

MICROCOPY RESOLUTION TEST CHART
NAIONAL BUREAU OF STANOARDS $196 \div \cdot 4$

A Numerical Model to Simulate Sediment Transport in the Vicinity of Coastal Structures by
 Marc Merlin and Robert G. Dean

MISCELLANEOUS REPORT NO. 83-10
MAY 1983

USS. ARMY, CORPS OF ENGINEERS COASTAL ENGINEERING RESEARCH CENTER
 Kingman Building
 Fort Belvoir, Va. 22060

Reprint or republication of any of this material shall give appropriate credit to the U.S. Army Coastal Engineering Research Center.

Limited free distribution within the United States of single copies of this publication has been made by this Center. Additional copies are availahle from:

```
National mechnical Enronmatinn som,ine
AmPN: onemations riviston
5985 Fom poun? Doxt
Snmingeield, Virginix nopm
```

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

UNCLASSIFIED

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
T. REPORT MUMBER MR $83-10$ 2. GOVT ACCESSION NO	3. RECIPIENT'S CATALOG NUMBER 97
4. TITLE (Mad Subtilla) A NUMERICAL MODEL TO SIMULATE SEDIMENT TRANSPORT IN THE VICINITY OF COASTAL STRUCTURES	5. TYPE OF REPORT A PERIOD COVERED Miscellaneous Report 6. PERFORMING ORG. REPORT NUMBER
Marc Perlin and Robert G. Dean	8. CONTAACT OR GRANT NUMBER(A) DACW72-30-C-0030
9. PERFORMING ORGANIZATION NAME ANO ADDRESS Coastal and Offshore Engineering and Research, Inc., 70 S. Chapel Street Newark, DE 19711	10. PROGRAM ELEMENT, PROJECT, TASK AREA \& WORK UNIT NUMBERS C31551
11. CONTROLLING OFFICE NAME AND ADDRESS Department of the Army	12. REPORT OATE May 1983
Coastal Engineering Research Center (CEREN-EV) Kingman Building, Fort Belvoir, VA 22060	$\begin{aligned} & \text { 13. NUMDER OF PAGES } \\ & 119 \end{aligned}$
14. MONITORING AGENCY NAME ADORESS(If dilforent from Controlline Offlios)	15. SECURATY CLASS. (ol thio repori) UNCLASSIFIED
	15. DEELASSIEICATION/DOWNGRADING

16. DISTRIBUTION STATEMENT (of thie Raport)

Approved for public release, distribution unlimited.
17. DISTRIEUTION STATEMENT (of the obetrect entorod in Block 20, if diflorent from Report)
18. SUPPLEMENTARY NOTES
19. KEY WOnDS (Continue on reveree alde If neceseary and Identify by block number)

Bathymetric response Numerical model Shoreline evolution Littoral barrier Sediment transport

Wave transformation

An implicit finite-difference, n-line numerical model is developed to predict bathymetric changes in the vicinity of coastal structures. The wave field transformation includes refraction, shoaling, and diffraction. The model is capable of simulating one or more shore-perpendicular structures, movement of offshore disposal mounds, and beach fill evolution. The structure length and location, sediment properties, equilibrium beach profile, etc., are userspecified along with the wave climate..

The purpose of this report is to provide coastal engineers and researchers with a numerical model which predicts sediment transport and the resulting bathymetry in the vicinity of coastal structures. The work was carried out under the U.S. Army Coastal Engineering Research Center's (CERC) Numerical Modeling of Shoreline Response to Coastal Structures work unit, Shore Protection and Restoration Program, Coastal Engineering Area of Civil Works Research and Development.

This report was written by Marc Merlin and Robert G. Dean, Coastal and Offshore Engineering and Research, Inc., under Contract No. DACW72-80-C-0030. The CERC contract monitor was Dr. F. Camfield, Chief, Coastal Design Branch, under the general supervision of Mr. N. Parker, Chief, Engineering Development Division.

Technical Director of CERC was Dr. Robert W. Whaling, P.E.
Comments on this publication are invited.

Approved for publication in accordance with Public Law 166, 79th Congress, approved 31 July 1945, as supplemented by Public Law 172, 88th Congress, approved 7 November 1963.

Fo

CONTENTS

Page
CONVERSION FACTORS, U.S. CUSTOMARY TO METRIC (SI) 6
1 INTRODUCTION. 7

1. General 7
2. Study Objectives 8
II BACKGROUND. 8
3. Wave Refraction 8
4. Crenulate Bays (LeBlond, 1972) 9
5. Crenulate Bays (Rea and Komar, 1975) 9
6. General One-Line Shareline Model 10
III THE NUMERICAL MODEL 11
7. Description 11
8. Refraction 11
9. Diffraction 16
10. Sand Transport Model 18
IV SIMULATIONS AND VERIFICATION. 28
11. Simulation of Savage's Physical Model Tests 28
12. Several Runs Using Shore Perpendicular Structures to Demonstrate Effects of Altering Some of the Pertinent Parameters 28
13. Simulations of Sediment Transport of Dredge Disposal in the Vicinity of Oregon Inlet. 30
14. Simulation of the Longshore Sand Transport Study at Channel Islands Harbor, California. 46
v SUMMARY AND RECOMMENDATIONS 48
LITERATURE CITED. 52
APPENDIX
A DISCUSSION OF CONSTANTS AND SOME OF THE VARIABLES REQUIRED BY THE MODEL. 55
B PROGRAM LISTING 65
C CONTOURS AND SCHEMATIC ILLUSTRATIONS 84
D METHODOLOGY AND PROGRAM LISTING OF COMPUTER PROGRAM WHICH CONVERTS BATHYMETRIC DATA INTO MONOTONICALLY DECREASING DEPTH CONTOURS 102
E USER DOCUMENTATION AND INPUT AND OUTPUT FOR PROGRAM VERIFICATION. 111
TABLES
1 Summary of results at Oregon Inlet 38
2 Monthly values of Δy 40

CONTENTS--Continued

FIGURES

Page

1 Definition sketch . 12
2 flow chart. 13
3 Definition sketch for wave diffraction. 17
4 Distribution of sediment transport across the surf zone 19
5 Schematic representation of banded matrix if not stored in \quad banded storage mode. 26
6 Simulation of the physical model of Savage (1959) 29
7 Equilibrium planform, case 4.2a 31
8 Equilibrium planform, case 4.2b . 32
9 Equilibrium planform, case 4.2c . 33
10 Equilibrium planform, case 4.2d . 34
11 Stepped version of equilibrium profile used in the Oregon Inlet
modeling . 36
12 Initial contours used in the numerical model for all the Oregon Inlet
simulations. 37
13 Monthly incremental values of Δy due to dredge disposal illustrated
for the block between 7- and 11 -foot contours. 39
14 Initial and final 7- and 11-foot contours (no distortion) 41
15 Initial and final contours for case 2.c1. 42
$16 \begin{gathered}\text { Stepped version of equilibrium profile used in the Oregon Inlet } \\ \text { modeling, } h=A y^{2 / 3} \text {, case 4. } 44\end{gathered} ~$
17 Shore-perpendicular cross section of disposal mound 45
18 Incremental values of Δy due to dredge disposal 45
19 Idealized numerical model representation of offshore breakwater at
Channel Islands Harbor, California 47
20 CIH simulation of shoreline contour 49
21 CIH simulation of (JMAX)th contour 50

CONVERSION FACTORS, U.S. CUSTOMARY TO METRIC (SI) UNITS OF MEASUREMENT
U.S. customary units of measurement used in this report can be converted to metric (SI) units as follows:

