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Abstract

Large tensile strains acting on the solidifying weld metal can cause the formation of eutectic bands along grain boundaries.

These eutectic bands can lead to severe liquation in the partially melted zone of a subsequent overlapping weld. This can

increase the risk of heat-affected zone liquation cracking. In this paper, we present a solidification model for modeling

eutectic bands. The model is based on solute convection in grain boundary liquid films induced by tensile strains. The

proposed model was used to study the influence of strain rate on the thickness of eutectic bands in Alloy 718. It was found

that when the magnitude of the strain rate is 10 times larger than that of the solidification rate, the calculated eutectic band

thickness is about 200 to 500% larger (depending on the solidification rate) as compared to when the strain rate is zero. In

the paper, we also discuss how eutectic bands may form from hot cracks.

Keywords Macrosegregation · Solidification · Hot cracking · Alloy 718

1 Introduction

A pure metal has the same solidus and liquidus tempera-

tures. An alloy, on the other hand, has a solidus temperature

that is always lower than the liquidus temperature. This

results in the formation of a partially melted zone (PMZ)

when the alloy is being welded. The PMZ is in the heat-

affected zone (HAZ), immediately adjacent to the fusion

zone (FZ). In this zone, the base material has only been par-

tially melted. This contrasts with the FZ where all material

has been fully melted. The PMZ can be susceptible to HAZ

liquation cracking, which is a type of hot crack. HAZ liqua-

tion cracking is normally intergranular and is formed by

rupture of a grain boundary liquid film (GBLF) [1–3]. The

rupture occurs at the terminal stage of the solidification and

is caused by tensile stresses that are acting on the GBLF.
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The susceptibility to HAZ liquation cracking depends on

the size of the PMZ and the thickness of the GBLFs in the

PMZ. For a polycrystalline alloy, without any particles or

eutectic, the outer boundary of the PMZ is traced out by an

isotherm that is a few degrees below the solidus temperature

of the alloy. This temperature difference is because of

the grain boundaries, which are high-energy sites, that

slightly lower the melting temperature [1]. However, if the

alloy contains particles, melting can start to occur by a

eutectic reaction between a particle and the matrix at the

eutectic temperature [3]. As the eutectic temperature can

be significantly lower than the melting temperature of the

matrix, the presence of particles can therefore greatly extend

the width of the PMZ.

The presence of grain boundary eutectic in the PMZ can

be more detrimental to HAZ liquation cracking than the

presence of particles. If the grain boundary eutectic forms

long continuous bands, which we call eutectic bands, long

continuous GBLFs will rapidly form in the PMZ when the

temperature reaches the eutectic temperature. Macroscopic

tensile strains can then strongly localize in these GBLFs,

which can fracture them and cause HAZ liquation cracking.

A eutectic band forms continuously from the solidifying

end (root) of a GBLF which moves with the eutectic

temperature isotherm. The thickness of the eutectic band

depends on the magnitude of the tensile strains that act on

the GBLF that the band forms from. If the strains are large,
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a large amount of solute can be advected to the root of the

GBLF. The excess of solute makes it possible to form a

large amount of eutectic when the liquid at the root of the

GBLF solidifies. However, if the strains are low, the amount

of solute may not be enough to form a continuous band of

eutectic along the grain boundary. In this case, the eutectic

is primarily located between secondary dendrite arms. This

can be seen, for example, in the FZ of single-pass welded

Alloy 718 when no load has been applied to the weld during

its solidification. However, if an external load is applied to

a weld of Alloy 718 (for example with a Varestraint test),

eutectic bands can form, which is shown in Fig. 17.

Multi-pass welding processes, such as additive manufac-

turing and repair welding, may be particularly susceptible

to the formation of eutectic bands. In these processes, large

residual stresses can form due to the large number of welds.

This, together with unfavorable restraining of the weld

metal that may arise during the build, can lead to tensile

strains that can form eutectic bands.

In this paper, we present a solidification model for

studying the effect of tensile strain on the thickness of

grain boundary eutectic bands. The model is relatively

simple and is limited to alloys whose solidification path

can be obtained roughly from a pseudo-binary phase

diagram. The model is based on an isolated GBLF where

thermodynamic equilibrium at the solid-liquid interface and

uniform solute concentration across the thickness of the

GBLF are assumed. However, despite these simplifications,

the model incorporates several phenomena such as back

diffusion, solute advection induced by mechanical straining,

solidification shrinkage, and diffusion along the GBLF.

2 Solidificationmodel

In this chapter, we develop a solidification model to estimate

the amount of eutectic that forms during the continuous

solidification of a GBLF. The model is based on lamellar

structure solidification with alternating layers of solid and

liquid. The solute concentration in the GBLF is determined

by a one-dimensional convection-diffusion model, while

the solute concentration in the solid phase, adjacent to

the GBLF, is determined by a two-dimensional diffusion

model. The solidification of the GBLF is driven by a

prescribed temperature field. The solute concentration at the

solid-liquid interface of the GBLF is determined from a

pseudo-binary phase diagram for a given temperature.

2.1 Process limitations

The presented solidification model is limited to solidifica-

tion conditions that occur in the FZ of a TIG weld at a low

welding speed. The low welding speed is assumed to give

rise to a columnar dendritic solidification mode that results

in only columnar grains. In this columnar grain structure, it

is assumed to exist continuous GBLFs that extend from the

liquidus to the solidus isotherm. Furthermore, we assume

that the weld is fully penetrating such that the temperature

and deformation are uniform in the thickness direction of

the weld specimen. Based on these assumptions, we assume

that the liquid flow in a GBLF always occurs in the plane

of the weld specimen. This is the same approach that the

authors were using when they were modeling solidification

cracking in the FZ of a TIG weld. More information about

this can be found in [4, 5].

2.2 GBLF lamella model

To model the solidification process and the formation of a

eutectic band, we consider a GBLF that extends from the

liquidus isotherm to the eutectic temperature isotherm. This

GBLF is assumed to be located between two large grain

clusters, which is shown schematically in Fig. 1. Because

the GBLF is weaker than the grain clusters, deformations

that occur during the solidification can strongly localize in

the GBLF. This has been discussed by the authors in their

previous work on solidification cracking [4].

To simplify the modeling of the solidification of the

GBLF, we assume that the GBLF is located between two

solid lamellae as shown in Fig. 2. The lamellae extend

to infinity in the perpendicular direction to figure. With

this approximation, the complex geometries of the dendritic

solid-liquid interfaces of the GBLF have been replaced by

smooth lines in the xy-plane of the figure.

Now, let x be a coordinate along the GBLF, whereas y is

a coordinate in the transverse direction of the GBLF. When

no mechanical strain is present, the GBLF is assumed to be

symmetric about the y = λ1/2 plane, and the two opposing

Fig. 1 Schematic of a GBLF between two grain clusters. The grains

of the clusters are not shown. Only some of the dendrites that belong

to the grains that are closest to the GBLF are shown. A eutectic band

that forms at the end of the GBLF is also shown
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solids are assumed to be symmetric about the y = 0 and

y = λ1 planes, as shown in Fig. 2. Here, λ1 is the primary

dendrite arm spacing. In the figure, the GBLF thickness of

the simplified configuration is denoted by 2h, and the solid-

liquid interface position is denoted by Γ . The solidification

is assumed to occur with zero undercooling at liquidus (Tl)

and to terminate at the eutectic temperature (Te) with zero

undercooling for eutectic formation. In this study, we will

restrict to planar liquidus and eutectic isotherms. Thus, the

position and speed of the liquidus isotherm are given by xTl

and ẋTl
, respectively, whereas the position and speed of the

eutectic isotherm are given by xTe and ẋTe , respectively, as

shown in Fig. 2.

2.3 Strain localization

The two grain clusters that the GBLF is located between can

have a large difference in their crystal directions, i.e., a large

misorientation angle. This large misorientation gives rise to

an “unstructured” GBLF; that is, the GBLF is thicker than

a GBLF associated with a small misorientation. Moreover,

even though the opposing secondary primary dendrite arms

of a GBLF with a high misorientation come into contact, a

significant amount of undercooling may be required to fuse

them together [4, 6, 7]. However, if the misorientation angle

is small, the dendrite arms can fuse with no undercooling.

As thick liquid films do not withstand tensile loads as

well as thin liquid films, and because opposing secondary

dendrite arms resist merging, tensile strain localize in the

GBLFs that are associated with the large misorientation

angles. The degree of localization depends on the number of

grains with low misorientation angles that surround a GBLF

with a large misorientation angle. These grains form a grain

cluster, and owing to the low misorientation angles between

them, their secondary dendrite arms can start to merge as

soon as they come into contact. Therefore, the grain cluster

can start to transmit tensile loads as soon as the temperature

approaches the coherent temperature (Tc).

We assume that macroscopic tensile mechanical strain

localizes in a GBLF between two grain clusters as is

described in [4]. Here, a temperature-dependent length

Fig. 2 Simplified GBLF when

no mechanical strain is present.

The GBLF is assumed to be

symmetric about the y = λ1/2

plane, and the two opposing

solids are assumed to be

symmetric about the y = 0 and

y = λ1 planes

Fig. 3 l0 as a function of temperature for Alloy 718

scale, l0, is used to localize the macroscopic mechanical

strain in the GBLF as follows. Given a point in the GBLF,

it is assumed that all macroscopic strain within a region

of diameter 2h + l0, and centered at the given point, will

localize in the GBLF. The deformation rate of the GBLF can

then be written as [4]

∂h

∂t
=

(

h +
l0

2

)

ε̇m
⊥ −

∂Γ

∂t
, (1)

where ε̇m
⊥ is the macroscopic strain rate normal to the

GBLF. We note that ∂Γ/∂t is the solidification rate in the

transverse direction to the GBLF. Furthermore, l0 represents

the amount of surrounding solid phase of the GBLF that

can transmit normal tensile loads. The value of l0 is zero

at Tl , the same as the primary dendrite arm spacing at Tc,

and as the diameter of a characteristic grain cluster at Te.

