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A Numerical Method to solve Optimal Transport

Problems with Coulomb Cost

Jean-David Benamou, Guillaume Carlier, and Luca Nenna

Abstract In this paper, we present a numerical method, based on iterative Bregman

projections, to solve the optimal transport problem with Coulomb cost. This is re-

lated to the strong interaction limit of Density Functional Theory. The first idea is to

introduce an entropic regularization of the Kantorovich formulation of the Optimal

Transport problem. The regularized problem then corresponds to the projection of a

vector on the intersection of the constraints with respect to the Kullback-Leibler dis-

tance. Iterative Bregman projections on each marginal constraint are explicit which

enables us to approximate the optimal transport plan. We validate the numerical

method against analytical test cases.

1 Introduction

1.1 On Density functional theory

Quantum mechanics for a molecule with N electrons boils down to the many-

electron Schrödinger equation for a wave function ψ ∈ L2(R3N ;C) (in this paper,

we neglect the spin variable). The limit of this approach is computational : in or-

der to predict the chemical behaviour of H2O (10 electrons) using a 10 gridpoints

discretization of R, we need to solve the Schrödinger equation on 1030 gridpoints.

This is why Hohenberg, Kohn and Sham introduced, in [19] and [21], the Density

Functional Theory (DFT) as an approximate computational method for solving the

Schrödinger equation at a more reasonable cost.
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The main idea of the DFT is to compute only the marginal density for one elec-

tron

ρ(x1) =
∫

γN(x1,x2 · · · ,xN)dx2 · · ·dxN ,

where γN = |ψ(x1, · · · ,xN)|2 is the joint probability density of electrons at positions

x1, · · · ,xN ∈R
3, instead of the full wave function ψ . One scenario of interest for the

DFT is when the repulsion between the electrons largely dominates over the kinetic

energy. In this case, the problem can, at least formally, be reformulated as an Op-

timal Transport (OT) problem as emphasized in the pioneering works of Buttazzo,

De Pascale and Gori-Giorgi [6] and Cotar, Friesecke and Klüppelberg [10].

1.2 Optimal Transport

Before discussing the link between DFT and OT, let us recall the standard optimal

transport problem and its extension to the multi-marginal framework. Given two

probability distributions µ and ν (on R
d , say) and a transport cost c: Rd ×R

d →
R, the optimal transport problem consists in finding the cheapest way to transport

µ to ν for the cost c. A transport map between µ and ν is a Borel map T such

that T#µ = ν i.e. ν(A) = µ(T−1(A)) for every Borel subset A of Rd . The Monge

problem (which dates back to 1781 when Monge [24] posed the problem of finding

the optimal way to move a pile of dirt to a hole of the same volume) then reads

min
T#µ=ν

∫

Rd
c(x,T (x))µ(dx). (1)

This is a delicate problem since the mass conservation constraint T#µ = ν is highly

nonlinear (and the feasible set may even be empty for instance if µ is a Dirac mass

and ν is not). This is why, in 1942, Kantorovich [20] proposed a relaxed formulation

of (1) which allows mass splitting

min
γ∈Π(µ,ν)

∫

Rd×Rd
c(x,y)γ(dx,dy) (2)

where γ ∈ Π(µ,ν) consists of all probability measures on R
d ×R

d having µ and ν
as marginals, that is:

γ(A×R) = µ(A), ∀A Borel subset of Rd , (3)

γ(R×B) = ν(B), ∀B Borel subset of Rd . (4)

Note that this is a linear programming problem and that there exists solutions under

very mild assumptions (e.g. c continuous and µ and ν compactly supported). A

minimizing γ in (2) is called an optimal transport plan and it gives the probability

that a mass element in x be transported in y. Let us remark that if T is a transport

map then it induces a transport plan γT (x,y) := µ(x)δ (y− T (x)) so if an optimal
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plan of (2) has the form γT (which means that no splitting of mass occurs and γ is

concentrated on the graph of T ) then T is actually an optimal transport map i.e. a

solution to (1). The linear problem (2) also has a convenient dual formulation

max
u,v|u(x)+v(y)≤c(x,y)

∫

Rd
u(x)µ(dx)+

∫

Rd
v(y)ν(dy) (5)

where u(x) and v(y) are the so-called Kantorovich potentials. OT theory for two

marginals has developed very rapidly in the 25 last years, there are well known

conditions on c, µ and ν which guarantee that there is a unique optimal plan which

is in fact induced by a map (e.g. c= |x−y|2 and µ absolutely continuous, see Brenier

[4]) and we refer to the textbooks of Villani [34, 35] for a detailed exposition.

Let us now consider the so-called multi-marginal problems i.e. OT problems in-

volving N marginals µ1, · · · ,µN and a cost c : RdN →R, which leads to the following

generalization of (2)

min
γ∈Π(µ1,··· ,µN)

∫

R×N

c(x1, · · · ,xN)γ(dx1, · · · ,dxN) (6)

where Π(µ1, · · · ,µN) is the set of probability measures on (Rd)N having µ1, · · · ,µN

as marginals. The corresponding Monge problem then becomes

min
Ti#µ1=µi, i=2,··· ,N

∫

Rd
c(x1,T2(x1), · · · ,TN(x1))µ1(dx1). (7)

Such multi-marginals problems first appeared in the work of Gangbo and Świȩch

[16] who solved the quadratic cost case and proved the existence of Monge solu-

tions. In recent years, there has been a lot of interest in such multi-marginal prob-

lems because they arise naturally in many different settings such as economics [7],

[29], polar factorization of vector fields and theory of monotone maps [17] and, of

course, DFT [6, 10, 8, 14, 23, 11], as is recalled below. Few results are known about

the structure of optimal plans for (7) apart from the general results of Brendan Pass

[28], in particular the case of repulsive costs such as the Coulomb’s cost from DFT

is an open problem.