Multiply	by	To obtain
inches	25.4	millimeters
	2.54	centimeters
square inches	6.452	square centimeters
cubic inches	16.39	cubic centimeters
feet	30.48	centimeters
	0.3048	meters
square feet	0.0929	square meters
cubic feet	0.0283	cubic meters
yards square yards cuble yards	0.9144	meters
	0.836	square meters
	0.7646	cubic meters
```miles square miles```	1.6093	kilometers
	259.0	hectares
knots	1.852	kilometers per hour
acres	0.4047	hectares
foot-pounds	1.3558	newton meters
millibars	$1.0197 \times 10^{-3}$	kilograms per square centimeter
ounces	28.35	grams
pounds	453.6	grams
	0.4536	kilograms
ton, long	1.0160	metric tons
ton, short	0.9072	metric tons
degrees (angle)	0.01745	radians
Fahrenheit degrees	5/9	Celsius degrees or Kelvins ${ }^{\text {l }}$

[^0]
# A NUMERICAL MODEL TO SIMULATE SEDIMENT TRANSPORT IN THE VICINITY OF COASTAL STRUCTURES <br> by 

Marc Perlin and Robert G. Dean

## I. INTRODUCTION

## 1. General.

The need for reliable predictions of shoreline response to man-made or natural modifications is increasing due to environmental concerns and the rising cost of remedial measures. The capability of numerical modeling in addressing problems of shoreline response has advanced with improvements in wave climatology, programs to better understand sediment transport relationships, and improvements in numerical modeling. In-situ and remote sensing technology for the measurement of directional wave characteristics has been developed and applied, primarily within the last two decades. In addition to providing the necessary climatology, the resulting measurements have provided the basis for evaluation and refinement of directional wave prediction procedures. Studies such as the Channel Islands Harbor Longshore Sand Transport Study (Bruno, et al., 1981) and the Nearshore Sediment Transport Study (NSTS) (Gable, 1979) have yielded a better understanding of surf zone dynamics and the resulting sediment transport. The increased capacities of large computers and reduced computing costs combined with improved numerical modeling algorithms have resulted in an extremely promising potential for the numerical modeling of shoreline problems.

Although it is doubtful that numerical modeling will ever replace completely the use of movable-bed physical models, the former type offers many advantages. The modeling of shoreline response is somewhat analogous to the problem of simulating storm surges in the coastal zone in which the scale effects and measurement difficulties essentially preclude physical modeling. For shorelines, the scale effects inherent in modeling sediment are well recognized and the costs of representing a substantial length of shoreline may be prohibitive. The laboratory representation of a realistic wave climate is at the forefront of technology.

The investigation of shoreline response can best proceed by several approaches, with each approach selected for the particular strengths which it offers. Field programs are costly, usually because of the considerable equipment and the extensive time required, but these programs are essential for quantifying the values of constants or parameters, the forms of which may be available from laboratory measurements or theoretical considerations. Laboratory studies occupy a special niche by allowing the wave conditions and independent variables to be controlled readily, experiments to be repeated, and selected measurements to be conducted. Although, as noted before, scale effects are present in laboratory measurements of sediment transport, the physics governing the process should be the same. However, the relative magnitudes of suspended versus bedload transport in the laboratory and field may differ. Laboratory studies can also provide an excellent base for evaluating certain aspects of a numerical model, including wave refraction and diffraction and the resulting shoreline patterns due to, for example, the placement of a littoral barrier. Numerical modeling offers the capability to
incorporate all the hydrodynamic wave-surf zone and sediment transport knowledge that is available from laboratory and field studies. Numerical modeling has the potential of providing accurate predictions of shoreline response to various structural and nourishment alternatives. Additionally, the possibility exists of employing numerical models and available field measurements to learn more about sediment transport mechanisms. In this latter mode, various candidate mechanisms or coefficients would be evaluated by determining the best match between measured and predicted shorelines and the bathymetry. Generally, this mode would require high-quality measurements of the forcing function (waves and nonwave-related currents) and the associated response (sediments) as well as the knowledge of appropriate conditions at the boundaries of the model.

The present report documents the development and application of an $n$-line numerical model to investigate bathymetric response to time-varying wave conditions and shoreline modification. The model includes both longshore and onshore-offshore sediment transport. Based on laboratory results, a new distribution of longshore sediment transport across the surf zone is used. The wave climate is specified on the model boundaries which do not need to extend to deep water. Efficient algorithms are employed for representing wave refraction and diffraction. The equation of sediment continuity and transport are solved by a completely implicit algorithm which allows a large time-step. Specified sediment transport values or specified contour positions can be accommodated at the model boundaries. The model is suitable for investigating the shoreline response to a variety of modifications such as one or more groins, terminal structures, structures with variable permeability, and beach nourishment with or without terminal structures.

## 2. Study Objectives.

The objectives of the present study include (a) the documentation of state-of-the-art models, (b) the development and documentation of an improved model which includes the capability to represent $n$-contour lines and (c) the application of the model to several relevant coastal engineering problems.

## II. BACKGROUND

This discussion describes significant contributions which either address numerical modeling of shorelines directly or provide improved capability for modeling.

1. Wave Refraction (Noda, 1972).

Noda developed an algorithm for solving the following steady state equation for wave refraction

$$
\begin{equation*}
\vec{\nabla} \times \vec{k}=0 \tag{1}
\end{equation*}
$$

in which $\vec{\nabla}$, the horizontal vector differential operator, and $\vec{k}$, the wave number, are defined in terms of their components as

$$
\begin{align*}
& \vec{\nabla}=\vec{i} \frac{\partial}{\partial x}+\vec{j} \frac{\partial}{\partial y}  \tag{2}\\
& \vec{k}=\vec{i} k_{x}+\vec{j} k_{y} \tag{3}
\end{align*}
$$

where $\overrightarrow{\mathfrak{j}}$ and $\overrightarrow{\mathrm{j}}$ are the unit vectors in the $x$ and $y$ directions respectively. Equation (1) can be expressed as

$$
\begin{equation*}
\frac{\partial(k \sin \theta)}{\partial x}=\frac{\partial(k \cos \theta)}{\partial y} \tag{4}
\end{equation*}
$$

in which $\theta$ is the direction of the vector wave number relative to the $x$-axis and $k$ denotes $|\vec{k}|$. Noda expanded Equation (4) to the following form

$$
\begin{equation*}
k \cos \theta \frac{\partial \theta}{\partial x}+\sin \theta \frac{\partial k}{\partial x}=-k \sin \theta \frac{\partial \theta}{\partial y}+\cos \theta \frac{\partial k}{\partial y} \tag{5}
\end{equation*}
$$

Since $\frac{\partial k}{\partial x}$ and $\frac{\partial k}{\partial y}$ are known from the angular frequency $\sigma$, the water depth $h$, and the dispersion equation

$$
\begin{equation*}
\sigma^{2}=g k \tanh k h \tag{6}
\end{equation*}
$$

Equation (5) can be solved numerically, although there are problems of directional stability. The primary advantage of Equation (5) is that it allows the wave direction $\theta$ to be determined on a specified grid, compared to unspecified locations that would be obtained by, for example, wave ray tracing.
2. Crenulate Bays (LeBIond, 1972).

Leblond attempted to model the evaluation of an initially straight shoreline between two headlands into a crenulate bay. The model constitutes a one-line (shoreline) representation. The transport equation employed related the total sediment transport to total water transport in the surf zone as predicted by the formulation provided by Longuet-Higgins (1970). The. initial shoreline patterns resemble crenulate bays in nature; however, the predictions were found to be unstable for reasonably long periods of computational time and did not approach a realistic planform.
3. Crenulate Bays (Rea and Komar, 1975).

Rea and Komar employed a rather ingenious system of orthogonal grid cells to provide a cell which locally is displaced perpendicular to the general shoreline orientation. A one-line representation was employed. A simple and approximate representation of wave diffraction was employed. Although the model yielded reasonable results for the examples presented, the unique coordinate system would not be suitable for a general model as the coordinate system must be "tailored" to some degree to conform to the expected shoreline configurations.
4. General One-line Shoreline Model (Price, Tomlinson, and Willis, Ly/<).

Price, Tomlinson, and Willis' formulation consists of the sediment continuity equation and the total sedime: : transport equation

$$
\begin{equation*}
Q_{s}=\frac{0.70 E_{b}(n C)_{b} \sin a_{b} \cos a_{b}}{r_{L}(1-p)\left(S_{s}-1\right)} \tag{7}
\end{equation*}
$$

in which $E$ represents the wave energy density, $(\mathrm{nC})$ the group velocity, a the angle between the breaking wave front and the shoreline, $\gamma_{\omega}$ the specific weight of water, $p$ the in-place sediment porosity, and $\mathrm{S}_{\mathrm{S}}$ the specific gravity of the sediment relative to the water in which it is immersed. The subscript "b" represents values at breaking.

Two formulations were presented by Price, Tomlimson, and Willis (1972). In the first, Equation (7) was substituted into the continuity equation and the results cast into a finite-difference form. In the second, the two equations were employed separately. The latter formulation was selected due to its simplicity and used for the results presented.

Computations were carried out for the case of beach response due to the placement of a long impermeable barrier. The total sediment transport equation by Komar (1969) was used and the planform was calculated at successive times. Refraction was apparently not accounted for in the numerical model. To verify the computations, a physical model study was carried out for the same conditions using crushed coal as the modeling material. The comparison was interpreted as good for up to 3 hours; however, for greater times, substantial differences occurred and these were interpreted as being due to wave refraction not being represented. The crushed coal was supplied to the model at the updrift end at a rate based on the Komar equation, and the results were interpreted as substantiating this relationship. However, the updrift end of the model beach receded substantially both in the numerical and physical models. In the physical model, this can only be interpreted as due to the Komar equation predicitions being less than the actual transport rate, possibly due to the low specific gravity (1.35) of the crushed coal. The predicted recession of the updrift beach is puzzling, although it could be due to a problem in properly representing the updrift boundary condition.

Other one-line models for shoreline changes in the vicinity of coastal structures were developed by LeMehaute and Soldate (1977) and Perlin (1978). Perlin also developed a two-line model formulation, with one-line representing the shoreline and the second the offshore. Dragos (1981) developed an $n$-line nodel for bathymetric changes due to the presence of a littoral barrier.

## III. THE NUMERICAL MODEL

## 1. Description.

There are several methods of modeling bathymetric changes due to the presence of a littoral barrier. An attempt can be made to either model the complete hydrodynamics and the resulting sediment transport or model using a combination of analytical and empirical sediment transport equations. The second method was chosen due to past relative success.

At least two methods of employing sediment transport equations exist: a fixed longshore and cross-shore grid system where the depth is allowed to vary or a fixed longshore and depth system where the cross-shore distance is allowed to change. Although it may seem somewhat awkward, the latter system was chosen for the model. This method allows the modeler to think of bathymetric changes due to a littoral barrier in terms of the effect on the contours; i.e., the contour realinement due to the structure's presence is observed. One limitation of this approach, at least as it was applied here, is that each depth contour must be single-valued; it is not possible to represent bars.

The next step in formulating the model was choosing the specific representation of the bathymetry. The model is an $n$-line representation of the surf zone in which the longshore direction $x$ is divided into equal segments each $\Delta x$ in length. The bathymetry is represented by $n$-contour lines, each a specified depth, which change in offshore location according to the equation of continuity. There are two components of sediment transport at each of the contour lines, a longshore component, $Q_{x}$, and an offshore component, $Q_{y}$. Figure 1 is a definition sketch showing the beach profile representation in a series of steps and the planform profile representation and notations used.

Implementation of the sediment transport equations requires knowledge of the wave field and the equilibrium offshore profile. A discussion of the refraction and diffraction schemes follows. The equilibrium profile is introduced when it is convenient. As an introduction to the logic used in the numerical model, a flow chart is presented in Figure 2.

## 2. Refraction.

A refraction scheme compatible with variable $\Delta y^{\prime} s$ was required because of the variable distance to fixed depth contours (as opposed to the more usual fixed grid system where a grid center has a longshore and offshore coordinate with a variable depth). One of the benefits of the $n$-line model is the ease with which the response of the contours to a particular wave and structure condition can be visualized. A fixed grid system and an interpolation scheme could have been used to obtain the wave field; however, this would have reduced accuracy and increased computation time. The scheme developed also saves computation time because it does not use differential products terms.


Figure 1. Definition sketch.


The first of the governing equations used is the conservation of waves equation

$$
\begin{equation*}
\frac{d g}{d t}+\vec{H}_{H} \times \vec{k}=0 \tag{8}
\end{equation*}
$$

where $\stackrel{\rightharpoonup}{\dot{\Gamma}} H$ is the horizontal differential operator equal to $\vec{i}(\partial / \partial x)+\vec{j}(\partial / \partial y)$ in which $\mathfrak{i}$ and $\vec{j}$ are the unit vectors in the $x$ and $y$ directions, respectively, and $x$ is the longshore direction, with positive to the right when facing the water, $y$ the offshore direction, with positive seaward, and $z$ the vertical coordinate, with positive defined as upwards. For the steady-state case, equation (8) yields

$$
\begin{equation*}
\frac{\partial}{\partial x}\left(k_{y}\right)-\frac{\partial}{\partial y}\left(k_{x}\right)=0 \tag{9}
\end{equation*}
$$

where $k_{x}$ and $k_{y}$ are the wave number projections in the respective directions. Defining as the angle $k$ makes with the $y$-axis positive in the counterclockwise direction, the equation can be written in final form as

$$
\begin{equation*}
\frac{\partial}{\partial x}(k \cos \theta)=\frac{\partial}{\partial y}(k \sin \theta) \tag{10}
\end{equation*}
$$

where $\theta=a+\pi$ (in radians). Noda (1972) and others have developed numerical solutions to expanded forms of equation (10). In the present study, equation (10) was initially central-differenced in the x-direction and forward-differenced in the y-direction with Snell's law used to specify the boundary conditions on the offshore boundary and one of the sides (i.e., the side of the wave angle approach). However, a numerical problem arose. The argument of the arcsine exceeded $\pm 1.0$ for large $\Delta y / \Delta x$. To overcome this problem, a dissipative interface was used on the forward-difference term (after Abbott, 1979). The final finite-differenced form of equation (10) is

$$
\begin{aligned}
\theta_{i, j}^{n+1}= & \sin ^{-1}\left\{\frac { 1 } { k _ { i , j } } \left[\tau(k \sin \theta)_{i-1, j+1}+(1-2 \tau)(k \sin \theta)_{i, j+1} \quad(11)\right.\right. \\
& \left.\left.+\tau(k \sin \theta)_{i+1, j+1}-\frac{\Delta y}{2 \Delta x}\left((k \cos \theta)_{i-1, j}-(k \cos \theta)_{i-1, j}\right)\right]\right\}
\end{aligned}
$$

where $\tau$ has been taken as 0.25 . The past $\theta_{i, g}^{n}$ and the present $\theta_{i}^{n}$, wave angles are numerically averaged to give the $\hat{\theta}_{i}, j$. Newton's method is used to compute the wave number via the innear wave theory dispersion relation. In addition, numerical smoothing is used at the conclusion of the wave field calculation. This approximates in an ad hoc manner diffractive effects (lateral transfer of wave energy along the wave) which exist in nature but have been omitted due to use of the equation for refraction (equation 8). The smoothing routine is

$$
\begin{equation*}
\theta_{i, j}=\frac{1}{4} \theta_{i-1, j}+\frac{1}{2} \theta_{i, j}+\frac{1}{4} \theta_{i+1, j} \tag{12}
\end{equation*}
$$

The second governing equation used in the refraction scheme is conservation of energy. Neglecting dissipation of energy due to friction, percolation, and turbulence, this equation can be expressed as

$$
\begin{equation*}
\vec{\nabla} \cdot\left(E \vec{C}_{G}\right)=0 \tag{13}
\end{equation*}
$$

where $E$ is the average energy per unit surface area and $\vec{C}_{G}$ the group yelocity of the wave train. Performing the operation indicated and replacing $\bar{C}_{G}$ by its components $\left(C_{G} \sin \theta\right)$ and $\left(C_{G} \cos \theta\right)$ results in the following:

$$
\begin{equation*}
\frac{\partial}{\partial x}\left(E C_{G} \sin \theta\right)+\frac{\partial}{\partial y}(E C \cos \theta)=0 \tag{14}
\end{equation*}
$$

Assuming linear theory,

$$
\begin{equation*}
E=\frac{\mathrm{vg} H^{2}}{8} \tag{15a}
\end{equation*}
$$

where $\rho$ is the mass density of water, $g$ the $g$ gravitational constant, and $H$ the wave height. Dividing the equation by ${ }^{-}$, finite-differencing and weighting the forward-differenced term as before, and solving for the wave height, results in the following:

$$
\begin{align*}
H_{i, j}^{n+1} & =\left\{\frac { 1 } { ( C _ { G } \operatorname { c o s } \theta ) _ { i , j } } \left[(\tau)\left(H^{2} C_{G} \cos \theta\right)_{i-1, j+1}+(1-2 \tau)\left(H^{2} C_{G} \cos \theta\right)_{i, j+1}\right.\right.  \tag{15b}\\
& \left.\left.+(\tau)\left(H^{2} C_{G} \cos \theta\right)_{i+1, j+1}+\frac{\Delta y}{2 \Delta x}\left[\left(H^{2} C_{G} \sin \theta\right)_{i+1, j}-\left(H^{2} C_{G} \sin \theta\right)_{i-1, j}\right]\right]\right\}^{(15 b}
\end{align*}
$$

This equation is also solved by iterative techniques and the $H_{i, j}^{n+1}$ and $H_{i, j}^{n}$
are averaged at the conclusion of each iteration.
$C_{G}$ is determined by the linear wave theory relationship

$$
\begin{equation*}
C_{G}=\frac{C}{2}\left(1+\frac{2 k h}{\sinh 2 k h}\right) \tag{16}
\end{equation*}
$$

where $h$ is the water depth, $k$ the wave number, and $C$ the wave celerity. Wave height boundary conditions are input along the same boundaries as the wave angles using linear theory shoaling and refraction coefficients. The o's have been previously determined. In both equations (11) and (15) for a variable grid system, the points $(i+1, j)$ and ( $i-1, j)$ need to be determined (i.e., because the $y$ coordinates are not fixed, adjacent values with the same subscripts can be farther or closer to shore, therefore interpolation must be used). The actual values are found by searching the ( $i+1$ ) and ( $i-1$ ) cross-shore lines, finding the adjacent values in the positive and negative $y$-direction, and interpolating to determine the value.

## 3. Diffraction.

The diffraction solution (in the lee of the structure) used in the model is based on the method of Penny and Price (1952). Assumptions used in this method include a semi-infinite breakwater, which is infinitesimally thin, linear wave theory and constant depth. A definition sketch for wave diffraction is shown in Figure 3. The quantity THETAO represents the angle of wave incidence relative to the jetty axis, ANGLE represents the angle from the jetty at the point where the diffraction coefficient is to be computed, and RAD is the radial distance. The radial distance is then cast into a dimensionless parameter, $\operatorname{RHOND}(=2 \pi R A D / L)$, where $L$ is the wavelength. This is equivalent to multiplying the radial distance by the wave number $k$.

The diffraction coefficient AMP is expressed as the modulus of the diffracted wave

$$
\begin{equation*}
\text { AMP }=(\text { Sum } 1)^{2}+(\text { Sum } 2)^{2} \tag{17}
\end{equation*}
$$

where

$$
\begin{aligned}
\text { Sum } 1= & {\left[\cos (\text { RHOND }(\cos (\text { ANGLE-THETAO }))) \cdot\left(\frac{1}{2}\left(1.0+C_{F}+S\right)\right)\right]+} \\
& {\left[\sin (\text { RHOND }(\cos (\text { ANGLE-THETAO }))) \cdot\left(-\frac{1}{2}\left(S-C_{F}\right)\right)\right]+} \\
& {\left[\cos (\text { RHOND }(\cos (\text { ANGLE }+ \text { THETAO }))) \cdot\left(\frac{1}{2}\left(1.0+C_{F}+S\right)\right)\right]+} \\
& {\left[\sin (\text { RHOND }(\cos (\text { ANGLE THETAO }))) \cdot\left(\frac{1}{2}-\left(S-C_{F}\right)\right)\right](18) }
\end{aligned}
$$

$$
\begin{align*}
\text { Sum } 2= & {\left[\cos (\text { RHOND }(\cos (\operatorname{ANGLE}-\operatorname{THETAO}))) \cdot\left(-\frac{1}{2}\left(S-C_{F}\right)\right)\right]+} \\
& {\left[\sin (\text { RHOND }(\cos (\operatorname{ANGLE}-\operatorname{THETAO}))) \cdot\left(\frac{1}{2}\left(1.0+C_{F}+S\right)\right)\right]+} \\
& {\left[\cos (\text { RHOND }(\cos (\operatorname{ANGLE}+\text { THETAO }))) \cdot\left(-\frac{1}{2}\left(S-C_{F}\right)\right)\right]+} \\
& {\left[\sin (\text { RHOND }(\cos (\text { ANGLE+THETAO }))) \cdot\left(\frac{1}{2}\left(1.0+C_{F}+S\right)\right)\right] } \tag{19}
\end{align*}
$$

In Equations (18) and (19), $C_{F}$ and $S$ represent Fresnel integrals and are computed in the model by means of an approximation after Abramowitz and Stegun (1965).

Having obtained AMP, the wave height at the location in question is simply the product of the specified partially refracted incident wave height and AMP. The angle of the wave crest is computed assuming a circular wave front along any radial; this angle is then refracted using Snell's law.

Throughout the refraction and diffraction schemes, the local wave heights are limited by the value, $0.78 \times$ depth.


Figure 3. Definition sketch for wave diffraction.

## 4. Sand Transport Model.

a, Governing Equations. Three basic equations are used to simulate the sediment transport and bathymetry changes according to the wave field. The equation of continuity

$$
\begin{equation*}
\frac{\partial y}{\partial t}+\frac{\partial q_{x}}{\partial x}+\frac{\partial q_{y}}{\partial y}=0 \tag{20}
\end{equation*}
$$

requires as input, knowledge of the longshore and cross-shore components of sediment transport. The total transport alongshore has been measured by several investigators and many equations exist; however, the distribution of the transport across the surf zone is not well known. Fulford (1982) based on laboratory data from Savage (1959), developed a distribution of longshore sediment transport across the surf zone for the case of straight and parallel contours. Fulford's use of Savages experiment was based on two assumptions: 1) the structure must be a total littoral barrier and 2) onshore-offshore sediment transport could be neglected. Test 5-57 was chosen because the two criteria were nearly met. Savage reported that the groin acted as a total littoral barrier for the first 35 hours of the test (i.e., no bypassing occurred prior to 35 hours). This does not mean that no onshore-offshore transport occurred because as the profile steepens on the updrift side, onshore-offshore transport does occur. However, it was assumed to be negligible. In addition, the initial profile had been molded to an equilibrium profile via 150 hours of waves. Thus, the two criteria required to develop an inferred longshore distribution of sediment transport were nearly satisfied. This distribution is shown as a dashline in Figure 4. The smaller "maximum" is believed to be an extraneous effect of a groin downdrift from the location in the experiment where the data were taken. Therefore, this feature was replaced by a monotonically decreasing, smooth curve as shown by the "altered" curve. To analytically represent this distribution, a function of the following form was chosen

$$
\begin{equation*}
q_{x}(y)=(B)(y)^{n-1} e^{-(y)^{n}} \tag{21}
\end{equation*}
$$

This type of equation is convenient because it is easily integrable, and by properly choosing the constant, B, the integral of the equation from zero to infinity can be required to equal a particular value. This too is highly desirable because, as was done in the model, the integral is set equal to one and then multiplying by the value of the well-known longshore transport equation, the value of the transport at any location across the surf zone can be determined. Further investigation suggested a value of $n=3$ to produce a curve similar to Fulford's curve. A more general form of the equation which allows more flexibility and curve fitting is

$$
\begin{equation*}
a_{x}(y)=B(y+a)^{2} e\left\{-\left[\frac{y+a}{c y_{b}}\right]\right\}^{3} \tag{22}
\end{equation*}
$$



Distance Offshore From Initial MWL (ft)
Figure 4. Distribution of sediment transport across the surf $20 n e$.
where $y_{b}=$ distance to the point of breaking
$a$ = constant to allow sediment transport above mean water line (MWL) (swash transport or transport in region of wave setup) to be represented
$c=a$ constant establishing the width of the curve (to be determined)

$$
\left.\left.B=\frac{3}{c^{3} y_{b}^{3}} \quad \text { (causes } \quad \int_{0}^{\infty} q_{x} ; y\right) d y=1.0\right)
$$

Based on Fulford's (1982) results and considering a to be proportional to the breaking height divided by the beach slope, the constant of proportionality was determined to be unity; i.e., $a=h_{b} /(\partial h / \partial y)$. Using equation (22) and a digitized version of the curve shown in Figure 4, a nonlinear least squares regression was carried out to determine the value of $c$. A Taylor's series expansion of the form

$$
\begin{equation*}
f^{k+1}(c, y)=f^{k}(c, y)+\frac{\partial f}{\partial c} \Delta c \tag{23}
\end{equation*}
$$

where $k$ and $k+1$ represent the number of the iteration carried out. Least squares regression minimizes the square of the difference between ubserved and predicted values with respect to a change in the parameter being computed, or

$$
\begin{equation*}
\frac{\partial}{\partial(\Delta C)}\left\{\sum_{n=1}^{N}\left[f_{O B S}-\left(f^{k}(c, y)+\frac{\partial f}{\partial C} \Delta c\right)\right]^{2}\right\}=0 \tag{24}
\end{equation*}
$$

where fOBS represents the observed values, which in this case is $q_{x}(y)$ OBS. Carrying out the differentiation indicated and manipulating terms, $\Delta c$ can be solved in terms of known quantities.

An iterative procedure was then used by updating the values of $f^{k}(c, y), a f / \partial c$, and $c$ until an acceptably small change in c results. For the data herein, the value of $c$ was determined to be 1.25. The final form of sediment transport of a y location in the surf zone results for a shoreline with straight and parallel contours, as

$$
\begin{equation*}
q_{x}(y)=\frac{3}{(1.25)^{3}\left(y_{b}\right)^{3}}(y+a)^{2} e^{-\left[(y+a) /\left(1.25 y_{b}\right)\right]^{3}} \tag{25}
\end{equation*}
$$

This equation, which is also presented in Figure 4, predicts the relative transport at point $y$. To obtain the fraction of transport between two $y$ coordinates, the integral of equation (25), from $y_{1}$ to $y_{2}$, must be used.

$$
\begin{array}{r}
Q_{x_{N D}}=\left.Q_{x}\right|_{y_{1}} ^{y_{2}}=\int_{y_{1}}^{y_{2}} q_{x}(y) d y=e^{-\left[\left(y_{1}+a\right) /\left(1.25 y_{b}\right)\right]^{3}}  \tag{26}\\
-e^{-\left[\left(y_{2}+a\right) /\left(1.25 y_{b}\right)\right]^{3}}
\end{array}
$$

$Q_{x}$ [ND] is dimensionless; therefore, to compute a value in, say, cubic feet per second, it must be multipled by the total transport along a perpendicular to the shoreline obtained from the total longshore transport equation used in the model

$$
\begin{equation*}
Q=C^{\prime} H_{b}^{5 / 2} \sin \left(2 a_{b}\right) \tag{27}
\end{equation*}
$$

See Appendix A for a discussion of the constant $C^{\prime}$. It is noted that the transformation of $q_{x}(y)$ to $q_{x}(h)$ can be effected by multiplying by the one-dimensional Jacobian ( $\Delta y / \Delta h$ ). This latter form ( $q_{x}(h)$ ) is more useful here because the present model simulates the changes in contour position (ay) rather than changes by depth $(\Delta h)$.

In the numerical model, $Q_{x}(I, J)$ (see Fig. 1) is determined using equation (26) except for the shoreline contour, $J=1$, and the farthest offshore contour simulated, $J=J M A X$. The shoreline contour longshore transport, $Q_{X}(1,1)$, in order to include swash transport, uses equation (16); however, the first term is set equal io 1.0 . The seawardmost contour transport, $Q_{X}(I, J M A X)$, in order to include any longshore transport not yet accounted for, neglects the second term of equation (26) (i.e., it accounts for transport from $y(I, J M A X)$ to infinity). The dimensionless numbers are then multiplied by $Q$ determined from equation (27). This method is based on parallel contours which may not exist. In order to compensate for the nomparallel nature of the contours (note that refraction does account for it as far as the wave field is concerned), the term $\sin (2 a b)$ of equation (27) is replaced by $\sin \left(2 a_{L}\right)$ shoreward of the breakpoint, where aL represents the angle between the "local" wave angle and the "local" contour. It can be argued that for a spilling breaker, the remaining surf zone at any point "sees" a total transport similar to equation (27), where ab and $H_{b}$ are the local values. The problem is that the constant of proportionality was determined for the entire surf zone and for nearly straight and parallel contours. This not being the case, the equation was altered on intuitive grounds to reflect the fact that the contours are no longer straight and parallel.

The second input required by the continuity equation to predict the bathymetric changes is the cross-shore sediment transport. The governing equation for onshore-offshore transport (after Bakker, 1968) is

$$
\begin{equation*}
Q_{y_{i, j}}=\Delta x C_{O F F_{i, j}}\left[y_{i, j-1}-y_{i, j}+W_{E Q_{i, j}}\right] \tag{28}
\end{equation*}
$$

Where $C_{0 F E}$ is an activity factor (inside the surf zone $=10^{-5}$ feet per second for the PFototype simulation herein, $10^{-4}$ feet per second for the physical model simulation) (see App. A. for a discussion) and $W_{E O}(i, j)$ is the positive equilibrium profile distance between $y(i, j)$ and $y\left(i, j-\frac{1}{2}\right)$ determined from the equilibrium profile used in the numerical model $h=A y^{2 / 3}$ (Dean, 1977). See Appendix A for discussion of the value of $A$. The physical interpretation of equation (28) is that as this profile steepens (flattens), sediment is transported offshore (onshore).
b. Methods of Solution. Three separate finite-difference techniques were used to solve the equations:
(1) Explicit longshore-continuity and explicit cross-shore continuity;
(2) Implicit longshore-continuity and explicit cross-shore continuity for half a time-step then vice versa; and
(3) Implicit longshore-cross-shore continuity.

An explicit formulation was first developed which used the refraction scheme, the distribution of longshore sediment transport across the surf zone, and the onshore-offshore sediment transport equation. Problems in addition to the usual ones which are encountered with explicit methods (e.g., computation time and cost) were immediately realized. In the explicit method, both transport computations are based on the former values of the contour locations and are completely uncoupled. Stability of an explicit scheme requires a small time-step. In addition, the noncoupled nature of the equations, in some cases, resulted in crossing of the contours due to the transport computed.

It is logical to assume that an implicit formulation of the longshore transport equation used as input to the continuity equation along with the explicit onshore-offshore transport component would help the numerical stability (on the other half time-step, the longshore component would be computed explicitly and the onshore-offshore transport equation would be solved implicitly with the continuity equation). Although this scheme would be superior to the explicit procedure, it still would be susceptible to crossing contours. It should be noted that the magnitude of the coefficient used in the onshore-offshore equation is very important to the extent tha* the simulation models natural phenomena. If the coefficient is very small or vanishes, sediment will not move offshore and contours will cross because of the variation in the distribution of longshore sediment transport across the surf zone. If the coefficient is too large, the onshore-offshore transport, may become large enough that on a particular time step, an offshore contour
would move too far shoreward, thereby crossing an inshore contour or vice versa. Once the contours cross, not only does the bathymetry become unrealistic, but mathematically, the equation which computes the longshore distribution across the surf zone changes signs at some locations and the entire model becomes physically unrealistic.

To circumvent these problems, an implicit scheme that simultaneously solves the three governing equations, was developed. Utilizing equation (26), and the one-dimensional Jacobian ( $\Delta y / \Delta h$ ) to convert to $Q_{x}(h)$, the total longshore transport equation (27), the following equation is obtained,

$$
\begin{align*}
a_{x_{i, j}}=\left\{\left[\exp \left(-\left(\frac{\left(h_{i, j-1}\right)^{3 / 2}+H_{b_{i}} A^{3 / 2}}{1.25 h_{b_{i}}}\right)\right)-\right.\right. & \left.\exp \left(-\left(\frac{\left(h_{i, j}^{3 / 2}+H_{b_{i}} A^{3 / 2}\right.}{1.25 h_{b_{i}}^{3}}\right)\right)\right] \\
& \left.\times\left(c^{\prime} H_{b_{i, j}^{5 / 2}}^{5}\right)\right\} \quad \tag{29}
\end{align*}
$$

$Q_{x}(i, j)$ represents the sediment transport between depths $h(i, j)$ and $h(i, j-1)$ (see Fig. 1). The term in brackets represents the normalized distribution of longshore transport between $h(i, j)$ and $h(i, j-1) ; \theta$ is the averaged wave angle at the location of $Q_{x}(i, j)$ and $\alpha_{c}$ is the local contour orientation angle. Defining everything except $\sin \left(2 \theta-2 a_{C}\right)$ as $v(i, j)$ and using a superscript to denote a time step, this equation can be written

$$
\begin{equation*}
Q_{x_{i, j}}^{n+1}=v_{i, j} \sin \left(2 \theta-2 a_{c}^{n+1}\right) \tag{30}
\end{equation*}
$$

The assumption has been made that the wave field ( H and $\theta$ ) do not vary during the bathymetric changes over the time-step. Using the following trigonometric identities,

$$
\begin{align*}
\sin (2 a-2 b) & =\sin 2 a \cos 2 b-\cos 2 a \sin 2 b  \tag{31a}\\
\cos 2 a & =2 \cos ^{2} a-1  \tag{31b}\\
\sin 2 a & =2 \sin a \cos a \tag{31c}
\end{align*}
$$

and recognizing that the following expression is an approximation

$$
\begin{equation*}
\sin \left(a_{c}^{n+1}\right)_{i, j}=\frac{\frac{1}{2}\left(y_{i, j}^{n+1}-y_{i-1, j}^{n+1}+y_{i, j}^{n}-y_{i-1, j}^{n}\right)}{\left((\Delta x)^{2}+\left(y_{i, j}-y_{i-1, j}\right)^{2}\right)^{1 / 2}} \tag{32}
\end{equation*}
$$

along with assuming that the change in the denominator is small for a reasonable time-step (the numerator has been averaged over the $n$th and $n+$ $1^{\text {th }}$ time-steps), equation ( 30 ) results in

$$
\begin{equation*}
Q_{x_{i, j}}^{n+1}+(S 3)_{i, j} y_{i, j}^{n+1}-(S 3)_{i, j} y_{i-1, j}^{n+1}=(R H S 1)_{i, j}^{n} \tag{33}
\end{equation*}
$$

where $(S 3)_{i, j}=\left(\frac{1}{2}\right)\left(v_{i, j}\right) \cos (2 \theta)\left(2 \cos a_{c}\right) \frac{1}{\left(\Delta x^{2}+\Delta y^{2}\right)^{1 / 2}}$

$$
(\text { RHS } 1)_{i, j}^{n}=\left(v_{i, j}\right)(2 \sin \theta \cos \theta)\left(\cos ^{2} \alpha_{c}-1\right)-(S 3)_{i, j}\left(y_{i, j}^{n}-y_{i-1, j}^{n}\right)
$$

Here it has also been assumed that $\cos ^{2}{ }_{\alpha_{c}}$ does not change over the time step. Equation (33) is the final form of the longshore sediment transport equation prior to its use in conjunction with the other equations.

Averaging $y$ values on the $n^{\text {th }}$ and $(n+1)^{\text {th }}$ time-steps, equation (29) cari be rewritten as

$$
\begin{equation*}
Q_{y_{i, j}}=\text { Const6 }_{i, j}\left\{\frac{1}{2}\left(y_{i, j-1}^{n+1}+y_{i, j-1}^{n}-y_{i, j}^{n+1}-y_{i, j}^{n}\right)+W_{E Q_{i, j}}\right\} \tag{34}
\end{equation*}
$$

where Const6(i,j) $=\operatorname{CoFF}(i, j)$. $\Delta x$. This is the final form on the onshore-offshore sediment transport equation.

The equation of continuity, finite-differenced for the $n$th and $(n+1)^{\text {th }}$ time-steps, can be written as
$\frac{y_{i, j}^{n+1}-y_{i, j}^{n}}{\Delta t}=\frac{1}{2 \Delta x \Delta h}\left\{Q_{x_{i, j}}^{n+1}+Q_{x_{i, j}}^{n}-Q_{x_{j+1, j}^{n+1}}-Q_{x_{i+1, j}^{n}}^{n}+Q_{y_{i, j}}^{n+1}+Q_{y_{i, j}^{n}}-Q_{y_{i, j+1}^{n+1}}^{-Q_{y_{i, j+1}^{n}}^{n}}\right\}$

Defining $R_{i, j}$ as $1 /(2 \Delta x \Delta h)$, inserting equations (33) and (34) into equation (35), and transferring all known quantities for the $n$th time-step to the right-hand side of the equation result in

$$
\begin{align*}
y_{i, j}^{n+1} & +\left(\Delta t R_{i, j}\right) S 3_{i, j} y_{i, j}^{n+1}-\left(\Delta t R_{i, j}\right) S 3_{i, j} y_{i-1, j}^{n+1}-\left(\Delta t R_{i, j}\right) S 3_{i+1, j} y_{i+1, j}^{n+1} \\
& +\left(\Delta t R_{i, j}\right) S 3_{i+1, j} y_{i, j}^{n+1}-\left(\Delta t R_{i, j} \text { Const6 }_{i, j}\right)\left(\frac{1}{2}\left[y_{i, j-1}^{n+1}-y_{i, j}^{n+1}\right]\right) \\
& +\left(\Delta t R_{i, j} \text { Const6 }_{i, j+1}\right)\left(\frac{1}{2}\left[y_{i, j}^{n+1}-y_{i, j+1}^{n+1}\right]\right)=\text { (AWARE }_{i, j} \quad(36 \tag{36}
\end{align*}
$$

Equa "ion (36) can be rewritten as

$$
\begin{align*}
& (1+u+v+z 1+z 2) y_{i, j}^{n+1}-(u) y_{i-1, j}^{n+1}-(v) y_{i+1, j}^{n+1} \\
& -  \tag{37}\\
& (Z 1) y_{i, j-1}^{n+1}-(Z 2) y_{i, j+1}^{n+1}=(\text { AWARE })_{i, j}
\end{align*}
$$

where

$$
\begin{aligned}
U & =\Delta t R_{i, j} S 3_{i, j} \\
V & =\Delta t R_{i, j} S 3_{i+1, j} \\
Z 1 & =\left(\frac{\Delta t}{2}\right) R_{i, j} \text { Const6 }{ }_{i, j} \\
Z 2 & =\left(\frac{\Delta t}{2}\right) R_{i, j} \text { Const }_{i, j+1} .
\end{aligned}
$$

Equation (37) is a weighted, centered scheme in which $y_{i}^{n+1}$ is computed using a weighting of itself and its four adjacent grid "neighbors". The weighting factors ( $\mathrm{U}, \mathrm{V}, \mathrm{Z1}$, and 22) are functions of the wave climate, the slope between contours, and the variables included in the original formulation. An investigation of a small gridded system demonstrated that by writing simultaneous equations, one for each yi,j, a banded matrix results. This matrix can be solved by LEQTIB, one of the available routines from the International Math and Statistics Library (IMSL). A schematic representation of the matrix $A$ which results from the matrix equation $[A][y]=[B]$ is presented in Figure 5. In this schematic, the large zeros represent triangular corner sertions of all zeros and the $0 . .0$ represents bands of zeros, the number of which is dependent on the number of contours simulated (the number of zero bands between either remote nonzero bands and the tridiagonal nonzero bands equals two less than the number of contours modeled (in both the upper and lnwer codiagonals of the matrix)). An inspection of the subscripts in equation (29) yields the reason the zero bands are required. The more $\mathbf{j}$ values (contours) used, the more $y$ grids there are along any perpendicular to shore. This causes zeros to appear in the matrix between bands as the weighting factors await being used to operate on $y^{n+1}(i-1, j)$ and $y^{n+1}(i+1, j)$. For this reason, the expense of simulating an increasing number of contours is exponential. The LEQT1B routine, utilizes banded storage and saves both storage and computation time; however, the rolitine has no special way of handling the interior zero bands. One refinement which would save computation time would be to develop an algorithm to solve and store the matrix by taking advantage of these inner zero bands; however, it is beyond the scope of this project.

Of course, the matrix requires boundary values on longshore extremities and on both onshore and offshore boundaries. The longshore boundary conditions are treated by modeling a sufficient stretch of shoreline so that effects of a structure's presence are minimal. The $y$ values along these boundaries can therefore be fixed at their initial locations. In the onshore-offshore direction, boundaries are treated quite differently. The


Figure 5. Schematic representation of banded matrix if not stored in banded storage mode.
berm and beach face are assumed to move in conjunction with the shoreline position. The required sediment transport is then computed by the change in position of the shoreline. The two equations are

$$
\begin{align*}
& y_{i, 0}^{n+1}=y_{i, 0}^{n}+\left[y_{i, 1}^{n+1}-y_{i, 1}^{n}\right]  \tag{38a}\\
& Q_{y_{i, 1}}^{n+1}=-\left[\frac{8 e r m \Delta x}{\Delta t}\right]\left[y_{i, 1}^{n+1}-y_{i, 1}^{n}\right] \tag{38b}
\end{align*}
$$

The offshore boundary is treated by keeping $y^{n+1}(i, j m a x)$ (the contour beyond the last simulated contour) fixed, until the angle of repose is exceeded. Then, the $y^{n+1}$ (i,jmax+1) is reset (at the conclusion of the $n+1$ time-step) to a position such that the slope equals the angle of repose. Note that $y^{n+1}(i, 0)$ is represented in the program by $Y \angle E R O_{j}$.

There are also no-flow boundary conditions required at each of the structures being modeled. These are imposed on the adjacent $y$-grid points which are located downdrift (i.e., in the shadow zone) of the structure and shoreward of the structures' seaward extremities. They are imposed by setting $S 3_{i}, j$ of equation (33) and DISTR $i_{i, j}$ (the term in square brackets in equation (29) equal to zero, thereby causing $Q_{x}(i, j)$ to be zero (i.e., the no-sediment flow condition). This boundary condition is imposed automatically for every shore-perpendicular structure.