Between these temperatures, l0 is assumed to vary linearly.

The characteristic diameter of a grain cluster for Alloy

718 was determined to be 800 µm in a previous study by

the authors [5]. This was obtained by inverse modeling of

Varestraint tests for autogenous TIG welding of Alloy 718

at a welding speed of 1 mm/s. The primary dendrite arm

spacing in these tests was approximately 20 µm. Figure 3

shows l0, as defined above, with the values for Alloy 718.
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The mechanical strain of the GBLF in Eq. 1 is added

to the previously described lamella model by assuming that

the solid lamella that is symmetric about the y = 0 plane

in Fig. 2 belongs to a grain cluster that is stationary in the

xy plane, whereas the lamella that is symmetric about the

y = λ1 plane belongs to a grain cluster that moves at a

transverse speed such that the rate of change of the GBLF

thickness satisfies Eq. 1. By adding the mechanical straining

of the GBLF in this manner, the symmetry of the lamella

model about the y = Γ + h surface is destroyed, which is

shown in Fig. 4. However, if we consider the displacement

caused by the mechanical straining (orders of micrometers)

to be much smaller than the length of the GBLF (orders

of millimeters), the curvature of the y = Γ + h surface

is small. Thus, the lamella model can still be considered to

be geometrically symmetric about the y = Γ + h surface,

which we will do in the rest of the paper.

2.4 Solutemass balance

The transverse solidification rate and the GBLF thickness

are now derived from a solute mass balance of a con-

trol volume that extends across the GBLF (see Fig. 4).

This mass balance is based on the following assumptions.

We only consider alloys whose solidification path can be

approximately represented by a pseudo-binary phase dia-

gram. Furthermore, we assume thermodynamic equilibrium

at the solid-liquid interface. Thus, the solidification of the

alloy is determined by considering only one solute element,

for which the concentration at the interface is given by a

pseudo-binary phase diagram for a given temperature. The

transverse solidification rate is then determined by the rate

at which the solid phase rejects solute back into the liquid

phase (assuming a partition factor less than 1), and by the

rate at which the solute can be transported from the solid-

liquid interface into the matrix by diffusion. The transverse

solidification rate is also determined by the solute diffusion

along the GBLF, the solute advection caused by mechani-

cal straining and solidification shrinkage. Furthermore, we

assume that the solute concentration is uniform across the

GBLF. This and the previous assumption of thermodynamic

equilibrium at the solid-liquid interface show that the solute

concentration Cl in the whole GBLF can be expressed as a

function of the temperature T by

Cl =
T − Tl

m
+ C0, (2)

where m is the liquidus slope and C0 is the nominal

solute concentration. Furthermore, by the assumption of

thermodynamic equilibrium at the interface, the solute

concentration C∗
s at the interface in the solid phase can be

determined from

C∗
s = kCl, (3)

where k is the solute partition coefficient. Both m and k are

obtained from the pseudo-binary phase diagram for the alloy

under consideration.

We assume that the latent heat that is generated at the

solid-liquid interface can diffuse away at a rate significantly

larger than the transverse solidification rate. Thus, the

temperature in the transverse direction of the GBLF can

be considered to be uniform. Furthermore, we assume that

the concentration field in the GBLF is symmetric about the

y = Γ + h plane (which was discussed in the previous

section). Furthermore, the concentration field in the lower

solid lamella (see Fig. 4) is assumed to be symmetric

about the y = 0 plane. The diffusion of the solute in

the longitudinal direction of the solid phase is assumed

to be negligible. Thus, there is no solute flux along the

end boundary x = xT e of the solid phase. Along the end

boundary x = xT e of the GBLF, there is an advective flux

owing to solidification shrinkage, which is proportional to

the longitudinal solidification rate ẋTe , as will be discussed

later.

Fig. 4 Lamella model with the

addition of mechanical

straining. The lower solid

lamella is stationary with respect

to mechanical straining, whereas

the upper solid lamella moves

with its associated grain cluster

so that the GBLF is deformed at

a rate satisfying Eq. 1. The box

drawn in bold represents a

control volume that is used to

derive a solute mass balance in

the GBLF. The longitudinal and

transverse directions are not in

proportion in the figure
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Based on the previous assumption of a fully penetrating

weld, which gives uniform deformation and temperature

through the thickness of the weld specimen, we assume that

the liquid flow and the diffusion flux in the GBLF only

occur along the x-direction of the GBLF. This means that

there is no solute transport in the z-direction. Furthermore,

only the average speed of the liquid across the GBLF is

considered in the solute advection. Thus, the liquid speed

profile across the film is not considered. The domain of the

solidification problem can now be reduced to the domain

xTe ≤ x ≤ xTl
, 0 ≤ y ≤ Γ + h. Note that this domain

moves in space as solidification progresses.

From the above assumptions, a solute balance across the

GBLF can be derived as follows. We consider the control

volume CV shown in Fig. 4. By the previous symmetry

assumption about the y = Γ + h surface, it suffices to

consider only the lower half of the CV, which is shown in

Fig. 5. This CV does not move in the x-direction, but its

upper and lower boundaries move so that they coincide with

the surfaces y = Γ + h and y = Γ , respectively.

Now, let C be the mass fraction of solute. At the lower

boundary of the CV, solute is leaving the CV with the

mass flux ρs∂Γ/∂tC∗
s due to the motion of the solid-

liquid interface. Here, ρs is the density of the solid phase,

which in this study is assumed to be constant. Furthermore,

Fig. 5 Control volume containing one-half of a cross section slice of

the GBLF (see Fig. 4). The control volume is stationary in the x-

direction but it is bounded between y = Γ and y = Γ + h which

are not stationary. The arrows in the figure indicate solute mass fluxes

across the boundaries of the control volume

at this boundary, the solute leaves the CV with the flux

ρsDs∂C∗
s /∂y because of the diffusion of solute from

the solid-liquid interface into the solid phase (under the

assumption that k < 1). Here, Ds is the diffusion coefficient

of the solute in the solid phase, which is assumed to be

temperature dependent. Furthermore, owing to the solute

gradient in the GBLF, the solute will cross the vertical

sides of the CV with the diffusional mass flux ρlDl∂Cl/∂x,

where ρl and Dl are the density and the diffusion coefficient

of the liquid phase, respectively. Both are assumed to be

constant. Owing to the solidification shrinkage and the

mechanical straining of the GBLF, the solute will enter and

leave the CV with mass flux ρl v̄Cl , where v̄ is the average

liquid speed across the GBLF. Based on all these solute

fluxes, the solute mass balance for the CV in Fig. 5 can be

written as

ρl

∂(Clh)

∂t
+ ρl

∂

∂x
(Cl v̄h) − ρlDl

∂

∂x

(

∂Cl

∂x
h

)

+ ρsC
∗
s

∂Γ

∂t

+ ρsDs

∂C∗
s

∂y
= 0. (4)

when ∆x goes to zero.

In order to simplify the analysis, we will from now on

only consider solidification that occurs along a constant

temperature gradient with magnitude G. Then, the ∂Cl/∂x

term in Eq. 4 can be written as

∂Cl

∂x
=

G

m
, (5)

which follows from Eq. 2.

To enhance the robustness of the numerical method that

will be used to solve Eq. 4, we use the following length and

time scales:

Lx =
Tl − Te

G
, Ly =

λ1

2
, τ =

Tl − (Te + ∆Ts)

vwG
, (6)

where vw is the welding speed and ∆Ts is a parameter that

is associated with the initial size of the domain for the solid

phase (see Section 2.8). These scales are used to define the

following nondimensional variables:

x̃ =
x

Lx

, ỹ =
y

Ly

, t̃ =
t

τ
, h̃ =

h

Ly

, Γ̃ =
Γ

Ly

, ˙̃x =
τ ẋ

Lx

,

˙̃y =
τ ẏ

Ly

,
˙̃

Γ =
τ Γ̇

Ly

,

˜̄v =
τ v̄

Lx

, l̃0 =
l0

Ly

, C̃s =
Cs

C0
, C̃l =

Cl

C0
, D̃s =

τDs

L2
y

,

D̃l =
τDl

L2
x

(7)
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Substituting these variables into Eq. 4 and using Eqs. 1, 3,

and 5 yield

∂(C̃l h̃)

∂ t̃
−

ρskC̃l

ρl

∂h̃

∂t̃
−

GLxD̃l

C0m

∂h̃

∂x̃
+

∂

∂x̃

(

C̃l
˜̄vh̃

)

+
ρsτkε̇m

⊥C̃l

ρl

h̃ +
ρsτkε̇m

⊥C̃l

ρl

l̃0

2
+ ρsDs

∂C∗
s

∂ỹ
= 0.

(8)

We note that for a given temperature field, C̃l is known

by Eqs. 2 and 7. Thus, the only unknowns in Eq. 8 are h̃, ˜̄v,

and ∂C∗
s /∂ỹ. Furthermore, the only independent variables

(except for the given temperature field) in Eq. 8 are x̃ and t̃ .

The average liquid speed v̄ can be related to h by deriving

a total mass balance on the above CV by considering

the mass fluxes induced by mechanical straining and

solidification shrinkage. This yields

∂(v̄h)

∂x
= − (1 + β)

∂Γ

∂t
−

∂h

∂t
, (9)

where β is the solidification shrinkage factor, which is

defined by

β =
ρs − ρl

ρl

. (10)

The derivation of Eq. 9 is described in more detail in [4].

By substituting Eq. 1 into Eq. 9, and then scaling Eq. 9,

and finally integrating Eq. 9 with respect x̃, allows the ˜̄vh̃

term to be expressed in the dependent variable h̃ and the

independent variables x̃ and t̃ (see Section 2.6 for more

details about the integration). Finally, by substituting this

expression for ˜̄vh̃ into Eq. 8 gives an expression for h̃

and ∂C∗
s /∂ỹ as the only dependent variables when the

temperature field and the strain rate are known.