The paper is structured as follows. In Section 2, we recall the link between Den-

sity Functional Theory and Optimal Transportation and we present some analytical

solutions of the OT problem (e.g. optimal maps for radially symmetric marginals,

for 2 electrons). In Section 3, we introduce a numerical method, based on itera-

tive Bregman projections, and an algorithm which aims at refining the mesh where

the transport plan is concentrated. In section 4 we present some numerical results.

Section 5 concludes.
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2 From Density Functional Theory to Optimal Transportation

2.1 Optimal Transportation with Coulomb cost

In Density Functional Theory [19] the ground state energy of a system (with N elec-

trons) is obtained by minimizing the following functional w.r.t. the electron density

ρ(x):

E[ρ] = min
ρ∈R

FHK [ρ]+
∫

vext(x)ρ(x)dr (8)

where R = {ρ : R3 → R|ρ ≥ 0,
√

ρ ∈ H1(R3),
∫
R3 ρ(x)dx = N},

vext := − Z

|x−R| is the electron-nuclei potential (Z and R are the charge and the

position of the nucleus, respectively) and FHK is the so-called Hohenberg-Kohn

which is defined by minimizing over all wave functions ψ which yield ρ:

FHK [ρ] = min
ψ→ρ

h̄2T [ψ]+Vee[ψ] (9)

where h̄2 is a semiclassical constant factor,

T [ψ] =
1

2

∫ · · ·∫ ∑
N
i=1|∇xi

ψ|2dx1 · · ·dxN

is the kinetic energy and

Vee =
∫ · · ·∫ ∑

N
i=1 ∑

N
j>i

1

|xi − x j|
|ψ|2dx1 · · ·dxN

is the Coulomb repulsive energy operator.

Let us now consider the Semiclassical limit

limh̄→0 minψ→ρ h̄2T [ψ]+Vee[ψ]

and assume that taking the minimum over ψ commutes with passing to the limit

h̄ → 0 (Cotar, Friesecke and Klüppelberg in [10] proved it for N = 2), we obtain the

following functional

V SCE
ee [ρ] = min

ψ→ρ

∫
· · ·

∫ N

∑
i=1

N

∑
j>i

1

|xi − x j|
|ψ|2dx1 · · ·dxN (10)

where V SCE
ee is the minimal Coulomb repulsive energy whose minimizer character-

izes the state of Strictly Correlated Electrons(SCE).

Problem (10) gives rise to a multi-marginal optimal transport problem as (6) by

considering that

• according to the indistinguishability of electrons, all the marginals are equal to

ρ ,
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• the cost function is given the electron-electron Coulomb repulsion,

c(x1, ...,xN) =
N

∑
i=1

N

∑
j>i

1

|xi − x j|
, (11)

• we refer to γN = |ψ(x1, · · · ,xN)|2 (which is the joint probability density of elec-

trons at positions x1, · · · ,xN ∈ R
3) as the transport plan.

The Coulomb cost function (11) is different from the costs usually considered in

OT as it is not bounded at the origin and it decreases with distance. So it requires a

generalized formal framework, but this is beyond the purpose of this work (see [6]

and [10]). Finally (10) can be re-formulated as a Kantorovich problem

V SCE
ee [ρ] = min

πi(γN)=ρ,i=1,··· ,N

∫

R3N
c(x1, · · · ,xN)γN(x1, · · · ,xN)dx1 · · ·dxN (12)

where

πi(γN) =
∫
R3(N−1) γN(x1, · · · ,xi, · · · ,xN)dx1, · · · ,dxi−1,dxi+1, · · · ,dxN

is the i−th marginal. As mentioned in section 1.2 if the optimal transport plan γN

has the following form

γN(x1, · · · ,xN) = ρ(x1)δ (x2 − f ⋆2 (x1)) · · ·δ (xN − f ⋆N(x1)) (13)

then the functions f ⋆i : R3 → R
3 are the optimal transport maps (or co-motion func-

tions) of the Monge problem

V SCE
ee [ρ] = min

{ fi:R
3→R3}N

i=1

∫ N

∑
i=1

N

∑
j>i

1

| fi(x)− f j(x)|
ρ(x)dx

s.t. fi#ρ = ρ, i = 2, ...,N, f1(x) = x.

(14)

Remark 1. (Physical meaning of the co-motion function) fi(x) determine the posi-

tion of the i-th electron in terms of x which is the position of the “1st”electron :

V SCE
ee defines a system with the maximum possible correlation between the relative

electronic positions.

In full generality, problem (14) is delicate and proving the existence of the co-

motion functions is difficult. However, the co-motion functions can be obtained via

semianalytic formulations for spherically symmetric atoms and strictly 1D systems

(see [10], [33], [22], [8]) and we will give some examples in the following section.

Problem (12) admits a useful dual formulation in which the so called Kantorovich

potential u plays a central role

V SCE
ee = max

u
{N

∫
u(x)ρ(x)dx s.t.

