered as a super set of integer-order calculus.
Thus, fractional calculus has the potential to accomplish
what integer-order calculus cannot. We believe that many
of the great future developments will come from the appli-
cations of fractional calculus to different fields.
In the last two decades, the fractional differentiation has
played a very important role in various fields such as me-
chanics, electricity, chemistry, biology, economics, control
theory and signal and image processing.[1-5] One of the
most important problems we face is how to solve fractional
differential equations; therefore for this purpose, different
techniques have been proposed. The most commonly used
ones are Adomian decomposition method (ADM) [6], Vari-
ational Iteration Method (VIM) [7], Fractional Differen-
tial Transform Method (FDTM) [8], Operational Matrix
Method [9], Homotopy Analysis Method [10,11], Frac-
tional Difference Method (FDM) [12] and Power Series
Method [13]. Also there are some classical solution tech-
niques, e.g. Laplace Transform Method [14]. The opera-
tional Matrix Method has been one of the techniques that
researchers have focused on recently. The operational Ma-
trix Method is based on the application of orthogonal func-
tions. Typical orthogonal functions that have been applied

so far are: The Walsh functions [15, 16], block pulse func-
tions [17–20], Generalized block pulse functions [21], Leg-
endre polynomials [22–24], Chebyshev polynomials [25],
Laguerre polynomials [26,27], and Fourier series [28,29].
In this article, the method of deriving the Bernstein opera-
tional matrices and the method of solving fractional differ-
ential equation by the Bernstein operational matrices has
been tried.

2. Fractional operators

Equations in which an unknown functiony(x) is contained
under the sign of a derivative of fractional order, i.e. equa-
tion of the form

F (x, y(x), Dα1
a1

ω1(x)y(x), Dα2
a2

ω2(x)y(x), · · · , Dαn
an

ωn(x)y(x)) = g(x) (1)

whereD
αj
aj = D

αj

aj+ = ( d
d x )α

or D
αj
aj = D

αj

aj− = (− d
d x )α, j = 1, 2, ..., n are called or-

dinary differential equation of fractional order. By analogy
with the classical theory of differential equations, differen-
tial equations of fractional order are divided into linear, ho-
mogeneous and inhomogeneous equations with constant
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and variable coefficients. Differential equation of fractional
order are studied both in the space of regular functions, i.e.
functions summable to a certain power and continuous and
differentiable up to certain order in a classical sense, and
in various spaces of generalized functions.[30]

Definition 1: Let f(x) ∈ L1(a, b).The integrals

Iα
a+f(x) =

1
Γ (α)

∫ x

a

f(t)
(x− t)1−α

dt, x > a (2)

Iα
b−f(x) =

1
Γ (α)

∫ b

x

f(t)
(t− x)1−α

dt, x < b (3)

whereα > 0, are called Riemann-Liouville fractional
integral of orderα.

Definition 2:
For functionsf(x) given in interval[a, b], each of the

expressions

Dα
a+f(x) =

1
Γ (n− α)

(
d

dx
)n

∫ x

a

f(t)
(x− t)α−n+1

dt, (4)

Dα
b−f(x) =

(−1)n

Γ (n− α)
(

d

dx
)n

∫ b

x

f(t)
(t− x)α−n+1

dt, (5)

wheren = [α]+ 1, are called Riemann-Liouville frac-
tional derivative of orderα.

Definition 3:
Let Reα > 0. A function f(x) ∈ L 1(a, b) is said to

have a summable fractional derivativeDα
a+f , if Iα

a+f ∈
ACn([a, b]), n = [Reα] + 1.

Theorem 1:
Let Reα > 0, then the equality

Dα
a+Iα

a+ϕ = ϕ(x) (6)

is valid for any summable functionϕ(x) while

Iα
a+Dα

a+f = f(x) (7)

is satisfied for

f(x) ∈ Iα
a+(L 1) (8)

If we assume that instead of(8) a functionf(x) ∈ L 1(a, b)
has a summable derivativeDα

a+f (in the sense of Defini-
tion1), then(7) is not true in general and is to be replaced
by the result

Iα
a+Dα

a+f = f(x)−∑n−1
k=0

(x−a)α−k−1

Γ (α−k) f
(n−k−1)
n−α (a) , (9)

Wheren = [Reα] + 1 andfn−α(x) = In−α
a+ f . In particu-

lar we have

Iα
a+Dα

a+f = f(x) − f1−α(a)
Γ (α)

(x− a)α−1 , (9)

for 0 < Reα < 1.[30]

3. The Properties of Bernstein polynomials

The Bernstein polynomials of mth-degree are defined on
the interval[a, b] as follows

B i,m(x) = mi
(x− a)i(b− x)m−1

(b− a)m
; 0 ≤ i ≤ m (10)

in which

mi =
m!

i!(m− i)!
.

