
Geophys. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ.  R.  astr. SOC. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(1981) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA65, 103-128 

A numerical model of flow over sand waves zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAin 
water of finite depth zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

* zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK. J. Richards 
University of Cambridge, Silver Street, Cambridge CB3 9EW 

P. A. Taylor Boundary Layer Research Division, Atmospheric Environment 

Service, Downsview, Canada 

Department of Applied Mathematics and Theoretical Physics, 

Received 1980 May 19 

Summary. A model of turbulent flow above sand waves in water of finite 
depth is described. Closure assumptions are based on an eddy viscosity 
proportional to the square root of the local value of turbulent kinetic energy 
and mixing length dependent upon distance from the lower boundary. 
Results are presented for some idealized cases to investigate the effects of 
wave slope, water depth, Froude number and wave shape. The implications of 
the model for the transport of sediment are discussed and the development 
of the wave investigated. It is found that the crest of the wave will become 
sharper for lower flow rates, as has been observed in the sea. Comparisons 
are made with recent measurements made over sand waves in the Columbia 
River. 

Introduction 

Sand waves, or dunes, commonly occur on a bed comprised of a non-cohesive sediment in 
both river and sea environments. The distribution and characteristics of these bed forms have 
been described by Allen (1968) and Taylor & Dyer (1977). The sand waves are often 
strikingly periodic and two-dimensional (see, e.g. Langeraar 1966). 

The flow over a small amplitude perturbation to a flat erodible bed and the resulting 
stability of the bed has been investigated by Richards (1980) using a linear model for the 
flow. 

In a series of papers, Taylor, Gent & Keen (1976), Gent & Taylor (1976), two- 
dimensional boundary-layer flow above gentle finite amplitude topography was studied 
numerically by the use of conformal mapping techniques. The bed-forms studied are 
restricted to those for which convenient conformal mappings can be found. To study the 
flow over an arbitrary topography Taylor (1977) extended this work by the use of a non- 
orthogonal transformation of the coordinate system. The above papers all deal with a deep 
turbulent boundary layer neglecting externally applied pressure gradients. 

*Present address: Institute of Oceanographic Sciences, Wormley, Godalming, Surrey GU8 SUB. 
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Comparing results for flow over a sine wave obtained from the linear model of hchards 
(1980' with those of the non-linear model of Taylor (1977), Taylor, Richards zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Nunes 
(1 978) find that quantities such as the surface stress and pressure perturbations differ by 
about 25 per cent at wave slopes of 0.157 for the two solutions. There is agreement between 
the two models as the slope tends to zero. For slopes greater than 0.3 the solutions are often 
totally different. The linear model tends to overestimate the flow perturbations due to bed- 
waves of finite amplitude. In order to model the flow over a finite amplitude bed-wave and 
the corresponding sediment transport, it is therefore appropriate to use a fully non-linear 
model, although the numerical solution requires a far greater amount of computing time. 

For sand waves occurring under natural flows the ratio of the wavelength to depth is 
approximately zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2n and often greater. The effects of the finite depth to the flow will therefore 
be important. In this paper we will extend the work of Taylor (1977) to the case of open 
channel flow over a wavy bed of arbitrary shape. 

The implications of the model for the development of the sand wave are investigated by 
relating the calculated bed shear stress distribution to the bed-load transport of sediment 
and thence to the local erosion/deposition rate. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA preliminary study of this sort was carried 
out by Taylor & Dyer (1977) using the model of Taylor et zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal. (1976). 

Finally the results of the model are compared with recent measurements reported by 
McLean (1976) of the flow above sand waves in the Columbia River. 

K .  J. Richards and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP. A.  Taylor 

2 Equations of motion and coordinate transformation 

The flow considered is that of steady channel flow of depth D and inclination (Y to the 
horizontal above a periodic, two-dimensional, wavy surface (z = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAzb) with wavelength L (see 
Fig. 1). In Cartesian coordinates the equations of motion are 

where the coordinate system is defined in Fig. 1, U,  W are the velocity components, p the 
pressure,g the acceleration due to gravity and tl)wI etc. the Reynolds stresses. 

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1. The flow considered. 
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A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmodel of f low over sand waves zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA105 

The time-scale for the development of the bed-wave and, in the tidal situation, the tidal 
time-scale have been assumed to be long compared with the development time-scale of the 
flow. Richards (1980) has shown that these are reasonable assumptions although in some 
tidal flows in deep water this may not be strictly true. However, the majority of sediment 
transport will takz place during the period of maximum shear stress when the flow will be 
close to a steady state. 

The turbulence closure scheme is based on an isotropic eddy viscosity model as used by 
Taylor (1 977). This takes the form 

where 

is the mean turbulent kinetic energy per unit mass. 
The eddy viscosity K is defined by 

K zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= (hE)’”Z 

where l / X  is the equilibrium value of E/u: and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu* the friction velocity. The turbulent energy 
equation is required to determine the local value of E. The mixing length zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI is a prescribed 
function of position. 

Britter, Hunt & Richards (1981) have shown that, although an eddy viscosity approach zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
will give the correct results for the velocity components throughout the flow field and for 
the turbulence quantities close to the surface, at a distance s from the surface, where s is 
given by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
S h S / Z , = 2 K 2 L  (2.5) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
zo is the surface roughness length and K von Karman’s constant, the history of the flow 
becomes important in determining the turbulent properties. For heights greater than s rapid 
distortion theory is found to give to a good approximation the changes in turbulence 
quantities. However, in determining the bed-load transport of sediment we require the bed 
shear stress and we expect the present model to give a reasonable estimate of its value. 

To facilitate the numerical solution of the equations of motion over an arbitrary 
topography a non-orthogonal coordinate transformation is introduced. Full details are given 
in Taylor (1977). The coordinate system is transformed to a new system (x*, z*) defined by 

x* =x 

z* = z - Zb(X*)F(Z*). 

‘ f i e  function F is chosen to set the lines z* = constant to be approximately streamlines 
and for the lines z* = 0 and z = D to correspond to the lower boundary and the undisturbed 
free surface respectively. 

