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A NUMERICAL METHOD

FOR SOLVING THE PROBLEM u — àf(u)=0 (*)

Alan E. BERGER O , Haim BREZIS (2) and Joël C. W. ROGERS (3)

Communiqué par P. G. CIARLET

Abstract. — A method is presented for solving a class of nonlinear évolution équations. This
procedure involves solution of a corr esponding linear problem together with simple algebraic opérations.
Stability and convergence of the algorithm are analyzed, and results ofsome numerical experiments are
given.

Resumé. — On présente une méthode de résolution d'une famille d'équations d'évolution
nonlinéaires. Ce procédé repose sur la solution du problème linéaire correspondant ainsi que sur des
opérations algébriques simples. On analyse la stabilité et la convergence de Valgorithme, et on donne des
résultats d'expériences numériques.

I. INTRODUCTION

We present an algorithm based on nonlinear semigroup theory which applies
to a class of nonlinear évolution équations. This procedure is a generalization
and simplification of the alternating phase truncation method for the Stefan
problem studied by Rogers, Berger, and Ciment [1, 20], and is very closely
related to the Laplace-modified forward Galerkin method considered by
Douglas and Dupont [16].

II. THE NONLINEAR EVOLUTION EQUATION

An algorithm will be presented for the solution of the foliowing problem. Let
Q c= jRN be a bounded domain with smooth boundary F. Let ƒ : R -> R be a non-
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2 9 8 A. E. BERGER, H. BRÉZIS, J. C. W. ROGERS

decreasing function which is Lipschitz continuous on every bounded interval
and such that ƒ (0) = 0. Let L : D f I J c I 1 (fi) -• L1 (Q) be an unbounded linear
operator on L

1 (Q) which satisfies the following conditions

L is a closed operator with dense domain D (L) in L
1 (Q); for every X > 0,1 + X L

maps D (L ) one to one onto L
1 (fi) and (I + X L)~

 x is a contraction in L
1
 (Q). In

other words, —L générâtes a linear contraction semigroup in L
1 (Q) denoted by

S(t). (1)

For any X>0 and cpeL1 (Q),

sup (/ + X L) ~x <p ̂  max { 0, sup <p} (2)
Q n

[by sup we mean the essential supremum; if sup cp = oo, assumption (2) is empty].

There exists an a > 0 such that

alIttlIx^IlLulli for ail ueD(L) (3)

[throughout this paper, the L
P
{Q) norm of any function cp will be denoted by

IMIJ-
Assumptions (l)-(3) are, for example, satisfied by L u = — Au,

D (L) = { u € Wo
fl (^); L u e L

1 (Q)} (where L u is understood in the distribution
sensé). More generally we may take

where aijt eiieC
1
^), aeL™(Q), both a and (a + ^ôai/dxj) are nonnegative

almost everywhere on Q, and for some positive constant a,

X<iyÇ.*Çj^a|£|2 a.e. in Q, for each ÇeR
N

(see, e.g., theorem 8 of Brezis and Strauss [11]).

We are concerned with solving the évolution équation

^ + Z , / ( W ) = 0, U(0) = MO. (4)

The nonlinear operator Au = Lf(u) defined as an operator in / /(f i) with
domain D(A)= {ueL

1 (Q); ƒ (u)eD(L)} is m-accretive in L
1
 (Q), i.e., for every

R.A.I.R.O. Analyse numérique/Numerical Analysis



METHOD FOR SOL VING THE PROBLEM Ut - A / ( u ) = 0 299

q>eL
l
 (Q) and every X,>0, there is a unique solution ueD(A) of the équation

and in addition, the mapping cp -> u is a contraction in L1 (Q) (see for example
theorem 1 of Brezis and Strauss [11]). On the other hand, D (A) is dense in L1 (Q)
(note for example that if q> e L°° (Q), then % = ( I + X A) ~1 cp satisfies
II Mx II2 ̂  || <P II2 anc* so ux -• q> in L2 (Q) as A, -> 0). It follows that

Sg(t)u0=

is a contraction semigroup on D(A) =L 1 (Q); Sg(i)u0 is the generalized solution
of (4) in the sense of Crandall-Liggett and Benilan (see [4, 10, 12, 13, 14]).

