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A NUMERICAL SCHEME FOR BSDES

BY JIANFENG ZHANG

University of Southern California, Los Angeles

In this paper we propose a numerical scheme for a class of backward
stochastic differential equations (BSDEs) with possible path-dependent
terminal values. We prove that our scheme converges in the strong L2 sense
and derive its rate of convergence. As an intermediate step we prove an
L2-type regularity of the solution to such BSDEs. Such a notion of regularity,
which can be thought of as the modulus of continuity of the paths in an
L2 sense, is new. Some other features of our scheme include the following:
(i) both components of the solution are approximated by step processes
(i.e., piecewise constant processes); (ii) the regularity requirements on the
coefficients are practically “minimum”; (iii) the dimension of the integrals
involved in the approximation is independent of the partition size.

1. Introduction. In this paper we are interested in the following backward
stochastic differential equation (BSDE, for short):

Yt = ξ +
∫ T

t
f (r, Yr ,Zr) dr −

∫ T

t
Zr dWr,(1.1)

where W is a Brownian motion defined on some complete, filtered probability
space (�,F ,P ; {Ft}0≤t≤T ) and ξ ∈ FT . The BSDEs of this kind, initiated
by Bismut [3] and later developed by Pardoux–Peng [20], have been studied
extensively in the past decade. We refer the readers to the books of El Karoui–
Mazliak [9], Ma–Yong [16] and the survey paper of El Karoui–Peng–Quenez [10]
for more information on both theory and application, especially in mathematical
finance and stochastic control, for such equations.

A long-standing problem in the theory of BSDEs is to find an implementable
numerical method. Many efforts have been made in this direction as well.
For example, in the Markovian case, Douglas, Ma and Protter [8] established
a numerical method for a class of forward–backward SDEs, a more general version
of the BSDEs (1.1), based on a four step scheme developed by Ma–Protter–
Yong [15]. In his Ph.D. thesis, Chevance [6] proposed a numerical method for
BSDEs by using binomial approach to approximate the process Y . We should point
out that, besides the Markovian requirement [i.e., the terminal value ξ has to be of
the form g(XT ), where X is some forward diffusion], both methods require rather
high regularity of the coefficients.
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In the non-Markovian case where the terminal value ξ is allowed to depend
on the history of a forward diffusion X, Bally [2] presented a discretization
scheme and obtained its rate of convergence. The main idea therein was to
use a random time partition to overcome some difficulty in approximating the
martingale integrand—the process Z in (1.1). However, his scheme requires
some extra approximations in order to give an actual implementation, and it
involves computing multiple integrals whose dimension is proportional to the
partition size, which is quite undesirable in implementation. Recently, Briand–
Delyon–Mémin [5] and Ma–Protter–San Martin–Torres [14] proposed some
numerical methods for BSDEs with path-dependent terminal values. In these
works only weak convergence results are obtained. Finally, in [23] Zhang and
Zheng suggested another method via PDE approach, which also requires high
regularity of coefficients.

We note that the main difficulty in a numerical scheme for BSDEs usually lies in
the approximation of the “martingale integrand” Z. In fact, in a sense the problem
often comes down to the path regularity of Z. To our best knowledge, most existing
methods either require high regularity conditions (e.g., [6, 15]) so as to guarantee
the path regularity of the process Z or otherwise lack a good rate of convergence
(e.g., [2, 14]).

In this paper we try to find some middle ground among the existing methods.
We shall consider a class of BSDEs whose terminal value ξ takes the form �(X),
where X is a diffusion process and �(·) is a so-called L∞-Lipschitz functional
(see Section 2 for precise definition). With the help of some results in our previous
work [18], we first prove that the martingale integrand Z satisfies a new type
of path regularity, called the “L2-regularity” in this paper, which in essence
characterizes the modulus of continuity in a mean-square sense. With such a
regularity result, and in light of an underlying discretization scheme, we then
design a numerical scheme and study its rate of convergence. Our main results
are the following: if � is an L∞-Lipschitz functional, then the asymptotic rate of
convergence is

√
(logn)/n; if � is a so-called L1-Lipschitz functional, or is of the

form g(XT ), then the rate of convergence will be 1/
√

n. We should note that, while
the latter rate is more or less standard (cf. [8]), the former rate of convergence, to
our best knowledge, is new. In fact, it can be shown that such rate is indeed sharp
(see Remark 4.3).