The potential flow solution suggests the use of 

sinh k(D - z*)  - kDFr2 cosh k(D - z*) 

sinh kD - Fr2 cosh kD 
qz*)= 
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where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 2n/L and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFr = U , / d g  (U, is the undisturbed mean velocity at the surface). Note 
that on z* = 0, F = 1 so that z = zh(x) and on z* = D, z = D + F(D)zh which corresponds to 
the free surface predicted by the potential flow solution. 

K. J. Richards and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP. A.  Taylor 

In addition the vertical coordinate z* is transformed to { where 

The local values of the mixing length, I, are specified as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 = Z,(z*)G(x*, z*) (2.9) 

where lo(z*) is the mixing length specified for a flat bottomed channel and 

1 I [(z - zb) c o ~  e]  - qZ*) 
G = 1 + exp (- kz*) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
is an empirical modification to take account of the non-orthogonality of the vertical 
coordinate and the bed. The angle zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 is the slope of the bed, tan-' (dzh/dx). 

The undisturbed mixing length l,(z) is taken to be 

(2.10) 

(ex Blackadar 1962). For small z,, lo tends to K(z+z,) whilst for large z ,  1, tends to a 
constant value XB. We have taken hB = D. Various forms for lo have been tried (see Richards 
1978), all of whch give similar results provide I ,  - K(Z +zo) for small z. The transformed 
coordinate { is then given by 

(2.1 1) 

The equations in (x*, {> space to be solved are the Umomentum equation 

a{ au apM apM a{ az* 377 

ax 

au 
ax * 

U-+ --=----- - - - - ~ C O S ~ - + + . O + D ~  (2.12) 

where D represents the diffusive terms 

+ 2 K 7 - -  

the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW momentum equation 

(2.13) 
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(2.14) 

(2.15) 

a2E at az* 

ax*at a 2  ax az* a t  ax2 az2 

aE at az* at aK aE a 2  
a t  az* ax az* af ax* ax 

a t  aE(azz* a2z*i zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+'&f-- - - + K - -  --+- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
+ K x *  - -- - + - -  - -. 

We have set pM = (l/p)p + 2/3E for convenience. The equations have been non- 
dimensionalized with respect to the friction velocity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu,  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(Dg sin ~ 1 ) ~ ' '  and the depth, D. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3 Numerical method and boundary conditions 

The equations (2.12)-(2.14) are solved in the region 

O<X*<L ,  0 < z* < D (or 0 < t < zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1: dz') 

on a finite difference mesh with uniform grid spacing in x* and 5. The method used to solve 
the equations is based on the technique of artificial compressibility due to Chorin (1967) 
and is described in Gent & Taylor (1976). No details will be given here. This scheme was 
chosen in preference to the more efficient iterative scheme of Taylor et al. (1976) so that a 
top boundary condition can be specified on W rather than p .  The iterative scheme used for 
the free-surface elevation (see below) requires this for stability. Another advantage of this 
technique is that separated flows can be considered. It should be noted, however, that once 
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separation has taken place we would expect the turbulence closure used in the model to be 
invalid. Nevertheless, the model should indicate the conditions under which separation is 
likely to take place, bearing in mind that separated flow solutions should be treated with 
caution. 

Care is needed in the finite difference representation of the divergence and advection 
terms, to ensure conservation of mass and momentum. The schemes used are given in the 
Appendix. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

K.  J. Richards and P. A. Taylor 

At the lower boundary, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz* zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0, we will impose the conditions 

aE 
u=w=o, - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= O  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(3.1) an 

where a/an indicates a derivative normal to the lower boundary. The condition on E ensures 
no flux of turbulent energy through the lower boundary. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

AU of the results presented in detail are for Fr = 0, i.e. the upper surface is taken to be 
plane. Taking Fr = 0, the imposed upper boundary conditions on z* = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD are 

au aE 
= O  -- -0,  w = o ,  - 

az * az * 
giving zero shear stress at the surface and zero flux of mass and turbulent energy through the 
surface. 

A number of runs have been performed with non-zero Fr. The upper boundary was at 
z* =D, the position of the free surface predicted by potential flow theory. The final 
computed position, z = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAqs, was slightly displaced from this. Boundary conditions were still 
imposed at z* = D  but we used the modified surface slope in the requirements aU/an = 
aE/an = 0 and W = U tan aqs/ax. 

U(0) = U(L) ,  W ( 0 )  = W(L), E(0)  = E(L)  and p ~ ( 0 )  = P M ( L ) .  

Lateral boundary conditions are of periodicity L inx", so that 

In defining the coordinate transformation we need to specify the bed form, zb(x), and its 
first and second derivatives at points corresponding to both the Li and W grid point positions 
across the wave. In applying the model to observed sand waves (see Section 6) the wave is 
fitted by a discrete number of data points. The U positions of zb(x'i) are specified and the 
W positions Zb(xzi+,) are interpolated using a cubic fit. Derivatives are found using a five- 
point central differencing scheme. Thus we define 

and 

where Ax12 is the spacing between data points. Differences between the predicted shear 
stress distribution over a sine wave using the above representation of the bed wave and the 
analytical expression on a 20 x 14 grid where less than 0.1 per cent. 

When the model was applied to a number of observed bed forms the converged solution 
exhbited an oscillation in the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx direction of a two-grid point wavelength. This was over- 
come by filtering the original data of two-grid interval waves. Shapiro (197,O) suggests a 
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A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmodel zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof flow zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAover sand waves 109 
two-pass filter of the form zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAzj 1 z i= -+- (Z .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz - 1 + Zi+ 1)  

2 4  
(3.3) 

The operator has the property of completely eliminating two-grid interval waves but with a 
minimum of damping of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAall longer waves. Successive applications of (3.3) filters longer and 
longer waves. Six applications of the filter reduced the amplitude of the oscillations to an 
acceptably small fraction of the total perturbation. In all but the most sharply crested waves, 
filtering was found to change all bed points by less than 2 per cent, a value usually well 
within the accuracy of the measurements. 