The classical Stefan problem with homogeneous Dirichlet data can be cast
into the form (4) as described below. Consider the Stefan problem posed in terms
of température (v), with the freezing point denoted by z, and for convenience,
with constant material properties (c„ cwt kif kw);

CiVt = kiAv for pel(t)~ {peQ; v(p, t)<z], £>0, (5a)

c^v^k^Av for peW{t)={pea\v(p,t)>z}, t>0, {5b)

v(p,t) = g(p,t) for peT, t>0, (5c)

v(p, r = 0) = wo(p) for peÖ. (5d)

The proper energy balance conditions on the moving interface

M(t)={peQ;v(p,t) = z}

is
-iQvï+kiV-^XVv for peM{t), t>0. (5e)

Here v is the unit normal to M {t) pointing into W{t), X is the latent heat of the
change of phase, Vv is the velocity of the interface in the direction of v, and
Vy (p, t) dénotes the limit of v at p approached from within W{t), etc. Let

Ciîoïv<z ( fOforu<z
for u > z

Let the enthalpy w(p, t) = u(u(p, £)) be defined by

u(v)~ c{Qdli-hXr\(v)-\-rl (rt is an arbitrary constant). (6)

vol. 13, n° 4, 1979



300 A. E. BERGER, H. BRÉZIS, J. C. W. ROGERS

Then when g — 0, (5) can be written in the form (4) with L = — À and (see [9, 15]) :

for ur£ru

(7)f(u)= z foi r^u^rz foi r^u^r^X,

\ z + kw(u — X — r1)/cw for u^rt + X.

To obtain zero Dirichlet data for (4), the constants rx and z are chosen so that
M(0) = 0 and/(0) = 0.

Problem (4) with L = - A and ƒ (u) = | u |a "* u (a > 1 ) occurs in a model of gas
diffusion through a porous medium (hère u corresponds to gas density and
gradjii^"1 to velocity, see e.g. [1, 9, 17, 18].

III- THE ALGORITHM

We first present the "analytical" algorithm, i.e., the form of the algorithm
which involves no spatial discretization. Let aT : (0, oo) -• (0, oo) be a function
such that lim aT = 0. Let t > 0 be fixed, and let the time step x = t/n where n ̂  1 is

T-»0

an integer. We consider the following algorithm;

(u*) = 0, u°=u0, (8)

that is n
k+1 is determined from u

k by

u
k + 1

 = F(T)u\ (9 a)

where

= q>+— [S(aT)/(<p)-/(<p)] for cpeL1^). (9 b)

We define the approximation un(t) to u(t) [the generalized solution of (4)] by

Concerning the convergence of un(t) to the solution u(t) of (4), one has.

THEOREM 1 : Assume u0 e LOT (Q), set M = || u01| «j, anrf let \i dénote the Lipschitz

constant of f on the interval [ — M, M]. Assume the following stability condition

holds;

T ^ 1 for each x>0 (11)

{for example, this is valid if<jx = \ix). Then lim un(t) = u{t) [the solution of (A)] in

R.A.LR.O. Analyse numérique/NumericaÏ Analysis
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L
1 (Q); in addition the convergence is uniform for t in any given bounded interval.

The proof will be obtained by demonstrating that F obeys a maximum
principle (lemma 1), that F is contractive in L1 (Q) (lemma 2), and by then
applying the nonlinear Chernoff formula.

LEMMA 1: If (11) is valid, then -M^u
k
<.Mfor all k.

Proof: We argue by induction; assume — M^u
k
^M. Since the function

r -• r — x ƒ (r)/ax is nondecreasing [by (11)], it follows that

-M-if(-M)/<jx^u
k
-Tf(u

k
)/G^M-Tf{M)/ox. (12)

On the other hand, since ƒ is nondecreasing one has f( — M)?^f{u
k
)Sf(M).

It follows from (2) that

f(-M)^S(oz)f(u
k
)Sf(M). (13)

Combining (12) and (13), one obtains - M ̂  u
k+ x

 S M. Therefore in performing
the itération (9), we can replace ƒ by ƒ where ƒ —f for — M^r^M, f=f (M) for
r^.M, and ƒ = ƒ ( — M) for r g — M. In what follows we may thus assume that ƒ is
Lipschitz continuous with Lipschitz constant \i on all of R1

.

LEMMA 2: / / (11) is valid, then F(x) is a contraction on L 1 (Q) , i.e.t

^\\^^\\x for

Proof: Indeed, we have

^ . (14)

Since the functions ƒ (r) and r —x f(r)lox are nondecreasing in r, it follows that
for r, s in H1.