The back diffusion term ∂C∗
s /∂ỹ in Eq. 8 will be treated

in the next section. In Section 2.6, we will integrate Eq. 8 to

obtain h̃.

2.5 Back diffusion

To determine the solute flux term ∂C∗
s /∂ỹ in Eq. 8, we

have to determine the concentration field in the entire lower

solid lamella in Fig. 4. From the previous approximations of

negligible diffusion in the longitudinal direction, symmetry

at the y = 0 plane, and local equilibrium at the

solid-liquid interface, the concentration field in the solid can

be computed from

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

∂C̃s

∂t̃
− D̃s

∂2C̃s

∂ỹ2
= 0

C̃s(ỹ = Γ̃ ) = kC̃l

∂C̃s(x̃ = x̃Te)

∂x̃
= 0

∂C̃s(ỹ = 0)

∂ỹ
= 0

(11)

where Eq. 11 is expressed in terms of the dimensionless

variables that are defined in Eq. 7. We determine the Cs field

from Eq. 11 by applying a finite difference method. Because

the geometry of the solid domain in the x̃ỹ space is complex

and moving, it is difficult to perform the finite difference

procedure in this space. Therefore, the solid domain is

mapped to the unit square in the ξη space by the inverse of

the mapping

{

x̃ = (x̃Tl
− x̃Te)ξ + x̃Te , 0 ≤ ξ ≤ 1

ỹ = Γ̃ f (η), 0 ≤ η ≤ 1
(12)

where f is the stretching function

f (η) =
erf(η/α)

erf(1/α)
, (13)

which is used to distribute the grid points more densely at

the solid-liquid interface. This enables a better resolution

of the large concentration gradient in this region. The erf

function in f is the error function, and α is a parameter that

is used to control the degree of grid point clustering at the

interface.

For the mapping in Eq. 12 to be bijective, we assume

that the solidification tip of the solid is flat; that is, Γ (x =

xTl
) = Γmin, where Γmin is a small value. In this study,

we used Γmin = Ly/1000. The inverse of the mapping in

Eq. 12 is shown in Fig. 6.

A structured grid can now easily be constructed on

the unit square in the ξη space. However, we must now

transform the problem in Eq. 11 into the curvilinear system

ξη. The problem can be stated in the ξη system in either a

conservative or a non-conservative form. Here, we use the

conservative form, which provides telescopic collapse of the

flux terms when the difference equations are summed over

the field; that is, the summation involves only the boundary

fluxes. This favors the conservative form for the numerical

representation of the net flux through a volume element [8].
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Fig. 6 Mapping of the physical

region in the x̃ỹ space onto the

unit square in the ξη space

The conservative form of the two-dimensional gradient

of a scalar f is given by [8]:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∂f

∂x̃
=

1

J

[

∂ (J22f )

∂ξ
−

∂ (J21f )

∂η

]

∂f

∂ỹ
=

1

J

[

−
∂ (J12f )

∂ξ
+

∂ (J11f )

∂η

] (14)

where Jij are the components of the Jacobian matrix

[

Jij

]

=

[

∂x̃i

∂ξ i

]

, (15)

which is associated with the mapping in Eq. 12, and J

is the determinant of the Jacobian matrix. As the grid

moves in the physical space, the time derivative should

also be transformed. The conservative form of the partial

time derivative of a scalar function f on a two-dimensional

domain is given by [8]:

∂f

∂t̃
=

1

J

[

∂ (Jf )

∂t̃
−

2
∑

i=1

∂
(

Jf U i
)

∂ξ i

]

, (16)

where U i is the contravariant grid velocity in the ξ i-

direction (ξ1 = ξ, ξ2 = η), which is given by

U i = �ai •
(

−�̃̇
x
)

, (17)

where �ai, (i = 1, 2) are the contravariant base vectors of

the ξη space, which are given by

⎧

⎪

⎨

⎪

⎩

�a1 =
1

J

[

J22 �̂ex̃ − J12 �̂eỹ

]

�a2 =
1

J

[

−J21 �̂ex̃ + J11 �̂eỹ

]

,

(18)

and
�̃̇
x is the grid velocity in the x̃ỹ space. We note that the

time derivative on the left side of Eq. 16 is at a fixed point in

the physical space, whereas the time derivative on the right

side of Eq. 16 is at a fixed point in the transformed space.

We can now transform Eq. 11 into the ξη space. The

second-order partial derivative ∂/∂ỹ in Eq. 11 is obtained

by applying Eq. 14(b) twice, with C̃s instead of f . We note

that this expression is simplified by the fact that J12 ≡

0, which can be seen by applying Eq. (15) to Eq. (12).

The transformation of the natural boundary conditions in

Eq. 11 is obtained by applying Eq. 14. Furthermore, the grid

velocity
�̃̇
x is determined from Eq. 12, which gives

{

˙̃x = ( ˙̃xTl
− ˙̃xTs )ξ + ˙̃xTs

˙̃y = ˙̃
Γf (η)

(19)

Furthermore, inserting J12 ≡ 0 into Eq. 18 and then

inserting Eq. 18 into Eq. 17 yield
⎧

⎪

⎪

⎨

⎪

⎪

⎩

U1 = −
J22

J
˙̃x

U2 =
1

J

[

J21

J
˙̃x −

J11

J
˙̃y

] (20)

Finally, by inserting Eq. 19 into Eq. 20, and then inserting

Eq. 20 into Eq. 16, the time derivative in Eq. 11 can be

computed from Eq. 16 by replacing f with C̃s in Eq. 16.

Thus, the transformation of Eq. 11 into the ξη space can be

written as
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

∂(J C̃s)

∂t̃
+

∂(q1C̃)

∂ξ
+

∂(q2C̃)

∂η
+

∂

∂η

[

q3
∂(q4C̃)

∂η

]

= 0

C̃s(η = 1) = kC̃l

C̃s(ξ = 1) = k

∂C̃s(x̃ = 0)

∂x̃
=

1

J

⎡

⎣

∂
(

J22C̃s

)

∂ξ
−

∂
(

J21C̃s

)

∂η

⎤

⎦ = 0

∂C̃s(ỹ = 0)

∂ỹ
=

1

J

⎡

⎣

∂
(

J11C̃s

)

∂η

⎤

⎦ = 0

(21)

where

q1 = −J22
˙̃x, q2 = −J21

˙̃x−J11
˙̃y, q3 = −

J11

J
D̃s , q4 = J11.

(22)

This problem is solved by a finite difference method

where the space derivatives are approximated by a second-

order central difference scheme, and the time derivative

by a first-order backward difference scheme. The natural

boundary condition along ξ = 0 is implemented by

a fifth-order forward difference for ∂/∂ξ and a second-

order central difference for ∂/∂η. However, the natural

boundary condition along η = 0 is implemented by using
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the symmetry of the C̃s field, thus allowing the boundary

condition to be implemented by ghost nodes. The Jacobian

matrix at the ghost nodes can be computed by an extension

of the mapping ỹ = Γ̃ f (η) in Eq. 12 to negative values of η.

The elements of the Jacobian matrix are computed by the

same difference representation as in the C̃s field. Compared

with an analytic computation (if possible), this can improve

accuracy [8]. Moreover, it is not recommended to compute

the Jacobian J as the determinant of the Jacobian matrix

because this can lead to spurious source terms; rather,

Thompson et al. [8] recommend updating J using the

generic conservation equation

∂J

∂t̃
−

2
∑

i=1

∂
(

JU i
)

∂ξ i
= 0. (23)

Once the concentration field has been determined at a

given time, the ∂C∗
s /∂ỹ term, which is required for deriving

the solute balance, can be computed from

∂C̃∗
s

∂ỹ
=

1

J

⎡

⎣

∂
(

J11C̃s

)

∂η

⎤

⎦

∣

∣

∣

∣

∣

∣

η=1

, (24)

where the derivative ∂/∂η is calculated by a fifth-order

backward difference.

2.6 GBLF thickness

As noted previously, for a given temperature field and strain

rate, the combination of the solute mass balance in Eq. 8 and

the total mass balance in Eq. 9 yields a PDE with the two

dependent variables h̃ and ∂C∗
s /∂ỹ and the two independent

variables x̃ and t̃ . We will now solve this PDE for h̃.

We know from the previous section that ∂C∗
s /∂ỹ depends

on Γ̃ . Γ̃ in turn depends on h̃ through Eq. 1. This makes

it difficult to express ∂C∗
s /∂ỹ as a function of only h̃.

Therefore, h̃ will be determined by a fixed-point iteration

method, where the ∂C∗
s /∂ỹ is determined from a h̃ that lags

one iteration. This method is described in the following.

First, we transform the domain x̃Te ≤ x̃ ≤ x̃Tl
of the

GBLF into the domain 0 ≤ ξ ≤ 1 using the inverse of the

mapping in Eq. 12(a); that is,

x̃ = (x̃Tl
− x̃Te)ξ + x̃Te , 0 ≤ ξ ≤ 1. (25)

With respect to this transformation, the spatial derivative of

a scalar function f is

∂f

∂x̃
=

1

J

∂f

∂ξ
, (26)

whereas the time derivative with respect to the transforma-

tion to the conservative form is

∂f

∂t̃
=

1

J

[

∂(Jf )

∂t̃
−

∂( ˙̃xf )

∂ξ

]

, (27)

where ˙̃x is given by Eq. 19 and J is the Jacobian of the

mapping in Eq. 25, given by

J =
∂x̃

∂ξ
(28)

As was the case for the Jacobian of the mapping in Eq. 12,

it is recommended that J is determined from the generic

conservation Eq. 23 rather than Eq. 28, which gives

∂J

∂t̃
−

∂ ˙̃x

∂ξ
= 0 (29)

for the mapping in Eq. 25.