For a typical run of the model we found that on a 10 x 10 grid a converged solution was 
reached after 2000 cycles taking 30 s CPU time on a CDC 7600 computer. Comparisons of 
the predicted bed shear stress using a 10 x 10 grid and a 20 x 14 grid showed a less than 
1 per cent difference between the two results. The results presented for symmetric waves 
were obtained using a 10 x 10 grid. Those for asymmetric waves were on a 20 x 14 grid to 
increase the resolution on the steeper slope of the wave. 

4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAResults 

Taylor et al. (1976) present the results of their model for a symmetric wave which is slightly 
sharper crested than a sine wave. Taylor (1977) presents the results for a sine wave. Both 
models are for a deep turbulent boundary layer. A comparison between the present 
numerical scheme and that of Taylor (1977) showed a less than 0.2 per cent difference 
between the results of the two models. We shall present only the results of the surface 
values of shear stress and pressure. The flow above the bed for a finite depth flow is 
qualitatively similar to that shown in Taylor et al. (1976). 

The model depends on the four parameters, Fr, Dlz,, LID, a/zo and the shape of the 
wave, where a is the amplitude of the wave. Within a limited amount of computing resources 
it is not possible to span the whole parameter space. However, in the following an attempt is 
made to demonstrate some of the effects of the various parameters. Note that except in 
Section 4.3 the Froude number, Fr, is taken to be zero. 

4.1 E F F E C T S  O F  V A R I A T I O N  I N  D E P T H ,  A M P L I T U D E  A N D  R O U G H N E S S  

The shape of the wave for the results presented in this section is always a sine wave, i.e. 
zb=acoshx.  

To assess the effects of varying the depth of flow on the model a series of computations 
were performed keeping the dimensions of the bed-wave constant, with LIZ, = 10000 and 
a/z,= 250 and varying LID. The bed shear stress for varying LID is shown in Fig. 2. 

The infinite depth case (similar to Taylor 1977) shows the maximum in the bed shear 
stress to be upstream of the wave crest with a phase of - 25". A noticeable feature of the 
effect of decreasing the depth of flow is that the maximum value of the bed shear stress, 
T,,, increases and the minimum, T,~, decreases with a sharpening of the curve at the 
maximum. The phase of the maximum relative to the crest is decreased. There is roughly a 
30 per cent increase in the value of the perturbed maximum from D + 00 to LID = 6.25. 
With LID = 25 the flow separates about half way down the lee slope with the stress 
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110 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ. Richards and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP. A. Taylor 

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2. Bed shear stress distribution for varying depth of flow over a sine wave; L/z, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 10 000, a/z,  = 

250: - - , D + - ; - - - , L / D = 6 , 2 5 ; - . - , L / D =  12.5;-+-,LfD=25.0. 

becoming negative. The values of the bed extrema of stress and pressure and their phases 
relative to the crest are given in Table 1. The value of the integrated shear stress along the 
wave ( T ~ )  decreases significantly with increasing L/D, with the skin friction only accounting 
for  39 per cent of the total drag when LID = 25, the remainder being due to form drag. 

Table 1. Effects of depth variation; LIZ, = 10 000, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa/z, = 250, sine wave. 

Surface shear stress Surface pressure 
Phase Phase 
Of* of 

LID 7max 7min 7max(O) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 7 )  Pmax Pmin Pmax(') 

m 1.40 0.26 -25 0.74 23.5 -30.0 187 
6.25 1.55 0.18 -23 0.73 25.9 -32.4 184 

12.5 1.59 0.04 -18 0.61 27.2 -39.5 180 
25.0 1.65 -0.01 - 9  0.39 19.1 -38.4 155 

Phase relative to crest of bed wave. Stresses are scaled with respect to u:, 

Table 2. Effects of amplitude variation; D / z ,  = 1600, LID = 6.25, sine wave. 

Surface shear stress Surface pressure 
Phase Phase 
of * O f *  

ark a/zo 7max 7min 7max(') ( 7 )  Pmax Pmin Pmax(O) 

0.063 100 1.34 0.63 -29 0.96 15.8 
0.094 150 1.47 0.46 -26 0.90 20.4 
0.126 200 1.54 0.31 -24 0.82 23.9 
0.157 250 1.55 0.18 -23 0.73 25.9 
0.188 300 1.50 0.10 -22 0.64 26.5 
0.220 350 1.44 0.04 -20 0.56 25.7 
0.251 400 1.37 0.00 -19 0.47 24.0 
0.283 450 1.29 -0.02 -18 0.40 21.6 
0.314 500 1.18 -0.04 -16 0.33 19.3 

- 16.8 
-24.0 
- 29.0 
-32.4 
- 34.6 
- 36.8 
-35.9 
-33.1 
-31.1 

193 
187 
185 
184 
182 
181 
176 
169 
162 

*Phase relative to crest of bed wave. Stresses and scaled with respect to u i .  
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A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmodel of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAflow zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAover sand waves 111 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
\ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA' 0  

' 0  

'I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 1  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQa 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure 3. Variation of maximum and minimum values of the bed shear stress with wave slope for a sine 
wave;D/z,= 1600, LID = 6.25: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 0 - ,  numerical non-linear model; -,linear model (Richards 1980). 

The results for fixed values of LID = 6.25 and varying amplitude are given in Table 2 
with the stress maximum and minimum plotted against ak (the maximum wave slope) in 
Fig. 3. Also shown in Fig. 3 are results of the linear model of Richards (1980). For low 
values of ak, rmax and rmin tend to a linear function of ak as predicted by the linear model. 
At larger values of ak the results of the non-linear model depart from those predicted by the 
linear model with the linear model overpredicting the effect of the wave. rm, attains a 
maximum value at approximately ak = 0.14 decreasing significantly with ak above this value. 
rmin decreases with increasing ak with the flow separating at approximately ak = 0.25. 

Table 3. Effects of surface roughness variation; a/L = 0.025, LID = 6.25, sine 
wave. 