It was found that even with the implicit formulation, high frequency oscillations occurred in the $y$ values immediately updrift and downdrift of the structure. The solution did not "blow up"; however, on larger time-steps "sloshing" (oscillating) did occur. Part of this problem was due to the boundary condition at the structure which had been such that either no sand was allowed along a contour line or the sand determined by the equations was allowed to be transported. Because of the very large angle which existed around the tip of the structure when a contour first exceeded the length of the structure, very large amounts of sediment transport were predicted. In the nature where analog sand transport rather than digitized transport occurs, this does not happen. Therefore, the boundary condition was altered to constantly allow sand transport around the end of the structure in proportion to that part of the contour representation which exceeded the structure (i.e., the transport was calculated for the location at tip of the structure as if the structure was not there and then a proportion of this value was allowed to bypass). Although the transport around the tip of the structure is based on the values from the past time-step, it more closely simulated the natural phenomenon.

Additionally, a dissipative interface is used on the $y$ values as follows:

$$
\begin{equation*}
y_{i, j}=(\tau) y_{i-1, j}+(1-2 \tau) y_{i, j}+(\tau) y_{i+1, j} \tag{39}
\end{equation*}
$$

where ${ }^{t}$ was again taken as 0.25 . It is noted that only high frequency oscillations in $y$ are affected by the use of equation (39); the total sum of $y$ :aluas is not affected. Also, in all the dissipative interface
schemes used, if a boundary point is being computed, either a forwarddifference or a backward-difference of equation (39) is used (after Abbott, 1979):

$$
\begin{array}{ll}
\text { Backward: } & y_{i, j}=(\tau) y_{i-1, j}+(1-\tau) y_{i, j} \\
\text { Forward: } & y_{i, j}=(\tau) y_{i+1, j}+(1-\tau) y_{i, j} \tag{40b}
\end{array}
$$

## iv. SIMULATIONS AND VERIFICATION

Several simulations were run; two were attempts at verifying the numerical model, the others were run to gain insight. Because a complete data set does not exist, only the available data are compared. The first modeling effort was to simulate the physical model tests of Savage (1959). A second set of cases was run for shore-perpendicular structures. Next, an effort was made to model sediment transport in the vicinity of a hypothetical dredge disposal site in the 11- to 14-foot depths off Oregon Inlet. Finally, the Channel Islands Harbor Longshore Transport Study (Bruno, et al., 1981) was modeled. Bathymetric changes were closely monitored during this study; however, the wave climate ( $H, \theta, T$ ) used was determined from the Littoral Environmental Observation (LEO) data and uncertainties exist as to the accuracy of the data.

1. Simulation of Savage's Physical Model Tests.

The numerical model was used to simulate one of the physical model tests of Savage (1959). Test 5-57 was simulated numerically for a 10 -hour period. In this physical model, the mean sediment size was 0.22 millimeters, the wave height averaged 0.25 feet, the wave period was 1.5 second, the wave angle was $30^{\circ}$ (at a depth of 2.3 feet), and the groin was approximately 9.5 feet from still water to its seaward limit. Coff was held constant at 10-4 feet per second throughout the profile for this simulation. The offshore profile is presented in Savage (1959). Figure 6 represents three of the eight contours simulated. Note that the initial 0.3- and 0.5 -foot-depth contours, in the numerical representation are too far seaward by approximately 2 feet. This is due to the $h=A y^{2 / 3}$ equation as compared to the equilibrium physical model profile. Realizing this, it is the shape of the contour which must be used as an indication of the numerical model predictions. The general trend of the contours is similar, although the numerical model contours are displaced farther seaward as expected. The major differences are in the diffraction zone.
2. Several Runs Using Shore Perpendicular Structures to Demonstrate Effects of Altering Some of the Pertinent Parameters.

In the following simulations, the models were run until their near-equilibrium values were achieved. Coefficient COFF was not a function of depth (beyond the surf zone) but was held constant throughout the simulated area. Important variables are as shown in the figures. Only one wave condition $\left(H_{0}=3\right.$ feet, $T=7$ seconds, and a deepwater wave angle $\alpha_{0}$
Note: Discrepancy between initial Savage contours and initial model contours is due to !ise of the $h=A y^{2 / 3}$ profile. Note.

of $60^{\circ}$ ) was used as input for all four cases. Case 4.2 a used an equilibrium shape factor A of 0.0899 and one groin. Case 4.2 b was similar to 4.2 a with the only modification being, that the $A$ value was changed to 0.1486 . In this way, a direct comparison was made based only on the shape of the equilibrium profile. Cases 4.2 c and 4.2 d used $A$-values of 0.0899 and 0.1486 , respectively, but this time three shore-perpendicular, evenly spaced structures were simulated.
a. Comparison of Cases 4.2a and 4.2b. The most obvious difference between Figures 7 and 8 is the volume of sand impounded updrift and eroded downdrift. This is due to blockage of more of the active transport zone in the second case (i.e., a shorter groin is required for an equivalent performance on a steeper beach). The next obvious difference is the size of the perturbation which exists in the offshore contours. Clearly, case 4.2 b is more perturbed and this is expected because larger offshore transports occur due to the steepening on the updrift side. Conversely, this means less sediment is initially bypassed (and along with the downdrift requirement for larger volumes of sand) causes larger erosional features in case 4.2b. Another interesting feature is the downdrift fillet which occurs in the third, fourth, and fifth contours. The fillet is due to the shape of the sixth contour which occurs because of the inability of the wave to transport more sediment (due to the reduction in wave height and angle in the diffraction shadow zone). The remaining difference is also due to the volume of sediment being impounded; i.e., the distance and extent of change the presence of the groin causes upcoast and downcoast.
b. Comparison of Cases 4.2 c and 4.2 d . The variations between cases 4.2 c and 7.2 d are very similar to the differences between cases 4.2 a and 4.2 b as would be expected with a groin field (here, three groins) as compared with a single groin (see Figs. 9 and 10). There is, however, one additional feature which can be attributed to the additional groins. Note that in the direction of littoral drift, the size of the fillet is decreasing. This is due to the updrift beach having an uninterrupted supply of sediment while the downdrift groin compartments are supplied sand at a rate determined by the bypassing. Part of this feature may also be due to the system not having attained complete equilibrium.

The effects of the fixed boundary conditions are evident on all cases run. In these example cases, the boundaries are clearly too close to the structure to provide a proper representation of the fillet contours.
3. Simulations of Sediment Transport of Dredge Disposal in the Vicinity of Oregon Inlet.

Hypothetical dredge disposal movement in the nearshore but beyond what is normally the surf zone at Oregon Inlet's adjacent beach to the south was modeled. In order to do these simulations, the program was altered such that for every nth iteration (time periods), the contours were shifted seaward to simulate the addition of dredged sediment disposal. The program presented in Appendix B does require slight modification to simulate this situation.

In general, the fifth and sixth contours were shifted seaward on a monthly basis to simulate the disposal of 121,000 cubic yards of sediment.

Fioure 7. Equilibrium planform, case 4.2a.

(7f) $\kappa$ 'วuoussff0 aวuezs!o

(7t) $\kappa$ 'ว104stto aวuefs!o

In all these simulations, the following variables were held constant: (a) a time-step of 3 hours, (b) a shoreline length of 10,000 feet, (c) a longshore space-step of 200 feet, (d) an A value of 0.15 foot ${ }^{1 / 3}$ for the equilibrium profile (see Fig. 11), (e) a berm height of 5.3 feet with a beach face slope of 0.05 , and ( $f$ ) a duration of 1 year. The wave climate was provided by the U.S. Army Engineer Waterways Experiment Station Wave Information Study (WIS) 1975 data and was initiated at different times of the year as indicated in the specific cases below. All simulations, prior to any addition of sediment, used the bathymetry shown in Figure 12. The shoreline (relative to mean low water, MLW) was scaled from a bathymetry-topography survey provided by the U. S. Army Engineer District, Wilmington. The initial offshore bathymetry was computed according to the equilibrium profile and the 0 -foot contour; i.e., the profile was shifted seaward or landward, accordingly, (see App. C.) The boundary profiles were fixed throughout the simulations. The variation of COFF outside the surf zone was used because of the importance of the time rate of change in this simulation. Table 1 presents the percentage of sediment which moves out of the control volume (i.e., imaginary boundaries around the area where sediment was added) directly onshore and the percentage of sediment remaining in the control volume at the conclusion of the simulation for each of the cases. In addition, a seventh (case 3) and eighth (case 4) were modeled. In Case 3, the only difference was that sediment was placed at the 11- and 14-foot contours. Case 4, however, was quite different and will be described in detail later. It has a 20,000 -foot shoreline, a longshore space-step of 400 feet, and sediment was added on a weekly basis. Also, the resolution in the profile was better.
a. Specific Cases.
(1) Case 2.a. In order to provide insight for the interpretation of the other modeling efforts, a simulation of the shoreline evolution using the January to December WIS time series, with no addition of sediment, was carried out. As expected, the contours almost attain an equilibrium planform shape (i.e., straight and parallel between the fixed end profiles; they do not, however, become aligned parallel to the base line because of the end conditions). Because of the scales involved, alongshore versus onshore-offshore, plotting the contours without distortion does not yield much information. Appendix $C$ provides a listing of the final contours for all the cases modeled.
(2) Case 2.b. The only difference between cases 2.a and 2.b is the suppression of the WIS wave angle which was set equal to zero (i.e., wave crest approach is shore-parallel at the offshore boundary of the model). This does not cause the longshore sediment transport to vanish completely. There are still local gradients in the contours which cause refraction and relative angles between wave crest and contour, thereby driving the longshore sediment transport (even if refraction was not considered, the local angle between the wave crest and contour would cause sediment transport). Note the larger onshore transport (Table 1) for this case compared with Case 2.a. This is due to the reduction in longshore transport caused by the wave angle of $0^{\circ}$. The model still tries to smooth the contour lines; however, more of the smoothing for the present case must be done by onshore-offshore transport.

(7よ) 4 'MTN MOLəq 47dəo

Figure 12. Initial contours used in the numerical model for all the Oregon Inlet simulations. (The scale for case 4 was twice the scale shown.)

Table 1. Summary of results at Oregon inlet.

$\begin{aligned} & \text { Case } \\ & \text { No. } \end{aligned}$	Description	Pct Onshore out of control volume	Pct Remaining in control volume
2.a	No sediment added, WIS waves Jan. - Dec.	Onshore Movement (992 $\mathrm{yd}^{3}$ )	$\begin{gathered} \text { Increase } \\ \left(14,148 \mathrm{yd}^{3}\right) \end{gathered}$
2.b	No sediment added. WIS waves $\left(a=0^{\circ}\right.$ ! Jan. - Dec.	Onshore Movement (1624 $\mathrm{yd}^{3}$ )	$\begin{gathered} \text { Increase } \\ \left(9,356 \mathrm{yd}^{3}\right) \end{gathered}$
$2 . c 1$	121,000 yd 3 added monthly, WIS waves Jan - Dec.	$\begin{gathered} 31,7 \\ \left(460,264 \mathrm{yd}^{3}\right) \end{gathered}$	$\begin{gathered} 38.6 \\ \left(559,984 \mathrm{yd}^{3}\right) \end{gathered}$
$2 . c 2$	121,000 $\mathrm{yd}^{3}$ added monthly, WIS waves Apr. - Mar.	$\begin{gathered} 32.1 \\ \left(466,150 \mathrm{yd}^{3}\right) \end{gathered}$	$\begin{gathered} 36.9 \\ \left(535,392 \mathrm{yd}^{3}\right) \end{gathered}$
2.c3	121,000 yd ${ }^{3}$ added monthly, WIS waves July - June.	$\stackrel{28.6}{\left(415,784 \mathrm{yd}^{3}\right)}$	$\left(682,088 \mathrm{yd}^{3}\right)$
2.c4	121,000 yd 3 added monthly, WIS waves Oct. - Sept.	$\stackrel{27.2}{\left(395,556 \mathrm{yd}^{3}\right)}$	$\begin{gathered} 46.8 \\ \left(670,848 \mathrm{yd}^{3}\right) \end{gathered}$
3	121,000 yd ${ }^{3}$ added monthly at the 11and 14-foot contours WIS waves, Jan. - Dec.	$\left(32,164{ }^{\star} \mathrm{yd}^{3}\right)$	$\begin{gathered} 78.0 \\ \left(283,016 \mathrm{yd}^{3}\right) \end{gathered}$
4	$27,923 \mathrm{yd}^{3}$ added weekly on the 7-8-, 9-, and 10-foot contours, WIS waves Jan. - Dec.	$\stackrel{19.0}{\left(275,796 \mathrm{yd}^{3}\right)}$	$\begin{gathered} 47.4 \\ \left(687,525 \mathrm{yd}^{3}\right) \end{gathered}$

[^1](3) Case 2.cl. In this simulation, sediment is added to the system each month. It was simulated by advancing the 7 - and 11-foot contours on a monthly basis to represent 121,000 cubic yards per month. Specifically, the sand volumes were "tapered" starting at the center of the nourished area over a distance of $\pm 2,700$ feet from the center. Table 2 presents the monthly $\Delta y$ values for the blocks between the 7- to 11-foot contours and the 11- to-14 foot contours. Figure 13 shows the planform $\Delta y$ values added monthly. WIS waves were used with the sequence being the normal calendar year, January through December.


Figure 13. Pionthly incremental values of ay due to dredge disposal illustrated for the block between ?- and 11-foc: contors.

The initial and final fifth and sixth contours have been plotted in Figures 14 and 15. The first figure has no distortion; the second is distorted 10 to 1 . The simulation predicts that 31.7 percent of the dredge disposal will move shoreward out of the control volume. An additional 29.7 percent efflux occurs in the offshore and longshore directions, leaving only 38.6 percent of the total amount of sediment added remaining in the control volume. It is not clear what quantity of the sediment leaving in the longshore direction would reach shore. It is conceivable that most of this sediment would eventually reach the surf zone. The rate at which this material would move ashore would be expected to be slower than the rate at which the large mounds would move ashore because the deviation of the profile from equilibrium is much less.
(4) Cases 2.c2, 2.c3, and 2.c4. The next three simulations were the same as $2 . \mathrm{cl}$ except the time series of wave events has been seasonally altered. Cases 2.c2, 2.c3 and 2.c4 use the 1975 wave climate from April through March, July through June, and October through September, respectively. The maximum variation is about 5 percent for the sediment volume moving onshore, and about 10 percent for the volume remaining. The variation in the

Table 2. Monthly values of $\Delta y$ for the steps located between the 7 - to 10-foot contours and the 11- to 14-foot contours.

Value of I	Monthly $\Delta y$ value (ft) for steps between	
	7- and 11-foot contours	11- and 14-foot contours
26	145.8	194.4
25,27	135.4	180.5
24,28	125.0	166.6
23,29	114.6	152.7
22,30	104.1	138.9
21,31	93.7	125.0
20,32	83.3	111.1
19,33	72.9	97.2
18,34	62.5	83.3
17,35	52.1	69.4
16,36	41.7	55.5
15,37	31.2	41.7
14,38	20.8	27.8
13,39	10.4	13.9
All Others	0	0


Figure 14. Initia, and final 7- and 11-foot contours (no distortion).


$$
\text { Note: Scale Distortion }=10: 1
$$ Longshore Direction, $x$

Fiģure 15. Initial and final contours for case $2 . c l[y(1,5)$ and $y(1,6)]$.
quantity moving onshore could be caused by waves that first tend to move more sediment longshore; then, the waves that transport more sediment onshore have a less out-of-equilibrium profile to cause movement upon. The variation in percentage remaining is due to the variation of the time series of the wave climate, with the last month in the simulation being especially important.
(5) Case 3. Instead of extending the 7-and 11-foot contours monthly to simulate the disposal of dredged sediments, the 11- and 14 -foot contours were extended (194.4 feet each at the center of the disposal area). This case was modeled because the larger available dredge could not dump in more shallow water. The reduction and increase in the percent of onshore volume and the percent volume remaining ( 8.9 percent and 78.0 percent, respectively) demonstrate the sensitivity of the depths investigated. Qualitatively, these depths are the depths to which offshore bars occur along the Atlantic U.S. coast.
(6) Case 4. Further investigation of the disposal process demonstrated the need for an 11,000 -foot shore-parallel disposal length with the sediment placed at the 11 -foot contour building to about 7 feet. It was decided to model this physical situation also. The total shoreline length was changed to 20,000 feet, and the space step to 400 feet; the length of the disposal area in the longshore direction was increased to 10,800 feet. The resolution in the vicinity of the depths of the dump was improved by adding the additional contours and the profile is shown in Figure 16. As in the other seven cases, $1,452,000$ cubic yards was added annually to the system; however, the addition was accomplished on a weekly basis ( 27,923 cubic yards per week). Sediment was still added by extending the contours seaward, but rather than placing one-fourth of the sediment at each of the four contours, the volumes were determined based on the trapezoidal cross section shown in Figure 17. This cross section more closely resembles the disposal mound formed by hopper dredging. The incremental values Figure 18 show, in planform, the extension of the contours to simulate the weekly sediment addition at the 8 -foot contour.

A schematic illustration of the sediment transported from the nourished region is presented in Appendix $C$. Nineteen percent of the sediment added moved directly onshore out of the control volume.
b. Conclusions for the Movement of Disposed Sediment in the Vicinity of Oregon Iniec. The computer simulations, tempered with engineering judgment, demonstrate that between 15 and 35 percent of the material added to the 7 and 11-foot contours, or to the 7-8-9-, and 10-foot contours would be transported into the nearshore transport system during the first year. If the disposal process was continued, the system would approach steady state in terms of the volume of deposited material residing offshore.

For the case of sediment addition at the 11- and 14-foot contours, the computer simulations, tempered with engineering judgment, show that between 5 and 25 percent of the material added would be transported into the nearshore transport system during the first year.



Figure 17. Shore-perpendicular cross section of disposal mound. The volumes represent the volume percentage of the trapezoidal section between contours and therefore, the quantity of sediment added to the $7-, 8-, 9-$, and 10 - foot contours.


Figure 18. Incremental values of $\Delta y$ due to dredge disposal, illustrated for the block between 8- and 9 -foot contours (case 4).
4. Simulation of the Longshore Sand Transport Study at Channel Islands Harbor, California.

The CIH Longshore Sand Transport Study (Bruno, et al., 1981) was the only field study found suitable for verification purposes. Wave data collected included the LEO data and a two pressure-sensor gage array. Although the pressure gages were not in operation throughout the study, it was expected that the data they produced would be superior to that of the LEO data. However, these data were not available in a reduced form, so the LEO data were used. An adjustment of $11^{\circ}$ was made to the breaker angle to orient the angle with respect to the base line, rather than to the local shoreline orientation angle. Observations had been taken twice daily at three locations; the middle location was used (observer No. 5714). Waves which approached the shoreline at angles too large to have originated in a depth of 10 meters, according to Snell's law, were set equal to $90^{\circ}$ at that depth (crest of wave perpendicular to the baseline). The 10 -meter depth was chosen because it is the approximate depth at the tip of the offshore breakwater (for this reason, it was also chosen as the depth of the step beyond the $y(I$, JMAX +2 )th contour). It was assumed that each of the two daily observations occurred for 12 hours and using a time-step of 6 hours, this meant two time-steps per wave. In cases where parts of the wave data ( $H_{b}$, $a_{b}$, or $T$ ) were missed by the observer or were equal to zero, the data were ignored (no computations were made), but the time was included. Because the time rate of change is important for this simulation, the variation of COFF outside the break point was used.

The period chosen to model was 20 April through 1 December 1976. The initial survey was taken after dredging of the sediment trap and for this reason was known to be out of equilibrium. The bathymetric surveys were conducted using several methods, the most advanced being a Lighter Amphibious Resupply Cargo vessel (LARC) proceeding along shore-perpendicular lines (approximately in the vicinity of each survey station) taking fathometer readings every 10 seconds, with positioning systems trilaterating the vessel's position concurrently. These data were recorded on tape. The beach-face data were taken using standard surveying methods. Because the data fluctuated randomly about the stations, depending on the speed of the craft, the $(x, y)$ coordinate positions had to be altered to fixed changes in $x$ and $y$. This was accomplished using an interpolation routine. The $x$ values were made to coincide with the stations used in the surveys, and the $y$ values were determined at 100 -foot intervals beginning from the base line. Stations $100+00$ and $118+00$ were located at the north jetty and termination of the detached breakwater, respectively (these correspond to I values of 16.5 and 34.5 in the model). See Figure 19.

Monotonic profiles of the form $h=A(y-y d e l)^{2 / 3}$ were fit to the data along each station line. "ydel" represents the zero location of the fitted shoreline, the value of which was unknown. Because dredging had been done in the lee of the breakwater, there was no reason to expect the $A$ value to correspond to the value upcoast where the influence of the structure and the dredging was negligible. For this reason, the profiles of Stations $122+00$ through $134+00$ were evaluated separately to determine an A value for the equilibrium profile to be used in the numerical model. For the detailed method used (LaGrange Multipliers and Newton-Raphson Method for nonlinear


Figure 19. Idealized numerical model representation of offshore breakwater at Channel Islands Harbor, California.
equations) and the computer programs see Appendix D. The two values obtained for the surveys of 20 April and 1 December 1976 were averaged to obtain the value used in the model, $A=0.2606$. Stations $101+00$ through $121+00$ were treated separately for the purpose of obtaining values with which to initialize those parts of the contours in the model and for comparison of the model predictions with the prototype values. Note that although the breakwater extends only to about Station $118+00$, the influence of the structure and dredging extends beyond that location and so, although arbitrary, the $121+00$ station was chosen as the dividing line. The initial and final values of the scaling parameter $A$ for the profiles were 0.3233 and 0.3528 , respectively. Because the initial shoreline is so irregular, a discontinuity between $121+00$ and $122+00$ is not evident.

One further idealization was made. The jetty-breakwater system was idealized as shown in Figure 19. This was required to simplify the physical situation, and although waves, currents, and sediment do pass through the opening in the prototype, it is hoped that they are of secondary importance.

The results of the numerical modeling of Channel Islands Harbor are presented in Figures 20 and 21. The first figure presents the shoreline contour (depth $=0$ ); the second figure presents the farthest offshore, modeled contour. In both cases, the initial shoreline represents the model and prototype (after fitting of the profiles). The initial shoreline contour is further offshore along the section of beach beyond the end of the breakwater, while in the lee of the breakwater, as would be expected after dredging, the shoreline is closer to the base line. The final prototype contour has undergone erosion along the reach beyond the tip of the structure, and accretion in the ?ee.

The model's shoreline contour has undergone similar changes, and on the average, represents the final prototype contour quite well. The JMAXth contour has been displaced quite similarly to the shoreline contour with shoreward movement (erosion) along the reach beyond the tip of the breakwater and seaward movement (accretion) within. It appears that the final model's shoreline has predicted too much erosion and not enough accretion. Several parameters could be incorrect, with the onshore-offshore sediment transport rate coefficient, COFF, perhaps the most likely. Overall, the model seemed to predict reasonable values 0 , the contours.

## V. SUMMARY AND RECOMMENDATIONS

Some of the parameters that the model तr's not include are important and should be mentioned. As stated previn., , the model does not include bar formation. This is precluded hej un $n$-line system. There are no provisions for water level fluctuations or currents. Improvement to the model could also be facilitated with better longshore and cross-shore sediment transport relationships. A more reliable equation for distribution of sediment transport across the surf zone would also be helpful (or further testing and calibration of the equation proposed herein). Finally, combining refraction and diffraction using equations to predict their combined effect would improve the wave field. The program was constructed such that improvement


Longshore Direction, $x$
Figure 20. CIH simulation of shoreline contour, 20 April I December 1976 (from LEO data).


Figure 21. CIH simulation of (JMAX)th contour, 20 April 1 December 1976 (from LEO data).
could be accomplished with minimum effort. Therefore, if a more suitable equation becomes available, the change of a subroutine should be sufficient for implementation of the equation.

Although the model is limited by the omission of the aforementioned parameters, it is reasonably correct. The ability to simulate various physical situations (shore-perpendicular structures, beach fills, breakwater and shore-perpendicular structures) has been demonstrated. In the CIH simulation where the data were first transformed to monotonically decreasing contours and LEO wave data were used, the model still predicts the prototype shoreline changes in a reasonable fashion.

Further research and model development should include exercising the model in a number of different situations. Several theoretical cases should be simulated, which if analyzed properly, would provide a tool for the coastal engineer. Combined refraction and diffraction should be included, if possible, along with any of the aforementioned parameters which have been omitted and for which relationships exist. Perhaps the most difficult problem to researchers working on modeling sediment transport in the vicinity of structures is the availability of field data. High-quality concurrent wave and bathymetric change data in the vicinity of coastal structures do not exist. One suggested field experiment is to monitor changes both updrift and downdrift of a jettied inlet which has a bypassing plant. Monitoring should begin immediately after bypassing, when the profiles are out of equilibrium. The recorded bathymetric and wave data would then provide data with which to calibrate, verify, and evaluate the existing models.

## LITERATURE CITED

ABBOTT, M.B., Computational Fy.frailics, Pitman Publishing Lta., London, 1979.
ABRAMOWITZ, M., and STEGUN, I., eds., Handbook of !athematical Furcetions, Dover Press, 1965.

BAKKER, W.T., "The Dynamics of a Coast with A Groyne System," Proceeiings $O_{i}$ : the 11 th Conserence on Coastal Engineering, American Society of Civil Engineers, 1968, pp. 492-517.

BRUNO, R.O., et al., "Longshore Sand Transport Study at Channel Islands Harbor, California," TP 81-2, U.S. Army, Corps of Engineers, Coastal Engineering Research Center, Fort Belvoir, Va., Apr. 1981.

DEAN, R.G., "Equilibrium Beach Profiles: U.S. Atlantic and Gulf Coasts," Ocean Engineering Report No. 12, University of Delaware Press, Newark, Del., 1977.

DRAGOS, P.A., "A Three Dimensional Numerical Model of Sediment Transport in the Vicinity of Littoral Barriers," M.S. Thesis, University of Delaware, Newark, Del., 1981.

FULFORD, E., "Sediment Transport Distribution Across the Surf Zone, M.S. Thesis, University of Delaware, Newark, Del., 1982.

GABLE, C.G., "Report on Data from the Nearshore Sediment Transport Study Experiment at Torrey Pines Beach, California, Nov.-Dec. 1978," Institute of Marine Resources IMR No. 79-8, Dec. 1979.

KOMAR, P.D., The Longsinore Transpont 0 : An: on Beacios, Ph.D. Dissertation, University of California, San Diego, Calif., 1969.

KOMAR, P.D., and INMAN, D.L., "Longshore Sand Transport on Beaches, " Mmani of Geophysical Researen, Vol. 75, 1970, pp. 5914-5927.
 Conference on Coastal Engineering, American Society of Civil Enginee"s, 1972, pp. 1331-1345.

LeMEHAUTE, B., and SOLDATE, M., "Mathematical Modeling of Shoreline Evolution," MR 77-10, U.S. Army, Corps of Engineers, Coastal Engineering Research Center, Fort Belvoir, Va., Oct. 1977.

LONGUET-HIGGINS, M.S., "Longshore Currents Generated by Obliquely Incident Sea Waves, I, II," Journal of Geophysical Research, Vol. 75, 1970, pp. 6778-6301.

MOORE, B., "Beach Profile Evolution in Response to Changes in Water Level and Wave Height," M.S. Thesis, University of Delaware, Newark, Del., 1982.

NODA, E.K., "Wave Induced Circulation and Longshore Current Patterns in the Coastal Zone," Tetra-Tech ivo. TC-149-3, Sept. 1972.

PENNY, W.G., and PRICE, A.T., "The Diffraction Theory of Sea Waves and the Shelter Afforded by Breakwaters," Philosophical Transactions of the Foyal Society, Series A, 244, Mar. 1952, pp. 236-253.

PERLIN, M., "A Numerical Model to Predict Beach Planforms in the Vicinity of Littoral Barriers, M.S. Thesis, University of Delaware, Newark, Del., 1978.

PRICE, W.A., TOMLINSON, K.W., and WILLIS, D.H., "Predicting Changes in the Plan Shape of Beaches," Proceedings of the 13th Conference on Coastii Engineering, American Society of Civil Engineers, 1972, pp. 1321-1329.

REA, C.C., and KOMAR, P.D., "Computer Simulation Models of a Hooked Beach Shoreline Configuration," Journal of Sedimentary Petrology, Vol. 45, No. 4, Dec. 1975, pp. 866-872.

SAVAGE, R.P., "Laboratory Study uf the Effect of Groins on the Rate of Littoral Transport: Equipment Cevelopment and Initial Tests," TM 114, U.S. Army, Corps of Engineers, Beach Erosion Board, Washington, D.C., June 1959.

## APPENDIX A

## DISCUSSION OF CONSTANTS AND SOME OF THE VARIABLES REQUIRED BY THE MODEL

Establishing the grid-contour system requires several variables. IMAX represents the number of cross-shore grid lines desired and JMAX the number of contours simulated. DX represents the spacing between the IMAX grid lines and DY the spacing between the contours. DX is a value which must be chosen along with IMAX and JMAX such that sufficient detail is obtained where necessary (e.g., in the shadow zone, if diffraction effects are believed to be very important, $D X$ must be assigned a sufficiently small value so that at least some points lie within the shadow zone for the larger wave angles). DY is not a constant, but a dimensional array which is computed by the model according to the contour location. Once the depths of contours to be modeled are chosen, the initialization of DY and the $y$ values are computed with the following equation after Dean, 1977

$$
\begin{equation*}
h=A y^{2 / 3} \tag{A-1}
\end{equation*}
$$

where $h$ is the depth, $y$ is the offshore distance and $A$ is the scaling parameter Dean gives values for $A$ for several diameter sediments; however, if long-term beach profiles are available for the site being modeled, the modeler may want to choose a slightly different $A$ value to more closely match the site-specific beach profile. Figure A-l presents values of A versus diameter (after Moore, 1982). The model is programed to input the $h(I, J)$ values (depths as shown in Figure 1, called DEEP (I,J) in the program) read in the value of $A$ (called ADEAN in program) and it then computes the $y$ values. Also shown in Figure 1 is the height of the berm (BERM) and this value, along with the beach-face slope (SFACE), is required as program input and can be obtained from beach profile site data. Because the model does not include water level fluctuations such as tides, all values are to be referenced to a chosen datum. Other geometrical constants depending on the site include SJETTY (the length of the jetty), MMAX (the number of structures to be input), and IJET $(M), M=1,2, \ldots$ MMAX (the smaller I value adjacent to the $M^{\text {th }}$ structure's location). If no structure is required, as in a beach fill, the value of SUETTY must be entered as 0.0, with MMAX and IJET (M) entered as 1 and (IMAX/2), respectively. As set up presently, the groin locations must be equally spaced.

One constant used throughout the program is the breaking wave criteria (CAPPA in the program) equal to 0.78 . It is required in several different computations and always governs the maximum wave height allowed according to the depth.

Another group of variables assigned values within the program is the sediment and fluid properties. These include fluid mass density, sediment mass density, porosity, and the angle of repose (e.g., RHO = 1.99, RHOS = 5.14, $\operatorname{POROS}=0.40$, and $R E P O S E=32^{\circ}$, respectively). The values can easily be changed to reflect site conditions.


Another very important set of constants is the constant chosen for the longshore and cross-shore components of sediment transport. Equation (27), the total longshore transport equation, contains the constant $C^{\prime}$ equal to

$$
\begin{equation*}
C^{\prime}=\frac{K_{\rho}(g)^{1 / 2}}{\left(\rho_{s}-\rho\right)(1-p)(16)(x)^{1 / 2}} \tag{A-2}
\end{equation*}
$$

where

$$
\begin{aligned}
& \mathrm{K}=0.77 \text { (Komar and Inman, } 1970 \text { ) } \\
& \mathrm{g} \text { is the acceleration of gravity }\left(32.17 \mathrm{ft} / \mathrm{sec}^{2}\right) \\
& \text { s and ", are the mass densities of the sediment } \\
& \text { and the seawater ( } 5.14 \text { and } 1.99 \text { slugs per cubic feet, } \\
& \text { respectively } \\
& \mathrm{p} \text { is the porosity }(0.40) \text {, and } \\
& \mathrm{k} \text { is taken as } 0.78 \text {. }
\end{aligned}
$$

Using these values to compute $C^{\prime}$ (TKSI in the program), a value of 0.325 is obtained. It is stressed that if any of these values are different for the site to be modeled, they should be changed and the program will compute another value for $C^{\prime}$.

The parameter COFF is an "activity factor" which, based on earlier work primarily within the surf zone, was found to be

$$
C_{0 F F}=10^{-5} \mathrm{ft} / \mathrm{s}, \quad n<h_{b}
$$

To generalize this concept for transport seaward of the surf zone, the wave energy dissipation per unit volume was utilized as a measure of mobilization of the bottom sediment. Inside the surf zone, the dominant wave energy dissipation is caused by wave breaking; outside the surf zone, the dominant mode of wave energy dissipation is due to bottom friction. These two components will be denoted by $D_{1}$ and $D_{2}$, respectively.
(a) Energy Dissipation by Wave Breaking. The wave energy dissipation per unit volume by wave breaking, $D_{1}$, is

$$
\begin{equation*}
D_{1}=\frac{1}{\hbar} \frac{\partial}{\partial y}\left(E C_{G}\right) \tag{A-3}
\end{equation*}
$$

which, employing the spilling breaker assumption ( $H=\times h$ ) within the surf zone, can be shown to be

$$
\begin{equation*}
D_{1}=\frac{5}{I 6} \rho g^{3 / 2} \kappa^{2} h^{1 / 2} \frac{\partial h}{\partial y} \tag{A-4}
\end{equation*}
$$

or

$$
\begin{equation*}
D_{1}=\frac{5}{24}-g^{3 / 2} \kappa^{2} A^{3 / 2} \tag{A5}
\end{equation*}
$$

in which $A$ is the scale parameter in the equilibrium beach profile

$$
\begin{equation*}
h(y)=A y^{2 / 3} \tag{A-6}
\end{equation*}
$$

(b) Energy Dissipation by Bottom Friction. The wave energy dissipation per unit volume due to bottom friction, $D_{2}$, is

$$
\begin{equation*}
D_{2}=\frac{1}{\hbar} \tau u_{b}=\frac{1}{\hbar} \rho c_{f} \quad \overline{u_{b} \mid u_{b}^{2}} \tag{A-7}
\end{equation*}
$$

in which $C_{f}$ is a bottom friction coefficient, $u_{b}$ is the bottom water particle velocity and the overbar indicates a time average. For linear waves, equation ( $A-7$ ) can be reduced to

$$
\begin{equation*}
D_{2}=\frac{1}{6 \pi} \stackrel{\rho}{\hbar} C_{f} \frac{H_{c}^{3}{ }_{c}^{3}}{\sinh ^{3} k h} \tag{A-8}
\end{equation*}
$$

The activity coefficient $C_{\text {OFF }}$, outside the surf zone, is expressed as

$$
\begin{align*}
C_{0 F F} & =\frac{1}{\Gamma} D_{2}^{D_{2}} \times 10^{-5} \mathrm{ft} / \mathrm{s}, \quad h>h_{b}  \tag{A-9}\\
C_{0 F F} & =\frac{4}{5} \frac{C_{f^{\circ}}{ }^{3}}{g^{3 / 2}{ }_{k}^{2} A^{3 / 2} h}\left(\frac{H}{\sinh k h}\right)^{3} \times 10^{-5} \tag{A-10}
\end{align*}
$$

in which $\Gamma$ is a parameter relating the efficiency with which breaking wave energy (which occurs primarily near the water surface) mobilizes the sediment bottom ( $0<\Gamma \leq 1$ ). Herein, $\Gamma$ is taken to be one.

Figure A-2 presents an example of the variation of the activity coefficient versus relative depth for a particular wave period and deep water wave height. It is seen that the activity coefficient reduces rapidly with increasing depth.

The value of COFF for the physical modeling of Savage's (1959) data was taken as $10^{-4}$ feet per second. Perlin (1978) presents some rationale for choosing a value of COFF; however, very little testing has been done and none is based on actual field measurement.
Coff
Figure A-2. Example of activity coefficient, Coff versus water deotr, h,

Finally, wave data are read into the program and the simulation begins. (For information regarding "Read Formats" for the various constants and variables, see Appendix E). Wave data required are wave height, wave period, wave angle relative to the x-axis of the model at a depth, WDEPTH and the duration of the wave climate (HS, T, ALPWIS, and a combination of NTIMES $x$ DELT, respectively, in the model). As is always the case with numerical models, the time step and space steps are very important to both stability and accuracy. Time steps on the order of 3 to 6 hours $(10,800$ to 21,600 seconds) or less are recommended. However, the complexity of the bathymetry, variation and time series of the wave data, constants used (especially COFF) along with several other factors, greatly influences the stability and accuracy of the results.

Table A-1 lists several of the important variables in the computer program.

Table A-1. List of important variables in the program

ABAND	The input banded matrix which stores the values from equation (37)
ADEAN	The value of the scaling parameter in the equilibrium beach profile
ALPHAS	The angle a contour makes with the x-direction base line (counter-clockwise is positive)
ALPWIS	The angle ( $-90^{\circ}$ to $+90^{\circ}$ ) the wave crest makes with the x-direction (counter-clockwisr is positive)
AMP	The amplitude of the diffracted wave in the shadow zone
ANGGEN	The wave angle at a depth, WDEPTH
ANGLOC	The local contour orientation angle
AWARE	See equations (36) and (37)
BERM	The height of the berm above water level
BMATRX	The matrix which, upon solution of the banded matrix problem yields the new y values
C	The wave celerity
CAPPA	The breaking wave index
CC	Constant which establishes the width of the distribution of sediment transport across the surf zone
CG	The group velocity throughout the wave field
CGEN	The linear wave theory celerity at a depth, WDEPTH

\(\left.\left.$$
\begin{array}{ll}\text { CGGEN } & \begin{array}{l}\text { The linear wave theory group velocity at a depth, WDEPTH }\end{array} \\
\text { CO } \\
\text { The deepwater, linear wave theory wave celerity }\end{array}
$$\right] \begin{array}{l}The onshore-offshore transport rate coefficient within the surf <br>

zone\end{array}\right]\)| The constant in the longshore sediment transport relationship |
| :--- |
| (0.77) |

HGEN
HS The significant wave height input

IBREAK The leeward side of the initial breaker location $J$ value
IJET Represents the lesser I value adjacent to the structure (these must be evenly spaced alongshore)

IMAX The total number of grid points in the $x$-direction (alongshore)
J The offshore contour location
JMAX The value of the seawardmost contour simulated
JUSE (JMAX + 2) the seawardmost contour at which the wave field is calculated

נ1 Landward contour of refraction zone
Seaward contour of refraction zone
J1REF Landward $J$ values of boundary of refraction zone
J2REF Seaward J values of boundary of refraction zone
MMAX The number of shore-perpendicular structures to be simulated (present maximum of 16 )

NITER The counterindex in the refraction routine
NTIME The counterindex in the time simulation "DO" loop
NTIMES The number of iterations of time-step, DELT, for which a particular wave is simulated

NUNIV The total number of time-steps simulated at any time
PI The value of $\pi=3.141592654$
POROS The porosity of the sediment
QX The longshore sediment transport rate at a specific location
QXTOT The total alongshore sediment transport rate due to the height and angle of the initial breaking wave

QY The onshore-offshore sediment transport rate at a specific location $R \quad$ See equations (36) and (37)

REPOSE The angle of repose of the sediment
RHO The mass density of seawater
RHOND The dimensionless distance from the tip of structure where diffraction is initiated

RHOS The mass density of sediment
RK The wave number
S3 See equations (36) and (37)
SFACE The slope of the shoreface
SJETTY The length of the shore-perpendicular structure (from the base line)

SIGMA The wave radian frequency
$T \quad$ The wave period
TAU The dissipative interface parameter
THETA The wave angle throughout the wave field
THEATO The wave angle at the tip of the structure
TKSI The longshore sediment transport rate coefficient
TWOPI Twice the value of $\pi$
$U \quad$ See equations (36) and (37)
UCRIT The critical velocity required to move the sediment according to the Sheid's diagram
$V \quad$ See equations (36) and (37)
WDEPTH The depth of water in meters to which the input wave conditions are to be transformed

WEQ The equilibrium profile distance between contours as defined by the stepped profile

XCOOR The x-coordinate where the wave field is to be calculated. Together with YCOOR, they determine whether the position is within or beyond the diffraction shadow zone

XDISTN The location of the structure along the shoreline in feet
$Y \quad$ The distance offshore to the contours

YCOOR	The y-coordinate where the wave field is to be calculated   Together with XCOOR, they determine whether the position is within   or beyond the diffraction shadow zone
YDISS	The value of $y$ after the use of the dissipative interface
YOLD	The previcus value of $y$
YZERO	The berm contour location
$Z 1$	See equation (37)
$Z 2$	See equation (37)

APPENDIX B
PROGRAM LISTING