We now transform the solute balance in Eq. 8 using the

derivative operators in Eqs. 26 and 27. This yields

∂

∂t̃

(

J C̃l h̃
)

+ p1
∂(J h̃)

∂t̃
− p1

∂( ˙̃xh̃)

∂ξ
−

∂

∂ξ

(

˙̃xC̃l h̃
)

+ p2
∂h̃

∂ξ
+ p3

∂

∂ξ

(

˜̄vC̃l h̃
)

+ p4h̃ + p5
l̃0

2
+ p5

∂C̃s

∂ỹ
= 0,

(30)

where

p1 = −
ρskC̃l

ρl

, p2 = −
LxGD̃l

mC0
, p3 = 1,

p4 =
ρsτkε̇m

⊥J C̃l

ρl

, p5 =
ρsJ D̃s

ρl

. (31)

Now, we substitute Eq. 1 into Eq. 9, and then also

transform Eq. 9. This yields

∂( ˜̄vh̃)

∂ξ
= −τJ (1 + β)ε̇m

⊥

l̃0

2
− τJ (1 + β)ε̇m

⊥h̃ − β
∂( ˙̃xh̃)

∂ξ

+β
∂(J h̃)

∂ξ
. (32)

The transformed domain 0 ≤ ξ ≤ 1 is now discretized

using Ni equally spaced grid points, and the time domain

0 ≤ t̃ ≤ t̃e is subdivided into Nk − 1 equal time steps

∆t̃ . Here, t̃e is the end time. Furthermore, we define
r,k
i h̃

as the value of h̃ at the ith grid point, kth time step, and

rth iteration of the fixed-point iteration for the current time

step. At time step (k − 1), everything is assumed to be

known in Eqs. 30 and 32. At the kth time step and rth

iteration, everything is assumed to be known from the given

temperature field and the given strain rate except h̃ and

∂C̃∗
s /∂ỹ. We note that, for example, the variables C̃l , J , and

˙̃x can all be computed directly from the temperature field.

We now approximate the time derivatives in Eqs. 30 and 32
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by a first-order finite difference. Then, we integrate Eq. 32

over the interval 0 ≤ ξ ≤ iξ at time step k. This yields

r,k
i ( ˜̄vh̃) = −βk

i
˙̃xr,k
i h̃+

∫

iξ

0

(

−τ kJ (1+β)k ε̇m
⊥+

βkJ

∆t̃

)

r,k h̃dξ

+

∫

iξ

0

(

−τ kJ (1 + β)k ε̇m
⊥

k l̃0

2
−

βk−1J k−1h̃

∆t̃

)

dξ, (33)

where the boundary condition

k
1(

˜̄v) = −βk
1
˙̃x (34)

has been used in the integration. This corresponds to the

liquid flow at the end of the GBLF owing to solidification

shrinkage [4]. We now similarly integrate Eq. 30 and insert

Eq. 33. This yields

∫

iξ

0

kg1
r,k h̃dξ + p3

k
i C̃l

∫

iξ

0

kg2
r,kh̃dξ + k

i g3
r,k
i h̃ − k

1g3
r,k

1h̃

=

∫

iξ

0

r,kg4dξ + p3
k
i C̃l

∫

iξ

0

kg5dξ, (35)

where

k
i g1 =

k
i J

k
i C̃l

∆t̃
+

k
i p1

k
i J

∆t̃
−

ρskGLx
k
i J

k
i
˙̃x

ρlC0m
+ k

i p4

k
i g2 = −τ k

i J (1 + β)ki ε̇
m
⊥ +

βk
i J

∆t̃
k
i g3 = −k

i
˙̃xk
i C̃l + p2 − k

i p1
k
i
˙̃x + p3βk

i
˙̃xk
i C̃l

r,k
i g4 =

k−1
i J k−1

i C̃l
k−1
i h̃

∆t̃
+

k
i p1

k−1
i J k−1

i h̃

∆t̃
− k

i p4

k
i l̃0

2

− k
i p5

r−1,k
i

∂C̃∗
s

∂ỹ

k
i g5 = −τ k

i J (1 + β)ki ε̇
m
⊥

k
i l̃0

2
+

βk−1
i J k−1

i h̃

∆t̃
. (36)

The only unknown in Eq. 35 is now r,kh̃. We note that the

term
r−1,k
i ∂C̃∗

s /∂ỹ in Eqs. 35 to 36 is known because it is

obtained from k−1
i h̃, which in turn has been determined in

the previous iteration.

To determine r,kh̃, we approximate the integrals in Eq. 35

with sums by applying the trapezoidal rule. Here, the

integration constant can be determined from the following

boundary condition

r,k
Ni

h̃ =
λ1/2 − Γmin

Ly

. (37)

This boundary condition is given by that no strain is present

at xTl
and that the thickness of the solid lamella is 2Γmin at

xTl
.

Now, by varying the integration limit iξ , we can obtain

Ni − 1 linear equations in
r,k
i h̃ from Eq. 35.

r,k
i h̃ can

then be solved for from this linear system. This yields the

fixed-point iteration scheme
[

r,k
i h̃

]

= A
−1 �f

(

r−1,k
i h̃

)

; i = 1, 2, ..., (Ni − 1), (38)

where A is an (Ni − 1) × (Ni − 1) matrix and �f is an

(Ni −1)×1 vector. We note that �f depends on
r,k
i h̃ because

it contains the terms
r−1,k
i ∂C̃∗

s /∂ỹ, which in turn depend on

the
r,k
i h̃ terms. Equation 38 is iterated until

‖

[

r,k
i h̃

k−1
i h̃

]

‖∞< 10−8. (39)

The fixed-point iteration is initiated with the starting

value

0,k
i h̃ = k−1

i h̃ + ∆t̃

(

k−1
i h̃ − k−2

i h̃

∆t̃

)

. (40)

2.7 Transverse solidification rate

Once k
i h̃ is known, k

i Γ̃ can be computed from Eq. 1 as

follows. First, Eq. 1 is put in nondimensional form using

the variables in Eq. 7 and then is transformed using the

mapping in Eq. 25. Subsequently, the time derivative in

the transformed form is replaced by finite differences, and

the equation is integrated as in the previous section. The

integrals are then replaced by sums using the trapezoidal

rule, and by varying the upper integration limit, Ni −1 linear

equations in k
i Γ̃ are obtained. Finally, k

i Γ̃ can be determined

from this system using the boundary condition

k
Ni

Γ̃ =
Γmin

Ly

. (41)

We note that if k
i Γ̃ is known, the domain for kC̃s is

known, and kC̃s can then be computed by the method

described in Section 2.5.

2.8 Longitudinal solidification rate and initial
conditions

In addition to the previous assumption of solidification

along a constant temperature gradient, we also assume that

the liquidus and eutectic isotherms move at the welding

speed; that is, ẋTl
= ẋTe = vw. However, at the beginning of

the solidification, xTe is not associated with the location of

the eutectic isotherm. At t = 0, the temperature at xTe is set

to ∆Ts = 1 ◦C below Tl , and its location is set to xTe = 0.

The value of xTl
at t = 0 can then be computed from ∆Ts

and G. For t > 0, xTe , it is assumed to be stationary until the

temperature at x = 0 has dropped to Te, which will occur

at t̃ = 1 owing to the scaling in Eq. 7. Subsequently, xTe is

assumed to move at the same speed as that of xTl
. This is

shown in Fig. 7.
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Fig. 7 Scaled positions and

velocities of the solidification

front and end as functions of the

nondimensional time

The initial value of Cs at t = 0 is assumed to be the

same as that in equilibrium, and h and Γ at t = 0 are

approximated using the lever rule. The initial size of the

solid domain for G = 80000 K/m and vw = 1 mm/s is

shown in the left plot in Fig. 8. The right plot shows the

size and location of the solid domain at t̃ = 2 for the same

values of G and vw as in the left plot. It also shows a size

comparison between the domain at t̃ = 0 and t̃ = 2.

3 Application to Alloy 718

The proposed solidification model was tested on Alloy

718, which is a Ni-based superalloy that is extensively

used for high-temperature applications in aerospace engines

and gas turbines. It maintains excellent corrosion and

oxidation resistance up to 980 ◦C, as well as excellent

resistance to creep and stress rupture up to 700 ◦C. The

composition limits for Alloy 718, given by the Special

Metals Corporation [9], are shown in Table 1.

The solidification microstructure of Alloy 718 is

similar to that of a binary alloy eutectic system. That

is, solidification initiates with the crystallization of the

primary proeutectic γ and terminates with the formation

of a γ /Laves eutectic constituent [10]. An amount of

γ /NbC eutectic is formed during solidification but is small

compared with that of the γ /Laves eutectic constituent [10].

To study the solidification of Alloy 718 in the fusion

zone of a weld, Knorovsky et al. [10] have developed

a pseudo-binary phase diagram using Nb as the primary

alloying element compositional variable, as seen in Fig. 9.

The important features of the diagram are an austenite

γ /Laves phase eutectic that occurs at ≈ 19.1 wt% Nb

between austenite containing ≈ 9.3 wt% Nb and a Laves

phase containing ≈ 22.4 wt% Nb. Analytical electron

microscopy (AEM) has demonstrated that the largest

Fig. 8 Left and the right figures show the domains for the Cs field at t̃ = 0 and t̃ = 2, respectively. Here, G = 80000 K/m and vw = 1 mm/s.

The right figure also shows a size comparison between these two domains
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Table 1 Chemical composition limits for Alloy 718 (wt%)

Ni Fe Cr Nb Mo Ti Al Co C Mn Si P S B Cu

50.00 Bal. 17.00 4.75 2.80 0.65 0.20 – – – – – – – –

55.00 Bal. 21.00 5.50 3.30 1.15 0.80 1.00 0.08 0.35 0.35 0.015 0.015 0.006 0.30

From Special Metals [9]

absolute compositional differences between the γ matrix

and the Laves phase can be seen for Ni and Nb [10]. Thus, as

a first approximation, a weight fraction exchange between

Ni and Nb would describe the chemistry difference between

the γ matrix and the Laves phase. This was one of the

determining factors for Knorovsky et al. to use Nb as the

independent variable in their pseudo-binary phase diagram

for Alloy 718 [10].