N

∑
i=1

u(xi)≤ c(x1, ...,xN)}. (15)
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Because c is invariant by permutation, there is a single dual Kantorovich potential

for all all marginal constraints. Moreover, this potential u(x) is related to the co-

motion functions via the classical equilibrium equation (see [33])

∇u(x) =−
N

∑
i=2

x− fi(x)

|x− fi(x)|3
. (16)

Remark 2. (Physical meaning of (16)) The gradient of the Kantorovich potential

equals the total net force exerted on the electron in x by electrons in f2(x), · · · , fN(x).

2.2 Analytical Examples

2.2.1 The case N = 2 and d = 1

In order to better understand the problem we have formulated in the previous sec-

tion, we recall some analytical examples (see [6] for the details).

Let us consider 2 particles in one dimension and marginals

ρ1(x) = ρ2(x) =

{
a i f |x| ≤ a/2

0 otherwise.
(17)

After a few computations, we obtain the following associated co-motion function

f (x) =

{
x+ a

2

x− a
2

. (18)

If we take

ρ1(x) = ρ2(x) =
a−|x|

a2
de f ined in [−a,a], (19)

we get

f (x) =
x

|x| (
√

2a|x|− x2 −a) on [−a,a] (20)

Figure 1 shows the co-motion functions for (17) and (19).

2.2.2 The case N > 2 and d = 1

In [8], the authors proved the existence of optimal transport maps for problem (14)

in dimension d = 1 and provided an explicit construction of the optimal maps. Let

ρ be the normalized electron density and −∞ = x0 < x1 < · · · < xN = +∞ be such

that
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Fig. 1 Right: Co-motion function for (17) with a = 2. Left: Co-motion function for (19) with a = 1.

∫ xi+1
xi

ρ(x)dx = 1/N ∀i = 0, · · · ,N −1.

Thus, there exists a unique increasing function f̃ : R→ R on each interval [xi,xi+1]
such that for every test-function ϕ one has

∫

[xi,xi+1]
ϕ( f̃ (x))ρ(x)dx =

∫

[xi+1,xi+2]
ϕ(x)ρ(x)dx ∀i = 0, · · · ,N −2, (21)

∫

[xN−1,xN ]
ϕ( f̃ (x))ρ(x)dx =

∫

[x0,x1]
ϕ(x)ρ(x)dx, (22)

The optimal maps are then given by

f2(x) = f̃ (x) (23)

fi(x) = f
(i)
2 (x) ∀i = 2, · · · ,N, (24)

where f
(i)
2 stands for the i−th composition of f2 with itself. Here, we present an

example given in [6]. We consider the case where ρ is the Lebesgue measure on the

unit interval I = [0,1], the construction above gives the following optimal co-motion

functions

f2(x) =

{
x+1/3 i f x ≤ 2/3

x−2/3 i f x > 2/3
,

f3(x) = f2( f2(x)) =

{
x+2/3 i f x ≤ 1/3

x−1/3 i f x > 1/3
.

(25)

Furthermore, we know that the Kantorovich potential u satisfies the relation (here

we take N = 3)

u′(x) =−
N

∑
i=2

x− fi(x)

|x− fi(x)|3
(26)

and by substituting the co-motion functions in (26) (and integrating it) we get
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u(x) =





45
4

x 0 ≤ x ≤ 1/3
15
4

1/3 ≤ x ≤ 2/3

− 45
4

x+ 45
4

2/3 ≤ x ≤ 1

(27)

Figure 2 illustrates this example.

When N ≥ 4 similar arguments as above can be developed and we can similarly

compute the co-motion functions and the Kantorovich potential.

Fig. 2 Right: co-motion function f2 for (25). Center: co-motion function f3 for (25). Left: Kan-

torovich Potential u(x) (27).

2.2.3 The radially symmetric marginal case for N = 2, d ≥ 2

We discuss now the radial d−dimensional (d ≥ 2) case for N = 2. We assume that

the marginal ρ is radially symmetric, then we recall the following theorem from

[10]:

Theorem 1. [10] Suppose that ρ(x) = ρ(|x|), then the optimal transport map is

given by

f ⋆(x) =
x

|x|g(|x|), x ∈ R
d , (28)

with g(r)=−F−1
2 (F1(r)), F1(t) :=C(d)

∫ t
0 ρ(s)sd−1ds, F2(t) :=C(d)

∫ ∞
t ρ(s)sd−1ds

where C(d) denotes the measure of Sd−1, the unit sphere in R
d .

Example 1. (Spherical coordinates system) If ρ is radially symmetric ρ(x) = ρ(|x|),
it is convenient to work in spherical coordinates and then to set for every radius r > 0

λ (r) =C(d)rd−1ρ(r) (29)

so that for every test-function ϕ we have

∫

Rd
ϕ(x)ρ(|x|)dx =

∫ +∞

0

(∫

Sd−1
ϕ(r,ω)

dσ(ω)

Cd

)
λ (r)dr
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with C(d) the measure of Sd−1 and σ the d−1 measure on Sd−1 which in particular

implies that λ := |.|#ρ i.e.