Surface shear stress Surface pressure 

Phase Phase 

160 1.66 0.18 -27 0.77 11.0 -14.1 174 
800 1.58 0.18 -24 0.74 20.5 -26.8 180 

1600 1.55 0.18 -23 0.73 25.9 -32.4 184 

8000 1.44 0.22 -20 0.72 41.4 -54.2 192 
4000 1.49 0.21 -22 0.72 34.3 -43.5 187 

16000 1.40 0.23 -18 0.71 48.7 -61.9 195 

*Phase relative to crest of bed wave. Stresses scaled with respect to u:. 
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Fig. 2 indicates that we would expect the flow to separate at a smaller value of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAak for a 
larger value of LID. With LID zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 12.5 the flow was found to  separate at a wave slope of 
ak = 0.17. 

Finally the effect of the surface roughness was investigated by fixing ak at 0.157 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
LID at 6.25 and varying D/z,. The results are given in Table 3. No significant change occurs 
in the maximum and minimum values of the bed shear stress over two orders of magnitude 
variation in zo, the range in the surface values decreasing for the smoother surfaces. 

K. J. Richards and P. A. Taylor 

4.2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE F F E C T S  O F  V A R I A T I O N  I N  S H A P E  

Sand waves observed in the field differ in shape to the idealized sine wave used in the 
preceding sections. Waves formed by a symmetric tidal current (i.e. with equal and opposite 
ebb and flood currents) are more trochoidal in appearance with a sharper crest, whereas 
those formed by a unidirectional current or by an asymmetric tidal current are asymmetric 
with a shallow stoss slope and steeper lee slope, the asymmetry being in the direction of the 
dominant tidal stage for tidal flows (see, e.g. Van Veen 1935). 

In order to illustrate the effects of changes in wave shape three different bed forms will 
be  considered: 

(1 )  a sine wave zb = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa cos zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAkx (4.1) 

and 

(3) Zb=-acos(kx +c,( l  -cos(kx +c,(l -cos(kx+c, ( l  -cos (kx))))))) (4.3) 

with 

c , = - n i 1 2 ,  c,=-n/a , zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc g =  - n/4. 

Waves (2) and (3) are the same as those used by Taylor et al. (1977) and their profiles 
are shown in Fig. 4. Wave (2) is a symmetrical wave with a sharper crest than the sine wave. 
Useful wave forms using the expression (3) were found by trial and error. With the given 
parameters the wave is asymmetric with smooth stoss and lee slopes. Unfortunately no way 
was found arbitrarily to specify the degree of asymmetry of the wave. Because of the steep- 
ness of the slopes computations were performed on a 20 x 14 grid. 

Results were obtained for waves (2) and (3) with fixed D/zo = 1600 and LID = 6.25 and 
varying a/z,  (see Tables 4 and 5). The results for the three waves of bed shear stress and 
pressure are compared in Fig. 4. The distributions of bed pressure show no major changes for 
different wave shapes except that they reflect the shape of the underlying wave. The 
maximum and minimum values and the phase relative to the bed wave varies iittle. The 
distributions of bed shear stress again reflect the shape of the bed wave. However, there is a 
singnificant increase in the maximum value of the waves (2) and (3), there being an increase 
of approximately 63  per cent in the perturbed values of T,, between waves (1) and (2). 
The phases of T , , ~  relative to the crest also varies, it being -23", - 15" and -6" for 
the three waves respectively. The contributions of the form drag of the different waves to 
the total stress varies but perhaps less than would be expected. They are 27 ,35  and 37 per 
cent respectively. 

The wave height at wluch the flow will separate varies with wave shape. The value of ak 

at which this happens was found to be 0.25,0.22 and 0.1 5 for the three waves respectively, 
the asymmetric wave separating at the smaller value of ak. 
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A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmodel of flow over sand waves zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA113 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
pu: 

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4. Distribution of bed shear stress for various wave shapes: D/z ,  = 1600, a/z,  = 250, L/D = 6.25: 
-,wave (1) (equation 4.1); ---,wave (2) (equation 4.2); -.-,wave (3) (equation 4.3). 

In the tidal situation the flow will be in both directions over the wave. In the case of the 
asymmetric wave we will therefore reqflire the results of the flow over the wave in the 
reverse direction against the asymmetry. The results for the bed shear stress and pressure for 
each case are given in Fig. 5 where D/zo = 1600, a/zo = 250 and L/D = 6.25. The maximum 
shear stress occurs a little way down the steeper slope and the perturbed value is approxi- 
mately 60 per cent larger than that for the flow in the opposite direction (Fig. 4). The stress 

Table 4. Effects of shape variation; D f z ,  =1600, LID = 6.25, sin4 wave. 

Surface shear stress Surface pressure 
Phase Phase 
of * of * 

ak zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA%ax 7max 7min ?max(O) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 7 )  (zb) Pmax Pmin Prnax(O) 

0.126 200 0.163 1.84 0.29 16 0.78 -0.031 26.8 -36.0 220 
0.157 250 0.204 1.88 0.15 15 0.68 -0.039 29.9 -39.2 221 
0.188 300 0.245 1.85 0.06 14 0.57 -0.047 31.7 -39.6 222 
0.220 350 0.286 1.76 0.00 14 0.46 -0.055 32.6 -38.1 222 

0.283 450 0.367 1.42 -0.05 12 0.29 -0.070 31.7 -28.2 223 

*Phase relative to crest of bed wave. Stresses scaled with respect to u:.  

0.251 400 0.326 1.61 -0.03 13 0.37 -0.063 32.2 -33.8 223 
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114 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ. Richards and P. A. Taylor zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Table zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5. Effects of shape variation; Dlz, = 1600, L/D = 6.25, wave (3). 

Surface shear stress Surface pressure 

Phase Phase 

0.126 200 0.260 1.75 0.09 7 0.76 -0.019 23.5 -36.5 175 
0.157 250 0.325 1.76 -0.02 6 0.64 -0.023 24.2 -39.0 182 
0.188 300 0.390 1.69 -0.08 5 0.52 -0.028 24.0 -36.2 190 
0.220 350 0.455 1.53 -0.12 5 0.40 -0.033 22.2 -32.2 198 
0.251 400 0.520 1.37 -0.14 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 0.30 -0.037 20.5 -26.0 216 
0.283 450 0.585 1.20 -0.16 3 0.23 -0.042 19.7 -21.2 230 

*Phase relative to crest of bed wave. Stresses scaled with respect to u:.  

minimum has been decreased and the flow does not separate. Rather surprisingly the form 
drag, 30 per cent of the total is little different from that for the flow with the asymmetry, 
26 per cent. 