In a multicomponent system such as Alloy 718, a eutectic

reaction needs not be temperature invariant. However, DTA

performed by Knorovsky et al. has demonstrated that

the DTA peak for the γ /Laves reaction is quite narrow

[10]. Thus, the approximation in the pseudo-binary phase

diagram that the γ /Laves reaction is temperature invariant

is assumed to be valid.

Knorovsky et al. [10] used the pseudo-binary phase

diagram in Fig. 9 and the Scheil model to calculate the

volume fraction of the γ /Laves eutectic. The results were in

good agreement with experimental AEM measurements on

thin weld foils.

The pseudo-binary phase diagram for Alloy 718 devel-

oped by Knorovsky et al. [10] was used in this study to test

the solidification model on Alloy 718, with a nominal Nb

concentration of C0 = 5.18 wt%. From the phase diagram,

the required solidification model parameters (Tl , Te, k, and

Fig. 9 Pseudo binary phase diagram of Alloy 718. The red line

corresponds to a nominal Nb concentration of 5.18 wt%. From [10]

m) can be determined. Their values are given in Table 2. The

values of Tc and β were taken from [5], whereas the values

of ρs and Dl were taken from [11]. ρl was calculated from

ρs and β using Eq. 10. The temperature dependence of Ds

was also taken from [11], where it is given by

Ds = D0s exp

(

−Qs

R(T + 273)

)

(42)

We assume that when the temperature reaches Te, all

remaining liquid solidifies into γ /Laves eutectic. Moreover,

we assume a G value of 80 × 103 K/m and a λ1 value of 20

µm, which are characteristic for TIG welding of Alloy 718

at a welding speed of 1 mm/s [5].

4 Results and discussion

In this chapter, the previously developed solidification

model is going to be used for studying the influence

of strain on the thickness of eutectic bands of Alloy

718. This is presented in Section 4.3. However, before

that, the effect of back diffusion and the assumption of

uniform solute concentration across the GBLF are studied

in Sections 4.1 and 4.2, respectively. In Section 4.4, we

present some interesting numerical results on how an

increase in the magnitude of the strain rate can decrease the

liquid permeability in the region of the mushy zone where

the temperature is the same as the coherent temperature.

In Section 4.5, we present some experimental results of

eutectic bands in Varestraint tests of Alloy 718. Finally, in

Section 4.6, we discuss some of the major limitations with

our solidification model.

4.1 Comparison with equilibrium and Scheil
solidification

To test the proposed solidification model, we consider the

two limiting cases of complete diffusion and no diffusion

in the solid phase. This is done for a closed system without

any mechanical strains, i.e., no solute transport in the

longitudinal direction.

The former case corresponds to an equilibrium condition

that is attained at low solidification rates. Then, for the

1645Weld World (2020) 64:1635–1658



Table 2 Model parameters
Tl = 1364 ◦C k = 0.49 [−] ρs = 7392 kgm−3 Qs = 2.8 × 105 Jmol−1

Tc = 1278 ◦C m = −11925 K ρl = 7621 kgm−3 D0s = 56 × 10−5 m2s−1

Ts = 1300 ◦C C0 = 5.18 wt% β = 0.031 [−] R = 8.314 JK−1mol−1

Te = 1198 ◦C Ce = 19.1 wt% Dl = 3 × 10−9 m2s−1 λ1 = 20 µ m

G = 80 × 103 K/m

closed system, the interface position can be approximated

from the solid fraction by the lever rule

fs =
C0 − Cl

(k − 1)Cl

, (43)

where fs is the solid mass fraction and k is the partition

coefficient.

The latter case corresponds to high solidification rates.

Then, in this case, for the closed system, the interface

position can be approximated from the solid fraction given

by the Scheil equation

fs = 1 −

(

Cl

C0

)
1

k−1

. (44)

When no mechanical strain is present, the interface

position for the lamella model can be written as

Γ =
λ1

2
gs, (45)

where gs is the solid volume fraction. Furthermore, if we

neglect solidification shrinkage, that is, β = 0 and ρl = ρs ,

we get gs = fs . Thus, when ε̇m
⊥ = β = 0, Γ can be

calculated for a given value of gs for the lever rule or the

Scheil equation by inserting Eq. 43 or Eq. 44 into Eq. 45

and setting fs = gs .

The closed system condition can be attained in our

solidification model by setting ε̇m
⊥ = β = Dl = 0 and ρl =

ρs . Figure 10 shows the interface location calculated by the

solidification model under the closed system condition at

t̃ = 1 for different values of vw. G = 80 × 103 K/m was

used for all vw values. The figure also shows the interface

location predicted by the lever rule and the Scheil equation.

As can be seen from the figure, the interface locations

predicted by the solidification model for the various vw

values are all bounded by those predicted by the lever rule

and the Scheil equation. When vw = 10−4 mm/s, the Γ

calculated by the solidification model almost completely

coincides with the Γ calculated by the lever rule, and if

vw ≥ 1 mm/s, the Γ calculated by the solidification model

coincides with the Γ calculated by the Scheil equation.

From this test, we can conclude that under the closed

system condition, the location of the solid-liquid interface

predicted by the solidification model is bounded by those

predicted by the lever rule and the Scheil equation. It would

be physically unreasonable if this was not the case under the

specified system conditions.

Fig. 10 Γ profiles at t̃ = 1

calculated by the solidification

model under the closed system

condition for different values of

vw and G = 80 × 103 K/m. The

Γ profiles predicted by the lever

rule and the Scheil equation are

also plotted. The thin dashed red

line shows the temperature

variation along the solid-liquid

interface
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4.2 Comparison with 1D solidificationmodel

We further test the solidification model on a closed

system by comparing it with a 1D solidification model.

The 1D model accounts for solute diffusion in the

transverse direction of the GBLF and therefore relaxes

the approximation of uniform solute distribution across the

GBLF, which is used in the solidification model. Thus, for

the closed system, we consider the 1D model to be more

accurate than the solidification model. In the 1D model, the

interface velocity is governed by the net solute transport by

diffusion in the solid and liquid phases through Eq. 46(a),

which is stated in Dantzig and Rappaz [12] as follows:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(1 − k)C∗
l

∂Γ

∂t
= Ds

∂C∗
s

∂y
− Dl

∂C∗
l

∂y

∂Cs

∂t
− Ds

∂2Cs

∂y2
= 0, 0 ≤ y ≤ Γ, Cs(y = Γ ) = kC∗

l ,
∂Cs(y = 0)

∂y
= 0

∂Cl

∂t
− Dl

∂2Cl

∂y2
= 0, Γ ≤ y ≤ Ly, Cl(y = Γ ) = C∗

l ,
∂Cl(y = Ly)

∂y
= 0

(46)

The solute gradient ∂C∗
s /∂y at the interface of the solid

phase is computed from Eq. 46(b), which is solved by

mapping the domain 0 ≤ y ≤ Γ to the domain 0 ≤

η ≤ 1, where the solution is obtained by a finite difference

method on a stationary grid. Similarly, the solute gradient

∂C∗
l /∂y at the interface in the liquid phase is computed

from Eq. 46(c) by transforming the domain Γ ≤ y ≤

Ly to the domain 0 ≤ η ≤ 1, where the solution

is obtained by a finite difference method. The interface

concentration C∗
l is determined directly from the phase

diagram by the equilibrium assumption at the solid-liquid

interface. Γ is obtained from Eq. 46(a) by a fixed-point

iteration, where both solute gradients are calculated from

the Γ value obtained at the previous iteration, as in the fixed

point iteration that is used to determine h̃ in Eq. 38. The

temperature in the 1D model at time t̃ is determined from

T = Tl − (Tl − Te)t̃ . (47)

The temperature in the 1D model and the temperature

at xTe in the solidification model will both reach Te when

t̃ = 1. For t̃ > 1, the Cs field obtained by the solidification

model under the closed system approximation, should reach

a quasi steady state condition. Thus, the solute profile at xTe

should be the same for t̃ = 1 and, for example, t̃ = 2. At t̃ =

2, the mesh for the solid phase has undergone a substantial

translation, which could lead to numerical diffusion if, for

instance, spurious source terms are present.

Figure 11 shows the Cs profiles at xTe for different vw

values calculated by the 1D and the solidification model.

The Cs profiles were calculated at t̃ = 1 for the 1D model,

and at t̃ = 2 for the solidification model. For vw = 0.1

mm/s in Fig. 11a and for vw = 1 mm/s in Fig. 11(b), the Cs

profiles calculated by the two models are nearly identical.

The relative difference for the calculated Γ value at xTe

between the two models is 0.12% for vw = 0.1 mm/s and

0.64% for vw = 1 mm/s.

For vw = 10 mm/s, the Cs profiles calculated at xTe

by the two different models start to diverge, as shown in

Fig. 11c. The relative difference between the Γ values

calculated by the two models has now increased to 5.48%.

Furthermore, for vw = 100 mm/s, there is a large difference

in the calculated Cs profiles by the two models, as shown

in Fig. 11d. The relative difference between the Γ values

calculated by the two models is now more than 60%.

At this high solidification speed, the solute distribution

across the GBLF is not uniform. This becomes apparent

in Fig. 12, which shows the solute distribution in the solid

and liquid phases calculated at t̃ = 0.3 by the 1D model

for vw = 100 mm/s. It can be seen that there is a step

solute gradient in the liquid phase at the interface. Thus,

the approximation of uniform solute distribution in the

GBLF that is used in the solidification model is not valid at

solidification speeds of this magnitude.