∫

Rd
ϕ(|x|)ρ(|x|)dx =

∫ +∞

0
ϕ(r)λ (r)dr, ∀ϕ ∈Cc(R+). (30)

The radial part of the optimal co-motion function a(r) =−g(r) can be computed by

solving the ordinary differential equation

a′(r)λ (a(r)) = λ (r)

which gives ∫ a(r)

0
λ (s)ds = 2−

∫ r

0
λ (s)ds. (31)

We define R(r) =
∫ r

0 λ (s)ds, since r 7→ R(r) is increasing, its inverse R−1(w) is well

defined for w ∈ [0,1). Thus, we see that a(r) has the form

a(r) = R−1(2−R(r)). (32)

2.2.4 Reducing the dimension under radial symmetry

In the case where the marginal ρ(x) = ρ(|x|) is radially symmetric, the multi-

marginal problem with Coulomb cost

inf
γ∈Π(ρ,··· ,ρ)

∫

RdN
c(x1, · · · ,xN)dγ(x1, · · · ,xN) (33)

with c the Coulomb cost given by (11) involves plans on R
dN which is very costly to

discretize. Fortunately, thanks to the symmetries of the problem, it can actually be

solved by considering a multi-marginal problem only on R
N
+. Let us indeed define

for every (r1, · · · ,rN) ∈ (0,+∞)N :

c̃(r1, · · · ,rN) := inf{c(x1, · · · ,xN) : |x1|= r1, · · · , |xN |= rN}. (34)

Defining λ by (29) (or equivalently (30)) and defining Π(λ , · · · ,λ ) as the set of

probability measures on R
N
+ having each marginal equal to λ , consider

inf
γ̃∈Π(λ ,··· ,λ )

∫

RN
+

c̃(r1, · · · ,rN)dγ̃(r1, · · · ,rN). (35)

We claim that inf(33) = inf(35). The inequality inf(33)≥ inf(35) is easy: take γ ∈
Π(ρ, · · · ,ρ) and define its radial component γ̃ by

∫

RN
+

F(r1, · · · ,rN)dγ̃(r1, · · · ,rN) :=
∫

RdN
F(|x1|, · · · , |xN |)dγ(x1, · · · ,xN), ∀F ∈Cc(R

N
+),

(36)
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it is obvious that γ̃ ∈ Π(λ , · · · ,λ ) and since c(x1, · · · ,xN) ≥ c̃(|x1|, · · · , |xN |), the

inequality inf(33)≥ inf(35) easily follows. To show the converse inequality, we use

duality. Indeed, by standard convex duality, we have

inf(33) = sup
u

{
N

∫

Rd
u(x)ρ(x)dx :

N

∑
i=1

u(xi)≤ c(x1, · · · ,xN)
}

(37)

and similarly

inf(35) = sup
v

{
N

∫

R+

v(r)λ (r)dr :
N

∑
i=1

v(ri)≤ c̃(r1, · · · ,rN)
}
. (38)

Now since ρ is radially symmetric and the constraint of (37) is invariant by chang-

ing u by u ◦ R with R a rotation (see (11)) , there is no loss of generality in re-

stricting the maximization in (37) to potentials of the form u(xi) = w(ri), but then

the constraint of (37) implies that w satisfies the constraint of (38). Then we have

inf(33) = sup(37)≤ sup(38) = inf(35). Note then that γ ∈ Π(ρ, · · · ,ρ) solves (33)

if and only if its radial component γ̃ solves (33) and c(x1, · · · ,xN) = c̃(|x1|, · · · , |xN |)
γ-a.e. Therefore (33) gives the optimal radial component, whereas the extra con-

dition c(x1, · · · ,xN) = c̃(|x1|, · · · , |xN |) γ-a.e. gives an information on the angular

distribution of γ .

3 Iterative Bregman Projections

Numerics for multi-marginal problems have so far not been extensively developed.

Discretizing the multi-marginal problem leads to the linear program (41) where the

number of constraints grows exponentially in N, the number of marginals. In this

section, we present a numerical method which is not based on linear programming

techniques, but on an entropic regularization and the so-called alternate projection

method. It has recently been applied to various optimal transport problems in [12]

and [2].

The initial idea goes back to von Neumann [26], [25] who proved that the se-

quence obtained by projecting orthogonally iteratively onto two affine subspaces

converges to the projection of the initial point onto the intersection of these affine

subspaces. Since the seminal work of Bregman [3], it is by now well-known that

one can extend this idea not only to several affine subspaces (the extension to con-

vex sets is due to Dyskstra but we won’t use it in the sequel) but also by replacing

the euclidean distance by a general Bregman divergence associated to some suit-

able strictly and differentiable convex function f (possibly with a domain) where

we recall that the Bregman divergence associated with f is given by

D f (x,y) = f (x)− f (y)−〈∇ f (y),x− y〉. (39)
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In what follows, we shall only consider the Bregman divergence (also known

as the Kullback-Leibler distance) associated to the Boltzmann/Shannon entropy

f (x) := ∑i xi(logxi − 1) for non-negative xi. This Bregman divergence (restricted

to probabilities i.e. imposing the normalization ∑i xi = 1) is the Kullback-Leibler

distance or relative entropy:

D f (x,y) = ∑
i

xi log
(xi

yi

)
.

Bregman distances are used in many other applications most notably image pro-

cessing, see [18] for instance.

