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A NUMERICAL METHOD
FOR SOLVING THE PROBLEM u—Af (u)=0 (")

Alan E. Bercer (1), Haim Brezis (2) and Joél C. W. RoGers ()

Communiqué par P. G. CIARLET

Abstract. — A method is presented for solving a class of nonlinear evolution equations. This
procedure involves solution of a corresponding linear problem together with simple algebraic operations.
Stability and convergence of the algorithm are analyzed, and results of some numerical experiments are
given.

Résumé. — On présente une méthode de résolution d'une famille d’équations d’évolution
nonlinéaires. Ce procédé repose sur la solution du probléme linéaire correspondant ainsi que sur des
opérations algébriques simples. On analyse la stabilité et la convergence de algorithme, et on donne des
résultats d’expériences numériques.

L. INTRODUCTION

We present an algorithm based on nonlinear semigroup theory which applies
to a class of nonlinear evolution equations. This procedure is a generalization
and simplification of the alternating phase truncation method for the Stefan
problem studied by Rogers, Berger, and Ciment [1, 20], and is very closely
related to the Laplace-modified forward Galerkin method considered by
Douglas and Dupont [16].

II. THE NONLINEAR EVOLUTION EQUATION

An algorithm will be presented for the solution of the following problem. Let
Q< R" be a bounded domain with smooth boundary I'. Let f: R » R be anon-
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298 A. E. BERGER, H. BREZIS, J. C. W. ROGERS

decreasing function which is Lipschitz continuous on every bounded interval
and such that f(0)=0. Let L : D(L)< L' (Q) — L*(Q) be an unbounded linear
operator on L' (Q) which satisfies the following conditions

L is a closed operator with dense domain D(L)in L! (Q); for every A>0, I+ A L
maps D (L) one to one onto L' (Q) and (I+A L)~ ! is a contraction in L*(Q). In
other words, — L generates a linear contraction semigroup in L (Q) denoted by

S(1). 1)
For any A>0 and ¢e L' (Q),

sup(I+A L)" ! p<max {0, supo } 2
Q Q
[by sup we mean the essential supremum; if sup ¢ = co, assumption (2) is empty].

There exists an a >0 such that
al|ul|sS||Lu|, forall ueD(L) (3)

[throughout this paper, the L? () norm of any function ¢ will be denoted by
[l @ls)-

Assumptions (1)-(3) are, for example, satisfied by Lu=—Ay,
D(Ly={ueW§'(Q); Lue L' (Q)}(where Lu is understood in the distribution
sense). More generally we may take

0 Ou P
L = — - s A
u ; dx; <a,, ox, )+ 2 7 (q;u)+au

where a;;, aieCl(ﬁ), aeL*(Q), both a and (a+) da;/0x;) are nonnegative

almost everywhere on , and for some positive constant o,
Y a;&E2alE]|? a.e inQ, for each EeRY
ij

(see, e. g., theorem 8 of Brezis and Strauss [11]).

We are concerned with solving the evolution equation

Z—L: +Lf(u)=0, u(0)=u,. 4)

The nonlinear operator Au=_L f(u) defined as an operator in L!'(Q) with
domain D (4)= {ue L' (Q); f (uye D(L)} is m-accretive in L' (Q), i.e., for every

R.A.LLR.O. Analyse numérique/Numerical Analysis



METHOD FOR SOLVING THE PROBLEM u, — A f(u)=0 299

@€ L' (Q) and every A >0, there is a unique solution ue D (4) of the equation
u+AL f(u)=9,

and in addition, the mapping ¢ — u is a contraction in L (Q) (see for example
theorem 1 of Brezis and Strauss [11]). On the other hand, D (4) is dense in L' (Q)
(note for example that if @eL®(Q), then u,=(I+AA) ' satisfies
lwll2= || 9|2 and so u, = ¢ in L2(Q) as A — 0). It follows that

m— oo

t -m
Sg([)u()E lim <I+ ;n’A> Ug

is a contraction semigroup on D (4) = L' (Q); S, (t) u, is the generalized solution
of (4) in the sense of Crandall-Liggett and Benilan (see [4, 10, 12, 13, 14]).