^ | / ( r ) - / ( s ) | + | ( r - s ) -^ - ( / ( r ) - / (5 ) ) | = | r - s | . (15)

Combining (14) and (15) gives the result.

We conclude the proof by applying theorem 3.2 of Brezis and Pazy [10] (this is
the nonlinear Chernoff formula). It suffices to verify that for every cpeL1 and
e ver y X>0:

£ ) x^ (16)

vol. 13, n° 4, 1979



302 A. E. BERGER, H. BRÉZIS, J. C. W. ROGERS

in L
1 (Q) as x -> 0. We have

x|/T+^(/-F(x))il/t = cp. (17)

x
- ( / -F (x ) ) i | r = q>T>

then <pT ~* \|/H-À,L/(\|/) —\|/ + A,>l\|/~q> in Z,*(Q) as x - • 0 since tyeD(A) implies
/ ( \ | / )e / ) (L)and then

!
~

S
^ in LL(Q) as x->0.

Finally, recalling that F(x) is contractive, combining (17) and (18) gives

Hence ||\|/T — ^ | | i = || <p — <pT||i -*0 as x ^ O , and the proof of theorem 1 is
complete.

REMARKS: The conclusion of theorem 1 holds (with the same proof) if in the
scheme (9) one redefines F (x) <p to be

(19)

where J (o) = (I + o L ) " 1 . This is an "analytical" version of the Laplace
modified forward Galerkin method considered by Douglas and Dupont in [16].
A similar approach may be used [3] to establish convergence of the truncation
method ([5, 6, 8]) for obstacle variational inequalities.

IV. NUMERICAL IMPLEMENTATION

Note that while the proofs in the previous section only treat the case of zero
boundary data, the extension of the algorithm given below for the situation with
nonzero Dirichlet data seems intuitively reasonable. We will discuss
implementation of the algorithm for the folio wing problem (for simplicity taking

ut = Af{u) in Q (20 a)

u(p, £ = 0) = uo(p) in Q (20b)

"(P. t) = g(p, t) for peT, t>0. (20c)

R.A.LR.O. Analyse numérique/Numerical Analysis
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Suppose one has approximate solution values { U"} at time t
n = n A t on a set of J

grid points { p,-} c Q (e. g. [/? = u0 (pj), j=l, . . . , J). To obtain the approximate
solution values { l/" + 1} at the next time Ie vel f"+1 = tn-hA£, one performs the
following "discretization of (9)" (hère oc corresponds to aT/x):

/(t/7)
set 6 " ~ V ^ 7 = 1. . . . , J f (21a)

solve, using any appropriate numerical method, the linear heat équation (21 a)

Ôr = aAg in Q, (22 a)

n) = Ô? for 7=1 ' . (22c)

obtaining values {ô"+ *} a t the underlying grid points {pj} at t = t
n + Ar; then

fff/")
I / j + 1 = l/» + Qj+ 1- ' /-ï_ii for ; such that p ;GQ, (21c)

and
E/ï + 1=ff(Pj, t"+1) w h e n P j e r - (21d)

REMARKS: Assume there is a constant M such that \g(p, t) \ g M, \uo(p)\^M,

and let |i be a Lipschitz constant for f(r) on —M^r^M. As before, by
modifying ƒ (r) on | r | > M, we may suppose n is a Lipschitz constant for ƒ on all
of R1

. Then analogous to lemmas 1 and 2; if a^ji and if the numerical method
used to solve (22) is L

l stable, then so is the entire algorithm (21). That is, if
[ƒ"={(/"} and U

n are two different starting values, then

If a ^ n and the numerical scheme used to solve (22) satisfies a maximum
principle, then so does the entire algorithm (21), i.e.,

min(u0, g)SU
n+i

^max{uOt g).

For gênerai L the appropriate maximum principle is | Un+1
 \a0^M. Sufficient

conditions for l
1 stability and for a maximum principle for some standard finite

différence schemes and for piecewise linear finite éléments for (22) are given in,
e. g., [7]. We note that Z1 stability or a maximum principle for the method used to
solve (22) is not necessary for reasonable numerical behavior of the
algorithm (21); similarly it is not always necessary to have oĉ ia. (cf. the

vol. 13, n° 4, 1979



304 A. E. BERGER, H. BRÉZIS, J. C. W. ROGERS

numerical examples below). Indeed, in developing error estimâtes for the
Laplace modified forward Galerkin équation when the solution u is "smooth",
Douglas and Dupont only require a>| i /2 [b].