There are several other features of our numerical scheme. First, our approxi-
mating solutions are all step processes (i.e., piecewise constant processes), which
is rather convenient in implementations for obvious reasons. Second, besides the
L∞ Lipschitz property of �, our method virtually requires only Lipschitz con-
ditions, which is needed for the well posedness of the problem. Third, the high
dimensionality caused by the non-Markovian nature of the BSDE is overcome sig-
nificantly. We note that to implement a scheme which involves calculating a certain
number of integrals, one needs to deal with two types of high dimensionality: One
is the dimension of each integral and the other is the number of integrals involved.
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In our scheme, the former dimension is equal to that of W and the latter number,
which is exponential to the partition size in general, is linear to that size if the non-
Markovian problem can be converted to a Markovian one by adding one (or some)
state variable. We should note that this type of non-Markovian problem has lots of
applications in finance theory (e.g., lookback options and Asian options) and the
idea of converting it to a Markovian one has been exploited by many authors (see,
e.g., [4, 7]).

The rest of the paper is organized as follows. In Section 2 we present some
preliminaries. In Section 3 we establish the L2-type regularity for the process Z, as
well as that for X and Y . In Section 4 we review the Euler scheme used to discretize
the forward diffusion X; then in Section 5 we discretize the BSDE and prove the
rate of convergence. In Section 6 the numerical scheme is presented explicitly, with
special attention to the BSDEs which can be converted to Markovian ones.

2. Preliminaries. Throughout this paper we let T > 0 be a fixed terminal time
and (�,F ,F,P ) be a complete, filtered probability space on which is defined a
standard Brownian motion W , such that F = {Ft }0≤t≤T is the natural filtration
of W , augmented by all the P-null sets.

The following spaces will be frequently used in the sequel: Let E denote a
generic Euclidean space with inner product 〈 ·, · 〉 and norm | · |.
• D is the space of all càdlàg functions defined on [0, T ].
• Cm

b ([0, T ]×E) is the space of all continuous functions ϕ : [0, T ]×E �→ R, such
that ϕ has uniformly bounded derivatives with respect to the spatial variables up
to order m. We often denote Cm

b = Cm
b ([0, T ] × E) for simplicity, when the

context is clear.
• C1/2,1([0, T ] × E) is the space of all continuous functions ϕ : [0, T ] ×

E �→ R, such that ϕ is uniformly 1
2 -Hölder continuous in t and uniformly

Lipschitz continuous in the spatial variables. Again, we often denote C1/2,1 =
C1/2,1([0, T ] × E) for simplicity, when the context is clear.

• For 1 ≤ p < ∞, Lp(FT ) is the space of all FT -measurable and Lp-integrable
random variables; Lp(F) is the space of all F-adapted processes ξ satisfying

‖ξ‖p
p,T


= E{∫ T
0 |ξt |p dt} < ∞.

We consider the following (decoupled) forward–backward SDE:

Xt = x +
∫ t

0
b(s,Xs) ds +

∫ t

0
σ(s,Xs) dWs,

Yt = �(X) +
∫ T

t
f (s,Xs,Ys,Zs) ds −

∫ T

t
Zs dWs,

(2.1)

where b, σ and f are deterministic functions and � is a deterministic functional.
To simplify presentations, in what follows we assume that Xt ∈ R

d , and Wt ,
Yt and Zt are all one-dimensional (noting that X and W may have different
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dimensions). But the results can be extended to cases with higher-dimensional W ,
Y and Z without significant difficulties. For simplicity we also denote the solution

to (2.1) by �

= (X,Y,Z).

DEFINITION 2.1. A functional � : Dd �→ R is called L∞-Lipschitz, if there
exists a constant K such that

|�(x1) − �(x2)| ≤ K sup
0≤t≤T

|x1(t) − x2(t)| ∀x1,x2 ∈ D
d;(2.2)

and � is called L1-Lipschitz, if it satisfies the following estimate:

|�(x1) − �(x2)| ≤ K

∫ T

0
|x1(t) − x2(t)|dt ∀x1,x2 ∈ D

d .(2.3)

Two typical examples of L∞-Lipschitz and L1-Lipschitz continuous functionals
are �(x) = max0≤t≤T |x(t)| and �(x) = ∫ T

0 x(t) dt , motivated by lookback
options and Asian options, respectively. The following approximation result, due
to Ma–Zhang [18], for L∞-Lipschitz functional will be useful in the sequel.