4.3 E F F E C T S  O F  V A R I A T I O N  IN  F R O U D E  N U M B E R  

The computation scheme devised for non-zero Froude number was not entirely satisfactory 
and was only convergent for Fr 5 0.5. Typical values in marine and deep river situations zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
will, however, be lower than this (say 5 0.1) and for these cases we have found only small 
variations from the Fr= 0 results. For our basic sine wave bed-form with D/zo= 1600, 
LID = 6.25 and with ak = 0.1 57 bed shear stress results for Fr = 0.25 agreed with those for 
Fr = 0 to within about 0.02~: while for Fr = 0.5 the amplitude of the stress perturbation 
was increased by about 0.1~:. Free surface displacements for Fr = 0.25 are about 0.05a, 
slightly smaller than, and advanced slightly in phase from the irrotational flow prediction. 
In general, Froude number variation effects were found to be small for Fr 5 0.25 and have 
not been considered in the sedment transport calculations. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 5  crest x 1.0 
L 

Figure 5. Bed shear stress and bed pressure distributions for flow right to left across the asymmetric wave 
(3);D/z,= 1600,a/z,= 250,LID = 6.25. 
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A model zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof jlow over sand waves zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA115 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5 Implications zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof the model for sediment transport 

We shall assume that the sediment is transported as bed load only, thus restricting the 
present results to low shear rates. The sediment transport can then be related to the local 
bed shear stress. Bagnold (1966) balanced the rate of work done in pushing the bed load 
along the bed against a frictional resistance with the fluid power. For a bed of local slope 
a' this gives the bed-load transport of sediment q b  as 

where eb is an efficiency factor of order 0.1 and. varies slightly with flow velocity and grain 
size, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 is the angle of frictional resistance and y zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( p s  - p) /p ,  p s  being the density of the 
sediment. We have followed Inman (1963) and taken the fluid power as r3". This assumes 
that the majority of sediment transport during a tidal cycle takes place when r 9 T,, the 
critical shear stress for sediment movement. Clearly this is not so when the flow is close to or 
separating. However, if the fluid power is taken as 7112(r - rCr) we find that there is a 
singularity in the erosion rate, which is proportional to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdqb/ax, at r = 7, unless either 
r,, = 0 or zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA&/ax = 0 which in general they are not. In reality such a large build-up of 
sediment would be smoothed out by the flow. We will restrict ourselves in this section to 
studying bed forms with non-separating flows. 

From experimental data Bagnold (1954) finds that tan 4 varies from 0.32, when the 
stresses in the moving sediment layer are transmitted totally inertially, to 0.75, when the 
stresses are transmitted viscously. Tan 4 decreases for increasing shear stress and grain size. 
We shall consider two cases with tan 4 = 0.3 (relatively hgh shear) and 0.6 (low shear). 

Taylor & Dyer (1977) find that if the efficiency factor eb is allowed to be variable and a 
function of 7, the width of the erosion and deposition zones predicted will be altered, and 
the rate of heightening of the sand wave either increased or decreased depending on whether 
eb decreases or increases with r ,  respectively. For convenience we will choose to take eb as 
a constant over the wave bearing in mind that our results may be altered slightly for a 
varying eb. 

The growth rate of the bed azb/at can be related to the local bed-load transport using the 
sediment continuity equation due to Exner (1925). Thus 

where n is the porosity of the bed. 
The bed shear stress predicted by the numerical model for a sinusoidal bed wave with 

D/zo= 1600, LID = 6.25 and a/zo = 250 is shown in Fig. 6(a). This wave has a steepness 
(a/,!,) of 1/20. The maximum shear stress occurs 23" upstream of the crest. The resulting 
bed-load transport rate, @,/eb, is shown in Fig. 6(b), taking tan@=0.6. The effect of 
including the local bed slope, tan a', in the transport formula (equation 5.1) is to decrease 
the phase lag of the maximum transport rate to 12 per cent. This decrease in the phase lag 
is dependent on the value of tan 4, it being greater for smaller values of tan 4. 

The non-dimensional growth rate 

calculated from equation (5.2) is shown in Fig. 6(c). Maximum erosion occurs approxi- 
mately 34" upstream of the crest and maximum deposition about 22" downstream of the 
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116 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK.  J. Richards and P. A. Taylor zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1.l- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
\ + -  ' ' 

/- \ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Q x  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA10 '  / 

/ 
/ '. 

\ : zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI 

-1. O I  

Figure 6 .  Bed shear stress and bed load transport for flow in opposite directions over a sine wave; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD / z ,  = 
1600, L/D = 6.25,  u/Zo = 250, tan @ = 0.6. Solid line, flow left to right, broken line, flow right to left. 
(a) Shear stress distribution; (b) bed load transport rates; (c) erosion rate; (d) net erosion rate over tidal 
cycle; (e) wave shape. 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

/6
5
/1

/1
0
3
/6

5
5
6
9
1
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



A model zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof flow over sand waves zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA117 

crest. In a unidirectional flow this would lead to a forward translation of the wave with the 
wave developing a steeper lee slope. The flow in the opposite direction across the sand wave 
produces a mirror image distribution about the crest. The net erosion over a tidal cycle with 
flood and ebb currents of equal magnitude is shown in Fig. 6(d). Deposition occurs within 
about zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA38" either side of the crest with a maximum at the crest. The maximum erosion 
occurs at 57" either side of the crest. This would lead to a sharpening of the crest and a 
flattening of the trough with the bed form assuming a more trochoidal form. Similar shaped 
curves for the net erosion were obtained for all values of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa/zo ( G  500) considered and for 
tan zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA@ = 0.3 with the wave becoming steeper in each case. 