V. NUMERICAL EXPERIMENTS

The first numerical experiments discussed will be for a problem with
/(M) = W|M| whose solution (on 0^x^20) is depicted by the solid Unes in
figure 1. The exact solution u (and thus u0 and g) was obtained from the top of

Figure 1. - Exact solution (solid lines) and numerical solution values (points) at t-0, t= .559
(diamonds), t = 2 . 2 3 (solid circles), t = H94 (open circles), and £ = 1 4 3 . (triangles). The
approximate solution values were obtained using the algorithm (21) with a = l . , and using
the standard Crank-Nicolson finite différence method with 41 grid points and A t = 143. /1024 to
solve (22).

page 363 of [17] (note that the m appearing as an exponent of the term
(m-l)/(2m(m+l)) in the définition of /(-q) should be omitted). Here x = 6

corresponds to x = 0 in [17], the solution reflects across x —6 via

u (6 — r) — — u (6 -h r), and the values for the parameters of [17] are m = 2, x = 1, and
a = 3.5 (the Lipschitz constant \x for this problem is a little less than 1.0).

The first numerical results for this problem (table I) that we will discuss were
obtained by sol ving (22) using the standard Crank-Nicolson (C.N.) finite
différence method using J = 433 (equally spaced) grid points on [0, 20], and using

R.A.I.R.O. Analyse numérique/Numerical Analysis



METHOD FOR SOLVING THE PROBLEM Ut — Af(u) = 305

a variable number N of time steps to reach time T= 8.9375 (thus At= T/N). The
discrete L

1 error Ex at time T was calculated by

£i =
20

Suppose J is large enough so that the spatial discretization error is relatively
negligible, and assume that Et is governed by

E^C^AtY, (23)

where Cx is a constant independent of At. Then the numerical rate of
convergence p computed from the results of using two successive values of N
(i.e. N and N = 2N with corresponding errors Ex and Ex) is

Results of taking ot=l, a = .75, and oc= .5 are given in table I (setting oc= .4
resulted in a fatal instability (exponent overflow) at N = 256). Note the decrease
in Ex (i.e. decrease in Cx of (23) while p remains roughly constant) as a is
decreased (until instability develops). The last result in table I was obtained by

TABLE I

Discrete L
l
 errors and numerical convergence rates

for severai implementations of the algorithm (21)

N

4

8. . .

16

32

64. .

128

256. .

a=l.C.N.

Error

.2749

.1580

.0875

.0475

.0256

.0136

.0071

Rate

P

.80

.85

.88

.90

.91

.93

a=.75 C.N.

Error

.1666

.1026

.0583

.0321

.0174

.0093

.0049

Rate

P

.70

.82

.86

.89

.91

.93

oc=.5C

Error

.0996

.0541

.0306

.0171

.0093

.0050

.0026

:.N.

Rate

P

.88

.82

.84

.87

.91

.92

a — . 5 Implicit

Error

.2747

.1578

.0873

.0474

.0255

.0136

.0071

Rate

P

.80

.85

.88

.90

.91

.93

using the standard fully implicit finite différence scheme (instead of C.N.) with
J = 433 to solve (22), and by taking a = . 5 (this corresponds to an

vol. 13, n° 4, 1979



306 A. E. BERGER, H. BRÉZIS, J. C. W. ROGERS

implementation of a form of the Laplace modified forward Galerkin method
— c. f. p. 154 of [16]). Notice the almost exact correspondence between the results
for (a = . 5, implicit) and those for (a — 1, C.N.). This correspondence also occurs
between (a = . 375, implicit) and (a = . 75, C.N.), and between (oc = . 25, implicit)
and (a = . 5, C.N.) ( J = 433 throughout). Taking a = . 2 with the implicit method
( J = 433) yields instability at Af = 256. The plausibility of this correspondence
may be seen by writing out the algorithm (21) using the appropriate matrix K

for the scheme being used for (22), and here taking U
n to be the vector of values

{ L/"; pjG T}, etc. and assuming zero Dirichlet data

ƒ(£/") -f{U»)

For C.N., 9 = 1/2, while for implicit, 0 = 1 in this expression.