The classical Stefan problem with homogeneous Dirichlet data can be cast
into the form (4) as described below. Consider the Stefan problem posed in terms
of temperature (v), with the freezing point denoted by z, and for convenience,
with constant material properties (c,, ., ki, K,.);

ao=k;Av  for pel()={pev(p, )<z}, t>0, 5a)
CuV, =k, Av for peW@®O={peQ v, >z}, t>0, (5b)
vip, )=g(p, 1) for pel, t>0, (50
v(p, t=0)=uo(p) for peQ. (5d)
The proper energy balance conditions on the moving interface
M()={peQ;v(p, )=z}
is

—k,vf +kiv; =AMV, for peM(t), t>O0. (5e)

Here v is the unit normal to M (t) pointing into W(t), & is the latent heat of the
change of phase, V, is the velocity of the interface in the direction of v, and
vy (p, 1) denotes the limit of v at p approached from within W (¢), etc. Let

c(v)={ c; for v<z } and n(D)={0for v<z}_

c, forv=z 1forvzz

Let the enthalpy u(p, t)=u(v(p, t)) be defined by

u(v)y= ju c(&)dE+An(v)+r, (r, is an arbitrary constant). (6)

vol. 13, n® 4, 1979



300 A. E. BERGER, H. BREZIS, J. C. W. ROGERS

Then when g =0, (5) can be written in the form (4) with L= — A and (see [9, 15]) :
‘ z4k(u—ry)/c; for usr,,
zforrySusgr 4+, )

fw=
( z+k,(u—A—ry)/c, for u=ry+A.

To obtain zero Dirichlet data for (4), the constants r; and z are chosen so that
u(0)=0 and f(0)=0.

Problem (4) with L= —A and f (u)=|u|*~* u(a>1) occurs in a model of gas
diffusion through a porous medium (here u corresponds to gas density and
grad |u|2™"* to velocity, see e.g. [1, 9, 17, 18].

HI. THE ALGORITHM

We first present the ‘““analytical” algorithm, i.e., the form of the algorithm
which involves no spatial discretization. Let o, : (0, 00) — (0, co) be a function
such that lim 6,=0. Let t >0 be fixed, and let the time step t=t/n wheren=11s

=0

an integer. We consider the following algorithm;

K+1__ k _
u - Uu " |:I S(G‘t) _‘f(u")=0, u°=u0, (8)
that is y** 1 ig determined from #* by
W1 =F (1) uk, (9 o)
where
F@o=p+—[S(@)/(@~/(@] for oel!@.  (©b)

We define the approximation u,(t) to u(t) [the generalized solution of (4)] by

U (D) =" = [F (—tﬂ . (10)
n

Concerning the convergence of u,(t) to the solution u(t) of (4), one has.

THEOREM 1: Assume uge L (Q), set M = || uq || .., and let p denote the Lipschitz
constant of f on the interval { — M, M]. Assume the following stability condition
holds;

ut/o. =1 for each 1>0 (11)

(for example, this is valid if c,=u1). Then lim u,(t)=u(t) [the solution of (4)] in

n-*oo

R.A.LR.O. Analyse numérique/Numerical Analysis



METHOD FOR SOLVING THE PROBLEM u, — A f(u)=0 301

L} (Q); in addition the convergence is uniform for t in any given bounded interval.

The proof will be obtained by demonstrating that F obeys a maximum
principle (lemma 1), that F is contractive in L!(Q) (lemma 2), and by then
applying the nonlinear Chernoff formula.

LemMa 1: If (11) is valid, then — M Su*< M for all k.