The bed load and erosion curves for the sin4 wave (wave (2), equation 4.2) with D/zo = 
1600, LID = 6.25 and a/zo = 250 are shown in Figs 7 and 8 with tan @ = 0.6 and 0.3 
respectively. The shape of the erosion curve with tan @ = 0.6 is similar to that for wave (1). 
Again the net effect over a tidal cycle would be for the wave to assume a more trochoidal 
form. The rate of heightening of the crest is approximately 1.5 times that for wave (1). 

With tan @ = 0.3, however, the maximum in the bed load is 2" downstream of the crest 
with the consequence that over half a tidal cycle the erosion rate at the crest is positive and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

4. r 

\ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi '\ '. 4- 

- I  -2 c V 

Figure 7, Bed load transport over sin4 wave; Dlz,  = 1600, LID = 6.25, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa/z, = 250, tan @ = 0.6. Solid line 
flow left to right; broken zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAline, flow right to left. (a) Bed load transport rates; (b) erosion rates; (c) net 
erosion over tidal cycle; (d) wave shape. 
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118 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK .  J. Richards and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP. A.  Taylor zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
8. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Figure 8. Bed load transport over sin4 wave. As for Fig. 7 with tan zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC$ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0.3. In (c): - .-, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa/z, = 200 

the crest height decreases with time. The net erosion over a tidal cycle is shown in Fig. 8(c). 
Erosion occurs over the crest and to 10" either side. Deposition occurs in a zone 10" to 60" 
with a small amount of erosion over the rest of the wave. This would result in the wave 
becoming flatter at the crest and slightly steeper in the lower flanks of the wave. 

Also shown in Fig. 8(c) is the net erosion curve obtained with a/zo = 200 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( k / L  = 1/25). 
The net erosion is nearly zero over the wave with a small amount of erosion at the crest. 

The bed wave will become stable, i.e. remain unchanged from one tidal cycle to the next, 
when the net erosion is zero over the entire wave. The above results suggest that the shape 
of the stable bed form is dependent on the value of tan Q,. For tan @ = 0.3 the wave form will 
be slightly flatter crested than the sin4 wave with a value for the steepness of about 1/25. 
This compares with a typical value of 1/30 for observed sand waves (see Taylor & Dyer 
1977). For higher values of tan Q, the wave will be sharper crested. For tan Q, = 0.6 we are 
unable from the present results to predict the steepness of the stable bed form which will 
have a crest somewhat sharper than that of the sin4 wave. 

The results for the sediment transport over an asymmetric wave (wave (3), equation 4.3) 
are shown in Figs 9 and 10 with tan Q, = 0.6 and 0.3 respectively. We have taken Dfzo= 

1600, LID = 6.25 and a/zo= 200 which gives a wave of steepness 1/25 with a maximum 
wave slope of 0.16. The erosion curve with tan Q, = 0.6 (Fig. 9b) shows deposition occurring 
at the crest and on the lee slope with erosion on the stoss slope. In a uni-directional flow 
the wave will become sharper crested and the lee slope steeper with the crest height 
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6 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 6 ’  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9. Bed-load transport over asymmetric wave (3); zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD / z ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 1600, L/D = 6.25, a/z, = 200, tan $J = 
0.6. (a)-(d) As in Fig. 7. 

increasing and moving downstream with a consequent separation of the flow. The erosion 
curve for flow in the opposite direction shows deposition occurring at the crest with the 
crest now moving to the left. Defining 

T I =  u i d t  

and 

T,= u i d t  

where the integrals are performed over the time when the flow is with and against the 
asymmetry respectively the erosion over each part of the tidal cycle is then proportional to 

s 
i 
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120 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK .  J. Richards and P. A.  Taylor zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Figure 10. Bed-load transport over asymmetric wave (3) .  As for Fig. 9 with tan zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4~ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
T = - 7 ' -  ~, .-, T, = 2T,; -+- ,dzb/dX.  

0.3. In (c): 

TI and T2 respectively. The net erosion with T, = - T2 is shown in Fig. 9(c). The result would 
be the wave crest becoming more trochoidal and the lee slope becoming steeper with no 
movement of the crest and with the flow separating. 

With tan q5 = 0.3 (Fig. 10) the flow with the asymmetry produces erosion at the crest 
whilst deposition occurs when the flow is in the opposite direction. With Tl = - T2 the net 
erosion would result in the wave crest decreasing in height and moving to the left, the wave 
assuming a more symmetric form. With Tl = - 2T2 a maximum erosion occurs just upstream 
of the crest and a maximum deposition halfway down the lee slope. This would lead to an 
advancement of the crest with the crest becoming more rounded and a steepening of the 
lower half of the lee slope. 

For a wave to remain constant in shape and to progress at a constant velocity, c, we 
require that 

zb = zb(x - ct). 
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From equation (5.2) and taking t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0 this leads to the requirement 

-- - 
ax ax 

(5.4) 

Thus the net erosion should be proportional to the slope of the underlying wave. The slope 
of the bed wave, az,/ax, is plotted in Fig. lO(c). Comparing this curve with the net erosion 
curve for Tl = - 2T2 with tan @J = 0.3 we find that neither the erosion on the stoss slope nor 
the deposition on the lee slope are large enough for the wave to propagate without change in 
shape. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs a rough estimate, however, for the propagation speed c of the wave by comparing 
the amplitudes of the two curves we obtain c - 0.2 m day-' (here we have taken u* = 0.4 
cm s-', eh  = 0.1 and zo = 0.5 cm). This value compares well with observed rates of advance of 
sand waves (see Taylor & Dyer 1977). 

6 Comparison with data from the Columbia River 

A series of field experiments have been conducted by J. D. Smith of the University of 
Washington and his co-workers between 1968 and 1972 in the Columbia River. Flow 
measurements were taken over sandwaves ranging from 75 to 100 m in length and 1.5 to  
3.0 m high in flow depths of approximately 15 m. The crest lines of individual waves had a 
certain degree of curvature, although this was slight and we expect our assumption of two- 
dimensionality to hold, at least to the accuracy of the measurements. Of the experiments 
the most extensive was carried out in 1972 and reported by McLean (1976). The turbulence 
measurements are described in McLean & Smith (1979). To reduce the effect of unresolvable 
faster moving megaripples six waves considered of similar shape in the 1972 data were 
combined into a single composite wave and an ensemble mean taken of the flow data. 