A little algebra shows that taking (C.N., a = a ) is identical to taking (implicit,
a = a /2). Some more algebra shows that including the effect of nonzero Dirichiet
data yields a formally O(At) différence between (C.N,, a = a) and (implicit,
<x = a/2). Since the boundary data for this example is zero until t is near
r=8.9375, the numerical agreement is very pronounced, despite the fact that
the observed numerical error of the algorithm itself is behaving almost like
O (At). As an indication of the effect of the size of J on the error; with N = 256,
a = . 5, and using C.N. for (22), the values of £, corresponding to several values
of J were;

f^.0177

109

.0044

217

.0042

433

.0026

For comparison, we also implemented the 3 Ie vel (centered) Laplace modified
Galerkin équation {see p. 155 of [16]) for (20), in the foliowing form [here
Dl Uj^iUj-i-2 Uj+ *7j+1)/Ax2 and Ax is the (uniform) mesh length];

+ 2A\D
2

x(f(U'})) forysuchthatO<p;<20. (24)

The exact solution was used to provide the values U) at t = At. Results are given
in table II (again J = 433 and T=8.9375). The condition on the parameter p
given in [16] (for "smooth" problems) is p > |x/4 (here (3= .25 satisfies this while

R.A.I.R.O. Analyse numérique/Numerical Analysis
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P = . 2 does not). Taking p = . 15 yields instabiiity (exponent overflow) at
N = 256. For N = 256 and P= .25 one has;

7 = 55

Ei =.0163

109

.0028

217

.0023

433

.0005

Even for this (nonsmooth) problem, the 3 level scheme produces a higher
numerical rate of convergence.

TABLE II

Discrete L
1
 errors and numerical convergence rates

for several implementations of the Laplace modified centered équation (24)

N

4

8

16

32

64

128

256

P=-

Error

Ei

1.572

.4853

.1637

.0609

.0224

.0079

.0021

1

__̂  —

Rate

P

1.7

1.6

1.4

1.4

1.5

1.9

Error

Ei

.7560

.2160

.0854

.0349

.0139

.0048

.0009

5

Rate

P

1.8

1.3

1.3

1.3

1.5

2.4

p=.25

Error

.3175

.1179

.0485

.0212

.0084

.0024

.0005

Rate

P

1.4

1.3

1.2

1.3

1.8

2.3

Error

Ex

.2537

.1043

.0475

.0193

.0072

.0018

.0005

l

Rate

P

1.3

1.1

1.3

1.4

2.0

2.0

The second problem to be considered is a two phase Stefan problem whose
solution (in terms of température) is depicted in ïigtwe 2 (the exact solution is
given in both [7] and [20] — note that in this panicular example \x = ki/Ci and
z = z"= r i = 0). In order to suppress the effect of the jump discontinuity from 0 to X

in enthalpy at the interface, errors discussed hère for the Stefan problem will be
errors in température values. The température v corresponding to an enthalpy
value u is easily obtained by inverting (6).

For the one phase Stefan problem, the alternating phase truncation (APT)
method ([7, 20]) reduces to (21) with a = \i. In [20], for the "analytical" APT
method for a one dimensional one phase Stefan problem, it was shown that the

vol. 13. n° 4, 1979



308 A. E. BERGER, H. BRÉZIS, J. C. W. ROGERS

Figure 2. — Exact solution (température) of a two phase Stefan problem (solid Unes) and numerical
solution values (points) at t = 0, t = 773 (triangles), t = 2 773 (open circles), and t = T (solid circles)
where T= 200,000. The approximate solution values were obtained using the algorithm (21) wit h
a = kjclt and using the standard Crank-Nicolson finite différence method with 41 grid points and
At= 772,595 tosolVe (22).

error in the température value and in the interface location could be bounded by

Un( l + T/At))1/2, (25)

where T is the time at which one is bounding the error, and C is a constant
independent of At (but depending on T and the data of the problem). Let N
dénote the integer T/At, so then f* = N At=T. We have tested to see if the
temporal error behavior for (21) applied to the two phase Stefan problem is
consistent with (25) by fixing T, taking J "large", and calculating numerical
values for C for several values of Àt. Let v(x, t*) dénote the exact température
solution at time t? = Tt and let {Vf} dénote the approximate température
solution values at the grid points {pj} at time t

N obtained via (21) [i.e. V
1
- is

defined to be the température corresponding (by (6)) to Uf]. The discrete L
l

error ex is defined to be

e = .
20 i.

and the numerical value of C corresponding to N (i.e. to At = T/N) is

(26)

(27)

R.A.I.R.O. Analyse numérique/Numerical Analysis
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Results of applying the algorithm (21) to the two phase Stefan problem are
given in tables III and IV In all the tables for the Stefan problem
T= (2/3) 200,000 For table III, the standard Crank-Nicolson (C N ) method