Proof: We argue by induction; assume —M Zu*< M. Since the function
r = r—1 f (r)/o, is nondecreasing [by (11)], it follows that

~M—f(=M)/o.Su*—1 f @)/, SM—1 f (M)/o.. (12)

On the other hand, since f is nondecreasing one has f(— M) f (U £ f(M).
It follows from (2) that

f(=M)=S(c) f (W)= f(M). (13)

Combining (12) and (13), one obtains — M Zu**! < M. Therefore in performing
the iteration (9), we can replace f by f where f=ffor —~M<r<M, f=f(M)for
r=M, and}" =f(— M)forr< — M. In what follows we may thus assume that f is
Lipschitz continuous with Lipschitz constant p on all of R*.

Lemma 2: If (11) is valid, then F (x) is a contraction on L*(Q), i.e.,

IF@e-F@V|:i=llo=¥|l; for o yeL'(Q)

Proof: Indeed, we have

I[F@o-FOUllis [ /@-F W] +|@-W- =@~ @ 149

Since the functions f(r) and r —1 f (r)/ o, are nondecreasing in r, it follows that
for r, s in R*.

olrlf(r)—f(s)l +]r—s)— cir(f(r)—f(s))l =|r—s| (15)

Combining (14) and (15) gives the result.

We conclude the proof by applying theorem 3. 2 of Brezis and Pazy [10] (this is
the nonlinear Chernoff formula). It suffices to verify that for every ¢ € L' and
every A>0:

-1
Vo= (1+%(1—F(r») ¢>Y=(UI+r4)7 "o (16)

vol. 13, n° 4, 1979



302 A. E. BERGER, H. BREZIS, J. C. W. ROGERS
in L'(Q) as t — 0. We have

A
.+ ;(I—F(T)) V.=0. (17)
Set N (18)
v+ SU-F@¥=o,

then @, = Y+ALf(¥)=Y+A Ay =¢in L' (Q) as t — 0 since Y & D (4) implies
f (W) eD(L) and then
I-S(o,)

_‘E—f(‘ll)—’l«f(\ll) in L1(Q) as 1 - 0.

Finally, recalling that F () is contractive, combining (17) and (18) gives
A A
(12 )ve-vlislo- o+ Evevl.

Hence ||V, — V|1 =Z||¢—¢.||s >0 as t >0, and the proof of theorem 1 is
complete.

ReMARKS: The conclusion of theorem 1 holds (with the same proof) if in the
scheme (9) one redefines F (1) ¢ to be

a2 { I/c\ Flend £ L)) 110\
s T WAV W) W) \Lsy

Qla

T

where J (6)=(I+ocL)"!. This is an “analytical” version of the Laplace
modified forward Galerkin method considered by Douglas and Dupont in {16].
A similar approach may be used [3] to establish convergence of the truncation
method ([5, 6, 8]) for obstacle variational inequalities.

IV. NUMERICAL IMPLEMENTATION

Note that while the proofs in the previous section only treat the case of zero
boundary data, the extension of the algorithm given below for the situation with
nonzero Dirichlet data seems intuitively reasonable. We will discuss
implementation of the algorithm for the following problem (for simplicity taking

=—A);
u,=Af(u) in Q (20a)
u(p, t=0)=uy(p) in Q (20b)
u(p, )=g(p, t) for pel’, t>0. (20¢)

R.A.LLR.O. Analyse numérique/Numerical Analysis
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Suppose one has approximate solution values { U’ } at time t"=nA t onaset of J
grid points { p;} =Q(e.g. U=uy(p), j=1, ..., J). To obtain the approximate
solution values { U7*!} at the next time level t"*' ="+ At, one performs the
following ““discretization of (9)” (here a corresponds to o,/1):

f Wy

set Q= vt j=1, ..., J, (21 a)

solve, using any appropriate numerical method, the linear heat equation (21 a)