By integrating the Cs profiles in Fig. 11 over the cross

section, we can estimate the solute loss at xTe that is due

to, for example, spurious source terms that may arise by

grid transport. For the solidification model under the closed

system approximation, the integral

∫ Ly

0

Cdy =

∫ Γ

0

Csdy + (Ly − Γ )Ce (48)

should equal LyC0 if no solute is lost. The relative

difference between LyC0 and the integral, calculated from

the Cs curves in Fig. 11, is 0.044% for vw = 0.1 mm/s,

0.040% for vw = 1 mm/s, 0.038% for vw = 10 mm/s, and

0.038% for vw = 100 mm/s. Thus, the solute loss is small

for the solidification model.
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(a) (b)

(c) (d)

Fig. 11 Nb concentration in the solid phase at xTe , calculated by the 1D model at t̃ = 1 and by the solidification model under the closed system

approximation at t̃ = 1 for different vw values. a vw = 0.1 mm/s. b vw = 1 mm/s. c vw = 10 mm/s. d vw = 100 mm/s

4.3 Influence of strain rate on the thickness
of eutectic bands

In this section, the closed system approximation is removed,

and the effect of strain rate on the thickness of γ /laves

Fig. 12 Nb concentration in the solid and liquid phase calculated by

the 1D model at t̃ = 0.3 for vw = 100 mm/s

eutectic bands in Alloy 718 is studied. Figure 13 shows the

calculated Nb concentration in the solid and liquid phases at

t̃ = 2. Here, vw = 1 mm/s and ε̇m
⊥ = 0.01 1/s were used.

The domain shown in the figure is bounded by xTe ≤ x ≤

xTl
, 0 ≤ y ≤ Γ + h. It can be seen that h is approximately

2 µm at xTe . Thus, the model predicts that the eutectic band

thickness at xTe is 4-µm thick when t̃ = 2.

Now, let he be the value of h at xTe . Figure 14 shows he as

a function of t̃ for different values of vw and ε̇m
⊥ . We recall

that the temperature at xTe drops to Te when t̃ ≥ 1. Thus, for

t̃ ≥ 1, he represent half the thickness of the eutectic band

at xTe(t̃). Figure 14a, c, and e show he for vw = 0.1, 1, and

10 mm/s, respectively, and for several different strain rates.

G = 80×103 K/m is used for all cases. Furthermore, Fig. 14

b, d, and f show the relative difference between he at a given

strain rate and the he that results from a strain rate that is

zero, for vw = 0.1, 1, and 10 mm/s, respectively. From

Fig. 14a, c, and e, it can be seen that he ≈ 0.4, 0.7, 0.8

µm for vw = 0.1, 1, 10 mm/s, respectively, when ε̇m
⊥ = 0

and t̃ > 1. Thus, he is approximately twice as large when

vw = 10 mm/s as when vw = 0.1 mm/s. This is because

solute diffusion along the GBLF and solute back diffusion
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Fig. 13 Nb concentration in the

solid and liquid phases at t̃ = 2,

and vw = 1 mm/s, ε̇m
⊥ = 0.01 1/s

from the liquid into the solid phase have more time to occur

at a lower longitudinal solidification rate. Thus, there is

less amount of Nb to form γ /Laves eutectic at xTe when

vw = 0.1 mm/s than when vw = 10 mm/s.

When ε̇m
⊥ has the same magnitude as vw, he is

approximately 50, 40, and 20% larger than when ε̇m
⊥ = 0

for vw = 0.1, 1, and 10 mm/s, respectively, at t̃ = 1, as

shown in Fig. 14b, d, and f. Thus, at lower longitudinal

solidification rates, he is more sensitive to the relative strain

rate than at higher longitudinal solidification rates.

When the magnitude of ε̇m
⊥ is 10 times as large as that

of vw, he is approximately 480, 270, and 200% larger as

when ε̇m
⊥ = 0 for vw = 0.1, 1, and 10 mm/s, respectively, at

t̃ = 1, as shown in Fig. 14b, d, and f. Figure 14c shows the

case where ε̇m
⊥ is 50 times as large as the magnitude of vw,

in which there is an increase of approximately 1300% in he

at t̃ = 1 compared with the zero-strain case.

As can be seen from Fig. 14a, c, and e, he always peaks

at t̃ = 1, that is, at xTe = 0. Subsequently, it decreases until

t̃ reaches a value between 1.6 and 2 (depending on ε̇m
⊥ and

vw), and then it finally attains a constant value. The decrease

in h after t̃ reaches 1 can be explained as follows. As the

concentration gradient in the GBLF is negative, the liquid

flows towards the root of the GBLF, v̄ < 0, which leads to a

dilution. To maintain a constant solute concentration, which

is required by the thermodynamic equilibrium condition,

the transverse solidification rate must increase in order

to reject more solute into the liquid from the solid-liquid

interface. An increase in the transverse solidification rate

will increase the solute concentration in the liquid because

the solid cannot dissolve as much solute as the liquid

(when k < 1). Thus, the liquid velocity v̄ induced by

mechanical straining and solidification shrinkage increases

the transverse solidification rate. However, at xTe = 0 and

for t̃ < 1, we have v̄ = 0, and therefore v̄ = 0 does not

increase the transverse solidification speed; accordingly, he

peaks at xTe = 0.

Finally, the solidification model is based on a GBLF

that is bounded by two solid lamellas separated by the

primary dendrite arm spacing when no mechanical strain is

present, as shown in Fig. 2. However, for a high-angle grain

boundary as that in Fig. 1, the separation of the lamellas

bounding the GBLF should be larger than λ1 because the

grain boundary is more unstructured. To test the effect

of the separation of the lamellas on he, the solid lamella

distance was increased by 50%, that is, from 20 to 30 µm.

The effect on he for vw = 1 mm/s is shown in Fig. 15.

This figure should be compared with Fig. 14c and d. As

can be seen from Fig. 15a and c, increasing the lamella

spacing increases the thickness of the eutectic band, as

expected.

For all numerical results, a temporal discretization with

∆t̃ = 1/1000 and a space discretization with ∆ξ = 1/100

and ∆η = 1/30 were used for the solidification model. This

gives convergence: halving the size of ∆t̃ , ∆ξ , and ∆η only

gives a maximum relative change in Cs and Γ of less than

0.1% at t̃ = 2.

4.4 Permeability decrease due to increased flow rate

The temperature-dependent length scale l0 in Fig. 3, which

is used to partition macroscopic strain, gives rise to an

interesting phenomenon: at high strain rates, the GBLF

thickness can become zero at a location in the GBLF where

the temperature is much higher than Te. This is shown in

Fig. 16d. Figure 16 shows the half of the GBLF thickness

h in the interval xTe ≤ x ≤ xTl
for vw = 1 mm/s and

different values of t̃ . In Fig. 16a, h has been calculated using

a zero strain rate. The figure shows that h is monotonically

decreasing when x tends to xTe for all t̃ . Figure 16b shows h
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Fig. 14 he vs t̃ for different strain rates and for (a) vw = 0.1 mm/s, c vw = 1 mm/s, and e vw = 10 mm/s. b, d, f The relative difference between

he for a given strain rate and the he given by the zero strain rate for vw = 0.1, 1, and 10 mm/s, respectively

for different values of t̃ when ε̇m
⊥ = 10−3 1/s. Furthermore,

in this case, h is monotonically decreasing when x tends to

xTe for all t̃ ; however, it does not decrease as fast as in the

previous case. Figure 16c shows h when ε̇m
⊥ = 0.5 × 10−2

1/s. In this case, h is not monotonically decreasing when

x tends to xTe . In Fig. 16d, when ε̇m
⊥ = 10−2 1/s, h can

become zero for a x > xTe even if it has a large value

at x = xTe . This is because a large strain rate gives rise

to a high liquid flow rate v̄, which results in a higher

transverse solidification rate. Furthermore, as l0 is small

at Tc, the mechanical strain does not significantly localize

in this temperature region. However, v̄ can be large at Tc,
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(a) (b)

Fig. 15 a he vs t̃ at vw = 1 mm/s for different strain rates and an undeformed lamella spacing of 30 µm. b Relative difference between he for a

given strain rate and the corresponding value for zero strain rate

resulting in a considerably larger transverse solidification

rate than the transverse deformation rate of the GBLF

caused by straining in this region. This can result in zero

GBLF thickness before the temperature has reached Te. At

lower temperatures, the GBLF can start to open up owing

to the large increase in l0 that occurs when the temperature

drops below Tc. Here, as we consider a GBLF with a

high grain boundary misorientation angle, we assume that

extensive undercooling is required for the two opposing

solid interfaces of the GBLF to fuse together [6]; therefore,

it is assumed that the GBLF can open up later when the

strain localization increases.

h cannot become arbitrary small because this would

lead to a very high liquid flow rate, which in turn would

lead to large heat transport. This would result in melting,

which would increase h. The heat transport along the GBLF

that is induced by liquid flow is not incorporated into the

solidification model. Thus, this model is not accurate for

large values of v̄, as is the case in Fig. 16d. However, in

Fig. 16c, the maximum liquid velocity is v̄ = −2 mm/s.

This results in a thermal Peclet number of Pe = 0.26 for the

heat transport in the GBLF. Thus, in this case, the total heat

transport is dominated by heat conduction, and therefore

the liquid flow is assumed not to cause extensive melting.

Hence, the h profiles in Fig. 16c are assumed not to change

radically if advection-induced heat transport is added to the

solidification model.

Interestingly, an increase in the strain rate can lead to

a decrease in the GBLF thickness (in a certain region). A

decrease in the GBLF thickness results in a decrease in the

GBLF permeability, which in turn reduces the pressure in

the GBLF. A low GBLF pressure may increase the risk for

pore nucleation and/or pore growth of preexisting pores,

which can result in hot cracking [4, 13].