These Bernstein polynomials form a basis over the interval
[a, b]. [31, 32]
There arem + 1 , mth-degree polynomials. For conve-
nience, we assumeBi,m(x) = 0, if i < 0 or i > m. More-
over, the recursive definition for the Bernstein polynomials
over the interval[a, b] is as follows:

Bi,m(x) =
b− x

b− a
Bi,m−1(x) +

x− a

b− a
Bi−1,m−1(x) . (11)

It can easily be shown that each of the Bernstein polyno-
mials is positive and for all realx over the interval[a, b],
the sum of all the Bernstein polynomials is equal to unity,
i.e.

∀x ∈ [a, b];
m∑

i=0

Bi,m(x) = 1.

4. The orthonormalization of the Bernstein
polynomials

Using gram-Schmidt orthonormalization process on the
Bernstein polynomials and normalizing them on the inter-
val [a, b], we obtain a class of orthonormal polynomials
naming them as

b0,m, b1,m, . . . , bm,m

in which m is the order of Bernstein polynomials in the
base.
For example, if we letm = 4,b0,4, b1,4, . . . , b4,4 orthogo-
nal polynomials over interval[a, b] are given by
b0,4 = 3(b− x)4(b− a)−

9
2

b1,4 = −√7(b− x)3(b− a)−
9
2

b2,4 =
√

5(b− x)2(b− a)−
9
2 (b2 − 16bx + 14ab− 56ax

+36x2 + 21a2)

b3,4 = −√3(b− x)(b− a)−
9
2 (b3 + 18ab2

−21b2x + 45a2b + 84bx2 − 126abx

−105a2x− 84x3 + 20a3 + 168ax2)

b4,4 = (b− a)−
9
2 (b4 + 20ab3 − 24b3x + 60a2b2

−180ab2x + 126b2x2 − 240ba2x− 224bx3 + 40a3b

+420abx2 + 210a2x2 + 5a4 − 280ax3 − 60a3x + 126x4.
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A function y(x) which is integrable in the intervala ≤
x ≤ b, can be expanded into Bernstein series by

y(x) = Lim
m→∞

m−1∑

i=0

ci m−1bi m−1(x) (12)

where

ci m−1 =
∫ b

a

y(x)bi m−1(x) dx (13)

Eq. (13) can be written into the discrete form by

y(x) ≈ Ym(x) = CT Bm(x) (14)

where

Bm(x) = [b0m(x), b1m(x), · · · , bmm(x)]T

is the Bernstein matrix and

C = [c0m, c1m, · · · , cmm]T

is the coefficient matrix of Y.

5. The Bernstein operational matrices for
fractional calculus

Fractional calculus is a generalization of integration and
differentiation to non-integer order. For finding the opera-
tional matrices of fractional integration we use

y(x) ≈ Ym(x) = CT B(x) (15)

and

DαB(x) = P−α
B B(x) (16)

wherePB is the operational matrix for integration of the
Bernstein polynomials.[31] By substituting (16) into (17)
yields:Dαy(x) = Dα{CT B(x)}
= CT DαB(x) = CT P−α

B B(x). (17)

According to the property of fractional calculus,Pα
BP−α

B =
I, wherePα

B is the fractional operational matrix of the
Bernstein polynomials for integration with the orderα,we
can get matrixPα

B by inverting theP−α
B matrix.

For example, letm = 10, over interval[0, 2]

PB =




0.0950 0.184 0.168 · · · 0.0436
−0.00473 0.0850 0.169 · · · 0.0412
0.000494 −0.00887 0.0750 · · · 0.0388
−0.0000811 0.00146 −0.0123 · · · 0.0359
0.0000186 −0.000335 0.00283 · · · 0.0339
−0.00000562 0.000101 −0.000854 · · · 0.0281
0.00000213 −0.0000382 0.000323 · · · 0.0303
−9.67 × 10−7 0.0000174 −0.000147 · · · 0.0163
4.99 × 10−7 −0.00000898 0.0000759 · · · 0.0244
−2.36 × 10−7 0.00000424 −0.0000358 · · · 0.00500




10×10

The operational matricesP α
B andP−α

B are easily com-
putable through using mathematical softwares.