Q,=aAQ in Q, (224a)
Q. t)=f(g(f'+t» on T, (2b)
Qp; t"N=02 for j=1,...,J, (22¢)

obtaining values { 07"} at the underlying grid points { p;} at t=1¢"+ Ar; then

" ny on+1_J (U
Uj+lEUj+Qj+1__TJ_

for j such that p;eQ, (21¢)

and
Uitl=g(p;. "t when p;el. 21 4d)

REMARKS: Assume there is a constant M such that |g(p, )| =M, |u,(p)| M,
and let p be a Lipschitz constant for f(r) on —M <r=<M. As before, by
modifying f (r) on ‘ r| > M, we may suppose pis a Lipschitz constant for f on all
of R'. Then analogous to lemmas 1 and 2; if «=p and if the numerical method
used to solve (22) is L! stable, then so is the entire algorithm (21). That is, if

U"={U} and U are two different starting values, then
I Un+l _En-i-l |I‘ g | U"_E"ll"

If a=p and the numerical scheme used to solve (22) satisfies a maximum
principle, then so does the entire algorithm (21), i.e.,

min(uy, g)S U™ ! <max (u,, g).

For general L the appropriate maximum principle is | ur+! lw <M. Sufficient
conditions for I* stability and for a maximum principle for some standard finite
difference schemes and for piecewise linear finite elements for (22) are given in,
e. g, [7]. We note that [! stability or a maximum principle for the method used to
solve (22) is not necessary for reasonable numerical behavior of the
algorithm (21); similarly it is not always necessary to have a=p (cf. the

vol. 13, n° 4, 1979



304 A. E. BERGER, H. BREZIS, J. C. W. ROGERS

numerical examples below). Indeed, in developing error estimates for the
Laplace modified forward Galerkin equation when the solution u is “smooth™,
Douglas and Dupont only require o> p/2 [b].

V. NUMERICAL EXPERIMENTS

The first numerical experiments discussed will be for a problem with
f()=u|u| whose solution (on 0<x<20) is depicted by the solid lines in
figure 1. The exact solution u (and thus u, and g) was obtained from the top of

Ulx)

1 1

5 I 1 1 1
000 250 500 750 100 125 B0 175 200

1

X

Figure 1. — Exact solution (solid lines) and numerical solution values (points) at =0, t=.559
(diamonds), t=2.23 (solid circles), t=8.94 (open circles), and t=143. (triangles). The
approximate solution values were obtained using the algorithm (21) with «=1., and using
the standard Crank-Nicolson finite difference method with 41 grid points and Az =143. /1024 to
solve (22). '

page 363 of [17] (note that the m appearing as an exponent of the term
(m—1)/2m(m+1)) in the definition of f(n) should be omitted). Here x=6
corresponds to x=0 in{17], the solution reflects across x=6 via
#(6—r)= —u(6+r), and the values for the parameters of [17]arem=2,t=1, and
a=3.5 (the Lipschitz constant p for this problem is a little less than 1.0).
The first numerical results for this problem (table I) that we will discuss were
obtained by solving (22) using the standard Crank-Nicolson (C.N.) finite
difference method using J =433 (equally spaced) grid points on [0, 20], and using

R.A.LR.O. Analyse numérique/Numerical Analysis
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a variable number N of time steps to reach time T'=8.9375 (thus At=T/N). The
discrete L' error E, at time T was calculated by

20

1= J 1 Z IUN u(p]’ T)I

Suppose J is large enough so that the spatial discretization error is relatively
negligible, and assume that E; is governed by

E,=C;(At)y, (23)

where C; is a constant independent of At. Then the numerical rate of
convergence p computed from the results of using two successive values of N

(i.e. N and N =2N with corresponding errors E; and El) is
p=(In(E;)~In(E,))/In(2).