3.1 The Discrete Problem and its Entropic Regularization

In this section we introduce the discrete problem solved using the iterative Bregman

projections [3]. From now on, we consider the problem (12)

min
γN∈C

∫

(Rd)N
c(x1, · · · ,xN)γN(x1, · · · ,xN)dx1 · · ·dxN , (40)

where N is the number of marginals (or electrons), c(x1, ...,xN) is the Coulomb cost,

γN the transport plan, is the probability distribution over (Rd)N and C :=
⋂N

i=1 Ci

with Ci := {γN ∈ Prob{(Rd)N}|πiγN = ρ} (we remind the reader that electrons are

indistinguishable so the N marginals coincide with ρ).

In order to discretize (40), we use a discretisation with Md points of the support

of the kth electron density as {x jk} jk=1,··· ,Md
. If the densities ρ are approximated by

∑ jk
ρ jk δx jk

, we get

min
γ∈C

∑
j1,··· jN

c j1,··· , jN γ j1,··· , jN , (41)

where c j1,··· , jN = c(x j1 , · · · ,x jN ) and the transport plan support for each coordinate

is restricted to the points {x jk}k = 1, · · · ,Md thus becoming a (Md)
N matrix again

denoted γ with elements γ j1,··· , jN . The marginal constraints Ci becomes

Ci := {γ ∈ R
(Md)

N

+ | ∑
j1,..., ji−1, ji+1,..., jN

γ j1,..., jN = ρ ji , ∀ ji = 1, · · · ,Md}. (42)

Recall that the electrons are indistinguishable, meaning that they have same densi-

ties : ρ jk = ρ jk′ , ∀ j, ∀k 6= k′.
The discrete optimal transport problem (41) is a linear program problem and is

dual to the discretization of (15)
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max
u j

M

∑
j=1

Nu jρ j

s.t.
N

∑
i=1

u ji ≤ c j1··· jN ∀ ji = 1, · · · ,Md

(43)

where u j = u ji = u(x ji). Thus the primal (41) has (Md)
N unknown and Md ×N lin-

ear constraints and the dual (43) only Md unknown but still (Md)
N constraints. They

are computationally not solvable with standard linear programming methods even

for small cases in the multi-marginal case.

A different approach consists in computing the problem (41) regularized by the

entropy of the joint coupling. This regularization dates to E. Schrödinger [32] and

it has been recently introduced in machine learning [12] and economics [15] (we

refer the reader to [2] for an overview of the entropic regularization and the iterative

Bregman projections in OT). Thus, we consider the following discrete regularized

problem

min
γ∈C

∑
j1,··· jN

c j1,··· , jN γ j1,··· , jN + εE(γ), (44)

where E(γ) is defined as follows

E(γ) =

{
∑ j1,··· jN γ j1,··· , jN log(γ j1,··· , jN ) if γ ≥ 0

+∞ otherwise.
(45)

After elementary computations, we can re-write the problem as

min
γ∈C

KL(γ|γ̄) (46)

where KL(γ|γ̄)=∑i1,...,iN γi1,...,iN (log(
γi1,...,iN

γ̄i1,...,iN
)) is the Kullback-Leibler distance and

γ̄i1,...,iN = e
−

c j1,··· , jN
ε . (47)

As explained in section 1.2, when the transport plan γ is concentrated on the

graph of a transport map which solves the Monge problem, after discretisation of

the densities, this property is lost along but we still expect the γ matrix to be sparse.

The entropic regularization will spread the support and this helps to stabilize the

computation: it defines a strongly convex program with a unique solution γε which

can be obtained through elementary operations (we detail this in section 3.3 for both

the continuous and discrete framework). The regularized solutions γε then converge

to γ⋆, the solution of (41) with minimal entropy, as ε → 0 (see [9] for a detailed

asymptotic analysis and the proof of exponential convergence). Let us now apply

the iterative Bregman projections to find the minimizer of (46).
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3.2 Alternate Projections

The main idea of the iterative Bregman projections (we call it Bregman as the

Kullback-Leibler distance is also called Bregman distance, see [3]) is to construct a

sequence γn (which converges to the minimizer of (46)) by alternately projecting on

each set Ci with respect to the Kullback-Leibler distance. Thus, the iterative KL (or

Bregman) projections can be written

{
γ0 = γ̄

γn = PKL
Cn

(γn−1) ∀n > 0
(48)

where we have extended the indexing of the set by N−periodicity such that Cn+N =
Cn ∀n ∈ N and PKL

Cn
denotes the KL projection on Cn.

The convergence of γn to the unique solution of (46) is well known, it actually

holds for large classes of Bregman distances and in particular the Kullback-Leibler

divergence as was proved by Bauschke and Lewis [1]

γn → PKL
C

(γ̄) as n → ∞.

Remark 3. If the convex sets Ci are not affine sub-sets (that is not our case), γn

converges toward a point of the intersection which is not the KL projection of γ̄
anymore so that a correction term is needed as provided by Dykstra’s algorithm (we

refer the reader to [2]).

The KL projection on Ci i = 1, ...,N can be computed explicitly as detailed in the

following proposition

Proposition 1. For γ̄ ∈ (R+)
Md

N
the projection PKL

Ci
(γ̄) is given by

PKL
Ci

(γ̄) j1,..., jN = ρ ji

γ̄ j1,..., jN

∑k1,...,ki−1,ki+1,...,kN
γ̄k1,...,kN

∀ ji = 1, ...,Md . (49)

Proof. Introducing Lagrange multipliers λ ji associated to the constraint Ci

∑
j1,..., ji−1, ji+1,..., jN

γ j1,..., jN = ρ ji (50)

the KL projection is given by the optimality condition :

log(
γ j1,..., jN

γ̄ j1,..., jN

)−λ ji = 0 (51)

so that

γ j1,..., jN =C ji γ̄ j1,..., jN , (52)

where C ji = eλ ji . If we substitute (52) in (50), we get
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C ji = ρ ji

1

∑k1,...,ki−1,ki+1,...,kN
γ̄k1,...,kN

(53)

which gives (49).