```
100
200
300
400
500
600
700
800
900
1000
1400
1200
1300
1400
1500
1600
1700
1800
1900
2000
2100
2200
2300
2400
2500
2600
2700
2800
2900
3000
3100
3200
3300
3400
3500
3600
3700
3800
3900
4000
4100
4200
4300
4400
4500
4 6 0 0
4700
4 8 0 0
4 9 0 0
5 0 0 0
5100
5200
5 3 0 0
5400
5500
5 6 0 0
5 7 0 0
5800
5900
6000
6100
6 2 0 0
6300
6 4 0 0
6500
6600
6700
6800
6900
7 0 0 0
7100
7 2 0 0
```

```
C*********** PROGRAM IMPLICIT SEDTRAN
```

C*********** PROGRAM IMPLICIT SEDTRAN
C*THIS PROGRAM IS SET-UP TO HANDLE MULTIPLE GROINS(MC=1O)
C*THIS PROGRAM IS SET-UP TO HANDLE MULTIPLE GROINS(MC=1O)
COMMON/A/ C(60.20).RK(60.20).Y(60.20).DEEP(60.20).AIPHAS(5O.2O)
COMMON/A/ C(60.20).RK(60.20).Y(60.20).DEEP(60.20).AIPHAS(5O.2O)
COMMON/AA/YZERO(60)
COMMON/AA/YZERO(60)
COMMON/BB/WEQ(60.20)
COMMON/BB/WEQ(60.20)
COMMON/B/ THETA(60.20),OXTOT(60), OLOANG(60.20), OY(60.20)
COMMON/B/ THETA(60.20),OXTOT(60), OLOANG(60.20), OY(60.20)
COMMON/C/H(60,20),CG(60,20),HOLD(60,20),HB(60,20), YB(60)
COMMON/C/H(60,20),CG(60,20),HOLD(60,20),HB(60,20), YB(60)
COMMON/N USED/JUSE,T,CO.CGEN,CGGEN, ANGGEN,DX,BERM, THETAO(1OI).MMAX
COMMON/N USED/JUSE,T,CO.CGEN,CGGEN, ANGGEN,DX,BERM, THETAO(1OI).MMAX
COMMON/D/SIGMA,G,ELO.JMAX.IMAX,PI,TWOPI,PIO2.HGEN,I JET(IOI.SUFTI;
COMMON/D/SIGMA,G,ELO.JMAX.IMAX,PI,TWOPI,PIO2.HGEN,I JET(IOI.SUFTI;
COMMON/F/ADEAN,REPOSE,DIAM
COMMON/F/ADEAN,REPOSE,DIAM
COMMON/AAA/DELT.NTIMES
COMMON/AAA/DELT.NTIMES
COMMON/COUNT/NUNIV
COMMON/COUNT/NUNIV
COMMON/EXPL/QYEXP(60.20), YIMP(60.20)
COMMON/EXPL/QYEXP(60.20), YIMP(60.20)
DIMENSION CHANGE (20),HC(10),TC(10)
DIMENSION CHANGE (20),HC(10),TC(10)
DIMENSION YORIG(6O.20).VZEROO(60).SANGLE(2O)
DIMENSION YORIG(6O.20).VZEROO(60).SANGLE(2O)
NUNIV =O
NUNIV =O
JMAX=8
JMAX=8
JUSE = JMAX +2
JUSE = JMAX +2
IMAX=50
IMAX=50
PI=3 141592654
PI=3 141592654
TWOPI=PI*2.
TWOPI=PI*2.
PIO2=PI/2.O
PIO2=PI/2.O
REPOSE=32. TWOPI/360
REPOSE=32. TWOPI/360
WRITE (6.732)
WRITE (6.732)
72 FORMAT(,*****************************************************)
72 FORMAT(,*****************************************************)
WRITE(6,733)

```
 WRITE(6,733)
```




```
 C*WDEPTH MUST BE A DEPTH BEVONO THE END OF THE STRUCT, PREFERABLY AT
```

    C*WDEPTH MUST BE A DEPTH BEVONO THE END OF THE STRUCT, PREFERABLY AT
    C**DEEP(JMAX) OR GREATER(OR ELSE SNELL'S LAW OR SHOAL COULD BLOWUP IN
    C**DEEP(JMAX) OR GREATER(OR ELSE SNELL'S LAW OR SHOAL COULD BLOWUP IN
    C***DEEPER WATER. IT'S IN METERS HERE!
    C***DEEPER WATER. IT'S IN METERS HERE!
        READ(5,770) WDEPTH
        READ(5,770) WDEPTH
    770 FORMAT( 1OX,F 10.3)
    770 FORMAT( 1OX,F 10.3)
        WDEPTH=WDEPTH*3.28084
        WDEPTH=WDEPTH*3.28084
        WRITE(6.762) WDEPTH
        WRITE(6.762) WDEPTH
        762 FORMAT(2X. "THE DEPTH (IN FT) WAVES TRANSFORMED TO, WDEPTH=
        762 FORMAT(2X. "THE DEPTH (IN FT) WAVES TRANSFORMED TO, WDEPTH=
            F40.3)
            F40.3)
        WRITE(6.732)
        WRITE(6.732)
        WRITE(6,777)
        WRITE(6,777)
    77 FORMAT(2X, "ITS TIME FOR SJETTY, BERM, SFACE, AND DIAM"./I
    77 FORMAT(2X, "ITS TIME FOR SJETTY, BERM, SFACE, AND DIAM"./I
    C*SUETTY MUST BE MUCH LESS THAN Y(I. UMAX)
C*SUETTY MUST BE MUCH LESS THAN Y(I. UMAX)
READ(5.776) SJETTY,BERM,SFACE,DIAM
READ(5.776) SJETTY,BERM,SFACE,DIAM
76 FORMAT(2F10.3.F10.4,F1O.3)
76 FORMAT(2F10.3.F10.4,F1O.3)
WRITE(6,761) SJETTY
WRITE(6,761) SJETTY
761 FORMAT(2X,' THE LENGTH OF THE STRUCTURE. SUETTY=, F1O 3)
761 FORMAT(2X,' THE LENGTH OF THE STRUCTURE. SUETTY=, F1O 3)
WRITE(6.74O) BERM
WRITE(6.74O) BERM
740 FORMAT(2X,' THE HEIGHT OF THE BERM, BERM= ,F1O.3)
740 FORMAT(2X,' THE HEIGHT OF THE BERM, BERM= ,F1O.3)
WRITE(6,739)SFACE
WRITE(6,739)SFACE
739 FORMAT(2X.'THE SLOPE OF THE BEACH FACE. SFACE= .F1O 4I
739 FORMAT(2X.'THE SLOPE OF THE BEACH FACE. SFACE= .F1O 4I
WRITE(6,739) DIAM
WRITE(6,739) DIAM
738 FORMAT ( 2X, THE SEDIMENT OIAMETER. OIAM= .F1O 3)
738 FORMAT ( 2X, THE SEDIMENT OIAMETER. OIAM= .F1O 3)
WRITE(6,732)
WRITE(6,732)
70 FORMAT(2X.'SUPPLY MMAX( THE NO. OF GROINS) ANO THEIR I-IOC'.,)
70 FORMAT(2X.'SUPPLY MMAX( THE NO. OF GROINS) ANO THEIR I-IOC'.,)
UCRIT = 16.3*SQRT(DIAM*O OO328)
UCRIT = 16.3*SQRT(DIAM*O OO328)
C*THE NO. OF MULTIPLE GROINS.MMAX MUST BE GIVEN THEIR X LOCATIONS
C*THE NO. OF MULTIPLE GROINS.MMAX MUST BE GIVEN THEIR X LOCATIONS
READ(5.779) MMAX
READ(5.779) MMAX
779 FORMAT(I3)
779 FORMAT(I3)
DO 760 M=1. MMAX
DO 760 M=1. MMAX
C*IJET REPS LESSER I VALUE ADJACENT TO STRUCTURE
C*IJET REPS LESSER I VALUE ADJACENT TO STRUCTURE
760 READ(5.779) IJET(M)
760 READ(5.779) IJET(M)
WRITE(6,759) (M,IJET(M),M=1,MMAX)
WRITE(6,759) (M,IJET(M),M=1,MMAX)
759 FORMAT(2X.'THE NUMBER..I5.'GROIN IS IOCATEO AT GRID , I5)
759 FORMAT(2X.'THE NUMBER..I5.'GROIN IS IOCATEO AT GRID , I5)
WRITE(6.732)
WRITE(6.732)
C*CONVERT TO RADIANS
C*CONVERT TO RADIANS
C*FIRST MUST GIVE Y COORS POSITIONS ANO DEPTHS
C*FIRST MUST GIVE Y COORS POSITIONS ANO DEPTHS
C*FIRST, MUST SET UP ALL OF THE DEEP-VALUFS
C*FIRST, MUST SET UP ALL OF THE DEEP-VALUFS
WRITE(6.773)
WRITE(6.773)
773 FORMAT(2X, "NOW ENTER THE VALUE OF ADEAN")
773 FORMAT(2X, "NOW ENTER THE VALUE OF ADEAN")
READ(5,774)ADEAN
READ(5,774)ADEAN
774 FORMAT(F10.4)
774 FORMAT(F10.4)
WRITE(6.749) ADCAN
WRITE(6.749) ADCAN
749 FORMAT(2X, THE VILUE OF ADEAN=,.F1O 4., IN THE EO.H-AY**2/3.)
749 FORMAT(2X, THE VILUE OF ADEAN=,.F1O 4., IN THE EO.H-AY**2/3.)
WRITE(6.732)

```
 WRITE(6.732)
```

7300 7400
7500
7600
7700
7800
7900
8000
8100
8200
8300
8400
8500
8600
8700
8800
8900
9000
9100
9200
9300
9400
9500
9600
9700
9800
9900
10000
10100
10200
10300
10400
10500
10600
10700
10800
10900
11000
11100
11200
14300
11400
11500
11600
11700
11800
11900
12000
12100
12200
12300
12400
12500
12600
12700
12800
12900
13000
13100
13200
13300
13400
13500
13600
13700
13800
13900
14000
14100
14200
14300
14400

WRITE(6.772)
772 FORMAT ( $2 x$. "READ IN THE SPACE STEP.TIMESTEP"./) READ (5,775) DX.OELT
775 FORMAT(2(F10.3))
WRITE (6.737) DX
737 format $2 x$, The Value of tide LONGSHORE SPACE-STEP. $D X=, . F 1031$
WRITE(6.736) DELT
736 FORMAT( $2 X$, THE TIME-STEP IN SECONDS, DELT $=$, F 10.3)

DO $220 \mathrm{~J}=1$. JMAX +2
DO 220 I = 1. IMAX
220 DEEP $(1, J)=$ CHANGE $(J)$
DATA(HC(I). $1=1,8$ )/1 87.0.5.0 35, 25. 21. 20. 19. 19/
DATA(TC(I). $I=1.8) / 2 . .3 ., 4.6 .8 . .10 .12 .14 /$
$00200 \mathrm{~J}=1$. JMAX +2
DO $200 \mathrm{I}=1$. I MAX
$200 \mathrm{Y}(\mathrm{I} . \mathrm{J}+1)=(0.5 *(\operatorname{DEEP}(\mathrm{I} . J+1)+\operatorname{DEEP}(\mathrm{I} . \mathrm{J})) / \operatorname{ADEAN}) * * 1.5+Y(I .1)$ WRITE(6.732)
C**************************
C*WE WILL ALWAYS REQUIRE Y(I.JMAX+2) TO COMPUTE DY AND YBAR
$C$ *WE WILL ALWAYS REQUIRE DEEP(I. JMAX+2) TO COMP SEDIMENT TRANSPORT
C**************************
WRITE (6,734)
734 FORMAT( $2 x$.'THE BOUNOARY $Y$-VALUES. $I=1$. IMAX ARE AS FOLLCWS./) WRITE(6.801) (Y(1.J).J=1.JMAX+2)
WRITE(6,801) (Y(IMAX,J),J=1,JMAX+2)
WRITE(6,732)
WRITE (6.735)
735
GRMAT(/.2X.'THE DEPTHS BETWEEN CONTOURS ARE AS FOLLOWS.//
WRITE(6.801) (DEEP(1.J).J=1.JMAX + 2)
WRITE (6.732)
801 FCRMAT( $2 \mathrm{X}, 10$ (F8. 2 ))
DO 2 I = 1. IMAX
$2 Y Z E R O(1)=Y(1,1)-(B E R M / S F A C E)$
C*WILL COMPUTE THE EQUIL WIDTH BETWEEN CONTOURS. HERE
DO $1 \mathrm{I}=1$. IMAX
WEO(I, 1) $=\mathrm{Y}(\mathrm{I}, 1)-Y Z E R O(1)$
DO $1 \quad J=1$. JMAX
IF (UNE 1) GO TO 32
YTEMP $1=0.0$
GO TO 33
$32 \operatorname{YTEMP} 1=((0.5 *(\operatorname{DEEP}(I, J-1)+\operatorname{DEEP}(I, J))) / \triangle D E A N) * 15$
YTEMP2 $=((0.5 *(D E E P(I, J)+$ DEEP $(I, U+1))) / A D E A N) * * 1.5$
WEQ $(1, J+1)=Y$ TEMP $2-Y$ TEMP 1
CONTINUE
C*LET'S StORE THE ORIG VALUES TO COMPUTE VOL CHANGES OVER CONTOURS.LATER DO $796 \mathrm{I}=1$, IMAX +1
YZEROO (I) =YZERO (I) OO $796 \quad J=1 . J$ MAX +2
796 YORIG(1, U) $=Y(I, U)$

C*READ THE DISK FILE AND TRANSFORM PARAMETERS INTO MY UNITS
C******************!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!*****************
C*ALL ADJUSTMENTS TO WAVE ANGLE. HEIGHI, CELERITY, GROUP VEL. WILL BE MADE C*HERE. AND thrudut the rest of the prog. they will be as if occurred C***AT WDEPTH!

798 READ (5.799.END $=1000$ ) HS.T.ALPWIS
799 FORMAT (10X. 3F6.1)
NTIMES = 1
NCHECK = NUNIV+NTIMES
HGEN=0.707107*HS
SI GMA = TWOP I $/ T$
$G=32 \quad 17$
$C O=G * T / T$ WOP I
ELO=CO*T
IF(T.LE.2.O) GO TO 797
$\mathrm{HCC}=0.23$
DO 444 I $=2.7$
T2=TC(I)
IF(TGT.T2) GO TO 444
$T 1=T C(I-1)$
DELTAT $=$ T2-T 1
$D T=(T-T 1) / D E L T A T$
DTT=(T2-T)/DELT
$H C C=H C(I) * D T+H C(I-1) * D T T$
GO TO 446
444 CONT INUE
446 CONTINUE
IF (HGEN.LT.HCC) GO TO 797
ANGGEN=ALPWIS*TWOPI/360

CALL WVNUM(WDEPTH.T.DUMKK)
C*ANGGEN, HGEN, CGEN, CGGEN REPRESENT THE WAVE ANGLE. HEIGHT. CELERITY AND
C* GROUP VEL(RESPECT, OF THE SPECIfIED WAVE INPUT AT A DEPTh. WDEPTH
CALL WVNUM(11.O.T. DUMKKK)
C. $11=$ TWOPI/(T*OUMKKK)

CGEN $=$ TWOPI $/(T$ ©OUMKK)
CGGEN=0 5*CGEN*(1 +(2 *DUMKK*WDEPTH/SINH(2. ©UMKK*WDEPTH))
CALL TRANS
797 IF (NCHECK NE NUNIV) NUNIV=NCHECK
709 GO TO 798
1000 CONTINUE
STOP
END

SUBROUTINE TRANS
C*THIS SUBROUTINE WILL COMPUTE SEOIMENT TRANSPORT
COMMON/A/ C(60.2C).RK(60.20). Y(60.20). DEEP(60.20). ALPHAS(60.20)
COMMON/AA/YZERO(6O)
COMMON/BB/WEO(60, 20)
COMMON/B/ THETA (60.20), OXTOT(60), OLDANG(60.20), DY(60.20)
COMMON/C/ $\mathrm{H}(60,20) . \mathrm{CG}(60.20), \mathrm{HOLD}(60.20), \mathrm{HB}(60,20), \mathrm{YB}(60)$
COMMON/N USED/JUSE,T.CO.CGEN.CGGEN, ANGGEN.DX.BERM.THETAO(10), MMAX
COMMON/D/SIGMA.G.ELO, JMAX, IMAX.PI, TWOPI.PIO2.HGEN. IJET( 10 I. SIETTY
COMMON/E/RHO. RHOS. POROS. CONST. TKSI
COMMON/F/ADEAN, REPOSE, OIAM
COMMON/G/IBREAK (60). HNONBR (20)
COMMON/P/HBO(60).DEEPB(60)
COMMON/ZZZ/NTIME
COMMON/AAA/DELT,NTIMES
COMMON/COUNT/NUNIV
DIMENSIDN YOLD(60.20),R(60.20), S(60, 20), HC(60.20), QY(60.20). YOISS1 60.20)

DIMENSION RHS $1(60.20), 53(60,20), \operatorname{THETAB}(60.20), ~ A N G L O C(60.20)$
DIMENSION DISTR $(60,20)$, AWARE $(60,20$


C************** ArCORDING TO JMAX + $1+$ JMAX AND JMAX + 1 , RESPECT
C************** CHANGE REOD AT 7040 AND 18650

COMMON/MP/ RKB(60). HBI (60). DEEPBI(60)
COMMON/EXPL/QYEXP $(60.20)$, YIMP $(60.20)$
DIMENSION SANGLE(2O)
C*LET'S ZERO-OUT ALL OF THE DIMENSIONED MATRICES
$00 \quad 1000 \quad J=1$. JMAX +2
SANGLE $(J)=0.0$
DO $1000 \mathrm{I}=1$. I MAX +2
YOLD $(1, J)=0.0$
$R(I, J)=0.0$
$S(I, J)=0.0$
$H C(1, J)=0.0$
OY $(I, J)=0.0$
YDISS(I.U) $=0.0$
RHS $1(1, J)=0.0$
S3 $(1, J)=0.0$
$\operatorname{THETAB}(1, J)=0.0$
ANGLOC $(1, J)=0.0$
DISTR (I.J) $=0.0$
AWARE (I.J) $=00$
$0 \times(1, J)=0.0$
CONSTG(I.J) $=0$


29000 29100 29200 29300 29.400 29500 29600 29700 29800 29900 30000 30100 30200 30300 30400 30500
30600 30700 30800 30900 31000 $3 \cdot 100$ 31200
31300
31400 31500
31500
31700
31800
31900
32000
$32+00$
32200
32300
32400
32500
32600
32700
32800
32900
33000
33100
33200
33300
33400
33500
33600
33700
33800
33900
34000
34100
34200
34300
34400
34500
34600
34700
34800
34900
35000
35100
35200
35300
35400
35500
35600
35700
35800
35900
36000
36100
36200

```
 IF(YSEA GT SUETIY ANO YSHORE GT SJETTY) GO TO 302
 IF(YSEA GI SUETIY AND YSHORE LE.SJETTY) GO TO 298
 C*BECAUSE A NO FLOW R C IS USED ALUNG THE STRUCT. NO ATTN WAS PAID
 C*TO GETtING PROPFR VALJES CF ANGLOC. THETAB.DISTR.ETC
 S3(I.J)=0 O
 OISTR(I.JI=OO
 GO TO 302
 325 CONTINUE
 GO TO }30
 C*..ABOVE, ALL PARAMETERS(I E .S1.S2.S3,THETAB.DISTR,ANGLOC)
 C.*ARE COMPUTED AS IF THE STRUCT IS NOT THERE THE B C AT THE
 C**STRUCT TIP ASSUMES OX COMPUTED AS IF NO STRUCT PRESENT AND THEN
 C**BYPASSES ACCORDING IO "RATIO"
 298 RATIO=(YSEA-SJETTY)/(YSEA-YSHORE)
 S3(I.J)=S3(!.J)•RATIO
 DISTR(1,J)=DISTR(I,U)*RATIO
 3O2 RHS1(I.J)=DISTR(I.J)*ST-S3(I.U)*(Y(I.J)-Y(I-1.J))
 301 CONTINUE
 CALL BREAK(IMAX. JMAX)
C*TO DETERMINE DECAY OF CONSIG(I.J),NEED WAVE NO. AT BREAKING
 OO 754 I= 1. IMAX+1
 754 CALL WVNUMIDEEPBI(I),T,RKB(I))
C*USING SHIELDS DIAG.Y AXIS=O T5 & (TAUO=RHO*C*U**2).GET UCRIT(FT/SEC)
 UCR!T=16 3*SORTIOIAM*.OO328'
 00 750 I= 1, IMAX+1
 CONSIS(I,1)=COFF*DX
 OO 750 J=2. JMAX +2
 (•CONSTG(I.J) GOES W/ Qr(I.J) WHICH IS ASSOC W/ DEEP(I.J-1)
 IF(DEEP(I,J-1) LE DEEPBI(I)) GO TO 751
 C*HERE MUST CAUSE COFF TO DECAY (WE'RE BEYOND SURF ZONE)
 UMAXB=HBI(I)*G*T*RKB(I)/(2.*TWOPI *COSH(RKB(I)*DEEPBI(I)))
 UMAX=H(I.J-1)*G*T*RK(I,J-1)/(2*TWOPI*COSH(RK(I,J-1)*DEEP(I,J-1)))
 IF(UCRIT LT UMAX AND UCRIT.LT.UMAXB) GO TO }74
 CONSTG(I.J)=0.O
 gO TO 750
 749 TOP=0 O1*H(I.U-1)**3*SIGMA**3/(SINH(RK(I,U-1)*DEEP(I,U-1))**3)
 BOT=DEEP(I, J.1)*(0 625*TWOPI*G**, 5*O.78**2*ADEAN**1.5*
 *(001*HBI(I)**3*SIGMA**3/(DEEPEI(I)*(SINH(RKB(I)*DEEPBI(I)))**3)|)
 CONST6(I,N)=OX•COFF*TOP/BOT
 GO TO ;50
 75. CONSTE(1.J)=COFFPDX
 750 CONTINUE.
 K=O
 C**PUT INTO BANDED FORM USING THE ALGORITHM A(M,N)->B(M,NN) WHERE
 C**NN=KB+1.M+N(KB IS THE NUMBER OF LOWER CODIAGONALS(=JMAX.HERE))
 DO 304 I=2.IMAX-1
 00 304 J=1. JMAX
 k=k+1
 AWARE(I,U)=AWARE(I,U) +DELT*RHS 1(I,U)*R(I,U)-DELT*R(I,U)*RHS f(I +1.U
 I+DELT*R(I.J)*CONSTG(I,J)*WEQ(I,J)-DELT*R(I,J)*CONST6(I.J+1)*
 WEQ(1.J+!)
 YDUM=YZERO(I)
 IF(J NE 1) YDUM=Y(I,U-1)
 AWARE(I.J)=AWARE(I,J)+DELT*R(I,J)*CONSTG(I,J)*O.5*(YDUM-Y(I.U))
 DELT*R(I.J)*CONSTG(I.J+1)*O.5*(Y(I.U)-Y(I,J+1))
 U=DELT*R(I,U)*S3(I.U)
 V=DELT*R(I.U)*S3(I+1,J)
 71=OELT*R(I.J)*CONSTG(I.U)*0.5
 Z2=DELT*R(1,ل)*CONST6(1.J+1)*C.5
 C*NOW WILL SET UP THE MATRICES ABAND AND BMATRX
 ABANO(K.UMAX+1)=1.O+U+V+Z1+Z2
 IF(INE 2) GO TO 3O5
 AWARE(I.U)=AWARE(I.U)+U*Y(I-1.J)
 GO TO 310
 305 ABAND(K.1)=-U
 310 IF(I.NE.IMAX-1) GO TO 306
 AWARE (I,J)=AWARE(I,J)+V*Y(IMAX,J)
 GO TO 3it
 306 ABAND(K.JMAX+i+JMAX) =-V
 31! IF(U NE i) GO TO 307
 ABAND(K.UMAX+1)=ABAND(K,UMAX+1)-Z1
 AWARE(I, 1)=AWARF(I, f)+2i*(YZERO(I)-Y(I,1))
 go TO 312
```

36300 36400 36500 36600 36700 36800 36900 37000 37100 37200 37300 37400 37500 37600 37700 37800 37900 38000 38100 38200 38300 38400 38500 38600 38700 38800 38900 39000 39100 39200 39300 39400 39500 39600 39700 39800 39900 40000
40100 40200 40300 40400 40500 40600 40700 40800 40900 41000 41100 41200 41300 41400
41500
41600
41700
41800
41900
42000
42100
42200
42300
42400
42500
42600
42700
42800
42900
43000
43100
43200
43300
43400