Results of taking a=1, a=.75, and a=.5 are given in table I (setting o= .4
resulted in a fatal instability (exponent overflow) at N =256). Note the decrease
in E; (i.e. decrease in C; of (23) while p remains roughly constant) as « is
decreased (until instability develops). The last result in table I was obtained by

TABLE 1

Discrete L' errors and numerical convergence rates
for several implementations of the algorithm (21)

a=1.C.N. a=.75C.N. a=.5C.N. a=.5 Implicit
T —— st e A gt | o A gt | e . ot
N Error Rate Error Rate Error Rate Error Rate
E, p E, P E, p E, p
4. . .2749 .1666 .0996 .2747
.80 .70 .88 .80
8 L .1580 .1026 .0541 .1578
.85 .82 .82 .85
16............. .0875 .0583 .0306 .0873
.88 .86 .84 .88
32 .0475 .0321 .0171 .0474
.90 .89 .87 .90
64. ... .. ... .. .0256 .0174 .0093 .0255
.91 .91 .91 .91
128. . ... ... .0136 .0093 .0050 .0136
.93 .93 .92 .93
256. .. ... .0071 .0049 . .0026 .0071

using the standard fully implicit finite difference scheme (instead of C.N.) with
J=433 to solve (22), and by taking a=.5 (this corresponds to an

vol. 13, n° 4, 1979



306 A. E. BERGER, H. BREZIS, J. C. W. ROGERS

implementation of a form of the Laplace modified forward Galerkin method
—c.f.p. 154 of [16]). Notice the almost exact correspondence between the results
for (=5, implicit) and those for (@ =1, C.N.). This correspondence also occurs
between (o= .375, implicit) and (« = .75, C.N.), and between (o= .25, implicit)
and (a=.5, C.N.)(J =433 throughout). Taking & = .2 with the implicit method
(J =433) yields instability at N =256. The plausibility of this correspondence
may be seen by writing out the algorithm (21) using the appropriate matrix K
for the scheme being used for (22), and here taking U" to be the vector of values
{ U%; p;e T}, etc. and assuming zero Dirichlet data

U"“=U"+(I+9AtocK)_1(1“‘(1“e)AmK)f(gn) ;f&(y_)

For C.N., 6=1/2, while for implicit, 6=1 in this expression.

A little algebra shows that taking (C.N., a =&) is identical to taking (implicit,
a=0o/ 2). Some more algebra shows that including the effect of nonzero Dirichlet
data yields a formally O(At) difference between (C.N., <x=a) and (implicit,
a=0,/2). Since the boundary data for this example is zero until ¢ is near
T'=8.9375, the numerical agreement is very pronounced, despite the fact that
the observed numerical error of the algorithm itself is behaving almost like
O (At). As an indication of the effect of the size of J on the error; with N =256,
a= .5, and using C.N. for (22). the values of E, corresponding to several values
of J were;

J=55 109 217 433

E,=.0177 .0044 .0042 .0026

For comparison, we also implemented the 3 level (centered) Laplace modified
Galerkin equation (see p. 155 of [16]) for (20), in the following form [here
D2U;=(U;-y—2U;+U,,,)/Ax* and Ax is the (uniform) mesh length];
(I-2AtBD? U}“=(1+2AtBD§) U;_1—4AtBD§ Uj

+2AtDZ(f(U%) for jsuch that 0<p;<20. (24)

The exact solution was used to provide the values U} at t = At. Results are given
in table II (again J =433 and T'=8.9375). The condition on the parameter B
given in [16] (for “‘smooth” problems) is B> /4 (here f= .25 satisfies this while

R.ALR.O. Analyse numérique/Numerical Analysis



METHOD FOR SOLVING THE PROBLEM #, — A f(1)=0

B=.2 does not). Taking f=.15 yields instability (exponent

N =256. For N =256 and p=.25 one has;

307

overflow) at

J=55

109

217

433

E;=.0163

.0028

.0023

Even for this (nonsmooth) problem, the 3 level scheme produces a higher
numerical rate of convergence.