3.3 From the Alternate Projections to the Iterative Proportional

Fitting Procedure

The alternate projection procedure (48) is performed on MN
d matrices. Moreover

each projection (49) involves computing partial sum of this matrix. The total opera-

tion cost of each Bregman iteration scales like O(M2N−1
d ).

In order to reduce the cost of the problem, we use an equivalent formulation

of the Bregman algorithm known as the Iterative Proportional Fitting Procedure

(IPFP). Let us consider the problem (46) in a continous measure setting and, for

simplicity, 2-marginals framework

min
{γ|π1(γ)=ρ,π2(γ)=ρ}

∫
log(

dγ

dγ̄
)dγ, (54)

where ρ , ρ and γ̄ are nonnegative measures. The aim of the IPFP is to find the KL

projection of γ̄ on Π(ρ,ρ) (see (47) for the definition of γ̄ which depends on the

cost function).

Under the assumption that the value of (54) is finite, Rüschendorf and Thomsen

(see [31]) proved that a unique KL-projection γ∗ exists and that it is of the form

γ∗(x,y) = a(x)b(y)γ̄(x,y), a(x)≥ 0, b(y)≥ 0. (55)

From now on, we consider (with a sligthly abuse of notation) Borel measures with

densities γ , γ̄ , ρ and ρ w.r.t. the suitable Lebesgue measure. a and b can be uniquely

determined by the marginal condition as follows

a(x) =
ρ(x)∫

γ̄(x,y)b(y)dy
,

b(y) =
ρ(y)∫

γ̄(x,y)a(x)dx
.

(56)

Then, IPFP is defined by the following recursion

b0 = 1, a0 = ρ ,

bn+1(y) =
ρ(y)∫

γ̄(x,y)an(x)dx
,

an+1(x) =
ρ(x)∫

γ̄(x,y)bn+1(y)dy
.

(57)
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Moreover, we can define the sequence of joint densities (and of the corresponding

measures)

γ2n(x,y) := an(x)bn(y)γ̄(x,y) γ2n+1 := an(x)bn+1(y)γ̄(x,y), n ≥ 0. (58)

Rüschendorf proved (see [30]) that γn converges to the KL-projection of γ̄ . We can,

now, recast the IPFP in a discrete framework, which reads as

γi j = aib j γ̄i j, b0
j = 1, a0

i = ρi, (59)

bn+1
j =

ρ j

∑i γ̄i ja
n
i

,

an+1
i =

ρi

∑ j γ̄i jb
n+1
j

,
(60)

γ2n
i j = an

i γ̄i jb
n
j γ2n+1

i j = an
i γ̄i jb

n+1
j . (61)

By definition of γn
i j, notice that

γ̄i jb
n
j =

γ2n−1
i j

an−1
i

and an
i γ̄i j =

γ2n
i j

bn
j

and if (61) is re-written as follows

γ2n
i j = ρi

γ̄i jb
n
j

∑k γ̄ikbn
k

γ2n+1
i j = ρ j

γ̄i ja
n
i

∑k γ̄k ja
n
k

(62)

then we obtain

γ2n
i j = ρi

γ2n−1
i j

∑k γ2n−1
ik

γ2n+1
i j = ρ j

γ2n
i j

∑k γ2n
k j

.

(63)

Thus, we exactly recover the Bregman algorithm described in the previous section,

for 2 marginals.

The extension to the multi-marginal framework is straightforward but cumber-

sone to write. It leads to a problem set on N Md-dimensional vectors a j,i(·) , j =
1, · · · ,N, i(·) = 1, · · · ,Md . Each update takes the form

an+1
j,i j

=
ρi j

∑i1,i2,...i j−1,i j+1,...,iN γ̄i1,...,iN an+1
1,i1

an+1
2,i2

...an+1
j−1,i j−1

an
j+1,i j+1

...an
N,iN

, (64)

Where each ik takes values in {1, · · · ,Md}.
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Note that we still need a constant MN
d cost matrix γ̄ . Thanks to the symmetry and

separability properties of the cost function (see (11) and (47)) , it is possible to re-

place it by a N (N−1)/2 product of M2
d matrices. This is already a big improvement

from the storage point of view. Further simplifications are under investigations but

the brute force IPFP operational cost therefore scales like O(N MN+1
d ) which pro-

vides a small improvement over the Bregman iterates option.

3.4 A heuristic refinement mesh strategy

We will use a heuristic refinement mesh strategy allowing to obtain more accuracy

without increasing the computational cost and memory requirements. This idea was

introduced in [27] for the adaptative resolution of the pure Linear Programming

formulation of the Optimal Transportation problem, i.e without the entropic regu-

larisation.

If the optimal transport plan is supported by a lower dimensional set, we ex-

pect the entropic regularisation to be concentrated on a mollified version of this set.

Its width should decrease with the entropic parameter ε if the discretisation is fine

enough. Working with a fixed ε , the idea is to apply coarse to fine progressive reso-

lution and work with a sparse matrix γ . At each level, values below a threshold are

filtered out (set to 0), then new positive values are interpolated on a finer grid (next

level) where γ is strictly positive.