```
 3O7 ABAND(K.JMAX)--21
 312 IF(J NE JMAX) GO TO 308
 AWARE(I,J)=AWARE(I,J)+22*Y(1,JMAX+1)
 GO 10 309
 3OB ABAND(K.JMAX+2)=-22
 309 8MATRX(K)=AWARE(I,J)
 3O4 CONTINUE
 KMAX=K
C**CALL imSL ROUTine leqt1B to solve the banded matrix
 CALL LEOT1B(ABAND.KMAX. JMAX.JMAX.432,BMATRX,1.432.O.XL.IER)
C*NOW. GIVE Y'S THEIR NEW VALUES STORING OLD VALUES IN YOLD
 K=0
 DO 315 I =2.IMAX-1
 YOLD(1.JMAX+1)=Y(I.JMAX+1)
 LO 315 J= 1. JMAX
 k=k+1
 YOLD(I.J)=Y(I,J)
 Y(I,J)=BMATRX(K)
 315 CONTINUE
 DO 32O J=1.JMAX +3
 YOLD(1,J)=Y(1.U)
 320 YOLD(IMAX,J)=Y(IMAX,J)
c*will use abbott's oissipative interface to rid high freg oscillatidNs
 DO 650 J=1. UMAX
 OO 650 I =2.IMAX-1
 YOISS(I.U)=TAU*Y(I-1.J)+(1.-2.*TAU)*Y(I.J)+TAU*Y(I +1.U)
 IF(SJETTY.EQOOO) GO TO 650
 OO 649 M=1.MMAX
 IF(I NE.IUET(M) AND.I.NE IJET(M)+1) GO TO 649
 IF(Y(IJET(M).J).GT.SJETTY.OR.Y(IJET(M)+1.U).GT.SJETTY)GO TO 649
 IF(I.EQ.IJET(M))YOISS(I.J)=TAU*Y(I-1.J)+(1.-TAU)*Y(I.U)
 IF(I EQ.(IJET(M)+1))YDISS(I.J)=TAU*V(I+1.U)+(1.-TAU)*Y(I.J)
 6 4 9 ~ C O N T I N U E ~
 650 CONTINUE
 DO 651 J=1.JMAX
 DO 651 I =2.IMAX-1
 651 Y(I.J)=YDISS(I,J)
C*THIS LOOP WILL STORE THE IMPLICIT Y VALUES REOD TO COMP QY&OX
 DO 40 I= 1, IMAX+1
 DO 40 J=1., MMAX + 3
 40 YIMP(I.J)=Y(I.J)
C*THIS LOOP WILL EXPLICITLY MOVE CONTOURS SEAWARD IF REPOSE EXCEEDED
 KOUNT=O
 SLOPEM=TAN(O 9*REPOSE)
 DO 48 I= 1.IMAX
 43 KOUNT = KOUNT + 1
 IF(KOUNT GT.50000) GO TO 41
 C*LET US COMPUTE ALL THE SLOPES(PSLOP) FOR EACH CHANGE IN DEPTH
 DO 47 J=1. JMAX +1
 DUM=-BERM/2.O
 IF(J.NE 1) DUM=DEEP(I,J-1)
 DELH=0.5*(DEEP(I,J+1)+DEEP(I,J))-0.5*(DEEP(I.J)+DUM)
 PSLOP =DELH/(Y(I.J+1)-Y(I.J))
 47 SANGLE(J)=ATAN(PSLOP)
 C*FINO THE MIN NEG SLOPE ANGLE OR THEN THE POS SlOPE>REPOSE OR FORGET IT
 ASLOPM=-1 OE5O
 ASLOPP=0.0
 DO 46 J=1. JMAX+1
 IF(SANGLE(J)GT O.O) GO TO 45
 IF(SANGLE(J) GT ASLOPM)ASLOPM=SANGLE(J)
 IF(ASLOPM.EQ.SANGLE(J)) UM=J
 GO TO 46
 4 5 ~ I F (S A N G L E (J) . G T . R E P O S E . A N D . S A N G L E (J) ~ G T ~ A S L O P P) A S L O P P = S A N G L E (U)
 IF(ASLOPP EQ.SANGLE(J)) JP=J
 46 CONTINUE
 IF(ASLOPM.EQ.-1.OESO.AND.ASLDPP.EQ.O.O) GO TO 42
 IF(ASLOPM EQ.-1.OE5O) GO TO 44
 DUM=-BERM/2
 IF(JM.NE.1) DUM=DEEP(1,JM-1)
 ALTER=((O.5/SLOPEM*(DEEP(I,JM+1)-DUM))-(Y(I.JM+9)-Y(I.UM)))/
 (1.O+((DEEP(I.UM+1)-DEEP(I.JM))/(DEEP(I , UM)-DUM)))
 Y(I,JM+1)=Y(I,JM+1)+ALTER
```

43500 43600 43700 43800
43900 44000 44100 44200 44300 44400 44500 44600 44700 44800 44900 45000 45100 45200 45300 45400 45500 45600 45700 45800 45900 46000 46100 46200 46300 46400 46500 46600 46700 46800 46900 47000 47100 47200 47300 47400 47500 47600 47700 47800 47900 48000 48100 48200 48300 48400 48500 48600 48700 48800 48900 49000 49100 49200 49300 49400 49500 49600 49700 49800 49900 50000 50100 50200 50300 50400 50500 50600 50700

```
\(Y(I, J M)=Y(I, J M)-(A L T E R *(D E E P(I . J M+1)-D E E P(I, J M)) /(D E E P(I, J M)-D U M))\) OVEXP(I. JM+1)=OYEXP(I, UM+1)+DX/DELT*ALTER*(DEEP(I, JM+1)-DEEP(I.JM)
-) GO TO 43
44 CONTINUE
DUM = -BERM/2
IF (JP.NE.1) DUM=DEEP(1,JP-1)
ALTER \(=((0.5 /\) SLOPEM* (DEEP \((I, J P+1)-D U M))-(Y(I, J P+1)-Y(I . J P))) /\)
* (1.O+((OEEP(I.JP+1)-DEEP(I.JP))/(DEEP(I.JP)-DUM)))
\(Y(I, J P+1)=Y(I, J P+1)+A L T E R\)
\(Y(I, J P)=Y(I, J P)-(A L T E R *(D E E P(I, J P+1)-D E E P(I, J P)) /(D E E P(I, J P)-D U M))\)
QYEXP(I.JP+1)=OYEXP(I,JP+1)+UX/DELT*ALTER*(DEEP(I.JP+1)-DEEP(I.JP)
-)
GO TO 43
42 WEQ(I, JMAX + 1) \(=Y(1 . J M A X+1)-Y(I . J M A X)\)
CONTINUE
C*IF WE GET SENT HERE. LOOP 444 WILL CATCH THE CROSSED CONTOURS CONTINUE
C*NOW WE CAN COMPUTE QX'S AND QY'S!
DO \(318 \mathrm{I}=2\), 1 MAX
C*ALL IMPLIC AND EXPLIC MOVEMENT OF YZERO WILL BE TAKEN CARE OF HERE QY(I, 1)=-BERM*OX*(Y(I, 1)-YOLD(I, 1))/DELT
YZERO(I) \(=\) YZERO(I) \(+(\mathrm{Y}(1,1)-\) YOLD (I, 1))
\(31900318 \mathrm{~J}=1\). JMAX
QX(I, J) =RHSI(I, J)-S3(I, J)*YIMP(I, U)+S3(I, J)*YIMP(I-1, J)
318 OY(I. \(J+1)=\operatorname{CONSTG}(1, J+1) *(0.5 *(Y \operatorname{IMP}(1, J)+Y O L D(1 . J)-Y I M P(I, J+1)\)
\(-\operatorname{YOLD}(1, J+1))+\) WEQ \((1, J+1))\)
\(00323 \mathrm{~J}=1 . \mathrm{JMAX}\)
\(0 \times(1, \mathrm{~J})=0 \mathrm{X}(2, \mathrm{~J})\)
\(323 \mathrm{QX}(\mathrm{I}\) MAX \(+1, \mathrm{~J})=\mathrm{OX}(I\) MAX, J)
C*TOTAL QYS WILL BE COMP FROM IMPLIC AND EXPLIC VALUES. THEN ZERO OVEXP DO \(39 \mathrm{I}=1\), IMAX +1
DO \(39 \mathrm{~J}=1\). JMAX +3
\(\operatorname{QY}(I, J)=\operatorname{OY}(I, J)+\operatorname{QrEXP}(I, J)\)
\(39 \operatorname{QYEXP}(1, J)=0.0\)
C*THIS CHECK WILL BOMB THINGS OUT IF CONTOURS HAVE CROSSED.
00444 II = 1. IMAX
DO \(444 \mathrm{JJ}=1\), JMAX
C*IF CONTOURS CROSS AT ANY TIME WANT PROGRAM TO STOP!
IF (Y(II.JJ).LT.Y(II.JJ+1)) GO TO 444
WRITE(6,103)
WRITE(6.*/) NUNIV
DO \(150 \quad J=1\). JMAX
WRITE(6,100) (QX(I,J),I=1,IMAX)
DO \(151 \mathrm{~J}=1\), JMAX
WRITE(6.101)
DO \(152 \mathrm{~J}=1\), JMAX
152 WRITE(6.100) (Y(I.U).I=1.IMAX)
103 FORMAT(2 X. 'THE CONTOURS HAVE CROSSED ANO SOMETHING IS WRONG'./)
DO \(19 \mathrm{~J}=1\). JMAX
9 WRITE(6,100) (YOLD(I,U),I = 1, IMAX) GO TO 445
444 CONTINUE
WRITE(6.*/) NUNIV
C*THE FOLLOWING STATEMENT DETERMINES AT WHAT FREQ EVERYTHING IS WRITTEN' IF(MOO (NUNIV,10).NE.O) GO TO 1
C*LET'S WRITE ALL OF IT OUT.
WRITE(6.926) NUNIV
926 FORMAT(2X,'THE TOTAL ELAPSED NUMBER OF TIME-STEPS. NUNIV \(=, \quad 15, / 1\)
800 FORMAT(\(2 \times, 14(F 8.4)\))
C* DO 900 I = 1, IMAX
C*900 WRITE(6.800) (THETA(I.J).J=1.JMAX)
C* DO \(903 \mathrm{~J}=1\). JMAX +1
C*903 WRITE (6.80i) DEEP (1, J)
C* DO \(906 \mathrm{I}=1\),IMAX
C*906 WRITE(6,800) (H(I,J).J=1,JMAX)
C* DO \(755 \mathrm{~J}=1\), JMAX
C*755 WRITE(6.800) (CONSTG(I,J).I=1.IMAX)
801 FORMAT(2X.14(F8.2))
WRITE(6.107)
107 FORMAT(/,2X.'THE LONGSHORE TRANSPORTS.OX. FOLLOW')
DO \(15 \mathrm{~J}=1 . \mathrm{JMAX}\)
15 WRITE(6.100) (OX(I.J).I=1.IMAX)
```



58100
58200
58300
58400
58500
58600
58700
58800
58900
59000
59100
59200
59300
59400
59500
59600
59700
59800
59900
60000
60100
60200
60300
60400
60500
60600
60700
60800
60900
61000
61100
$6 \uparrow 200$
61300
61400
61500
61600
61700
61800
61900
62000
62100
62200
62300
62400
62500
62600
62700
62800
62900
63000
63100
63200
63300
63400
63500
63600
63700
63800
63900
64000
64100
64200
64300
64400
64500
64600
64700
64800
64900
65000
65100
65200

```
C*IF THE OFFSHORE WAVE HT IS ZERO, NEVER GET TO HERE
C*HOWEVER IF THE H IS SUCH THAT IT WOULD BREAK INSHORE OF Y(I.2)
C*DEEPB(I) WOULD STILL BE ZERO AND DISTR(I,J) WOULD BLOW-UP
 DO 20 I=1.IMAX
 IF(DEEPB(I).GT.O.O) GO TO 20
 DEEPB(I) =(H(I, 1)*DEEP(I,1)**0.25/CAPPA)**0.8
 HBQ(I)=CAPPA*DEEPB(I)
 2O CONT INUE
 HBO(1)=HBQ(2)
 HBO(IMAX+1)=HBO(IMAX)
 DEEPB(1)=DEEPB(2)
 DEEPB(IMAX + 1)= DEEPB(IMAX)
 RETURN
 END
C**
 SUBROUTINE BREAK(IMAX.JMAX)
 C*ROUTINE WILL DETERMINE HB AND DEEPB ON THE GRID LINES RATHER
 C* THAN BETWEEN THEM. REQ'D FOR COFF BEYOND SURF ZONE
 COMMON/A/ C(60.20).RK(60, 20),Y(60,20),DEEP(60.20).ALPHAS(60.20)
 COMMON/C/ H(60,20).CG(60, 20),HOLD(60,20),HB(60, 20),YB(60)
 COMMON/MP/ RKB(60),HBI(60),DEEPBI(60)
 CAPPA =0.78
 DO 1 1=2.IMAX
 DO 2 JJ=1, JMAX
 J= JMAX - JJ+1
 IF(H(I,J).LT.HB(I,J)) GO TO 2
 DEEPBI(I) =((H(I.J+1)*DEEP(I.J+1)**O.25)/CAPPA)**O.8
 HBI(I)=CAPPA*DEEPBI(I)
 C***ONCE THE HEIGHT & DEPTH AT BREAKING ARE FOUND. GO TO NEXT GRID-LINE
 GO TO &
 2 CONTINUE
 CONT INUE
 DO 20 I= 1. IMAX
 IF(DEEPBI(I).GT.O.O) GO TO 2O
 DEEPBI(I)=(H(I,1)*DEEP(I. H)**O.25/CAPPA)**O.8
 HBI(I)=CAPPA*DEEPBI(I)
 2O CONTINUE
 DEEPBI(1)=DEEPBI(2)
 DEEPBI(IMAX+1)= DEEPBI(IMAX)
 HBI(1)=HBI (2)
 HBI(IMAX+1)=HBI(IMAX)
 RETURN
 END
 C***
 SUBROUTINE REFRAC(UBEGIN, UEND,NPTS,IBEGIN.IEND,ISTART,M)
 COMMON/A/ C(60,20).RK(60,20).Y(60, 20).DEEP(60,20).ALPHAS(60.20)
 COMMON/AA/YZERO(60)
 COMMON/B/ THETA(60.20).0XTOT(60), OLDANG(60.20), DY(60.20)
 COMMON/C/ H(60,20).CG(60,20).HOLD(6?,20),HB(60,20),YB(60)
 COMMON/N USED/JUSE,T,CO,CGEN,CGGEN, AlIGGEN,DX.BERM.THETAO(10).MMAX
 COMMON/D/SIGMA,G,ELO.JMAX,IMAX,PI.TWJPI,PIO2.HGEN,IJET(10), SJETTY
 COMMON/G/IBREAK(60).HNONBR(20)
 COMMON/ZZZ/NTIME
 DIMENSION JBEGIN(60).JEND(60)
 C***************** THIS SUBROUTINE WILL DETERMINE H AND
 C***************** THETA AT THE MID PT OF Y VALUES
 C***TAU IS THE FACTOR WHICH RECOUPLES THE REFRACTION EQS.SEE ABBOTT
 TAU=0.25
 C*muSt prescribe the wave angle at the outermostcontour box
 C*SNELL'S LAW WILL BE USED TO START THINGS OFF
 C*THETA(I.,U) WILL BE AT AREA'S CENTER AND WILL USE Y(I,J) IN NEG Y-DIR
 C*WILL INITIALIZE ALL THETA'S USING SNELL'S LAW.
 DO 206 I =IBEGIN.IEND
 C*INITIALIZE TWO J-VALUES BEYOND JMAX, IF IN REGION 1
 IF(JEND(I).EQ.JMAX) JINIT=2
 IF(UEND(I).NE.JMAX) UINIT=O
 DO 206 J=JBEGIN(I).JEND(I)+JINIT
 C*MUST CORRECT FOR THE CONTOUR ORIENTATION. ALPHAS.
 IF(I NE.IBEGIN) GO TO 960
 ALPHASS(1,U)=ATAN((0.5*(Y(I+1,J)+Y(I+1.J+1))-0 5*(Y(1.J)
 * +Y(1.J+1)))/DX)
 GO TO 962
```

```
 960 IF(I.NE.IEND) GO ro 961
 ALPHAS(I,J)=ATAN((O.5*(Y(I.J)+Y(I.J+1))-0.5*(Y(I-1.J)
 +Y(I-1,J+1)))/DX)
 GO TO }96
 961 ALPHAS(I.J)=ATAN((0.5*(Y(I+1.J)+Y(I+1.J+1))-0.5*
 * (Y(I-1,J)+Y(I-1,N+1)))/(2.*DX))
 962 DALPHA=ANGGEN-ALPHAS (I,U)
 THETA(I,J)=ARSIN((C(I.J)/CGEN)*SIN(DALPHA))
 C*mUST GET THETA WRT THE X-AXIS.
 THETA(I,U)=THETA(I,U)+ALPHAS(1,J)
 206 CONTINUE
 C*NOW, WE MUST COMP THE GOUN WAVE HTS SO THE HTS CAN be computed
 C*WILL USE THE EQ. ****** DEL DOT (E*CG)=0.O
 C*NOW WE WILL CORRECT THE HT FOR SHOALING AND REFRACTION TO THE B C
 C*WILL ALSO INITIALIZE H'S WITH THESE EQUATIONS FOR ENTIRE ARRAY.
 DO 500 I=IBEGIN.IEND
 C*inItIALIZE two J-values beyond umax if in region 1.
 IF(JEND(I) EQ.JMAX) JINIT =2
 IF(UEND(I).NE.JMAX) UINIT =0
 DO 500 J=JBEGIN(I), JEND(I)+JINIT
 H(I,J)=HGEN*SQRT(CGGEN/CG(I,J))*SQRT(COS(ANGGEN)/COS(THETACI.
 * J)))
 IF(HB(I.J).LT.H(I.J)) H(I.J)=HB(I.J)
 500 CONTINUE
C**
 C*LET'S FILL THE DY ARRAY.
 C*DY WILL BE INDEXED AS THE THETA TO WHICH WE ARE gOING.
 DO 209 I=IBEGIN,IEND
 DO 209 J=JBEGIN(I) + 1.JEND(I)
 DY(1,J-1)=0.5*(Y(I,J-1)+Y(I,J))-0.5*(Y(I,J)+Y(I,J+1).)
 209 CONTINUE
 NITERS=100
 DO 100 NITER=1,NITERS
 SUMANG=0.0
 C*DO "60 LOOP" GOES FROM 2 TO IMAX IF ISTART =IBEGIN
 C*DO "6O LOOP" GOES FROM IMAX-1 TO I IF ISTART=IEND
 DO 6O II=IBEGIN. IEND
 C*MUST HAVE IT SET UP SO THAT THE KNOWN BOUNDARIES ANGLES AREN*T RECOMP
 IF(ISTART.EQ.IBEGIN) I=II
 IF(ISTART.EQ.IBEGIN .AND. I.EQ.IBEGIN) GO TO 6O
 IF(ISTART.EQ.IEND) I=IEND-II+IBEGIN
 IF(ISTART.EQ.IEND .AND. I.EQ.IEND) GO TO 6O
C*ADX EQUALS ACTUAL DELTA X ACROSS SPACE STEP
C*ONLY ON BOUNDARIES WHERE FORWARD OR BACKWARD DIFFERENCING
 IF(INE.IBEGIN) GO TO 6
 ADX=DX
 IP=I+1
 IM=I
 GO TO 12
 6 IF(I.NE,IEND) GO TO 10
 ADX =DX
 IP=1
 IM=I-1
 GO TO 12
 10 ADX=2.O*DX
 IP=I+1
 IM=1-1
 12 CONTINUE
 OO 4O J=JBEGIN(I).JEND(I)-1
 C*WILL GO FROM (JMAX-1) TO 1 BECAUSE THAT'S THE DIR WAVE COMES IN FROM
 JJ=JEND(I)-1-U+JBEGIN(I)
 OLDANG(I,\J) = THETA(I,JJ)
 C*lOCATE MIDPOINT BETWEEN TWO ADJACENT BlOCK CENTERS
 C*because theta's JJ-value is the same as the first shoreward y value
C*MUST USE JJ, JJ+1, ANO JJ+2 TO COMPUTE YBAR
 YBAR=0.25*(Y(I.JJ)+2.O*Y(I.JJ+1)+Y(I.JJ+2))
C*LOCATE APPROPRIATE INDICES ON IP AND IM GRID LINES
 IMINUS=-1
 IPLUS=+1
 CALL LOC(IM,JJ,JOIM,USIM, YBAR,IMINUS)
 CALL LOC(IP.JJ.JOIP.JSIP,YBAR.IPLUS)
C*NOW USE THE CONSERVATION OF WAVES EQUATION
```

PART 1C=RK(I, JJ+1)*SIN(THETA(I, JJ+1))
PART2=-DY(I, UJ)/ADX
C*WILL LINEARLY INTERPOLATE TO DETERMINE RK*COS(THETA) AT I + 1 AND I-1.
C*IF NO ADJ SHOREWARD PT EXISTS, PUT IN ZERO FOR TERMS IN GOV. EO.
IF (USIM.NE.O) GO TO 301
PART $38=0.0$
GO TO 302
301 TOPIM=RK(IM, JOIM-1)*COS(THETA(IM, JOIM-1))
BOTIM=RK(IM, JSIM) *COS (THETA(IM, USIM))
TOTALB $=0.5 *(Y(I M, J O I M)+Y(I M, J O I M-1))-0.5 *(Y(I M, J S I M+1)+Y(I M, J S I M))$
DUMB $=0.5 *(Y(I M$, JOIM $)+Y(I M$, JOIM-1) $)-$ YBAR
PART3B = ( (TOTALB-DUMB) * (TOPIM-BOTIM)/TOTALB) +BOTIM
302 IF(JSIP.NE.O) GO TO 303
PART3A $=0.0$
GO TO 304
303 TOPIP=RK(IP.JOIP-1)*COS(THETA(IP.JOIP-1))
BOTIP =RK (IP.USIP) * COS (THETA (IP, JSIP))
TOTALA $=0.5 *(Y(I P . J O I P)+Y(I P, J O I P-1))-0.5 *(Y(I P . J S I P+1)+Y(I P, J S I P))$
DUMA $=0.5 *(Y(I P, J O I P)+Y(I P, J O I P-1))-Y B A R$
PART3A = ( (TOTALA-DUMA) * (TOPIP-BOTIP)/TOTALA $)+$ BOTIP
304 PART3=PART3A-PART3B
C*NOW MUST FIND RK*SIN(THETA) FOR I+1 AND I-1 AT J+1
YBARP $=0.25^{*}(Y(I, J J+1)+2 . *(1, J J+2)+Y(I, J J+3))$
CALL LOC(IM, JJ+1.JPOIM, UPSIM, YBARP, IMINUS)
CALL LOC(IP, JJ+1, JPOIP.JPSIP, YBARP.IPLUS)
IF(JPSIM.NE.O) GO TO 305
PART 1B $=0.0$
GO TO 306
305 TOPM=RK(IM.JPOIM-1)*SIN(THETA(IM,JPOIM-1))
BOTM=RK(IM, JPSIM)*SIN(THETA(IM, JPSIM))
TOTB=0.5*(Y(IM, JPOIM) +Y(IM, JPOIM-1))-0.5*(Y(IM, JPSIM+1)+
Y(IM, JPSIM))
DUMPB $=0.5^{*}(Y(I M, J P O I M)+Y(I M, J P O I M-1))-Y B A R P$
PART $1 B=(($ TOTB-DUMPB $) *(T O P M-B O T M) / T O T B)+B C T M$
306 IF(JPSIP.NE.O) GO TO 307
PART TA $=0.0$
GO TO 308
307 TOPP = RK (IP.JPOIP-1)*SIN(THETA(IP, JPOIP-1))
BOTP = RK (IP, JPSIP) *SIN(THETA(IP, UPSIP))
TOTA $=0.5 *(Y(I P, J P O I P)+Y(I P, J P O I P-1))-O .5 *(Y(I P, J P S I P+1)+Y(I P, J P S I P$

* ) )

OUMPA $=0.5 *(Y(I P, J P O I P)+Y(I P, J P O I P-1))-$ YBARP
PART $1 A=(($ TOTA-DUMPA $) *($ TOPP-BOTP $) /$ TOTA $)+$ BOTP
308 PART $1=$ TAU*PART $18+(1 .-2 . * T A U) * P A R T 1 C+T A U * P A R T 1 A ~$

IF (JPSIP.EQ.O)PART $1=$ TAU*PART $1 B+(1 .-T A U) * P A R T ~ I C ~$
ARG $=($ (PART $1+$ PART $2 *$ PART3) $/ R K(I, J J))$
C*IF THE ROUTINE IS TO BLOWUP, USE SNELLS LAW.
IF(ABS (ARG) LE 1.O) GO TO 41
ARG=(C(I, JJ)/C(I. JJ+1))*SIN(THETA(I, JJ+1))
IF (ARG.GT.1.0) ARG=1.0
THETA (I.JJ) =ARSIN(ARG)
GO TO 42
$41 \operatorname{THETA}(1, J J)=\operatorname{ARSIN}(A R G)$
42 THETA(I.JJ) $=0.5$ (THETA(I.JJ)+OLDANG(I, JU))
SUMANG= SUMANG+(ABS(THETA(I, JU)-OLDANG(I, JJ)))
40 CONTINUE
60 CONTINUE
C*MUST EJECT If WE have reached an acceptable 'iteration error
C*IF THE SUM OF THE abSOLUTE VALUE OF ANGLE CHANGES DURING AN ITERATION
C* AVERAGES LESS THAN 0.02 DEGREES PER GRID ITS CLOSE ENOUGH
IF(SUMANG.LT. (NPTS*O.0035)) GO TO 215
IF(NITER.GE.50) GO TO 215
100 CONTINUE
WRITE (6,803)
215 CONTINUE
C*ITERATION LOOP FOR THE WAVE HEIGHT.
DO 501 NITER=I, NITERS
SUMH $=0.0$
DO 510 II=IBEGIN.IEND
C*MUST HAVE IT SET UP SO THAT THE KNOWN BOUNDARIES HTS. AREN'T RECOMP
IF (ISTART.EQ.IBEGIN) I=II
IF(ISTART.EO.IBEGIN AND. I.EO.IBEGIN) GO TO 510