TaBLE II

Discrete L! errors and numerical convergence rates
for several implementations of the Laplace modified centered equation (24)

B=.1 B=.5 B=.25 B=.
T e T T e i A\l e el e s el
N Error Rate Error Rate Error Rate Error Rate
E, P E, P E, Y E, P

4. ... 1.572 .7560 3175 .2537
1.7 1.8 1.4 1.3

8 . .4853 .2160 L1179 .1043
1.6 1.3 1.3 1.1

16............. .1637 .0854 .0485 .0475
1.4 1.3 1.2 1.3

2. .0609 .0349 L0212 .0193
1.4 1.3 1.3 1.4

64, .. .......... .0224 .0139 .0084 .0072
1.5 1.5 1.8 2.0

128, ... ... ... .0079 .0048 .0024 .0018
1.9 2.4 2.3 2.0

256 ... .0021 .0009 .0005 . 0005

The second problem to be considered is a two phase Stefan problem whose
solution (in terms of temperature) is depicted in higure 2 (the exact solution is
given in both [7] and [20] — note that in this particular example p=k;/¢; and
z=z=r; =0).In order to suppress the effect of the jump discontinuity from 0 to A
in enthalpy at the interface, errors discussed here for the Stefan problem will be
errors in temperature values. The temperature v corresponding to an enthalpy

value u is easily obtained by inverting (6).

For the one phase Stefan problem, the alternating phase truncation (APT)
method ([7, 20]) reduces to (21) with a=yp. In [20], for the ‘“analytical” APT
method for a one dimensional one phase Stefan problem, it was shown that the

vol. 13, n°® 4, 1979
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i

000 250 500 75 100 125 180 175 2.0

Figure 2. — Exact solution (temperature) of a two phase Stefan problem (solid lines) and numerical
solution values (points) at t =0, t = T/3 (triangles), t =2 T/3 (open circles), and ¢ = T (solid circles)
where 7=200,000. The approximate solution values were obtained using the algorithm (21) with
a=k,/c,, and using the standard Crank-Nicolson finite difference method with 41 grid points and
At=T/2,595 to solve (22).

error in the temperature value and in the interface location could be bounded by
C(At.In(1+T/At)"?, 25)

where T is the time at which one is bounding the error, and C is a constant
independent of At (but depending on T and the data of the problem). Let N
denote the integer T/At, so then Y =N At=T. We have tested to see if the
temporal error behavior for (21) applied to the two phase Stefan problem is
consistent with (25) by fixing T, taking J “large”, and calculating numerical
values for C for several values of At. Let v(x, t") denote the exact temperature
solution at time ¢"=7, and let { ¥} } denote the approximate temperature
solution values at the grid points { p;} at time t" obtained via (21) [i.c. V] is
defined to be the temperature corresponding (by (6)) to U}]. The discrete L*
error ¢, is defined to be

20 2
€1='J——— Z | Vﬂy—v(pj, tN)I, (26)
=1

and the numerical value of C corresponding to N (i.e. to At=T/N) is
C=e,/(At.In(1+ T/At)*>. 27

R.A.LR.O. Analyse numérique/Numerical Analysis
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Results of applying the algorithm (21) to the two phase Stefan problem are
given 1m tables III and IV In all the tables for the Stefan problem
T=(2/3)200,000 For table III, the standard Crank-Nicolson (C N ) method

TABLE 1

Discrete L' errors ey and values of the constant C of (27) for several ymplementations of the algorithm
(21) and an implementation of the APT method for the two phase Stefan problem

a=13pC N a=p C N a= 9%6u C N APTC N
N T ——— e~ | ————— A\ pame

o 1c| alecl aTecl a Te

216 9 10 16 10 16 18 84 6 15 12 26 21
432 6 81 16 6 63 15 89 8 21 8 69 20
864 4 75 15 4 40 14 88 9 28 S 87 18
1728 3 46 14 306 13 88 2 37 4 20 18
3456 2 43 14 222 13 82 1 46 2 99 17