6. The solution of the fractional differential
equation by the Bernstein operational matrix

In this section, we are concerned with providing a numer-
ical solution to Cauchy-type problem inhomogeneous dif-
ferential equation of fractional order of the form

dα

dxα
y(x)− λy(x) = h(x), n− 1 < α ≤ n, (18)

with initial conditions

dα−k

d xα−k
y(x)

∣∣∣∣
x=0

= bk, k = 1, 2, ....n

We apply the fractional integralIα
a+with respectx to the

system (19) to obtain

Iα
a+Dα

a+y(x)− λIα
a+y(x) = Iα

a+h(x), n− 1 < α ≤ n,

thus, by using (9), this system gives

y(x) − λIα
a+y(x) = Iα

a+h(x)

+
n−1∑

k=0

(x− a)α−k−1

Γ (α− k)
y
(n−k−1)
n−α (a)

for n− 1 < α ≤ n,
here, we define a new function as follows:

g(x) = Iα
a+h(x) +

n−1∑

k=0

(x− a)α−k−1

Γ (α− k)
y
(n−k−1)
n−α (a), (19)

by rewriting the equation (19), we obtain

y(x) − λIα
a+y(x) = g(x) (20)

theg(x) andIα
a+y(x) must be expanded by the Bernstein

polynomials as

g(x) ≈ Gm(x) = CT
g Bm(x) (21)

Iα
a+y(x) ≈ Ym(x) = CT Pα

BBm(x) (22)

whereCg is a knownm × 1 column vector butC = [c0,
c1, · · · , cm−1] is an unknownm× 1 column vector.
With substituting Eq.(22)-(23) into (21),we have

CT Bm(x)− λCT Pα
BBm(x) = CgBm(x)

according to the properties of orthogonal Bernstein poly-
nomials, we have

CT − λCT Pα
B = Cg

or

CT (I − λPα
B) = Cg

Solving the system of algebraic equation, we can obtain
the coefficientsCT .

CT = Cg(I − λPα
B)−1

Then, we can get

y(x) ≈ Ym(x)

= CT Bm(x) = Cg(I − λPα
B)−1Bm(x) ,
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7. Illustrative examples

Example 1: consider the fractional equation

dα

dxα
y(x) + y(x) = h(x) (23)

With initial condition

y(0) = 0 .

These equations have relevance to, e.g., mechanical sys-
tem with fractional order damping and under slow loading
(where inertia plays a negligible role), such as in creep test
[33]. The solution of (23) can be obtained by using Laplace
transforms. In particular, ifh(x) = 1 then forα = 0.5 the
exact solution is

y(x) = 1− e xerfc(
√

x).

By using (20) and initial conditiony(0) = 0, we have

g(x) = Iα
0+h(x) =

1
Γ (α)

∫ x

0

h(t)
(x− t)1−α

dt

Therefore, forh(x) = 1, we obtain

g(x) =
xα

Γ (α + 1)
Then, forλ = −1 and by replacing in (21), we get

y(x) + Iα
0+y(x) =

xα

Γ (α + 1)
if α = 0.5 ,our approximate solutions fory(x) for m =
10 andm = 43 and exact solution fory(x) over interval
[0, 25] is shown in fig.1.

Fig.1.Approximate solutions ofy(x) for m = 10,m =
43 andα = 0.5 and exact solution

Example 2: Finally, we indicate that the simplest Cauchy
problems for differential equation of fractional order

Dα
0+y(x)− λy(x) = 0, x > 0, 0 < α < 1 (24)

With initial condition,

I1−α
0+ y(x)

∣∣
x=0

= 1

Solved by a similar method, our approximate solutions of
y(x) for varietyα andλ = 1 is shown by fig.2.

Fig.2.Approximate solutions ofy(x) for m = 43 andα =
0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 andα = 1

8. Conclusion

A lot of physical phenomena in different sciences have
been presented by differential equations with fractional deriva-
tives which are of more importance compared to integer
derivatives. This is so because the solutions of these equa-
tions interpret the phenomena better. Recently, a lot of
methods have been proposed to solve these equations. In
this paper, a new method to solve fractional differential
equation based on Bernstein polynomials has been pre-
sented. This method is a very simple one with high accu-
racy and programming capability with computer. Another
advantage of this method is that with an increase in the
number of base polynomials involving Bernstein polyno-
mials, not only there is no deficiency in convergence but
also the accuracy of calculations increases.
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