4.5 Study of eutectic bands in Varestraint tests

4.5.1 Eutectic bands

As was discussed in the introduction, eutectic bands may

form in multi-pass welding processes such as additive

manufacturing and repair welding. However, eutectic bands

can also form in weldability tests such as the Varestraint test.

Figure 17 shows optical micrographs of eutectic bands that

the authors have found in three Varestraint test samples of

Alloy 718. These tests were performed with 4% augmented

strain, 1 mm/s welding speed, and 10 mm/s ram speed. For

more technical details about the Varestraint test, see [5].

At the surface of these tests, a region with large cracks

could be found. This region extends across the whole FZ.

Adjacent to this region, in the welding direction, there is

a region of the FZ with eutectic bands but with no cracks.

Numerical simulations performed by the authors in earlier

works have shown that this region is less strained in the

temperature span Te < T < Tc than the region with the

cracks. Thus, the applied strain in the Varestraint test is

not enough to cause cracking in this region. However, the

applied strain is much larger than just the thermal strain the

region would experience when no bending strain is applied.

Thus, although the applied strain is not large enough to

cause cracking, it is enough to form eutectic bands.

Figure 17a shows an optical micrograph of the weld

surface of a Varestraint test where several eutectic bands,

roughly 1000 µm long, can be seen. Figure 17b and c

show optical micrographs at the weld surface of a second

Varestraint test. In these micrographs, two eutectic bands

that are longer than 1000 µm can be seen. Finally, Fig. 17d

shows a roughly 15-µm-thick eutectic band in a third

Varestraint test.
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Fig. 16 h vs x for vw = 1 mm/s, and for (a) ε̇m
⊥ = 0, b ε̇m

⊥ = 10−3 1/s, c ε̇m
⊥ = 0.5 × 10−3 1/s, and d ε̇m

⊥ = 10−2 1/s

The average thickness of the eutectic bands in the above

micrographs varies approximately between 5 and 15 µm,

depending on their locations. Numerical simulations of a

Varestraint test with 4% augmented strain predict an average

longitudinal macroscopic strain rate of approximately 0.03

1/s in the region where the eutectic bands are located and

in the temperature span Te < T < Tc. It is interesting

that our solidification model predicts similar thicknesses for

the eutectic bands when the macroscopic strain rates are in

the range of 0.01–0.05 1/s. This can be seen in Fig. 14c

for the welding speed 1 mm/s, which is the same welding

speed as in the Varestraint tests. From the figure, we can

see that the predicted eutectic band thickness is 5–20 µm

at t̃ = 1 when ε̇m
⊥ = 0.01–0.05 1/s. And at t̃ = 1.7, the

thickness is 2–11 µm when ε̇m
⊥ = 0.01–0.05 1/s. Remember

that under the simplified solidification conditions that were

used to construct Fig. 14, the computed thickness at t̃ = 1

corresponds to the thickness of a band that forms from a

GBLF whose end has always been stationary. The calculated

thickness at t̃ = 1.7 on the other hand corresponds to the

thickness that forms from a GBLF whose end moves at the

same speed as the liquidus isotherm speed, and that a quasi-

steady state condition has been reached. Thus, the calculated

band thickness at t̃ = 1 corresponds to the thickness

at the fusion boundary, where the terminal solidification

speed along the GBLF is low. While the calculated band

thickness at t̃ = 1.7 corresponds to the thickness at the

weld centerline, where the terminal solidification speed is

the same as the liquidus speed under quasi steady state

conditions. It is interesting to note that our solidification
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Fig. 17 Optical micrographs of eutectic bands at the surface of Varestrint tests of Alloy 718 with 4% augmented strain. The light phase in the

micrographs corresponds to the γ phase while the dark phase corresponds to the Laves phase

model predicts that eutectic bands located close to the fusion

boundary should be thicker than bands located along the

weld centerline for the same value of ε̇m
⊥ .

4.5.2 Eutectic bands in hot cracks

Eutectic bands may also be formed in hot cracks and healed

hot cracks. This is because large strains can act on the

GBLFs that the hot cracks form in. These strains can induce

large solute segregations which can lead to the formation of

eutectic bands.

Hot cracking normally occurs at the root of the GBLF

where the liquid pressure drop in the GBLF is highest. We

now assume that a hot crack forms from a void that grows

into a crack at the root of a GBLF, as in a previous work

by the authors [4, 13]. Once the void has formed, we may

consider the following two cases, which concern eutectic

bands with regards to hot cracks.

1. Non fractured eutectic bands. In this case, the void

grows into a crack that continues to grow until the

surface tension of the gas-liquid interface of the crack

can balance the pressure drop in the GBLF. When the

pressure drop is reduced from the value that stationary

balance the crack, the crack will start to close. This is

because the pressure drop can no longer balance the

surface tension of the crack. The closing can be very

fast because the liquid phase often wets the solid phase

very well. For example, a cylindrical air-liquid interface

of a 2-µm-thick liquid film between two parallel plates

can move almost 1 mm in 0.1 s when the balancing

pressure drop is instantaneously reduced by 10%. This
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was calculated by the author by considering a parallel

plate Poiseuille flow (see the Appendix). The values for

the surface tension, contact angle, and viscosity in the

calculation were for Alloy 718.

Because the crack closing is so fast, the whole

crack may be healed even though the root of the crack

is at a lower temperature than the terminal eutectic

temperature. However, if the temperature at the root of

the crack is too low, the liquid will solidify before it can

fully heal the whole crack.

Due to solute accumulation at the gas-liquid

interface of the crack, the liquid that flows into the

crack and heals it can result in large formations of

eutectic when it solidifies. Therefore, a eutectic band

can form along the filled crack. This band may extend

further from the location where the crack started to

close because of continuing straining after the crack

closure, which can sustain the solute segregation.

The solidification model in this paper does not

incorporate cracking. However, if the length of the

crack is not too long compare to the GBLF length such

that not too much solute is lost to the weld pool during

the crack growth, and that the crack forms fast and then

is closed fast, we may assume that the eutectic band

thickness predicted by the solidification model should

not be too far from the thickness of the eutectic band

that results from the backfilling of the crack.

2. Fractured eutectic bands. Multi-component alloy sys-

tems can display eutectic reactions which are not invari-

ant. The reaction can then occur over a temperature

range instead of at a fixed temperature as for the

invariant reaction. For example, for Alloy 718, Scheil-

Gulliver simulations with Thermo-Calc predicts that the

Laves phase forms during a 20 ◦C interval. Thus, the

γ /Laves eutectic does not form instantaneously at the

root of the GBLF at a fixed temperature as we have pre-

viously assumed for our solidification model. Instead,

the γ /liquid interface can act as a site where the Laves

phase can nucleate or grow along. This, in turn, leads

to that the γ /Laves eutectic grows from one γ /liquid

interface towards the opposing γ /liquid interface of the

GBLF. On the opposing γ /liquid interface where will

also be eutectic growth. The relative amount of eutec-

tic that forms on the two opposing γ /liquid interfaces

depends on the difference in undercooling that is nec-

essary for the Laves phase to grow or nucleate on the

opposing γ /liquid interfaces.

Now, because the eutectic grows from the γ /liquid

interfaces, and that the eutectic reaction occurs during

a temperature interval, a liquid film will exist between

the two growing eutectics from the opposing γ /liquid

interfaces. The length of the liquid film depends on the

size of the temperature interval that eutectic reaction

occurs during. For Alloy 718, we assume that this

interval is 20 ◦C based on the previous Scheil-Gulliver

simulations with Thermo-Calc. Furthermore, numerical

simulations of a Varestraint test with 1 mm/s welding

speed has shown that the temperature gradient at the

root of the GBLF can be as low as 40,000 K/m. Thus,

a 20/40000 = 500-µm-long liquid film bounded by

eutectic can exist at the root of the GBLF. The length

to thickness ratio of this liquid film is large and its

interfaces are rather roughed because it is bounded

between eutectics. Hence, a large pressure drop can

form in this film when it is deformed. If the pressure

drop is large enough, a void may form in the film that

can grow into a crack. Furthermore, if the pressure drop

in the film is large enough to balance and move the

surface tension of the void at the same or a large rate

than the terminal eutectic solidification rate along the

GBLF, then a crack can be continuously frozen into the

solid phase. This results in a fractured eutectic band

whose thickness depends on the amount of eutectic that

was formed before the fracture occurred at the given

location of the GBLF.

The thickness of a fractured eutectic band may be

roughly estimated by the solidification model in this

paper if the eutectic is not formed during a too large

temperature interval. In this case, the formation of the

eutectic and the progressive fracture of the GBLF occur

close to the end of the GBLF. Thus, the solidification

model, which is based on the assumption that the

eutectic forms invariantly at the end of the GBLF, may

be used to roughly predict the eutectic band thickness

in this case.

Figure 18 shows SEM micrographs of a fractured eutectic

band at different magnifications. These micrographs were

taken at the weld surface in the fusion zone of a Varestraint

test of Alloy 718 with 1.1% augmented strain. The darker

phase in the micrographs corresponds to the γ phase,

whereas the lighter phase corresponds to the Laves phase.

Tensile strain, induced by the bending in the Varestraint

test, is assumed to be strongly localized in the GBLF.

This results in extensive solute segregation which results in

the formation of a γ /Laves eutectic band along the grain

boundary.

Numerical simulation of the Varestraint test has shown

that the average macroscopic strain rates in the region where

the crack in Fig. 18 is formed is in the range of 0.1–0.5

1/s in the temperature interval Te < T < Tc. With these

values in our solidification model, the predicted thickness

of the eutectic band is 6–20 µm (which can be seen in

Fig. 14c). This is roughly the same as in the Fig. 18, where

the measured band thickness is about 10–15 µm. Thus,

even though the solidification model does not incorporate
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Fig. 18 SEM micrographs at different magnifications of a grain

boundary in the fusion zone of Alloy 718. The grain boundary frac-

tured owing to tensile strain induced by a Varestraint test. The γ /Laves

eutectic band along the grain boundary is assumed to have been formed

owing to segregation caused by the straining. The lamellar structure

of the γ /Laves eutectic band can be seen in the higher-magnification

micrographs. The dark regions are the γ phase and the light regions

are the Laves phase

cracking, it can still roughly estimate the band thickness in

this case.