```
 IF(ISTART.EQ.IEND) I=IEND-II+IBEGIN
 IF(ISTART.EQ.IEND .AND. I.EQ.IEND) GO TO 510
C*ADX EQUALS ACTUAL DELTA X ACROSS SPACE STEP.
C*ONLY ON BOUNDARIES WHERE FORWARD OR BACKWARD DIFFERENCING
 IF(I.NE.IBEGIN) GO TO 5O3
 ADX=DX
 IP=I+1
 IM=I
 GO TO 505
 IF(I.NE.IEND) GO TO 5O4
 AOX=OX
 IP=I
 IM=I-1
 GO TO 505
 ADX=2.O*DX
 IP=I+!
 IM=I - 1
 CONTINUE
 DO 502 J=JBEGIN(I),JEND(I)-1
 JJ=JEND(I)-1-J+JBEGIN(I)
 HOLD(I,JJ)=H(I,JJ)
 YBAR=0.25*(Y(I,JJ)+2.O*Y(I.,JJ+1)+Y(1,JJ+2))
 CALL LOC(IM,JJ.JOIM.JSIM,YBAR,IMINUS)
 CALL LOC(IP,JJ,JOIP,JSIP,YBAR,IPLUS)
 PART 13=(H(I,JJ+1)**2.)*CG(I.,JJ+1)*COS(THE゙TA(I, JJ+1))
 PART2 = OY(I ,JJ)/ADX
 IF(JSIM.NE.O) GO TO 314
 PART 4B=0.0
 GO TO 312
 311 TOPIMH=(H(IM, JOIM-1)**2.)*CG(IM,JOIM-1)*(SIN(THETA(IM,JOIM-1)))
 BOTIMH=(H(IM,USIM)**2.)*CG(IM,USIM)*SIN(THETA(IM.USIM))
 TOTALB=0.5*(Y(IM, JOIM) +Y(IM, JOIM-1))-0.5*(Y(IM,USIM+1)+Y(IM, JSIM))
 DUMB=0.5*(Y(IM, JOIM)+Y(IM, JOIM-1))-YBAR
 PART4B=((TOTALB-DUMB)*(TOPIMH-BOTIMH)/TOTALB)+BOTIMH
 312
 IF(JSIP.NE.O) GO TO 313
 PART4A=0.0
 GO TO 314
 313 TOPIPH=(H(IP, JOIP-1)**2.)*CG(IP, JOIP-1)*SIN(THETA(IP, JOIP-1))
 BOTIPH=(H(IP,USIP)**2)*CG(IP,USIP)*SIN(THETA(IP,USIP))
 TOTALA=0.5*(Y(IP, JOIP)+Y(IP, JOIP-1))-0.5*(Y(IP,JSIP+1)+Y(IP,JSIP))
 OUMA = 0.5*(Y(IP, JOIP)+Y(IP, JOIP-1))-YBAR
 PARTAA = ((TOTALA -DUMA) * (TOPIPH-BOTIPH)/TOTALA) +BOTIPH
 314
 YBARP =0.25*(Y(I,JJ+1)+2*Y(I.JJ+2) +Y(I.JJ+3))
 CALL LOC(IM, JJ+1. JPOIM, JPSIM, YBARP,IMINUS)
 CALL LOC(IP,JJ+1.JPOIP.JPSIP, YBARP,IPLUS)
 IF(UPSIM.NE.O) GO TO 315
 PART 12=0.0
 GO TO 316
 315 TOPMH=(H(IM.JPOIM-1)**2)*CG(IM,JPOIM-1)*COS(THETA(IM,JPOIM-1))
 BOTMH=(H(IM,JPSIM)**2)*CG(IM,JPSIM)*COS(THETA(IM,JPSIM))
 TOTB= 5*(Y(IM, JPOIM)+Y(IM,JPOIM-1))-.5*(Y(IM.UPSIM+1)+Y(IM.JPSIM))
 DUMPB=0.5*(Y(IM. JPOIM)+Y(IM.JPOIM-1))-YBARP
 PART 12=((TOTB-DUMPB) * (TOPMH-BOTMH)/TOTB) +BOTMH
 346
 IF(JPSIP.NE.O) GO TO 317
 PART 11=0 O
 GO TO 318
 317 TOPPH=(H(IP,JPOIP-1)**2)*CG(IP,JPOIP-1)*COS(THETA(IP,JPOIP-1))
 BOTPH=(H(IP,JPSIP)**2)*CG(IP,JPSIP)*COS(THETA(IP,JPSIP))
 TOTA= 5*(Y(IP,JPOIP)+Y(IP,JPOIP-1))-5*(Y(IP,JPSIP+1)+Y(IP,JPSIP))
 DUMPA = O.5*(Y(IP, JPOIP)+Y(IP.JPOIP-1))-YBARP
 PART 11=((TOTA-DUMPA) * (TOPPH-BOTPH)/TOTA) + BOTPH
 318 PART 1H=TAU*PART 12+(1,-2 *TAU)*PART 13+TAU*PART11
 IF(JPSIM EQ. OIPARTIH=(1, -TAU)*PART 13+YAU*PART I'
 IF(JPSIP.EQ.O)PART TH=TAU*PART 12+(1. -TAU) *PART 13
 ARG=((PART 4H+PART2*PART4)/(CG(I,JJ)*COS(THETA(1,JJ))))
C*IF THERE IS TO BE AN INVALID SQRT,USE LINEAR SHOALING.
 IF(ARG.GE.O.) GO TO 44
 ARG=(CG(I.JJ+1)*COS(THETA(I.JJ+1)))/(CG(I.JJ)*COS(THETA(I.JJ)))
 IF(ARG.LT.O.O) ARG=0.O
 H(I,JJI=H(I,JU+I)*SORT(ARG)
 GO TO 45
```

```
 44 H(I.UJ)=SORT(ARG)
 45H(I.UJ)=0.5*(H(I.JJ)+HOLD(I.UJ))
 HNONBR(JJ)=H(I, JJ)
C*IBREAK(I)=\J, THEREFORE JJ WILL BE LEEWARD SIDE OF GRIO AT INIT BREAK
 IF(HB(I,UJ),LT.H(I,JJ),AND.HB(I.JJ+1).GE.HNONBR(JJ+1))
 IBREAK(I)=JJ
 IF(HB(I,JJ).LT.H(I,JU)) H(I.JJ)=HB(I.JJ)
 SUMH=SUMH+ABS(H(I,JJ)-HOLD(I,JJ))
 502 CONTINUE
 510 CONTINUE
 IBREAK(IEND)=IBREAK(IEND-1)
 IBREAK(IBEGIN)=IBREAK(IBEGIN+1)
 IF(SUMH.LT.(NPTS*O.O1)) GO TO 507
 IF(NITER.GE.50) GO TO 507
 501 CONTINUE
 WRITE(6.803)
 5 0 7 \text { CONTINUE}
 802 FORMAT(2X.4(F15.5).////)
 803 FORMAT(2X, "AFTER NITERS ITERATIONS, CONVERGENCE WAS NOT REACHED")
 804 FORMAT(2X."THE WAVE HT. ROUTINE CONVERGED IN, NITER= ".I5.//)
 8O5 FORMAT(2X."THIS IS MY CHECKING WRITE STATEMENT")
 806 FORMAT(2X,"THE WAVE ANGLE ROUTINE CONVERGED IN, NITER= ".I5,//)
 RETURN
 END
 C**
 SUBROUTINE DIFF(RHOND,THETAO,ANGLE,AMP)
C****DIFFRACTION ABOUT SEMI INFINITE BREAKWATER (PENNEY-PRICE)
 PI=3 14159265
 ABSS=SIN(0.5*(ANGLE - THETAO))
 ABSP=SIN(0.5*(ANGLE +THETAO))
 ABC=COS(ANGLE-THETAO)
 ABC1=COS(ANGLE +THETAO)
 XX=RHDND * ABC
 xxc=cos(xx)
 xXS=SIN(XX)
 XXI=RHOND*ABC
 x XC1= cos(x\times1)
 XXSI=SIN(XX1)
 AL = SQRT (RHOND/PI)
 SIG=2.O*AL*ABSS
 SIGP=-2.O*AL*ABSP
 CALL FRES(SIG,C.S,FR,FI)
 CALL FRES(SIGP,CP,SP,FRP,FIP)
 SUM1=XXC*FR+XXS*FI +XXXC 1*FRP + XXS 1*FIP
 SUM2=XXC*FI -XXS*FR+XXC1*FIP-XXSI*FRP
 AMP = SQRT (SUM 1**2+SUM2**2)
 RETURN
 END
```



```
 SUBROUTINE FRES(A,C,S.FR,FI)
 C*FRESNEL INTEGRAL SUBROUTINE****AFTER ABROMOWITZ AND STEGUN
 Z=ABS(A)
 PO2 = 1. 5707963
 FZ=(1.0+0.926*Z)/(2.0+1.792*Z+3.104*Z*Z)
 GZ=1.0/(2.0+4.142*Z+3.492*Z*Z+6.670*Z*Z*Z)
 xx=PO2* Z*Z
 Cz=cos(xx)
 SZ=SIN(XX)
 C=O 5-GZ*CZ+FZ*SZ
 S=O 5-FZ*CZ-GZ*SZ
 IF(A.GT.O.O) GO TO 5O
 C=-C
 S=-S
 50 FR=0.5*(1.0+C+5)
 FI=-0.5*(S-C)
 RETURN
 END
```



```
 SUBROUTINE PREDIF
 COMMON/A/ C(60.20), RK(60.20), Y(60.20).DEEP(60, 20), ALPHAS(60.20)
 COMMON/AA/YZERD(60)
 COMMON/B/ THETA(60.20).OXTOT(60), OLDANG(60.20), DY(60.20)
 COMMON/C/H(60.20).CG(60.20).HOLD(60.20).HB(60.20).YB(60)
```

COMMON/N USED/JUSE, T, CO, CGEN, CGGEN, ANGGEN, DX, EERM, THETAO( 10 ), MMAX COMMON/D/SIGMA, G, ELO. JMAX, IMAX, PI, TWOPI, PIO2, HGEN, I JET (IOI. SJETTY COMMON/G/IBREAK (60). HNONBR(20)
DIMENSION J1(60). U2(60).J1REF(60).J3REF(60)
C*THIS SUB CALCS WHERE OIFFRACTION GOVERNS AND WHERE REFRACT GOVERNS
C*IT WILL CALL REFRAC FOR OFFSHORE AREA (OFF TIP OF STRUCTURE)
C*THEN IT WILL DO THE SHADOW ZONE USING DIFF(IF THETAO .NE.O.O)
C* IT WILL THEN FINISH THE OTHERS USING REFRAC AGAIN
C•LET'S ZERO-OUT THE DIMENSIONED ARRAYS
DO $1000 \quad \mathrm{I}=1$. IMAX +2
$J(I)=00$
$\mathrm{J} 2(1)=0.0$
JTREF (I) $=0.0$
1000 JJREF (I) $=0.0$
C*NOW, LETS FIND C,CG,RK,HB, AND WVNUM
$00202 \quad 1=1.1$ MAX
DO $202 \mathrm{~J}=1$, JMAX +2
DEPTH=DEEP (I.J)
CALL WVNUM(DEPTH,T, DUMK)
RK (I, J) = DUMK
$C(I, U)=C O * \operatorname{TANH}(\operatorname{RK}(1, J) * \operatorname{DEEP}(I, U))$
EN=0.5*(1.O+((2.*RK(I, U)*DEEP(I, J))/SINH(2,*RK(I,J)*DEEP(I.J))))
$C G(1, J)=E N * C(1, J)$
HB(I.J) $=0.78 * D E E P(1 . J)$
202 CONTINUE
C*WILL ATTRIE AN EQUAL REACH TO EACH SIDE OF EACH M-GROIN
DO $200 \mathrm{M}=1$. MMAX
IDUML = 1
IF(M.NE.1) IDUML=(IJET(M)+IUET(M-1))/2
I DUMR = IMAX
IF(M.NE.MMAX) IDUMR=(IUET(M)+IUET(M+1))/2
NPTS $=0$
DO 1 I =IDUML, IDUMR
DO $2 J=1$. JMAX
IF(Y(I.J).LT SUETTY) GO TO 14
$J 1(I)=J$
U2(1) = JMAX
GO TO 15
14 CONTINUE
2 CONTINUE
15 CONTINUE
$C$ IF NO STRUCT IS PRESENT (SUETTY=O.O), DO REFRAC THRUOUT GRID SYSIEM [F(SUETTY EQ.O O) JI(I)=1
1 CONTINUE
DO 16 I =IDUML. JDUMR
C* 'REFRAC' STARIS ON THE NEXT TO LAST J-CONTOUR,NOT THE LAST!
DO $16 \mathrm{~J}=\mathrm{J} 1(1) . \mathrm{J} 2(\mathrm{I})-1$
16 NPTS =NPTS+1
$C$ WILL NOW DO THE REFRACT FOR THE REGION 1 AREA
C*ISTART REPRESENTS THE DIRECTION THE SWEEPS WILL BEGIN FROM
C*WILL USE DUMMY IMAX.IJET.IJET+I IN CALL STTS SO IBEGIN.IEND. AND
C**ISTART WON'T CHANGE THEM MUST RESET AFTER EACH CALL REFRAC
IMAXT = I DUMR
$I J E T T=I U E T(M)$
I JETPI = I JET (M) +
IDUMLL = I OUML
IF(ANGGEN GE O.O) CALL REFRAC(Uf,U2,NPTS,IDUMLL,IMAXT,IDUMLL,M)
IF (ANGGEN LT O.O) CALL REFRAC(JI.J2.NPTS.IDUMLL.IMAXT,IMAXT,M)
IMAXT = IDUMR
$I U E T T=I J E T(M)$
IJETP $\mathcal{I}=\operatorname{IJET}(M)+1$
IDUMLL = IDUML
JOUMN = Ji(IJET(M))
JOUMS = J1 (I JET $(M)+1)$
XDISTN $=(I U E T(M)-1 O) * D X+D X / 2$
$E L T I P=T * 0.5 *(C(I U E T(M)$. JDUMN $)+C(I J E T(M)+1$.JDUMS) )
$C$ *NOW MUST CHECK THE ANCLE AT THE STRUCTURE'S TIO TO SEE WHERE SHAD ZONE
C*IF NO STRUCT PRESENT(SUETTY=O.O). FUTHER REFRAC/DIFF UNNECESSARY IF (SUETTY.EQ.O O) GO TO 13
THETAO(M)=0 5*(THETA(IJET(M), JDUMN) \& THETA(IJET (MI*1, JOUMS))
HINC $=0.5 *(H(I J E T(M)$, JDUMN $)+H(I U E T(M)+1, J D U M S))$
IF (THETAO(M)) 10.11.12
C*THIS SECTION HANOLES REFRAC/OIFF IF THETAO<O O

101700 101800 101900 102000 102100 102200 102300 102400 102500 102600 102700 102800 102900 103000 103100 103200 103300 103400 103500 - 03600 103700 103800 103900 104000 104100 104200 10.4300 $+04400$ . 04500 104600 104700 10.4800 104900 105000 105100 105200 105300 105400 105500 105600 105700 105800 105900 106000 106100 106200 106300 106400 106500 106600 106700 106800 106900 $10^{\prime} 700$ 107100 107200 107300 107400 107500 107600 107700 107800 107900 108000 108100 108200 108300 108400 108500 108600 108700 108800 108900
to CONTINUE
C•FIRST ALL OF REGION 2 WIll GET REFRACTED
NPTS =0
DO $100 \mathrm{I}=\mathrm{I}$ JET(M) +1 , IDUMR
J2(I) $=\mathrm{J} 1(\mathrm{I})$
$100 \mathrm{Jt}(\mathrm{I})=1$
Do $101 \mathrm{I}=\mathrm{IJET}(\mathrm{M})+1$. IDUMR
DO $101 \mathrm{~J}=\mathrm{J1}(\mathrm{I}) . \mathrm{J} 2(\mathrm{I})-1$
101 NPTS =NPTS+
IMAXT = I DUMR
1 OUMLL $=$ I DUML
$I J E T T=I J E T(M)$
IJETP1=IJET(M)+1
CALL REFRAC(J1.J2,NPTS.IJETP1.IMAXT.IMAXT.M)
IMAXT = I DUMR
I JETT = I JET(M)
I JETP $1=I J E T(M)+1$
IDUMLL $=$ IDUML
C•NOW MUST DO REGION 3 OF NEG THETAO CASE-SHADOW ZONE
OO 102 I=IDUML.IJET(M)
J2(I) $=\mathrm{Jf}(\mathrm{I})$
$102 \mathrm{Jt}(\mathrm{I})=1$
DO $103 \mathrm{I}=$ IOUML. IJET(M)
J1REF (I) =
DO $104 \mathrm{~J}=\mathrm{J} 1(\mathrm{I}) . \mathrm{J} 2(\mathrm{I})+1$
XCOOR = (I-1.O)*DX
$Y C O O R=0.5 *(Y(I, U)+Y(I, J+1))$
ANGLE =ATAN( (XDISTN-XCOOR)/(SJETTY-YCOOR))
IF (YCOOR.GT.SJETTY) ANGLE=PI +ANGLE
C*If MOST SHOREWARD PT OUT OF SHAD ZONE, SO ARE THE OTHERS FOR THAT I
IF (ABS(ANGLE) GT ABS(THETAO(M))) GO TO 105
RAD $=$ SQRT ( (XDISTN-XCOOR) ** $2+(S U E T T Y-Y C O O R) * * 2)$
RHOND = RAD*TWOPI /ELTIP
C*OIffRACTION TREATS THE POS THETAO CASE
THE = ABS (THETAO(M))
CALL DIFF(RHOND, THE, ANGLE, AMP)
H(I, J) =AMP * HINC
ANGRAD =-ANGLE
C*WILL NOW REFRACT DIFF WAVES IN THE SHAD ZONE USING SNELL'S
CTIP=ELTIP/T
ALPHAS(I, J) =ATAN( $(0.5 *(Y(I+1, J)+Y(I+1, J+1))-0.5 *$
$(Y(I-1, J)+Y(I-1 . J+1))) /(2 . * D X))$
IF(I EQ.IUET(M))ALPHAS(I.J)=ATAN(10.5*(Y(I.J)+Y(I.J+1))-0.5*(Y(I-1 .J) $+Y(1-1, ~(+1))) / D X)$
DALPHA = ANGRAD-ALPHAS (1.J)
THETA(I.J)=ARSIN( (C(I.J)/CTIP)*SIN(DALPHA))
THETA(I.J) = THETA(I, J) +ALPHAS(I, J)
C•MUST CHECK TO SEE If WAVE WOULD HAVE BROKEN
IF(HB(I.J) LE H(I.J).AND HB(I.J+1).GT.H(I.J+1))IBREAK(I)=J
IF(HB(I.J)LTH(I.J)) H(I,J)=HB(I,J)
104 CONTINUE
GO TO 103
iO5 J1REF (I)=U
103 CONTINUE
$C$ - NOW MUST DO REFRACTIDN FOR REGION 4
NPTS $=0$
DO 106 I =IDUML. IJET(M)
DO $106 \mathrm{~J}=\mathrm{JIREF}(\mathrm{I}) . \mathrm{J} 2(\mathrm{I})-1$
106 NPTS = NPTS + 1
IDUMLI $=1$ DUML
IMAXT = IDUMR
$I$ UET $T=I J E T(M)$
I JETP $=I J E T(M)+4$
CALL REFRAC (JIREF. J2.NPTS.IDUMLL, IJETT, IDUMLL, M)
IDUMLI = IDUML
IMAXT=IDUMR
I JETT=IJET(M)
$I J E T P I=I J E T(M)+1$
GO $10 \quad 13$
C•THIS HANDLES REFRAC/DIFF IF THETAO IS 0.0
C*FOR THIS CASE. ONLY THREE REGIONS EXIST
11 CONTINUE
NPTS $=0$

109000
109100
109200
109300
109400
109500
109600
109700
109800
109900
$+10000$
110100
110200
110300
110400
110500
110600
110700
110800
110900
111000
111100
$1+1200$
111300
111400
111500
111600
111700
111800
111900
112000
112100
112200
112300
112400
112500
112600
112700
112800
112900
113000
113100
113200
113300
113400
113500
113600
193700
113800
113900
114000
114100
114200
114300
144400
114500
114600
114700
114800
114900
145000
115100
115200
115300
195400
115500
115600
115700
115800
115900
116000
116100
116200

```
 DO 120 I=IDUML.IJET(M)
 J2(I)=\1(I)
 120 J1(t)=1
 DO 121 I=IDUML.IJET(M)
 DO 121 J=J1(I).J2(I) 1
 121 NPTS=NPTS+1
 IMAXT = IOUMR
 IDUMLL = IDUML
 I JETT = I UET(M)
 IJETP1= IJET(M)+1
 CALL REFRAC(J1, J2,NPTS.IDUMLL.IJETT.IDUMLL,M)
 IMAXT = IDUMR
 IUETT=IUET(M)
 I JETPI = I JET(M) +1
 IDUMLL = IDUML
 DO 122 I=IJET(M)+1.IDUMR
 J2(I)=J1(I)
 122 J1(I)=1
 NPTS=O
 DO 123 I=IJET(M)+1.IDUMR
 OO 123 J=J1(I).J2(I)-1
 123 NPTS=NPTS+1
 I MAXT = IDUMR
 IDUMLL = IDUML
 IUETT=IJET(M)
 I UETP I= I UET(M) + 1
 CALL REFRAC(J1.J2.NPTS.IJETP1.IMAXT,IMAXT,M)
 IMAXT = IDUMR
 I JETT =I JET(M)
 I JETP1=I JET(M)+1
 IOUMLL = IOUML
 GO TO 13
 C*THIS SECTION HANDLES REFRACT/DIFF IF THETAO>O.O
 12 CONTINUE
C*FIRST, REGION 2- ALL REFRACTION
 NPTS=O
 DO 110 I=IDUML.IUET(M)
 J2(I)=\1(I)
 110 U1(I)=1
 DO 111 I=IDUML.IJET(M)
 DO 111 J=\1(I).J2(I)-1
 111 NPTS=NPTS+1
 IMAXT = IDUMP
 IDUMLL = IDUML
 IUETT=IUET(M)
 I JETP {= I JET(M) + `
 CALL REFRAC(J1,J2,NPTS,IOUMLL,IJETT,IDUMLL,M)
 IMAXT = IDUMR
 I JETT = I JET(P4)
 I JETP I= I JET(M)+1
 IDUMLL = IDUML
C*NOW WILL dO REGION 3 OF the pos thetao case.
 DO 112 I=IJET(M)+1.IDUMR
 J2(I)=U1(I)
 112 JI(I)=1
 DO 113 I=IJET(M)+1.IDUMR
 JIREF(I)=1
C*WILL GO DNE PT. BEYOND J2(I) TO MAKE SURE OUTOF DIFF ZONE
 DO 114 J=J1(I).J2(I)+1
 XCOOR=(I-1.0)*DX
 YCOOR=O 5*(Y(1,J)+Y(I,J+1))
 ANGLE=ATAN((XCOOR-XDISTN)/(SUETTY YCOOR))
 IF(YCOOR.GT SJETTY) ANGLE=PI + ANGLE
C*IF LEAST J-VALUE IS OUT OF SHAD ZONE.SO ARE OTHER J'S (FOR EACH I)
 IF(ANGLE.GT ABS(THETAO(M))) GO TO 115
 RAD=SQRT((XCOOR-XDISTN)**2+(SJETTY-YCOOR)**2)
 RHOND = RAD*TWOPI/ELTIP
 THE = THETAO(M)
 CALL DIFF(RHOND,THE,ANGLE,AMP)
 ANGRAD=ANGLE
C*WILL NOW REFRACT DIFFRACTED WAVES IN SHAD ZONE USING SNELL"S
 CTIP=ELTIP/T
 ALPHAS(I,J)=ATAN((O 5*(Y(I+1,J)+Y(I+1.J+1))-O.5*
```

```
 (r(I-1.J)+i(I 1.v*1))|(2 * [*))
```



```
 (r(I,J)+r(I.N+1)))/DX)
 OALPHA = ANGRAD-ALPHAS(I.J)
 THETA(I,J)=ARSIN((CII,J)/CTIF)*SIN(TA!FHA)!
 THETA(I .J)= THETA(1.,J)+ALPHAS(!..1)
 H(I.U)=HINC*AMP
C*MUST CHECK TO SEE IF WAVE WOULO HAVE EROKEN
```



```
 IF(HB(I.J).LT.H(I.J)) H(I.Jl={隹\I,.ll
 114 CONTINUE
 GO TO 113
 115 UIREF(I)=U
 115 UIREFII
C*NOW MUST DO REFRAC FOR RFGION I
 NPTS=0
 OO 116 I=IJET(M)+1,IDUMR
 DO 116 J=JMREF(I).,\2(I),
 116 NPTS =NPTS +1
 IMAXT = I DUMR
 IDUMLL = IDUML
 IUETT=IJET(M)
 IUEIPI=IJET(M)+1
```



```
 IMAXT = IDUMR
 IUETT=IUET(M)
 IUETP1=IUET(M) + &
 IDUMLL = IDUNI
 13 CONTINUE
 2OO CONTINUE
 RETURN
 END
```



```
 SUBROUTINE LOCIIM.N.JOIM.ISIM.YBAR.IDUM!
 COMMON/A/C(60.20), RK(60.20),Y(60.20),DEEP(6O.201.ALEHASIF,?,
 COMMON/AA/YZERO(6O)
 COMMON/B/ THETA(GO.20),0×TOT(60), OLDANG1GO.2O1, DV(Fく, 2O1
 COMMON/C/H(60.20).CG(60.20).HOLD(60.20),HB(60.201, , %/GO)
 COMMON/N USED/JUSE,T,CO,CGEN,CGGEN,ANGGEN,OX,BERM,THETAOI, II MMA.
```



```
C*SUBROUTINE IOC FINDS J-VAIUFS WHIICH ARE GRFATER ANO IESG THAN .RAR
 JOIM=2
 2 AA=O.5*(Y(IM,JOIM)+Y(IM,JOIM- !))
 IF(AA GT YBAR) GO IO A
 JOIM=JOIM+1
C*THE FOLLOWING IS REQ'D SO THAT DY'חX\O.5
C*WILL DTERMINE K SIN THETA ON IM-LINE AT A DIST YRAR
C*WILL CALL THIS POINT JUSE+?
 IF(JOIM LE JUSE) GO TO?
 JOIM=UUSE + 1
 Y(IM, JOIM)=YBAR
C* DEPTH AT THIS POINT WILL BE COMP ASSUMING CONST BEACH SLOFE ON I-IM
```