TABLE IV

Duscrete L' errors e, and values of the constant C of (27) for several implementations of the algorithm
(21) for the two phase Stefan problem The standard imphicit method with J =161 was used to

solve (22)
a=p a= 65u a= Sp a= 48pu
T\t T T, T et e |

N ey C € C €y C €y C

216 11 25 20 9 12 16 1025 | 18 92 0 16
432 8 05 19 6 83 16 6 76 16 92 3 21
864 5 82 18 4175 15 4 39 14 89 7 28
1728 419 17 3 46 14 302 13 87 4 36
3456 3 00 17 243 14 222 13 821 46

with J =161 was used to solve (22), results are givenfora=1 3,1,and 95y, and
for comparison, results for the APT method (C N , J=161) are given 1n the last
column The error behavior appears consistent with (25) The error decreases as
o decreases until the abrupt deterioration below a=p Results when using the
standard mmplicit method for (22) with J=161 are given n table IV The
correspondence between (C N , ) and (implicit, o/2) 1s again observed [this 1s
not surprising since O (At) 1s “small” relative to (25)] The data in table V
indicates that for the values of N bemng considered, the spatial discretization
error 18 relatively neghgible even for J=41 We note that the method for the
Stefan problem discussed 1n [2] and [21] corresponds to using a purely explicit
method to solve (20) The 3 level Laplace modified Galerkin method (24) when
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applied to the Stefan problem in the form (20) produced very erratic behavior
with respect to variations in both B and J (typical behavior is presented in
table VI). Fatal instability occurs with J=161, = .3, N=3456.

As an illustration of the simplicity of using (21) in several space dimensions,
numerical results for a two dimensional Stefan problem are given in figure 3. The
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Figure 3. — Numerical solution of a two phase Stefan problem on the region 0 < x, y £20 using the
algorithm (21) with o =k;/c;. In each frame, an L (S) was printed at points where the approximate
solution value was =\ (<0). A blank was printed for values between 0 and . The solid line is the
exact interface location. The standard ADI methed [19] with Ax= Ay =1, was used to solve (22).
For the first four frames the value of At used was 7/5,184 (T'=200,000). For the frame on the
lower right the value of At was 7/648.

classical ADI method [19] was used to solve (22). The exact solution at (x, y, t}is
given by u(p=x cos(30°) — y.sin (30°, 1) where u is the solution in [7], [20] (p is
the projection of (x, y) on the line 30° below the positive x-axis, note also that
p=ki/c; and z=z=r, =0).
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TABLE V

Discrete L! errors e, and values of the constant C of (27) for several implementations of the algorithm
(21) with a = for the two phase Stefan problem. The Crank-Nicolson method was used to solve (22),
with several differens values for J.

J=41 J=81 J=161
T\ et T e el e | . e et
N e C ey C ey C
216. ...... 8.64 .15 9.33 .16 10.16 .18
432. ... ... 6.44 .15 6.15 .14 6.63 .15
864, ... ... 4.12 .13 4.28 .13 4.40 .14
1,728. .. ... 3.67 .15 3.12 .13 3.06 .13
3456. ... .. 2.51 .14 2.34 .13 2.22 .13
TABLE VI

Discrete L! errors for several implementations of the Laplace modified centered equation (24) for the
two phase Stefan problem in the form (20).

=u B=.Tp | Bp=.5p | B=.4p | B=.Tu | B=.5p | B=.5p

N J=161 J=161 J=161 J=161 J=81 J=81 J=321

€1 €1 e € €y € e,
216. .. ... ... 48.88 57.30 39.22 68.56 34.31 38.41 52.63
432. ..., .. 27.34 27.81 23.05 28.69 9.78 6.16 41.25
864. ........ 10.35 5.47 3.69 4.16 2.05 1.38 18.39
1,728. ... ... .. 1.48 1.29 1.59 .87 1.40 .92 3.63
3456, ........ .88 .51 .44 .27 .65 .60 1.02
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