We shall consider two wave profiles reported by McLean (1976), labelled 1972 Wave 1 
(the composite wave, see Fig. 11) and 1969 Wave 1 (Fig. 13). No direct measurements of 
surface shear stress were taken. McLean estimates the friction velocity, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(7/p)'12 from the 
lowest mean velocity measurement and an estimate for z,,. McLean's fit to the data for the 
two waves is shown in Figs 11 and 13. 

t 
I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

c res t  0.5 1.0 

1.0 Y 0.5 

i 

Figure 11. Friction velocity, ( ~ / p ) * " ,  and wave profile for 1972 Wave 1 (Mctean 1976): ---,measured; 
-, model prediction. 
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1 2 2  

The parameters for 1972 Wave 1 are D/z,= 1580 and LID zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 6.4 and we shall take zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFr = 0. 
The bed profile is defined by 20 equally spaced data points across the bed elevation given in 
Fig. 11. The maximum wave slope is 0.12. The model was run with the above parameters 
on a 20 x 14 grid. For this particular run no aliasing errors were produced and no filtering of 
the bed form data was required. 

The model results for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( ~ / p ) ’ ”  are given in Fig. 11. The value of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu*, the undisturbed 
friction velocity, has been estimated for McLean’s data by requiring that the means of the 
two curves are equal. The form drag of the wave was 7 per cent of the total, a surprisingly 
low value. The shape of the predicted curve for ( ~ / p ) ” ’  is very similar to the results of 
McLean with a minimum in (~ /p ) l ”  at x/L = 0.42 compared with 0.39 from McLean’s data. 
The model gives a maximurn at x/L = 0.08. McLean’s data do not show a distinct maximum 
although true perodicity would clearly demand one. As a measure of the variability of shear 
stress over the wave we define 

Tmax - Tmin zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ,/-=---- 

% ( ~ m a x  + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATmin) 

The model results give a value of V = 1 .OO whilst McLean’s results give V =  0.92. 
The erosion rate, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu (equation 5.3), predicted by the model from equation (5.2) is shown 

in Fig. 12. Because of the high shear stress reported during the experiments we shall take 
tan c$ = 0.3. This gives a maximum deposition halfway down the lee slope at x/L = 0.36 and 
a maximum erosion just downstream of the trough at x/L = 0.56. Also plotted on Fig. 12 
is the slope of the bed wave, dzh/dx .  From equation (5.4) the bed wave will progress 
forward without change in shape if u cx dzh/dx. Fig. 12 shows a good correspondence 
between the phases and ratio of the maxima and minima of u and dz,,/dx. The wave is 
therefore approximately progressive without change in amplitude and, taking u* = 4 cm s-’ 
has a forward velocity of approximately 1.5 m day-’. This compares with a reported 
5 m day-’ for the observed sand wave field as a whole. 

The parameters for 1969 Wave 1 (Fig. 13) are D/zo= 11360 and L/D=4.67. The lee 
slope is somewhat steeper than 1972 Wave 1 with a maximum slope of 0.36. With these 
values of the parameters and a 20 data point representation of the bed form the solution 
was found to oscillate at a two-grid interval wavelength. Filtering the bed-wave data points 
using equations (3.3) and reducing D/zo to 1136 reduced this oscillation to a small fraction 
of the total perturbation. The maximum difference between the original data points and the 
fdtered points after six passes of the filter was approximately 2 per cent. The distribution 

K. J. Richards and P, A. Taylor zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

-24 L 

Figure 12. Erosion rate predicted by the model for 1972 Wave 1 and bed wave shape: -,erosion rate; 
_ _ _  , dZb/dX. 
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A model of f low over sand waves zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA123 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0.5 ( C )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1.0 L 

Figure 13. Friction velocity ( T / P ) * ’ * ,  and wave profile for 1969 Wave 1 (McLean 1976): ---,measured; 
-, model prediction. 

of (7 /p ) l l2  predicted by the model is shown in Fig. 13. The negative shear stress shows the 
mean flow to separate. The form drag was 22 per cent of the total. Comparing this with the 
( ~ / p ) ” ~  distribution by McLean again gives good agreement. The position of the minimum 
given by the model is x / L  = 0.47 whilst McLean’s results show a minimum at x / L  = 0.44. 
The models results give a value of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV =  4.06. McLean’s results give V =  3.1. The position and 
length of the separation bubble in the two cases also compares well, with the length being 
x / L  = 0.08 for the model and x / L  = 0.06 for McLean’s results. The position of the bubble is 
marginally lower on the lee slope for the model compared with McLean’s results. 

The slope of the lee face of the wave is close to the angle of repose of the bed material. 
This, together with the separation of the flow, makes an examination of the bed load and 
erosion rate using equations (5 .l) and (5.2) inappropriate. However, the stress distribution 
given in Fig. 13 suggests a slight flattening of the wave just above the lee slope and a forward 
movement of the lee face. 

The model shows a large variation of the position of the stress maximum with height 
above the wave, similar to that found by Taylor et al. (1976). For 1972 Wave 1 the results 
give at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz /zo=  37 the maximum at x / L  = 0.15 increasing to x / L  = 0.5 at z/z,,= 225. Above 
this height the phase of the stress maximum remains approximately constant with height. 
The phase shift of the turbulent energy 

is similar to that predicted for the shear stress. Note that the height z/zo= 225 is less than 
the height s/zo= 510, calculated from equation (2.5), at which we would expect our 
turbulence closure scheme to become invalid. 