To simplify the exposition, we describe the algorithm for 2−marginals in 1D and

take a
√

M gridpoints discretization of I = [a,b] ∈ R:

1. we start with a cartesian M gridpoints mesh on I × I to approximate transport

plan γε , obtained by running the IPFP on a coarse grid.

2. we take mc( j) = maxiγ
ε
i j and mr(i) = max jγ

ε
i j which are the maximum values

over the rows and over the columns respectively, and we define

m = min[min j(mc( j)),mini(mr(i))].

We will refine the grid only inside the level curve γε = ξ m where we expect the

finer solution is supported, see figure 3.

3. In order to keep approximately the same number of element in the sparse ma-

trix γ at each level we refine the grid as follows : Let T := {(i, j)|γε
i j ≥ ξ m}

and MT := ♯T and r := MT /M, then the size of the grid at the next level is

Mnew = M/r.

4. We compute the interpolation γMnew of the old transport plan γM on the finer grid.

5. Elements of γMnew below the fixed threshold ξ m are filtered out, i.e are fixed to 0

and are not used in the IPFP sum computations, see figure 3.



A Numerical Method to solve Optimal Transport Problems with Coulomb Cost 17

6. Finally, a new IPFP computation is performed and it can be initialised with an

interpolation of the data at the previous level (γ̄ can be easly re-computed on the

gridpoints where γMnew is strictly positive).

Fig. 3 Left: T is the set of grid points inside the level curve γ = ξ m (ξ = 0.9) (the bold line

curve). Center: The new grid after the refinement. Right: The transport Plan after a new IPFP

computation

4 Numerical Results

4.1 N = 2 electrons: comparison between numerical and analytical

results

In order to validate the numerical method, we now compare some numerical results

for 2 electrons in dimension d = 1, · · · ,3 with the analytical results from section

2.2. Let us first consider a uniform density (as (17) with a = 2) in 1D. In table 1, we

analyze the performance of the numerical method by varying the parameter ε . We

notice that the error becomes smaller by decreasing the regularizing parameter, but

the drawback is that the method needs more iterations to converge. Figure 4 shows

the Kantorovich potential, the co-motion function which can be recovered from the

potential by using (16) and the transport plan. The simulation is performed with a

discretization of (17) with a = 2, M = 1000 (gridpoints) and ε = 0.004.

As explained in section 2.2.3, we can also compute the co-motion for a radially

symmetric density. We have tested the method in 2D and 3D, figure 5 and 6 respec-

tively, by using the normalized uniform density on the unit ball. Moreover, in the

radial case we have proved that the OT problem can be reduced to a 1−dimensional

problem by computing c̃ which is trivial for the 2 electrons case: let us set the prob-

lem in 2D in polar coordinates (r1,θ1) and (r2,θ2), for the first and the second

electron respectively (without loss of generality we can set θ1 = 0), then it is easy to

verify that the minimum is achieved with θ2 = π . Figure 5 shows the Kantorovich



18 Jean-David Benamou, Guillaume Carlier, and Luca Nenna

potential (the radial component v(r) as defined in section 2.2.4), the co-motion and

the transport plan for the 2−dimensional case, the simulation is performed with

M = 1000 and ε = 0.002. In figure 6 we present the result for th 3−dimensional

case, the simulation is performed with M = 1000 and ε = 0.002.

Remark 4. One can notice that, in the case of a uniform density, the transport plan

presents a concentration of mass on the boundaries. This is a combined effect of the

regularization and of the fact that the density has a compact support.

ε Error (‖uε −u‖∞/‖u‖∞) Iteration

0.256 0.1529 11

0.128 0.0984 16

0.064 0.0578 25

0.032 0.0313 38

0.016 0.0151 66

0.008 0.0049 114

0.004 0.0045 192

Table 1 Numerical results for uniform density in 1D. uε is the numerical Kantorovich potential

and u is the analytical one.

Fig. 4 Top-Left: Kantorovich Potential u(x). Top-Right: Numerical co-motion function (solid line)

and analytical co-motion (star-solid line) . Bottom-Left: Transport plan γ̃ . Bottom-Right: Support

of γ̃ .
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Fig. 5 Top-Left: Kantorovich Potential v(r). Top-Right: Numerical co-motion function (solid line)

and analytical co-motion (star-solid line) . Bottom-Left: Transport plan γ̃ . Bottom-Right: Support

of γ̃ .

4.2 N = 2 electrons in dimension d = 3 : Helium atom

Once we have validated the method with some analytical examples, we solve the

regularized problem for the Helium atom by using the electron density computed

in [13]. In figure 7, we present the electron density, the Kantorovich potential and

the transport plan. The simulation is performed with a discretization of [0,4] with

M = 1000 and ε = 510−3. We can notice the potential correctly fits the asymptotic

behaviour from [33], namely v(r) ∼ N −1

|r| for r → ∞, where N is the number of

electrons.

4.3 N = 3 electrons in dimension d = 1

We present now some results for the 1−dimensional multi-marginal problem with

N = 3. They are validated against the analytical solutions given in section 2.2.2. We

recall that splitting ρ into three tertiles ρi with equal mass, we will have ρ1 → ρ2,
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Fig. 6 Top-Left: Kantorovich Potential v(r). Top-Right: Numerical co-motion function (solid line)

and analytical co-motion (star-solid line) . Bottom-Left: Transport plan γ̃ . Bottom-Right: Support

of γ̃ .