4.6 Model limitations

In this section, we briefly discuss some of the limitations of

the proposed solidification model.

The proposed model is only applicable to isolated GBLFs

with one-dimensional liquid flow. Furthermore, the model is

based on that the solid phase solidifies as lamellae with very

smooth interfaces between the solid and the liquid phases.

However, in the reality, the solid-liquid interface normally

is highly dendritic and therefore highly irregular. Thus, the

solid-liquid interface area in the proposed model is smaller

than what it is in the reality. This affects back diffusion

and solute rejection at the solid-liquid interface. Moreover,

because the proposed model cannot resolve secondary

dendrite arms, all eutectic that forms will be as continuous

bands along grain boundaries, even at low solute advection.

In the reality, at low solute advection, the eutectic can form

as isolated islands between secondary dendrite arms and not

as long continuous bands along grain boundaries.

Another approximation regards the deformation of the

GBLF. This is undergone according to a macroscopic strain

rate that is localized to the GBLF with a partition length as

in Fig. 3. Here, we have neglected the load transmittance of

the solid phase, which will alter the strain localization and

increase it at higher temperatures.

At large liquid flow rates in the GBLF, solute boundary

layers may form at the solid-liquid interfaces. This is not

considered in the proposed model where we always assume

that the solute concentration is uniform across the GBLF.
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Fig. 19 a Solutal and b thermal Peclet numbers, calculated along the GBLF at t̃ = 2 and vw = 1 mm/s, and for the two different strain rates

ε̇m
⊥ = 0.01 1/s and ε̇m

⊥ = 0.05 1/s

To investigate the influence of the liquid flow on the solute

concentration profile across the GBLF, we calculate the

following solutal Peclet number

PeC =
Lu

D
=

hv̄

Dl

(49)

where the characteristic length L has chosen to be the same

as h. The solutal Peclet number is a nondimensional number

that is defined as the ratio of the rate of advection of solute

by the flow to the rate of diffusion of the solute driven by

a gradient. Figure 19a shows the calculated PeC along the

GBLF at t̃ = 2 and for vw = 1 mm/s. This was done for

the two highest strain rates in Fig. 14c, i.e., ε̇m
⊥ = 0.01 1/s

and ε̇m
⊥ = 0.05 1/s. From the figure, we can see that PeC

is close to 1 at the start of the GBLF with ε̇m
⊥ = 0.01 1/s,

while it is only less than 1 at the root of the GBLF with

ε̇m
⊥ = 0.05 1/s. Thus, for these high strain rates, the liquid

flow rate is so high so it is difficult for diffusion to keep

the solute concentration constant across the GBLF. Hence,

the assumption of uniform solute concentration across the

GBLF is less valid for these high strain rates.

In the derivation of the proposed solidification model, we

have neglected the advection heat transport along the GBLF.

We study the implication of this assumption by considering

the thermal Peclet number

PeT =
Lu

α
=

Lx v̄

αs

(50)

which is defined as the ratio of the rate of advection of heat

by the flow to the rate of diffusion of the heat driven by a

gradient. Here, the characteristic length L was chosen as the

length of the GBLF, i.e., the same value as Lx . The thermal

diffusivity α was chosen to the thermal diffusivity of the

solid phase of Alloy 718 at 1100 ◦C, i.e., about αs = 6

mm2/s. Figure 19b shows PeT along GBLFs for the same

values as for PeC in Fig. 19a. The strain rate ε̇m
⊥ = 0.01 1/s is

so high such that the GBLF will close in the region there the

temperature is about the coherent temperature, which was

discussed in Section 4.4. This will result in very high flow

rates, which in turn lead to high PeT values in this region of

the GBLF. In Fig. 19b can it be seen that PeT is up to 20 in

the region where the GBLF has closed. Thus, the diffusion

of heat in the solid phase is not fast enough to transport away

the advection heat due to the GBLF flow in this region of the

GBLF. Therefore, we can expect that melting of the solid

phase occurs in this region. This is not accounted for in our

solidification model. When ε̇m
⊥ = 0.05 1/s, a large part of

the GBLF has closed. The maximum PeT value can be up

80 in this part of the GBLF, as can be seen in In Fig. 19b.

Thus, we can expect large amount of melting of the solid

phase. Hence, our model is not likely to be accurate for this

very high strain rate.

5 Conclusions

A numerical solidification model for simulating the

influence of strain rate on eutectic band thickness has been

proposed. The relation between eutectic band thickness,

solidification velocity, and mechanical strain rate was

studied for Alloy 718. It was found that when the magnitude

of the strain rate is 10 times as large as that of the

solidification velocity, the predicted eutectic band thickness

is increased by 200 to 500% as compared to when the strain

rate is zero. It was also found that an increase in strain rate

can lead to a decrease in GBLF thickness in the coherent

temperature region. This leads to a decrease in permeability,

which in turn may increase crack susceptibility. Finally, it

was discussed how eutectic bands can form from hot cracks.
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University for fruitful discussions regarding solidification of alloys.

The authors are also thankful to Jesper Liljemark Mattsson, research

engineer at GKN Aerospace, for many interesting discussions about

hot cracking in welding and additive manufacturing of nickel-

based superalloys. Dimosthenis Manitsas, former master student

at University West, is gratefully acknowledged for producing the

micrographs in Fig. 18.

Funding information Open access funding provided by Lulea Univer-

sity of Technology. The financial support from the NFFP program, run

by Swedish Armed Forces, Swedish Defence Material Administration,

Swedish Governmental Agency for Innovation Systems, and GKN

Aerospace (project number: 2017-04837), is gratefully acknowledged.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indicate

if changes were made. The images or other third party material in

this article are included in the article’s Creative Commons licence,

unless indicated otherwise in a credit line to the material. If material

is not included in the article’s Creative Commons licence and your

intended use is not permitted by statutory regulation or exceeds

the permitted use, you will need to obtain permission directly from

the copyright holder. To view a copy of this licence, visit http://

creativecommonshorg/licenses/by/4.0/.

Appendix

In this appendix, we derive an expression for the time that it

takes for the gas-liquid interface of a crack to move a given

distance due to a change in the GBLF pressure. This time

was used in Section 4.5 to discuss the rate at which crack

healing can occur.

Consider a stationary void in a GBLF whose surface

tension is balanced by the external pressure p∗
0 . At t = 0, we

assume that p∗
0 is instantaneously increased to p0. Thus, the

external pressure can no longer balance the void interface

and it will therefore start to move. Now, we greatly simplify

the situation by assuming that the gas-liquid interface of

the void is located between two parallel plates as is shown

in Fig. 20. Furthermore, we assume that the gas-liquid

interface is cylindrical and that the void has penetrated

through the weld surface so that the pressure inside the void

is the same as the atmospheric pressure patm.

The curvature, H , of the cylindrical gas-liquid interface

is given by

H =
cos θ

2h
(51)

where θ is the contact angle. The pressure difference across

the void interface is given by Young-Laplace equation

pi − pe = 2γH (52)

where pi and pe are the internal and external void

pressures, respectively. γ is the surface tension of the gas-

liquid interface of the void. By substituting the previous

assumption pi = patm and Eq. 51 into Eq. 52, then the

external pressure can be written as

pe = patm −
γ cos θ

2h
(53)

Now, let s0 be the location of the void interface at the

time t = 0 when it is stationary. At t = 0 the liquid pressure

at s0 is increased from pe to p0. The void interface will

then move a distance ∆s = s0 − s during the time t = t ,

see Fig. 20, where s is the interface position at t = t . The

liquid pressure pe at s0 and t = 0 arise because of liquid

flow along the GBLF induced by the tensile straining of

the GBLF. The sudden change of the liquid pressure at s0

when t = 0 may be due to an increase in the upstream

GBLF permeability caused by the straining (see [4] for a

discussion on how the GBLF permeability depends on the

straining). For simplicity, we assume that p0 is constant at s0

during the short time we are interested to study the interface

movement. We defined ∆p0 = patm − p0 as the pressure

drop along the GBLF from the weld pool to the location s0.

Now, we assume that the liquid flow in the GBLF is

laminar and is given by a parallel plate Poiseuille flow. The

average liquid velocity in a cross section of the GBLF is

then given by

v̄ = −
h2

3µ

∂p

∂s
(54)

where p is the liquid pressure at s and µ is the dynamic

viscosity of the liquid [4]. Furthermore, at the void interface,

let ds/dt = v̄ be the velocity of the void interface and let

∆p = p0 − pe = −∆p0 + γ cos θ/h and ∆s = s0 − s.

Fig. 20 A void in a GBLF

bounded by two parallel plates.

At the time t = t the interface

has moved a distance ∆s due to

a decrease in the pressure drop

in the GBLF
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Fig. 21 t as a function of ∆p0 and ∆s for (a) h = 1 µm and (b) h = 5 µm

Substituting this into Eq. 54 and approximating ∂p/∂s by

∆p/∆s gives

ds

dt
= −

h2

3µ∆s

(

−∆p0 +
γ cos θ

h

)

(55)

Integrating (55) and solving for t finally give

t =
3µ∆s2

2h2
(

−∆p0 + γ cos θ
h

) , ∆p0 <
γ cos θ

h
(56)

Figure 21 shows two plots of t in Eq. 56 with respect to

∆p0 and ∆s. h is fixed at 1 µm in the left plot and at 5 µm

in the right plot. γ = 1.8 J/m2, θ = 10◦, and µ = 12 mPas,

were used for the plots. These values are typical for Alloy

718 [5].

It is interesting to note from Fig. 21 that, unless p0 is very

close to pe, the void interface can move a relatively long

distance in a short amount of time.
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