TABLE III

Discrete L
1
 errors e1 and values of the constant C of (21) for several implementations of the algorithm

(21) and an implementatwn of the APT method for the two phase Stefan problem

A

216
432
864

1728
3 456

a = l 3n

ei j

9 10
6 81
4 75
3 46
2 43

C N

C

16
16
15
14
14

a = n C

10 16
6 63
4 40
3 06
2 22

N

C

18
15
14
13
13

a= 96 n

«i

84 6
89 8
88 9
88 2
82 1

C N

C

1 5
2 1
2 8
3 7
4 6

APTC

12 26
8 69
5 87
4 20
2 99

N

C

21
20
18
18
17

TABLE IV

Discrete L
1
 errors et and values of the constant C of {21) for several implementations of the algorithm

(21) for the two phase Stefan problem The Standard implicit method with J = 161 was used to
solve (22)

N

ot= 48 n

216
432
864

1728
3 456

11 25
8 05
5 82
4 19
3 00

20
19
18
17
17

12
83
75
46
43

16
16
15
14
14

10 25
6 76
4 39
3 02
2 22

18
16
14
13
13

92 0
92 3
89 7
87 4
82 1

1 6
2 1
2 8
3 6
4 6

with J = 161 was used to solve (22), results are given for a = 1 3,1, and 95 u, and
for companson, results for the APT method (C N , J = 161) are given m the last
column The error behavior appears consistent with (25) The error decreases as
oc decreases un til the abrupt détérioration below oc = u Results when usmg the
Standard implicit method for (22) with J = 16i are given m table IV The
correspondence between (CN,a ) and (implicit, a/2) is again observed [this is
not surpnsmg since O (At) is "small" relative to (25)] The data m table V
mdicates that for the values of JV being considered, the spatial discretization
error is relatively neghgible even for J = 41 We note that the method for the
Stefan problem discussed m [2] and [21] corresponds to using a purely explicit

method to solve (20) The 3 level Laplace modified Galerkin method (24) when
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applied to the Stefan problem in the form (20) produced very erratic behavior
with respect to variations in both P and J (typical behavior is presented in
table VI). Fatal instability occurs with J=161, p= .3(a, N = 3,456.

As an illustration of the simplicity of using (21) in several space dimensions,
numerical results for a two dimensional Stefan problem are given in figure 3. The
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Figure 3. - Numerical solution of a two phase Stefan problem on the région O^x, y^20 using the
algorithm (21) with a = /c,7c,-. In each frame, an L (S) was printed at points where the approximate
solution value was ^ A. ( ̂  0). A blank was printed for values between 0 and X. The solid line is the
exact interface location. The standard ADI method [19] with Ax = Ay = 1, was used to solve (22).
For the first four frames the value of At used was 775,184 (7=200,000). For the frame on the
lower rigbt the value of At was 77648.

classical ADI method [19] was used to solve (22). The exact solution at (x, y, t) is
given by u (p = x cos (30°) - y. sin (30°), t) where u is the solution in [7], [20] (p is
the projection of(x, y) on the line 30° below the positive x-axis, note also that
\i = ki/ci and z = z —r1 = 0).
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METHOD FOR SOL VING THE PROBLEM Ut - Af(u) = 311

TABLE V

Discrete L
l
 errors ex and values of the constant C of (21) for several implementations of the algorithm

(21) with a - \ifor the two phase Stefan problem. The Crank-Nicolson method was used to solve (22),
with several different values for J.

N

216
432
864
1,728
3,456.

J = 41

ei

8.64
6.44
4.12
3.67
2.51

C

.15

.15

.13

.15

.14

J-81

ei

9.33
6.15
4.28
3.12
2.34

L

c

.16

.14

.13

.13

.13

J = 16

ei

10.16
6.63
4.40
3.06
2.22

1

C

.18

.15

.14

.13

.13

TABLE VI

Discrete L
1
 errorsfor several implementations of the Laplace modified centered équation (24) for the

two phase Stefan problem in the farm (20).

JV

216
432
864

1,728
3,456

ei

48.88
27.34
10.35
1.48

.88

J=161
ei

57.30
27.81
5.47
1.29

.51

ei

39.22
23.05
3.69
1.59

.44

ei

68.56
28.69
4.16

.87

.27

J = 81
ei

34.31
9.78
2.05
1.40

.65

38.41
6.16
1.38

.92

.60

ei

52.63
41.25
18.39
3.63
1.02
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