The averaged measurements of u” and over the composite 1972 Wave 1 reported in 
McLean & Smith (1979) clearly show a phase shift from approximately x / L  = 0.12 at 
z/zo = 37 to 0.5 at z/zo = 225 agreeing well with the phase shift of E predicted by the model. 
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The measurements of shear stress, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-PUT, however, do not show such a large phase shift. 
Over the interval 37  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA< z/zo < 225 the phase of the shear stress is approximately constant 
with height, the stress maximum at approximately zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx / L  = 0.4. It should be noted that there 
was a large degree of scatter in the measured turbulence quantities, particularly in the lower 
values of the shear stress. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

K. J. Richards and P. A. Taylor 

7 Discussion 

Dunes formed in uni-directional flows, such as flumes and rivers, are asymmetric with often 
avalanche lee slopes where the angle of the lee slope is equal to the angle of repose of the 
sand grains (about 30"). The crest is often sharp and separation of the flow takes place. This, 
however, is not always the case for dunes in large rivers. The results for 1972 Wave 1 from 
the Columbia River data suggest that progressive waves are possible without the flow 
separating. Sand waves observed in the sea, however, seldom have slopes exceeding 0.17 
(10"). The steepness of the wave (2alL) is typically 1/30 (ak = 0.1). For sand waves in the 
sea with rounded crests and with a ratio of L/D = 6.25 using Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 and Tables zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 and 5 we 
conclude that the flow will be non-separating. For larger values of LID the flow becomes 
closer to separating with the possibility of separation occurring over the very steep waves 
(see Fig. 2). For a sine wave and LID = 12.5 this occurs at ak = 0.17. For the sharper crested 
waves (2) and (3) we would expect separation to occur at lower values of ak (approximately 
ak -c- 0.1 for the asymmetric wave) with maximum slopes of about 0.2. The shape of the 
crest wdl also be important. Sand waves often have trochoidal shaped crests and again we 
may expect separation to occur at the crest for the very sharply crested waves at lower 
values of ak. 

With the three analytic bed forms considered we can only obtain a limited amount of 
information about the fully developed bed waves to form in a given flow. However, the 
results do show some interesting features with a dependence of the wave-shape on the value 
of tan zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 and the ratio T,/T,. We would also expect the shape to depend on the variation of 
eb with 7. We obtained a stable wave form only for the symmetric wave with tan 4 = 0.3. 
The steepness of the wave, 1/25, compares well with observed bed waves. The flow over the 
wave in this case was non-separating. It is not clear from the present results whether or not 
the symmetric wave with tan 4 = 0.6 or the asymmetric wave developing from a small 
perturbation of the bed will reach a steady form before separation of the flow takes place. 

The results for the symmetric wave with tan 4 = 0.3 and steepness 1/25 show a different 
behaviour for the sine wave, which increases in steepness, from that for the sin4 wave which is 
approximately stable. This suggests that the past history of the bed wave and flow con- 
ditions may be important in determining its shape with there being more than one stable 
bed form for given flow and bed conditions. 

The model predicts that the shape of the crest is dependent on the value of tan 4 and 
thus on the value of shear stress. For decreasing tan 4, i.e. increasing shear, the crest of the 
sand wave will become flatter. A flattening of the crest as the shear stress increases has been 
observed for a sand-wave in the sea (D. N. Longhome, private communication) with the crest 
being sharper during neap tides (low u*) than spring tides (high u*). Harvey & Vincent 
(1977) report a decrease in the value of the effective zo of a rippled bed (and therefore 
flattening of the ripples) as the shear stress increases. 
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Appendix 

We shall derive conservative forms for the finite difference representations of the flow 
divergence and advection terms in the non-orthogonal coordinate system (x*, z*). 

First let us consider the divergence of flow, V zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-U which in (x*, z* )  coordinates is 

(Ai) 
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126 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ. Richards and P. A. Taylor zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

$=const zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7' zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL - -  

I 

w 
I 

I Ui,j., 

Figure AI.  Control volume for the evaluation of the divergence term. 

We shall use a control volume approach. The zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(i, j)th mesh cell in the Cartesian plane zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(x, z) 
is shown in Fig. A1 . The sides of the cell are given by the lines of constant x* and z*. 

The divergence of the flow in the cell can be represented by the sum 

DIVj, j = DIV U -t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBADIV W (-42) 

where 

and 

The derivatives azlax are taken along z* = constant and the terms Uc and UD can be 
represented by 

UC = %  [Y,j -t Q + l , j  -t U r : , j + l +  U r : + l , j + l I  

U D  = % [q, j -t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ+ 1 ,  j -t Ur:, j - 1 + Ur: t. 1 , j  - 1 I. 
Taking z* = constant we have 

az* az* az 

and hence the derivative 

For a given coordinate transformation the derivatives az*/ax, az*/az etc. can be determined 
explicitly at each grid point of the cell. 

It can be easily shown that 

limit DIVj, j  = V . U .  
AX*, A Z * + O  
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A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmodel zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof flow over sand waves zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA127 

The above scheme is conservative in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(x*, z*) coordinates, i.e. 

S =  2 DIV..-O. 

The equations are solved in (x*, () space where S is not identically zero. However, for a 
typical run using a 10 x 10 grid, after 2000 time steps S - lo-", where individual zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD I v j , ~  - 
lo-'' which was considered to be small enough. Attempts to use a conservative form 
DIVj:j = DIVj, j/(a{/az l o )  where now S* 0 caused the numerical scheme to become 
unstable for the same time step. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1 9 1  
all i, j 

The U advection terms in (x*, z*) space, namely 

au i ",:* a z * ) a u  
ADu=u , t  u-tw- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 

ax az az 

using the continuity equation can be written in the form 

We shall again use a control volume approach. Taking a control volume centred on q,i 
(Fig. A2) an appropriate finite difference representation is 

I az* 
t ~ - 1  [WlW(U&,j+U&,j+l)- WlD(U&,j+u&,j-1)I 

2Az* az zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I 
I -,- - 
I 
I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
t, 
1 

I u;.,,j 

I ' uy., I Ui..,j.I i-.u;-*+' 6 4  I t., 
I I 

Figure A2. Control volume for the evaluation of the advection term. 
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128 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK.  J. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARichards and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP. A. Taylor 

where 

and Uf i , j  denotes the updated value zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ, etc. The advection terms in the E and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW equations 
are treated similarly. 

The above scheme is conservative in momentum in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(x*, z*) space. However, because of 
the  expanded vertical coordinate we cannot represent them in a truely conservative manner 
in (x*, {) space (see, e.g. Roach 1972, p. 281). 
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