```
 BSLOPE=(OEEP(IM.JOIM-2)-DEEP(IM,JOIM-3))/DEL
 GEEP(IM,JOIM-1)=DEEP(IM,JOIM-2)+8SLOPE*IV(JM,NDIM)V(IM.U(IM :|
 OEPTH=OEEP(IM, JOIM-1)
 CALL WVNUM(DEPTH,T,DUMK)
 RK(IM,JDIM-1)=DUMK
 C(IM, JOIM-1) =CO*TANH(RK(IM,JOIM-1)*DEEFIIM,JOIM •)I
 EN=O.5*(1 O+((2 O*RK(IM,JOIM.11*DEEF(TM.,O1MM,1)\INW!
 2.*RK(IM.JOIM-1)*DEEP(IM.JOIM-1))))
 CG(IM,JDIM-1I=C(IM.JOIM 1)*EN
 C*WILL USE SNELL'S LAW TO DETERMINE THE WAVF ANGLE HFRE
 C*ANGLE OF CONTOUR WILL BE ASSUME TO BE THF SAME AS IHFE JMAX+1 !TNNMM
 IF(IDUM EQ 1IALPH-ATANC(YIIM,IOIM, I) Y(IM, ,IDIM 1I) [IX)
 [F(IOUM EQ.-1)ALPHI=ATA'J({Y(IM+1.,IDIM 1)-YI]M.IOIM ,I):TX)
 OALPHA =ANGGEN-ALPY
 THETA(IM,JOIM-1)=ARSIN((CIIM, JOIM 1)/CREN)*CIN(DAI THA\)
 THETA(IM,JOIM-1) =THETA(IM,JOIM-1)+AIFH
 JSIM= JMAX-1
 6 AA=O.5*(Y(IM,JSIM)+(Y(IM,JSIM+1)))
 IF(AA.LT.YBAR) GO 1O g
 USIM=USIM-1
```



## APPENDIX C

CONTOURS AND SCHEMATIC ILLUSTRATIONS

This appendix presents tables of the original contours at Oregon Inlet and the final contours for the eight numerical simulations (Tables C-1 to C-9). Also included are schematic illustrations of sediment volumes transported from the nourished region (Figs. $C-1$ to $C-8$ ).

1－1－220．000	－ 200.000	O 200．000	0200.000	O 220．000	O 220.000	O 210.000	0200.000	0220.000	200．000	200.000	170.000	0	$J=1$
180.000	180.000	160.000	160.000	160.000	190.000	190.000	190.000	180.000	180.000	210.000	220.000	230.000	
220.000	200.000	160.000	160.000	160.000	160.000	170.000	170.000	170.000	180.000	210.000	220.000	220.000	
230.000	250.000	220.000	200.000	200.000	200.000	200.000	200.000	200.000	210.000	200.000			
251.623	3231.623	3 2こ1．623	3231.623	3251.623	3251.623	3241.623	3231.623	3251.623	3 231．623	3231.623			2
211.623	211.623	191.623	191.623	191.623	221.623	221.623	221.623	211.623	221.623	241.623	251.623	261．623	
251.623	231.623	191.623	191.623	191.623	191.623	201.623	201.623	201.623	211.623	241.623	251．823		
261.623	281．623	251.623	231.623	231.623	23.623	231.623	231.623	231.623	241.623	231．623			
309.443	3889.443	3 2t19．443	3289.443	$3 \quad 309.443$	$3 \quad 309.443$	$3 \quad 299.443$	3289.443	3309.443	3289.443	289.443	3259.443	3279.443	3
269.443	269.443	249.443	249.443	249.443	279.443	279.443	279.443	269.443	279.443	299.443	309.443	319.443	
309.443	289.443	249.443	249.443	249.443	249.443	259.443	259.443	259.443	269.443	299.443			
319.443	339.443	309.443	289.443	289.443	289.443	289.443	289.443	289.443	299.443	289.443			
442.028	8 422.028	8422.028	8 422．028	8442.028	8442.028	$8 \quad 432.028$	8 422.028	日 442.028	8 422.028	8 422.028	8 392．028	8 412．028	
402.028	402．02B	382.028	382.028	382.028	412.028	412.028	412.028	402.028	412.028	432.028	442	452.028	4
442.028	422.028	382.028	382.028	382.028	382.028	392.028	$\because 92.028$	392.028	402.028	432.028	442.028	442.028	
452.028	472.028	442.028	422.028	422.028	422.028	422.028	422.028	472.028	432.028	422			
684.758	8664.758	6 6E4．758	O 664．758	8 684．75日	8684.758	8 674．758	B 664.758	8684.758	8 664．758	664．758	8 634．758	8 654．750	
644.758	644.758	624.758	624.758	624.758	654.758	654.758	654.758	644．758	654．758	674．758	684．758	694.758	5
684.758	664.758	624.758	624.758	624.758	624.758	634.759	634.758	634.758	644.758	674．759	684．758	684.758	
694.758	714.758	684.758	664.758	664.753	664.758	664.758	664.758	664.758	674.758	664.758			
980.726	6960.726	6 9tio． 726	6 960．726	6 980．726	$6 \quad 980.726$	6970.726	$6 \quad 960.726$	6880.726	6960.726	6960.726	6930.726	6 95c．726	6
840.726	940.726	920.726	920.726	920.726	950.726	950.726	950.726	940.726	950.726	970.726	980.726	990.726	
980.726	960.726	920．726	920.726	920.726	920.726	930.726	930.726	930.726	940.726	970.726	980.726	980.726	
990.7261	1010.726	980.726	960.726	960.726	960.726	960.726	960.726	960.726	970.726	960．726			
1270.414	41250.414	$412: 0.414$	41250.414	41270.414	41270.414	41260.414	41250.414	41270.414	11250.414	1250.414	41220.414	41240.414	7
1230.4141	1230.4141	1210.414	1210.41412	1210.4141	1240.4141	1240.4141	1240.4141	1230.41412	1240.4141	1260.4141	1270.4141	1280.414	
1270.4141	1250.4141	1210.4141	1210.4141	1210.4141	1210.4141	1220.4141	1220.4141	1220.4141	1230.4141	1260.4141			
1280.4141	1300．414 1	1270.4141	1250．414 1	1250.4141	1250.4141	1250.4141	1250.4141	1250.4141	1260.4141	1250.414			
1702.228	8 1682．228	（16日2．228	81682.228	81702.228	81702.228	\％ 1692.228	81682.228	81702.228	1682．228	1682.228	（1652．228	81672．228	
1662.2281	1662.2281	1642.2281	1642．228 1	1642.2281	1672.2281	1672．228 1	1672.2281	1662.2281	1672．22日 1	1692．228 1	1702.2281	1712.228	B
1702.2281	1682．228 1	1642．228 1	1642．228 1	1642.2281	1642.2281	1652.2281	1652.228	1652.2281	1662.2281	1692．228 1	1702.2281	1702.228	
1712.2281	1732.2281	1702.2281	$1682.22 \theta^{1}$	1682.2281	1682．228 1	1682.2281	1682.2281	1682.228	1692.2281	1682．228			


220.100	- 219.121	218.843	3218.20	10.	217.119	210.550	O 215.985	215.425	214.871	214.322		213.244
212.716	212.197	211.687	211.106	210.694	210.213	209.744	209.26s	208,836	200.398	$207.909$	$207.551$	207.144
206.748	206.302	205,987	205.621	205.266	204.922	204. 580	209.264	203.950	203.645	203.348	203.960	202.719
202.506	202.239	201.977	201.721	201.468	201.218	200.972	200.727	200.484	20n, 241	200.000		
251.623	3251.0	250.4	249.8	299.297	$7{ }^{248.719}$	9248.16	241.6	247.058	240.491	245.9		
	243.055	243,322	242.835	242.375	241.895	241.375	240.839	0.338	234.914	239.501	239.230	238.87
234.408 234.201	238.053	237.064	237.308	230.988	236.619	230.253	235.884	235.535	235.209	234.908		
234.201 309.4	233.932	233.643	233.364	233.09 H	232.837	232.584	232.344	232.109	231.868	231.023		
3029.30	308.839	3 308.207	7397.710	- 3nT.144	4300.50	9306.023	3.305	304.931	304			
302.300 296.400	301.732	301.197	300.731	300.295	299.811	299.261	298.708	$98.229{ }^{\text {a }}$	297.838	297.504	297.175	296.810
296.400 292.114	295.978	295.569	295.240	294.904	294.542	294.147	293.753	293.398	293.079	292.788	292.546	292.300
292.114	291.035	291. 539	291.249	290.977	290, 707	290.447	290.201	289.956	289.703	289.44	2	
142.020	4 441.961	440.894	4440.328	8439.755	439.204	4438.645	-438.095	5437.549	437.008	430.47		.
434.911	434.407	333.912	433.427	432.950	432.482	432.020	431.564	431.112	430.067	430.231	429.810	424.404
429.014	428.640	428.276	427.920	427.569	427,223	426,479	426.540	420.200	425,879	425.562	425.259	
4.096	424.433	424.178	423.925	423.669	423.406	$423.13 t$	422.964	422.587	422	42		
084.	684.19	083.625	5683.004	4682.5	681.901	$1881.42 n$	-680.885	680.354	4679.827	7679.30		50
671.735	671.220	670.713	670.215	675.730	675.259	-674.803	674.361	- 73.933	673.518	673.110	672.125	672,344
671.969	671.590	671.221	670.842	670.462	670.081	069.700	.009. 340	608.990	.608.058	666.347	668.057	
607.5 -	067.283	667.037	600.780	6no. 525	0		005.071	065.37	605.365	604.758		
98.126	6-980.133	3979.544	4.978 .902	2978.392	2977.832	2911.284	7	976.214	5.08?			
973.574	973.043	972.516	971.997	471.489	970.997	970.525	970.076	869.651	909.248	904.805	960	90. 137
967.719	967.417	967.047			905.867	905.500	905.125	904.764	964.438	964.135	963.859	903.000
96.379	963.142	962.915	902.041	902.437	962.178	901.4	401.022	901.328	961.028	960.726	,	-
1270.414	41264.804	1269.190	41268.5 kH	+1207.904	41267.385	$51200{ }^{7}$	1250.204	1205.6	1.020	96		
1202.A7n 1	1262	1261.750	1201.243	$1200.74 n$	1260.2481	1259.71 \% 1	1254.3001	1258.5551	1258.41* 1	1257.495	1257.585	257.187
1250. ${ }^{\text {a }}$ U 1	1256.921 1	1256.063	$1255.70{ }^{\text {S }}$	1255.303	1255.029	1254.795	1254.391	1254.0891	1253.7981	1253.519	1253.250	252.990
1252.7301	1252.4951	1252.256	1252.020	$1251.7 \mathrm{P}^{2}$	1251.557	$51.326_{1}$	1251.099	\%	1250.0421	1250.410		
1702.228 1094.342	8 1701.595	51700.963	31700,333	31094.700	01099.083	31098.404	41697.85	21097.				,
1694.342	1093.7921	1093.253	1092.720	1092.212	1691.7111	1091.225 1	1090.7481	1090.2871	1089.840	1089.407	¢ 8	800.584
68F. 1931	1087.81t 1	1687.454	1587.104	1080	1640.4401	1080.130	1045, 5 (38	. 5521	1685.277	1685.014		
791	1694.05?		663.	1063.4081	10 A 3.2041		104.t	1015.552	10 S .217	168.014	,	-

IMe mer contoun values．

818.031	218．484	211.925	211.434	$1{ }_{210}^{217.765}$	${ }^{217} 9210$	O 210.654	112	204 213.300	0 215．024	4 314．495		＊
267.038	806．013	206．203	205.804	205，533		204．8411						30
PRamP	1ek．den	202．110	201．842	201．571	201．304	201.040	200.118	200．318	203．86s	cos，501 600.000		
811，683	3251.005	O，50n		4849.401	1240.850	O 24H．102	241．751	（1）1．210	－ 840.678	200，14a		
	244．012	243.584	243.095	242.015	242.144	（41．64）	241．231	240.164	a40，jis	a34，9jo		
214．78	210.112	231．930	231．501	237.200	236.847	250．594	236.170	［35．64n	215.510	23b． 222	214.92	
337	234.052	233，771	233.	［33．219	252．946	836．074	20．41s	232．144	231．805	231，023		
	308.091	308．341		107．840	－300．108	176．10．1	304．azu	3 305．0n4	4 304．351	1 104．082		． 100
112.461	181．966	301．471	300.945	300.504	300.043	cu4．900	644．144	648．101	240．471	297．649	297．43s	297.081
290.688	296.239	295.648	295．470	245.102	244.745	24．3．344	294．003	［43．13n	293．421	243.114	292．013	192，910
298.220	291.130	291.053	291.309	291．0n7	290.807	290．531	290.257	289.485	289．113	284，443		
	． 190	940．954	$440.41{ }^{1}$	A 439.184	4434.150	0458.814	430．2An	437．134	4 437．232	2436.707	7 as．al	
435.163   029   198	． 134.609	434.174	433，644	413.220	412.169	$43 \mathrm{c}, 3 \mathrm{~s} 3$	431.087	431．454	431.038	430.623	430.218	129．003
129．394	420.997	42n．0ul	4アM．गい	$1{ }^{11.635}$	121．409	4T1．119	480.174	4गい．45	420.139	पट5：\＃34	425．535	
124．94］	424.683	424.154	424.000	＋23．704	4a3．4／4	＂Es．l01	422.840	422.601	422.314	422.02		
$\begin{aligned} & 014.758 \\ & 011.011 \end{aligned}$	$\begin{aligned} & 0 \text { onfip37 } \\ & \text { olf,5is } \end{aligned}$	$\text { ons } 117$	0．76，501．140	（ on2．070	0 OH2．150	076，injas	\％ 01.114	4 onus	$10^{01} 0000$	9079 ${ }^{0}$	0.079 .029	－
$12.304$	271．933	071.924	－71．124	－70．135	670．301	－70．0q4	0090 ons			1，	3.168	－72．736
067.852		－67．244	bun， 4 sh	100．005	00n， 311	005.447	On5，005			604.758		
460，7：	$9{ }^{90} 0.191$	974.051	$479.16{ }^{\circ}$	C 97\％．547	7 － 4.150	0 9il．h1s	9io 4	$4{ }^{\text {a }}$		5．30s		
221.295	973.292	472.403	912．32	6／1．00e	971.422	470.488	470.504	470.140	909.134	909.322	404． 41	$19^{20}$
901.007	$907.6{ }^{9}$	907.215	906．04，	400.50 ？	906.140	405．145	9n5．4nA	905．157	$9 \mathrm{nc.859}$	904．591	964．28	3
063,710	－03．43n	903．154	4ur．mss	9nc，bs3	402，210	401．4．7	401．024	401.124	961.024	400．720		
1270.414	$41209{ }^{\text {a }}$（ ${ }^{7}$	1264.8	120 A .03	12 ng 0009	247．487	12	1200.3	120．17				
1803．0no	126	201．054	1281.440	1200.4041	$1200.4 n 51$	12n0．＂19	44.	39.117	1294.0	（1）		\％．010
1857.0451	1250.0011	2¢0．206	1254．4， 1	1259．57A	1235．24，	1254.417	1244.6151	1rsu．3n4 1	1254．013	1253．131	53．4s5	38.100
$\begin{aligned} & 1259.921 \\ & 1902.220 \end{aligned}$	$\begin{aligned} & 125200 n 0 \\ & 1701 \end{aligned}$	$1258.401$	$\begin{aligned} & 1252: 140 \\ & 3 \\ & 1700.340 \end{aligned}$		$1231.042 i$		1251．147		1230.656	1250.414		le9．est
－310	1093．031 1	n93．31s 1	1092．74 1	1042.2791	$10^{41.78 n} 1$	1641．291 1		1040．301 1				
101	108？．n93 1	607．530 1	10n）．1＊0	InRogut	10nn．53n	fong．anc i	HA5．910 10	1045，403	140	So		
	04		10A3．nso I	lan3．445 1	3n	106s．ass 1	－प2．427 10	1008．026		唯．		

O
$\mathbf{N}$
$\mathbf{N}$

$$
\begin{array}{r}
428,608 \\
759.2 \\
8>37 \%
\end{array}
$$ 428.608

759,253
422.028

$$
\begin{aligned}
& .725 \\
& 97.52 \\
& 476 \\
& 577 \\
& 525
\end{aligned}
$$


498.542
530.118
494.685 .616
489.545

11
55
43
.000 246.00
263.643
244.651
200.000
280.34
248.868
278.928
231.623
348.18
374.180
344.677
289.443 246.0
263.643
244.651
200.000
280.3
248.068
278.928
231.623
348.1
374.180
349.677
289.443

$$
\begin{gathered}
773.507 \quad 180.161 \\
824.065 \quad 423.934 \\
773.310 \\
765,723
\end{gathered}
$$

$$
\begin{array}{r}
494.06 \\
529.958 \\
494.571
\end{array}
$$ 5. $\begin{array}{lll}823.541 & 824.065 & 823.934 \\ 780.500 & 773.310 & 765.723\end{array}$

$03,1153.231,1860,576$

$945 \quad 1325.4171524 .706$ 900.120
3081320.94
1357,553
9431325.4171329 .106
31357.7331357 .453
4321.2751310 .130
4171696.5191090 .026
1250.414
21869.0171696 .5191090 .026
1691.0621690 .6521090 .250 1680.245
1682.228

244.294
203.520
247.327
203.764
277.797
298.694
281.776
235.520
344.657
373.798
353.273
294.483
$\qquad$

### 1085.913 1685.384

$$
\begin{aligned}
& 29 \\
& 84 \\
& 28
\end{aligned}
$$

Table C-5. Final contours, case 2.c2.

	252	${ }^{253.022}$	2 227.698	8 ${ }^{230.232}$	${ }_{257.720}^{232.735}$	${ }_{256.660}^{235.198}$	239.4010	259.939796	260.252.243	244.443 200.355	$\begin{array}{r} 246.550 \\ 200.227^{2} \end{array}$	$584$
9.	256	257.414	256.145	. 254.659	252.965	251.073	248.994	246.739 -	244.321	241.751	239.043	-
3	230.209	227.068	223.848		217.215	213.824	210,398	206.946	203.47	200.000		
	25	257.1	259	262.78	265.552	268.275	270.	273.5	3276		2	283.181
265.327	287.332	289.187	290.077	292.386	293.708	299.821	295.716	296.302	296.811	296.995	296.929	
5.985	295.117	293	292.618	291.000	289.148	287.075	284.796	282.327	279.682	276.875	273.917	4
7.614	264.301	260	257.007	253.8	250.220	246.555	242	239.119	235,374	231.623		
309.443	3 312.369	315.475	5318.606	6 321.824	4324.931	1 327.987	73	333.933	3336.77		342.195	14.310
34.324	349.679	351.847	353.825	355.606	357.172	358.504	359.591	360.427	361.022	61.39	98	7
	359.556	356.265	356.739	354.956	352.905	350,596	348,053	345,302	342,360	339.231	33	
320.855	325,224-	321.524	317	13	309,864		301		293.5	89.443		
	445.538 489283	186		${ }^{4}{ }^{456}{ }^{4895}$	5160.0	$1{ }^{463.660}$		9.631		477.07	6 400.140	249
. 3	5	5008893	43									
466, 713	46	458.548	454.299	409.861	445.30							
-	3.580	O 702.347	7 711,058	8719.730	O 726.360	910	785.379	9753.715				
113.218	830.488	097.336	663.718	819.584	69a.889	909.59:	Q23.639	910.904 ?	-949.58i			
13.		946.416	932.095	918.235	903.074	887.251	870.809	853.788	836.240			
44.526	752.893	743.035	734.202	724.578	714.804	104.920	694.953	684.921	674.84			
980.720		11011.5	1026.850	01002.081	1057.184	2120			911			
1195.111	1221.161	1245.9891	1270.014	1293.157	315.3401	1329.771	1340.5351	1350.5561	1359.7971	3	1375.828	
1374.609	1365.793	1356.1491	1345.7011	1334.479	1322.518		1281.8331	1257.273 1	1231.8211	1205.553	1178.548	
	1107.7521	1277 367	$7{ }^{1280} 8$		91287728		1011.265	994.484	977.624	960.726		
$1270.414$	41273.892	21277.367	71280830	9 1284, 289	91287.728	1291446	1294.535	51297.888	81301.19	304		
313.6881	1316.535	1319.2241	1321.730	1324.022	1326.0731	1334.5121	1345.3361	1355.357 1	1364.5981	1373	1380.62913	383.915
1379.410	1370.590	1360.950	1350.502	1339.2601	1327.319		1316.071	1312.8101	1309.3371	1305.080 1	1301.86412	
$1293.850 i$	$\text { 1289.69a } 1$	$1285.9651$	$1281.1771$	$1276.8441$	$1272.978$	208.089	$1263.6821$	$1259: 2651$	$1254.841$	1250.414	130.06	
3211	1694.824	1694.336	1693.856	1093. 3	1692.923	1092.469	1692.0231	1091.586				
689.5131	1609.122	1680. 138	1688.3641	1087.997	1687.640			171	1680.292			
685.0551	1684.759	1684.4671	1684.178	1683.093 J							5. 062	



$220.000$		$19 \quad 223.694$	$4225.532$	2227.357	7229.16	230.947			1	23		
12.133	243.448	244.642	245.728	$16.6888^{5}$	247.511	18.186	241804	249.057	249.239	249.244	24	,
240.163	247.434	246.522	245.433	244.170	242.740	241.153	230.410	237.545	235.545	233.430	231	
220.504		221.504	218.910	210	213.617	210.920	208,203	205.473	202.737	200.00		
				${ }^{3} 54$	260.9	1 262, 116	262-50	$2^{-266.251}$	1267.956	269		8
176	275.526	276.771	277.898	278.896	279.753	280.459	281.004	281.381	281.583	281.605	281.437	281.075
260.520	279.777	278.847	277.734	276.443	270.982	273,359	271,585	269.671	267.629	265.471	263.200	
258.420	255.916	253	250.728	248,061	245,350	242.622	239.864	237.096	234.344	231.023		
	311.0	31		310.90	321	7323.7	326.	326.431	1330.730			,
35	341.307	343.125	349.802	346,317	347.652	348.789	349.112	350.405	350.858	351.058		
354.062	349.197	348.071	346.688	345.061	333.202	341.126	358.053	336.401	333.190	331.036	326.166	325.192
322.133	319.003	315.814	312.579	309.309	306.014	302.702	299,380	296.058	292,744	289		
122.021	155.209	9489.391	1.853 .0	456.753	3.460 .429	9.469 .098	8167.751	1.471 .380	0474.973	3 978.5		360
488.632	491.756	494.710	497.464	499.986	502.246	504.214	505,862	507.163	508.095	508.611	508	
	506.762	505.276	503.402	501.157	9.560	495.646	492.432	488.951	485.234	401.309		
565	164.11	459.506	454.940	458.309	445.628	240.926			426.754	$422.0{ }^{-1}$		
4.758	99.616	6 714.513	3729.483	3744.557	7159.753	3175.078	-700,525	5 800.069	9821.667	837.		7878.094
$1{ }^{3}$	928.912	953.321	976.995	999.774	1021.498	1042.0101	1061.164	1078.0241	1094.8731	1109.216	1121.782	127.320
120.607	1106. 664	093. 341.1	1074.105	1055.249	34.689	013.156			941.196	915.473	889.135	
037770	018.190	801.075	783.999	760.720	749,579	732.498	715.480	90,536	681.634	664,758		
,	1000.366	-1020.022	21039.7	1059.422	21079.168	81098.927	71118.668	-1138,343	31157.09	11		
1260.672	1291.908	1322.2961	1351.684	373.3241	1389.434	1404.547	1818.5451	1431.3221	1442.782	1452.850		130
1460.350	1450.011	1439.4181	1426.823	1412.9031	1397.747	1381.461	1364.1601	1339.492	1308.613	1270.690		
1179.637	1155.419	1134.3091	1112.934	1091.375 1	1009.696 1	1047.945	1026.156	100a,350	982.538	960.726		
1270.14	41275.657	71280.936	-1280,285	51291.736	61297, 314	41303.040	1308.927	71314.976	¢ 1321.			41
1346.987	1353.432	1359.7331	1365.801	1378.1251	1394.235	1409.348	1423.3061	1436.1231	1447.583	1457.651	1466	.93i
1405.151	1455.412	1444.2191	1431.629	1417.704	1402.548	1366. 262	1368.9611	1357.242	1350.198	1342.912		
1320.113	1312.922	1305.5191	1298.220	1291.055 1	1284.0251	1217.123	1270.336	1263.641	1257.011	1250.414		
1702.228	1 1701.688	1701.068	81700.091	11699.917	71699.347	71098.782	12098.223	31697.672	11697.127	1690.59		5.54
1695.036	1694.536	1694.0471	1693.567	1	1692.636	92.185	1691.7431	1691.310	1690.886	1690.471	1690	1049.065
275	$1688.89 ?$	1688.517 1	1688.151	1687.792	1687, 441	097	1606.762	1686.433	1686.113	1685.800		
02	16	3351	1684.060	83.789	523	260	1682.999 1	741	168?.484			



## 4




Sediment gudger Summary

imount ${ }^{\text {a }}$ : sediment added:	None
	$992 \overbrace{}^{2}$
Amount if sediment transported seabard trom nourished resinat	$96 \mathrm{yc}^{3}$
Vet imount bi sediment transperted aiongstore :ram aniorsiled te	$444: \mathrm{c}^{3}$
Iobii mount of sediment iransported : am nouristed cegmat	, 366

Figure $C-1$. Schematic illustration of sediment volumes transported from region, case 2.a.

ease no. is.


## Sediment Budgne Surmaz:



Figure $\mathrm{C}-2$. Schematio illustration of sediment volumes transported from region, case 2.0.

$20: \therefore$

Sediment Budgat inarur:


Figure $C-3$. Schematic illustration of sediment volumes transported from nourished region, case $2 . c l$.



MICROCOPY RESOLUTION TEST CHART mATIONAL BUREAU OF STANDAROS-196:-A


Case :.c.
Period considered: Twelve months, Ipril through larch, using 1975
WIS wave hindcasts.
Sedsment Budget Summary:
Amount of sediment added: $1,452,000 \mathrm{yd}^{3}$ (on $7-$ and $11-\mathrm{ft}$ contours) tmount of sediment transported shoreward from nourished region: $466,260 \mathrm{yd}^{3}$ (32.1pet) Amount of sediment transported seaward from nourished region: $\quad 20,920 \mathrm{yd}^{3}$ (2.0 pct) Net amount of sediment transported alongshore from nourished region: 421,428 yd ${ }^{3}$ (29.0pct) Total amount of sediment transported from nourished region: $916,608 \mathrm{yd}^{3}$ (63.1pct)

Figure C-4. Schematic illustration of sediment volumes transported from nourished region, case 2.c2.


$$
\begin{aligned}
& \text { Case 2.c3. } \\
& \text { Period considered: Twelve months, July througn june, using } 1975 \\
& \text { WIS wave hindcasts. } \\
& \text { Amount of sediment added: } 1,452,000 \mathrm{yd}^{3} \text { (on } 7 \text { and } 11-\mathrm{ft} \text { contour) } \\
& \text { dmount of sediment transported shoreward from nourished region: } 415.784 \mathrm{yd}^{3} \text { (28.n pct) } \\
& \text { Amount of sediment transported seaward from nourished region: } \quad 23.728 \text { yd }^{3} \text { (2.6 pet) } \\
& \text { Net amount of sediment transported alongshore from nourished region } 3 \mathbf{3 0 , 4 0 0} \text { yd }{ }^{\mathbf{3}} \text { (22.8pct) } \\
& \text { Total amount of sediment transported from nourished region: } \mathbf{7 6 9 . 9 1 2 ~ \mathrm { yd } ^ { 3 }} \text { (53.0pct) }
\end{aligned}
$$

Figure C-5. Schematic illustration of sediment volumes transported from nourished region, case 2.c3.


Case 2.c4.
Period considered: Twelve monchs, October chrough September, using 1975 wiS wave hindcasts.

Sedimant Bucget Summary:
dmount of sediment added: $1,452,000 \mathrm{yd}^{3}$ (on 7- and 11-it contours).
Amount of sediment cransported shoreward form nourished region: $\quad 395.538$ yd ${ }^{3}$ ( 27.2 pct)
Amount of sediment cransported seaward from nourished region:
Amount of sediment cransported seaward from nourished region: $\quad 28,452$ yd $^{3}(2.0 \mathrm{p} \subset \mathrm{t}$ )
Net amount of sediment iransported alongshore from nourished region: 348.244 yd ${ }^{3}$ (24.0 pct) Total amount of sediment transported from nourished region: $772,152 \mathrm{yd}^{3}$ (53.2pct)

Figure C-6. Schematic illustration of sediment volumes transported from nourished region, case 2.c4.


Case 3.
Period considered: Four months, January through ipril, using 1975 GIS wave hindcases.

## Sediment Mudget Sumary:

dmount of sediment added $363,000 \mathrm{yd}^{3}$ (on 11 - and $14-\mathrm{ft}$ contours).

Amount of sediment transported shoreward from nourished region:
Amount of sediment transported seaward from nourished region:
$32.164 \mathrm{yd}^{3}$ (8.9pct)
$4.112 \mathrm{yd}^{3}$ (2.2pct)
Net amount of sediment transported alongshore from nourished region:
Total amount of sediment ransported from nourished region:
$43.708 \mathrm{yd}^{3}$ (12.0 pct)
$79.984 \mathrm{yd}^{3}(22.0 \mathrm{pct})$

Figure C-7. Schematic illustration of sediment volumes transported from nourished region, case 3 .


## Sediment Dudget Sumary:

Amount of sediment added: $\quad 1,452,000 \mathrm{yd}^{3}$ (on 7-, 8-, 9-, and $10-\mathrm{ft}$ concours).
Amount ni sediment transported storeward from nourished region: 275,796 yd ${ }^{3}$ (19.0pct) Amount of sediment transported seaward from nourished region: $\quad 392,000$ yd 3 (27.cpct) Net amount of sediment transported alongshore from nourished region: 96,679 yd ( 6.7 pct) Total amount of sediment transported from nourished region: $764,475 \mathrm{Yd}^{3}$ (52.6 pct)

Figure C-8. Schematic illustration of sediment volumes transported from nourished region, case 4.

## APPENDIX D

METHODOLOGY AND PROGRAM LISTING OF COMPUTER PROGRAM WHICH CONVERTS BATHYMETRIC DATA INTO MONOTONICALLY DECREASING DEPTH CONTOURS

In order to simulate prototype shorelines (and in this case to help verify the numerical model via Channel Islands Harbor data), the ( $x, y, z$ ) data points must be transformed into a form suitable for use in the model (i.e., bars can not be present). First, the bathymetric data have to be put into a form with fixed longshore and offshore spacings (i.e., $\Delta x$ and $\Delta y$ equal constants). This can be accomplished using one of the many available canned programs which do the interpolation. The problem is then one of finding the most suitable value of the constani, $A$, in the equation $h=A y^{2 / 3}$. However, as is usually the case, the exact location of the shoreline ( $h=0$ ) is unknown. In addition, one requires the added constraint is required that the volumes of sediment (or conversely, the water above the profiles) balance. The problem is solved using LaGrange Multipliers and the Newton Raphson technique for non linear equations.

The equation to be minimized is

$$
\begin{equation*}
F\left(A, \text { ydel }_{1}, \text { ydel }_{2}, \ldots \text { ydel }_{\mathrm{ImAX}}\right)=\sum_{i=1}^{\operatorname{IMAX}} \sum_{j=1}^{\operatorname{IMAX}}\left(h \text { meas }_{i, j}-h_{\text {pred }_{i, j}}\right)^{2} \tag{D-1}
\end{equation*}
$$

where $A$ is the scale parameter in the equilibrium beach profile, ydel are the locations of the shoreline for the IMAX profiles, $h_{\text {meas }}$ is the interpolated depth from the survey, and $h_{\text {pred }}$ is the depth predicted by the equation

$$
\begin{equation*}
h_{\text {pred }_{i, j}}=A\left(y_{i, j}-y^{2 d e l_{i}}\right)^{2 / 3} \tag{D-2}
\end{equation*}
$$

The constraint equation is as follows

$$
\begin{align*}
& \left.g\left(A, \text { ydel }_{1}, \ldots \text { ydel }_{\text {IMAX }}\right)=V_{\text {pred }}=\sum_{i=1}^{\operatorname{MAXX}} \Delta x\left\{\int_{\text {ydel }_{i}}^{y} f_{A\left(y-y d e 1_{i}\right.}\right)^{2 / 3} d y\right\} \\
& \text { IMAX } \\
& =\sum_{i=1}^{\operatorname{IMAX}} 5 \Delta x A\left(y_{f}-y d e l_{i}\right)^{5 / 3}=V_{\text {meas }} \tag{D-3}
\end{align*}
$$

where $V_{\text {pred }}$ is the predicted volume of water above the profile to the reference datum, $V_{\text {meas }}$ is the measured volume computed from the survey, ax is the longshore distance between onshore-offshore profiles, and $y_{f}$ is the distance offshore to the last point on each of the measured profiles (it was a constant after the interpolation routine was used).

LaGrange Multipliers procedure says to form the quantify $\mathrm{F}^{*}$ as

- $F *=F-\lambda g$
take the total differential of equation ( $D-4$ )

$$
\begin{align*}
& \left.d F \star=d F-\lambda d g=\left(\frac{d F}{d A} d A+\frac{d F}{d\left(y d e I_{1}\right)} d\left(y d e l_{1}\right)+\ldots \frac{d F}{d\left(y d e I_{\text {IMAX }}\right.}\right) d\left(y d e I_{\text {IMAX }}\right)\right) \\
& \left.-\lambda\left(\frac{d g}{d A} d A+\frac{d g}{d\left(y d e I_{1}\right)} d\left(\text { ydel }_{1}\right)+\ldots \frac{d g}{d \text { ydel }}{ }_{\text {IMAX }} d(y d e]_{\text {IMAX }}\right)\right) \tag{D-5}
\end{align*}
$$

Rearranging

$$
\begin{equation*}
\left.0=d F *=\left(\frac{d F}{d A}-\lambda \frac{d g}{d A}\right) d A+\left(\frac{d F}{\left.d(y d e]_{1}\right)}-\lambda \frac{d g}{\left.d(y d e]_{1}\right)}\right) \quad d(y d e]_{1}\right)+\ldots \tag{D-6}
\end{equation*}
$$

It is clear that the terms in brackets in equation ( $D-6$ ) must individually equal zero, however this leaves (IMAX + 2) unknown (udel $i=$ to IMAX, $A$, and ג) and only (IMAX = 1) Equations. The (IMAX + 2) th equation is taken as equation ( $D-3$ ). The following system of equation then results:

$$
\begin{align*}
0=\frac{d F}{d A}-\lambda \frac{d g}{d A} & \left.=\sum_{i=1}^{\operatorname{IMAX}} \sum_{j=1}^{\operatorname{JMAX}}\left[-2\left(h \text { meas }_{i, j}-A\left(y_{i, j}-y d e\right]_{i}\right)^{2 / 3}\right)\left(y_{i, j}-y d e 1_{i}\right)^{2 / 3}\right] \\
& -\lambda \sum_{i=1}^{\operatorname{IMAX}} 5 \Delta x\left(y_{f}-y d e 1_{i}\right)^{5 / 3} \tag{0-7-1}
\end{align*}
$$

$$
\begin{align*}
& \left.0=\frac{d F}{d\left(y d e 1_{1}\right.}\right)-\lambda \frac{d g}{\left.d(y d e]_{1}\right)}=\sum_{j=1}^{\text {JMAX }} \quad\left[2\left(h_{\text {meas }}^{1, j} 1-A\left(y_{1, j}-y d e l_{1}\right)^{2 / 3}\right)\right. \\
& \star\left(2 / 3 A\left(y_{1, j}-\text { ydel }_{1}\right)^{-1 / 3}+\lambda \Delta x A\left(y_{f}-y d e l_{1}\right)^{2 / 3}\right. \tag{D-7-2}
\end{align*}
$$

$$
\begin{align*}
& \left.*\left(2 / 3 A\left(y_{I_{\text {MAX }}}-y d e\right)_{I_{\text {max }}}\right)^{-1 / 3}\right] \quad+\lambda \Delta x A\left(y_{f}-y d e 1_{I M A X}\right)^{2 / 3} \\
& \text { (D-7-(IMAY+1)) } \\
& V_{\text {meas }}=\sum_{i=1}^{\operatorname{IMAX}}\left(3 / 5 \Delta x A\left(y_{f}-\text { ydel }_{I}\right)^{5 / 3}\right)
\end{align*}
$$

Because Equations ( $D-7$ ) is a system of nonlinear equations, it can not be written in matrix form as a [0] [x] = [E] system of equations (the brackets denote matrices). To solve the equations, a Newton-Raphson Iteration technique for nonlinear equations was used. This is done by differentiating each of the (IMAX +2 ) equations with respect to each of the unknowns, the resulting equations are then linear in terms of $\Delta a, \Delta y d e l$, . . .
$\Delta y d e 1$ IMAX, $\Delta \lambda$. The resulting matrix is inverted to obtain the $\Delta$ (unknown) and the quantities are added to the original estimates to produce a better estimate. This iterative procedure is continued until the changes become acceptably small. The solution converged rapidly. Generally, the first row of the matrix to be inverted is (all represents the $k$ th row and the th column of the matrix).

$$
\begin{aligned}
& a_{11}=\sum_{i=1}^{\operatorname{IMAX}} \sum_{j=1}^{\text {JMAX }} 2\left(y_{i, j}-y d e l_{i}\right)^{4 / 3} \\
& a_{1,2}=\sum_{j=1}^{\operatorname{JMAX}}{ }_{3}^{4}\left(y_{1, j}-y d e l_{1}\right)^{-1 / 3}\left(h_{\text {meas }}{ }_{i, j}-2 A\left(y_{1, j}-y d e l_{1}\right)^{2 / 3}\right)
\end{aligned}
$$

$$
\begin{align*}
& \left.a_{1, I \text { MAX }+1}=\sum_{j=1}^{\text {JMAX }} \frac{4}{3}\left(y_{I M A X, j}-\text { yde }\right]_{I M A X}\right)^{-1 / 3}\left(h_{\text {meas }} \text { IMAX }, j\right. \\
& \left.-2 A\left(y_{I \max , j}-\text { ydel }_{I \max }\right)^{2 / E}\right) \\
& a_{1, I M A X}+2=\sum_{i=1}^{\operatorname{IMAX}}\left[\frac{3}{5} \Delta x\left(y_{f}-\text { yde }_{I}\right)^{5 / 3}\right] \tag{0-8}
\end{align*}
$$

The second row of the matrix is as follows:

$$
\begin{align*}
& a_{2,1}=\sum_{j=1}^{\text {JMAX }}\left[\begin{array}{l}
4 \\
h_{\text {meas }}^{1, j} \\
\left.\left.\left(y_{1, j}-y d e 1_{1}\right)^{-1 / 3}-{ }_{3}^{\Omega} A\left(y_{1, j}-y d e\right)_{1}\right)^{1 / 3}\right]
\end{array}\right. \\
& +\lambda \Delta x\left(y_{f}-y \operatorname{del} l_{1}\right)^{2 / 3} \\
& \left.a_{2,2}=\sum_{j=1}^{\text {JMAX }}\left[\frac{4}{4} A h_{\text {meas }}^{i, j}\left(y_{1, j}-\text { ydel }_{1}\right)^{-4 / 3}+{ }_{9}^{4} A^{2}\left(y_{1, j}-y \text { de }\right]_{1}\right)^{-2 / 3}\right] \\
& -\lambda(2 / 3) \Delta \text { XA }^{-}\left(y_{f}-\text { ydel }_{1}\right)^{-1 / 3} \\
& { }^{a_{2,3}}=0 \\
& a_{2, \text { IMAX }^{2}+1}=0 \\
& a_{2, \text { IMAX }+2}=\Delta X A\left(y_{f}-\text { ydel }_{1}\right)^{2 / 3} \tag{D-9}
\end{align*}
$$

The third row is simply these elements repeated except that the ones on the right-hand side of the first and last elements are changed to twos, and the a3,3 element is similar to the a2,2 except the ones on the right hand side become twos. The remaining column elements (i.e., those when the $k=1$ ) are zeroes. This process is continued to fill the array, except for the last row.

The (Imax+2)th row is as follows:

$$
\begin{align*}
& a_{I M A X+2,1}=\operatorname{IMAX}_{i=1} 5^{3 x X}\left(y_{f}-y \text { de }_{i}\right)^{5 / 3} \\
& \left.{ }^{a}{ }_{I M A X}+2,2=-\Delta x A\left(y_{f}-y d e\right]_{1}\right)^{2 / 3} \\
& \operatorname{a}_{\mathrm{IMAX}+2, \text { IMAX }^{2}}^{\vdots}=-\Delta X A\left(Y_{f}-\text { ydel }_{I M A X}\right) 2 / 3 \\
& { }^{\mathrm{a}} \mathrm{IMAX}^{2}+2, \text { IMAX }^{2}=0 \tag{D-i0}
\end{align*}
$$

The $E$ matrix in the $[D][x]=[E]$ system of equations is

$$
\begin{align*}
& E_{1}=-\sum_{i=1}^{\text {IMAX }} \sum_{j=1}^{\text {JMAX }}-2\left(n_{\text {meas }}^{i, j} 0-A\left(y_{i, j}-y d e 1_{i}\right)^{2 / 3}\right)\left(y_{i, j}-y d e l_{i}\right)^{2 / 3} \\
& \left.\left.-\lambda \sum_{i=1}^{\text {IMAX }}\left(\frac{3}{5}\right) \Delta x\left(y_{f}-y d e\right)_{i}\right)^{5 / 3}\right] \\
& E_{2}=-\left[\sum _ { j = 1 } ^ { J M A X } 2 ( h _ { \text { meas } _ { i , j } } - A ( y _ { 1 , j } - \text { yde } _ { 1 } ) ^ { 2 / 3 } ) \left(\left(\frac{2}{3}\right) A\left(y_{1, j}-y_{\text {del }}^{1} 10-1 / 3\right)\right.\right. \\
& \left.+\lambda\left(\Delta x A\left(y_{f}-y d e l_{1}\right)^{2 / 3}\right)\right] \\
& E_{I M A X+1}=-\left[\sum _ { j = 1 } ^ { J M A X } 2 \left(h_{\text {meas }} \text { Imax }, j{ }^{\left.\left.-A\left(y_{\text {IMAX }, j}-y d e\right]_{I M A X}\right)^{2 / 3}\right)}\right.\right. \\
& \left.*\left(\left(\frac{2}{3}\right) A\left(y_{1, j}-\text { ydel }_{1}\right)^{-1 / 3}\right)+\lambda\left(\Delta x A\left(y_{f}-y \text { del }_{1}\right)^{2 / 3}\right)\right] \\
& E_{\text {IMAX }+2}=-\left[\sum_{i=1}^{\operatorname{IMAX}}\left(\left(\frac{3}{5}\right) \Delta X A\left(y_{f}-y d e 1_{1}\right)^{5 / 3}\right)-v_{\text {meas }}\right] \tag{0-11}
\end{align*}
$$

The $[D][x]=[E]$ system of equations was then solved, as explained previously, by solving the $x$ column vector (which represents the changes in the unknowns, $\Delta A$, $\Delta y d e l$ l $. . . \Delta y d e l \mid \max , \Delta \lambda)$, adding these changes to the respective variables and iterating until a final solution is obtained.

The computer program which did these calculations for the Channel Island Harbor simulation follows. A user-supplied matrix inversion routine is required (Line 37,200 ).

## SRESET FREE