ρ2 → ρ3 and ρ3 → ρ1.

In table 2, we present the perfomance of the method for a uniform density on

[0,1] by varying ε and, as expected, we see the same behaviour as in the 2 marginals

case. Figure 8 shows the Kantorovich potential and the projection of the transport

plan onto two marginals (namely γ2 = π12(γ
ε)). The support gives the relative po-

sitions of two electrons.

The simulation is performed on a discretization of [0,1] with a uniform density,

M = 1000 and ε = 0.02. If we focus on the support of the projected transport plan

we can notice that the numerical solution correctly reproduces the prescribed be-

havior The concentration of mass is again due to the compact support of the density,

which is not the case of the gaussian as one can see in figure 9. In figure 9 we

present the numerical results for ρ(x) = e−x2
/
√

π . The simulation is performed on

the discretization of [−2.5,2.5] with M = 1000 and ε = 0.008.
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Fig. 7 Top-Left: Helium density λ (r) = 4πr2ρ(r). Top-Right: Kantorovich Potential v(r) (blue)

and asymptotic behaviour (red) v(r) ∼ 1
r

r → ∞. Bottom-Left: Transport plan γ̃ . Bottom-Right:

Support of γ̃ . All quantities are in Hartree atomic units.

ε Error (‖uε −u‖∞/‖u‖∞) Iteration

0.32 0.0658 121

0.16 0.0373 230

0.08 0.0198 446

0.04 0.0097 878

0.02 0.0040 1714

Table 2 Numerical results for uniform density in 1D and three electrons. uε is the numerical

Kantorovich potential and u is the analytical one.

4.4 N = 3 electrons in dimension d = 3 radial case : Litium atom

We finally perform some simulations for the radial 3−dimensional case for N = 3.

As for the 3−dimensional case with 2 marginals we solve the reduced problem: let

us consider the spherical coordinates (ri,θi,φi) with i = 1, · · · ,3 and we fix θ1 = 0

and φ1 = φ2 = 0 (the first electrons defines the z axis and the second one is on the

xz plane). We then notice that φ3 = 0 as the electrons must be on the same plane

of the nucleus to achieve compensation of forces (one can see it by computing the

optimality conditions), so we have to minimize on θ2 and θ3 in order to obtain c̃.
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Fig. 8 Left: Numerical Kantorovich potential u(x) (solid line) and analytical potential (star-solid

line). Center: Projection of the transport plan π12(γ(x,y,z)). Rigth: Support of π12(γ(x,y,z)) The

dot-dashed lines delimit the intervals where ρi, with i = 1, · · · ,3, are defined.

Fig. 9 Left: Kantorovich potential u(x). Center: Projection of the transport plan π12(γ(x,y,z)).
Rigth: Support of π12(γ(x,y,z)). The dot-dashed lines delimit the intervals where ρi, with i =
1, · · · ,3, are defined.

Figure 10 shows the electron density of the Litium (computed in [5]), the Kan-

torovich Potential (and the asymptotic behavior) and the projection of the transport

plan onto two marginals γ̃2 = π12(γ̃
ε). The support gives the relative positions of

two electrons.

The simulation is performed on a discretization of [0,8] with M = 300 and ε =
0.007. Our results show (taking into account the regularization effect) a concentrated

transport plan for this kind of density and they match analogous result obtained in

[33]. If we focus on the support of the transport plan we can notice that the optimal

solution forces the electrons to occupy three different regions as conjectured in [33].

5 conclusion

We have presented a numerical scheme for solving multi-marginal OT problems

arising from DFT. This is a challenging problems, not only because of the unusual

features of the Coulomb cost which is singular and repulsive but also due to the high

dimension of the space of plans.

Using an entropic regularization gives rise to a Kullback-Leibler projection prob-

lem onto the intersection of affine subsets given by the marginal constraints. Because
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Fig. 10 Top-Left: Litium density λ (r) = 4πr2ρ(r). Top-Right: Kantorovich Potential v(r) (blue)

and asymptotic behaviour (red) v(r) ∼ 2
r

r → ∞. Bottom-Left: Projection of the Transport plan

γ̃2 = π12(γ̃
ε ). Bottom-Right: Support of the projected transport plan γ̃2. The dot-dashed lines de-

limit the three regions that the electrons must occupy, we computed them numerically following the

idea in [33].All quantities are in Hartree atomic units.

each projection is explicit, one can use Bregman’s iterative projection algorithm to

approximate the solution.

The power of such an iterative projection approach was recently emphasized in

[12, 2] for the entropic regularization of optimal transport problems, we showed that

is also well suited to treat the multi-marginal OT problem with Coulomb cost and

leads to the same benefits in terms of convexification of the problem and simplicity

of implemention.

The method presented here is just a preliminary step which is simple to imple-

ment and therefore easy to use in practice. The cost of solving the general DFT

problem in dimension 3 for a large number of electrons is still unfeasible and we

need to use radial symmetry simplification and also a heuristic refinement mesh

strategy.

A lot of questions are left for future research : can IPFP be used for sharper

approximations for DFT? Can one justify rigorously and quantitatively the mesh re-

finement strategy? How should the regularization parameter ε be chosen in practice?

Does the entropic regularization have a physical interpretation?
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