```
C*************日ROGRAM CIH/BVALUE
FILE 5(KIMD-PACK.TITLE="CIH42076A".FILETYPE=7)
FILE 6(KIND-REMOTE)
C*THIS PROGRAM USES THE INTERPOLATEO PROFILES OF CIH.
C-IT FINDS THE LDCATION OF THE SHORELINE. YDEL AND THE BEST
C*FIT LEAST SOUARES "8" VALUE FOR H=8Y**2/3
C*USES LAGRANGE MULTIPLIERS TD CONSTRAIN THE VOLUMES(SO THEY ARE EOUAL)
C*THEN IT USES NEWTON-RAPHSON ITER FOR NON-LIN EOS
DIMENSION X(40)
DIMENSION WKAREA(600).AMATRX(23.23).8MATRX(23.1)
DIMENSION Y(40.20). \(2(40,20)\), YDEL (40), JBEGIN(40), YDELI(40)
DIMENSION DYTWO (40, 20). DYDNE (40, 20), DYMTWO (40.20). DYMONE (40, 20)
DIMENSION DYMFDR (40, 20), OYFOR (40, 20), YDONE (40, 20), YOMTWO (40, 20)
DIMENSIDN YDMONE (40, 20). YETWO (40). YEONE (40), YEMONE (40)
DIMENSION YEMTWO(40), YEMFOR(40), YEFIVE(40)
EXPON=2./3.
THIRD=0.3333333333333333
C*FIRST READ IN THE PROFILES FROM DISKPACK.
OO 1 \(1=1.34\)
DO \(1 J=1.15\)
READ (5,100) X(I),Y(I,J),Z(I,U)
100 FORMAT(i4X,F6.O.F5.O.F5.O)
C-NOW WE MUST GET A FIRST APPROX FOR YDEL
C*WE WILL USE LINEAR INTERPOLATION TO DETERMINE IT.
IBEGIN=1
\(\operatorname{IMAX}=21\)
\(\operatorname{JMA} X=15\)
C*CHANGE PROFILE TO SPAN 1 TO IMAX(IF ALREADY DONE,WON'T HARM THINGS)
ITEMP \(1=1\)
ITEMP 2 = IMAX-IBEGIN+1
\(K=-1\)
DO 777 I=1. ITEMP2
\(K=K+1\)
DO 777 J=1.JMAX
\(Y(I, J)=Y(I B E G I N+K, J)\)
777 Z(I.J) \(=2(\) IBEGIN+K.J)
IMAX = ITEMP2
\(0 x=100.00\)
002 I=1. 1 max
DO \(3 \mathrm{~J}=1\), JMAX
IF(Z(I.U).GE.O.O) GO TO 3
C*FIRST NEG POINT ON THE PROFILE IS SEAWARD OF \(\mathbf{2 = 0 . 0}\)
C* WE MUST ALSO REMEMBER THIS LOCATION
C•IF Z(I.I)<O. CHOOSE AREITRARY PT, ROUTINE ITERATES TO SOLN.
ZOUM \(=1.0\)
IF(J.NE.1) ZOUM=2(I, J-1)
YOUN=Y(I, J)-50.0
IF(U.NE. 1) YOUM=Y(I, J-1)
DELY=ZDUM/((ZDUM-Z(I.J))/(Y(I.J)-YDUM))
YOEL.(I)-YDUM+DELY
JEEGIN(I)-J
CO TO 2
3 CONTIMNE
2 CONTIMUE
C•THE VALUES FOR 2 ARE NEG DN FILE, MUST NOW MAKE POS.
C*THE 2 VALUES ARE ALSO * 10.
0035 I-1. Imax
DO 35 J-JBEGIN(I). JMAX
\(35 \quad 2(1, J)=-2(t, J) / 10.0\)
C*MUST INITIALIZE "B" SO WILL MAKE A FIRST GUESS.
C•MUST ALSO GUESS LAMBDA (XLAMB)
\(8=0.30\)
xLAME-2.0
00 IO ITEREI. 100
C•LET'S CALCULATE THE VDL OF WATER ABOVE THE PROFILE, VMEAS.
C*ITS OUR CONSTRAINT, BUT SINCE YOEL IS NOT KNOWN. A PRIORI.IT WILL CHANEE VMEAS-0.0
00200 1.i.Imax
00200 Ja JBEGIN(I), JMAX
IF(J.NE.VEEGIN(I)) 60 TO 201
```

1200

0010200
201 IF (J.EO. MAX) GO TO 202
VMEAS=VMEAS*DX*O.S*(Y(1.J*i)-Y(1.J-i))*2(I.J)
GO 10200
202 VMEAS = VMEAS $+D X * Z(1, J) *(Y(1, J)-0.5 *(Y(1, J)+Y(1, J-1)))$
200 CONTIMNE
C•PRIOR TO EQS. COMPUTE AND STORE SEVERAL VALUES WE NEED DVER AND DYER C*BECAUSE COMPUTER CAN'T RAISE A NEG VALUE TO AN EXPONENT
C•MUST PRESERVE THE SIGN.
00 400 11=1.1 MAX
OO 401 JJ=JBEGIN(II).JMAX
ARGI=Y(11.UJ)-YDEL(11)
DYSIGN=SIGN(1. .ARGI)
OY=ABS (Y(II.JJ)-YOEL(II))
DYTWO(II.JU)=DY* EXPDN
OYONE (II. UJ)=DYSIGN*DY••THIRD
DYMTWO(II.JJ) $=$ DY** (-EXPON)
OYMONE (II.UJ) =DYSIGN*DY* (-THIRO)
OYм~OR (II, JJ) $=D Y * *(-2 . * E X P O N)$
OYFOR(II.JJ)=DY**(2.EXPON)
401 CONTIMUE
ARG2=1400. - YDEL(II)
DSIGN=SIGN(1. . ARG2)
DYE =ABS (ARG2)
YETWO(II)=OYE* *EXPON
YEONE (II) $=O S I G N * D Y E *$ THIRO
YEMONE (II)=DSIGN*OYE* (-THIRD)
YEMTVO(II)=DYE*-(-EXPON)
YEMFOR(II)=DYE**(-2.*EXPON)
YEFIVE(II)=DSIGN*DYE**(5.-THIRD)
400 CONTIMUE
C*LET'S INPUT THE FIRST ROW OF THE MATRIX, A
SUM $18=0.0$
00300 II=1.1max
DO 300 JJ=JBEGIN(II), JMAX
300 SUM 1B = SUM 1B + 2. DYFOR(1I.JJ)
AMATRX(1, 1)=SUMIB
SUMLAM $=0.0$
DO $305 \mathrm{~K}=1.1$ MAX
SUM IK=0.0
DO $306 \mathrm{JJ}=\mathrm{JBEGIN}(K)$. JMAX
306 SUM IK=SUM IK+2.*EXPON*DYMONE $(K, J J) \cdot\left(z\left(K, J_{J}\right)-2 .-8 *\right.$
OYTWO(K.JJ))
SUMLAM=SUMLAM-O. $6^{\circ}$ DX*YEFIVE (K)
305 AMATRX $(1, K+1)=$ SUMTK
AMATRX(1, IMAX +2 ) $=$ SUMLAM
C*NOW THE MIDOLE ROWS OF THE AMATRX.
DO 410 LROW-2. IMAX +1
SUM28-0.0
II = LROW-
DO 415 JJ=JBEGIN(II).JMAX
4 15 SUM2B = SUM $2 B+2 . * E X P O N * Z(I I, J J) * D Y M O N E(I I, J J)-4 . * E X P O N * ~$ B•DYONE (III,JJ)
AMATRX(LROW, I) = SUM $2 B+X L A M B$-DX*YETWO(II)
DO 430 II=1.IMAX
SUM2Y $=0.0$
00425 JV=JBEGIN(II).JMAX
 -2. *B•日* DYMTWO(II.JJ)
If(isiti).EO.LROW) GO TO 431
ama TRX (LROW. $1 I+1)=0.0$
e0 10430
431 AMATRX(LROW. 11 + 1)=SUM2Y-XLAMB * EXPON•DX*B•YEMONE (II)
430 CONTIMUE
4 40 MATRX(LROW, IMAX +2 ) =DX - 8 -VETWO (LROW-1)
C*NOM THE LAST ROW OF THE MATRIX A
Sumpe $=0.0$
DO 480 $11=1.1$ max

amatinx (Imax +2.1 ) $=$ SUMFB

14300
14400 14500 14600 14700 14800 14900 15000 15100 15200 15300 15400 15500 15600 15700 15800 15900 16000 16100 16200 16300 16400 16500 16600 16700 16800 16900 17000 17100 17200 17300 17400 17500 17600 17700 17800 17900 18000 18100 18200 18300

00433 11=1.1max
453 AMATRX(1mAX+2.11+i.) - -0x-8 e YETMO(II) AMATRX $(1 \max +2 . \operatorname{Imax}+2)=0.0$
CANOW MUST INPUT THE BMATRX.
SUMF 1A=0.0
SUMF 1B $=0.0$
DO 455 11=1.1max

DO 455 JJ=JBEGIN(II).JMAX
455 SUMF IA=SUMF 1A-2.(Z(II.JJ)-B*OYTWO(II.JJ)) ©OYTWO(II.JU)
BMATRX(1.1) $=-($ SUMF $1 A-$ SUMF 1B)
DO 460 II=1.IMAX
SUMF II $=0.0$
OO 462 JJ=JEEGIN(II).JMAX
 SUMF II = SUMFII +XLAMB * DX*B * YETWO(II)
460 BMATRX(II+1,1)=-SUMFII
SUMV $=0.0$ 00465 11 $=1$. IMAX
465 SUMV = SUMV $+0.6^{\circ}{ }^{\circ} \mathrm{DX} * \mathrm{~B} \cdot \mathrm{YEFIVE}$ (II) BMATRX(IMAX + 2.1) $=-($ SUMV-VMEAS )
C*NEXT LET'S CALL THE MATRIX INVERSION ROUTINE VIA IMSL CALL LEOT2F (AMATRX, 1, IMAX +2, 23, BMATRX, 3, WKAREA. IER)
C•THE SOLN IS RETURNED IN THE VECTOR BMATRX
C•FINALLY, WE MUST UPDATE THE $X$ VECTOR IN AX=B. $B=B+B$ MATRX(1.1) $X L A M B=X L A M B+B M A T R X(I M A X+2,1)$ $00470 \quad 11=1 . I$ max
$470 \mathrm{YDEL}($ II $)=\mathrm{YDEL}(I I)+8 \mathrm{MATRX}(11+1.1)$
C*CHECK THE CRITERION FOR COMPLETION
SUMVEC=0.0
DO 475 II =1.I $\max$
475 SUMVEC=SUMVEC+ABS(BMATRX(II.I))
IF(SUMVEC.LT.(0.1*(IMAX+2))) GO TO 11
WRITE(G, / ) B.ITER, (I.YDEL(I),I=1,IMAX), XLAMA
10 CONTINE
II CONTIMUE
C*LET'S WRITE IT ALL OUT.
WRITE(6.*) ITER.B.(I.VDEL(I).I-I.IMAX)
STOP
END

## APPENDIX E

USER DOCUMENTATION AND INPUT AND OUTPUT FOR PROGRAM VERIFICATION

The computer program presented in Appendix B was run on a Burroughs B-7700 computer. The B7000/B6000 series FORTRAN language was designed so several existing programs written in FORTRAN would be compatible with minimal changes. It was designed to be compatible with Fortram IV, $H$ level and to contain ANSI X3.9-1966 Standard FORTRAN as a subset.

Line 37,200 of the coding (see App. B) requires a subroutine from the IMSL subroutine package, LEQTIB and its associated subroutines. If the user's computing center has access to this package of subroutine programs they need only bind them to the program (note: copyright laws prohibited the inclusion of the IMSL coding). If not, a substitute subroutine must be user supplied. It must facilitate the solution of a banded storage mode matrix.

The program input will be described here using a card deck set-up, however, the use of diskpack or magnetic tape input follows directly. Lines $3100,4100,5500,5900,6800,7500$, and 12,900 are read statements. The cards used for the simulation presented in this appendix are shown in Figure E-1. The first card contains the value of WDEPTH, the depth of water (in meters) to which the input wave conditions are to be transformed (a partial list of variables used in the program is presented beginning on page A-8 of Appendix A). The format statements are obviously in the program coding.

The second data input card is read by line 4100 where the variables SJETTY, BERM, SFACE, and DIAM are required (length of the structure, berm height, shore face slope, and sediment diameter, respectively).

Lines 5500 reads MMAX, the number of structures to be simulated las set-up here, a maximum of 10 structures can be modeled, however, appropriate changes in array dimensions would allow additions (structures). Line 5900, which is in a "DO" loop reads the lesser I grid value adjacent to where the structure is desired. The number of structures, MMAX, determines the number of data cards required here; 3 structures require 3 cards with the 3 I grid locations (note, the present configuration of the refraction and diffraction subroutines requires evenly spaced structures, however this can be altered if necessary).

The parameter ADEAN, which represents the value of $A$ in the equilibrium profile used is the next value input (line 6800). As mentioned previously, whenever possible a site-specific value should be used. The space-step and time-step (DX and DELT in the coding) are input next (line 7500).

The last input values are the wave data, HS, $T$, ALPWIS read by line 12,900. This statement is in a loop made by the unconditional GO TO statement (line 16,400 ) and the read statement. There is an action specifier included in the read statement to transfer the program to statement 1000, thereby stopping execution of the program once all the wave climate data have been used. The number of data cards required for this read statement is dictated by the length of the simulation and the time-step used.

The input file and output for program verification follow.


Figure E-1. Card deck input for program verification.

## Copy avoliable to DTIC does not permit fully legible reproduction

INPUT: FILE DUM

000900000000000000000000000
 ○ 21600.00



888
088
00 888
088
888 000 8:8 ?

ツ..........................................									
wead in ine space sitp,imisiep									
Tif homanar $\times$ valuts. $1-1.1 \mathrm{max}$ arf as fotious									
the deptits betwen contours are as filious									
	$\therefore \quad \therefore$	$\ldots{ }^{2}{ }^{20} \ldots . .$	$\ldots .$	$\text { . . } 3 . .9 . . . .$	!.........	ㅇ.... ${ }^{4}$	0 170	2500	3201
inneivil.									
maniviz.									
immives.									
maniv.t.									
monivis									
momiv. 6.									
muniv t .									
camiva									
mmmiv-g.									
	0 Om	$0_{0 \times 0}$	0 \%om	0000	$10^{000}$	$0_{0}^{0 \times \infty}$	- ${ }^{0} 0000000$	- ${ }^{00000}$	- ${ }^{00000}$
		() ax,							
	0 ¢00	0 Ow	) (以)	0 Ok)	0000	0 ono	- 000	0000	$\bigcirc 000$



Coper ardilable to DTIC does not
jobit fully legiti, in li. inn


one

$$
=
$$ "-".. $\cdots$ Nuniv. 27. numiv 24. minive 29 Numiv. 21 . Namiv-2h. maniv: 2"



 ,000 io0 000 000 000 000 000 000






 000000000000000000000000
















```
Nog
```






```
#cccN~N~
```









畑


[^0]:    ${ }^{1}$ To obtain Celsius (C) temperature readings from Fahrenheit (F) readings, use formula: $C=(5 / 9)(F-32)$.

    To obtain Kelvin (K) readings, use formula: $K=(5 / 9)(F-32)+273.15$.

[^1]:    * After 17 weeks, the addition of sand caused contours to cross. Prior sediment added was $363,000 \mathrm{yd}^{3}$. Problem was rectified; however, case was not rerun.