LEMMA 2.2. Suppose that � is an L∞-Lipschitz functional satisfying the
condition (2.2). Let � = {π} be a family of partitions of [0, T ]. Then there exists a
family of discrete functionals {gπ :π ∈ �} such that

(i) for each π ∈ �, assuming π : 0 = t0 < · · · < tn = T , we have that gπ ∈
C∞

b (Rd(n+1)), and satisfies

n∑
i=0

∣∣∂xi
gπ (x)

∣∣≤ K ∀x = (x0, . . . , xn) ∈ R
d(n+1),(2.4)

where K is the same constant as that in (2.2).
(ii) for any x ∈ D

d , it holds that

lim|π |→0

∣∣gπ

(
x(t0), . . . ,x(tn)

)− �(x)
∣∣= 0.(2.5)

We shall make use of the following Standing assumptions:

ASSUMPTION 2.3. The functions b,σ,f ∈ C1/2,1; and � is an L∞-Lipschitz
functional. We use a common constant K > 0 to denote all the Lipschitz constants
and assume that

sup
0≤t≤T

{|b(t,0)| + |σ(t,0)| + |f (t,0,0,0)|}+ |�(0)| ≤ K,

where 0 is the constant function taking value 0 on [0, T ].
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The following lemma collects some standard results in SDE and BSDE
literature. We list them for ready references.

LEMMA 2.4. Suppose that b̃, σ̃ :�× [0, T ]× R
d �→ R

d and f̃ :� × [0, T ] ×
R × R �→ R are F-adapted random fields, such that:

(a) they are uniformly Lipschitz continuous with respect to x ∈ R
d , y ∈ R and

z ∈ R, with the common Lipschitz constant K > 0;
(b) b̃(t,0), σ̃ (t,0), f̃ (t,0,0) ∈ L2(F).

For any ξ ∈ L2(FT ), denote � = (X,Y,Z) be the solution to following FBSDE:

Xt = x +
∫ t

0
b̃(s,Xs) ds +

∫ t

0
σ̃ (s,Xs) dWs,(2.6)

Yt = ξ +
∫ T

t
f̃ (s, Ys,Zs) ds −

∫ T

t
Zs dWs.(2.7)

Then, we have the following estimates:

(i) for any p ≥ 2, there exists a constant Cp > 0, depending only on T ,
K and p, such that

E

{
sup

0≤t≤T

|Xt |p
}

(2.8)

≤ CpE

{
|x|p +

∫ T

0

[|b̃(t,0)|p + |σ̃ (t,0)|p]dt

}
,

E

{
sup

0≤t≤T

|Yt |p +
(∫ T

0
|Zt |2 dt

)p/2}
(2.9)

≤ CpE

{
|ξ |p +

∫ T

0
|f̃ (t,0,0)|p dt

}
,

E
{|Xt − Xs |p}

(2.10)

≤ CpE

{
|x|p + sup

0≤t≤T

|b̃(t,0)|p + sup
0≤t≤T

|σ̃ (t,0)|p
}
|t − s|p/2,

E
{|Yt − Ys |p}

≤ CpE

{[
|ξ |p + sup

0≤t≤T

|f̃ (t,0,0)|p
]
|t − s|p−1(2.11)

+
{∫ t

s
|Zr |2 dr

}p/2}
.

(ii) (Stability) Let �ε = (Xε,Y ε,Zε) be the solution to the perturbed FBSDE
(2.6) and (2.7) in which the coefficients are replaced by b̃ε, σ̃ ε, f̃ ε , with initial



464 J. ZHANG

state xε and terminal value ξε. Assume that the assumptions (a) and (b) hold for all
coefficients bε, σ ε and f ε and assume that limε→0 xε = x, and for fixed (x, y, z),

lim
ε→0

E
{|b̃ε(t, x) − b̃(t, x)|2 + |σ̃ ε(t, x) − σ̃ (t, x)|2}= 0,

lim
ε→0

E

{
|ξε − ξ |2 +

∫ T

0
|f̃ ε(t, y, z) − f̃ (t, y, z)|2 dt

}
= 0.

Then, we have

lim
ε→0

E

{
sup

0≤t≤T

|Xε
t − Xt |2 + sup

0≤t≤T

|Y ε
t − Yt |2 +

∫ T

0
|Zε

t − Zt |2 dt

}
= 0.

The next lemma contains some deeper results on the structure of the solu-
tion (Y,Z) to the BSDE (2.7). The proof of these results can be found in [17, 18].

LEMMA 2.5. Assume that Assumption 2.3 holds.

(i) Suppose that dim(X) = dim(W), σσT ≥ δId for some constant δ > 0 and
that � satisfies the L∞-Lipschitz condition (2.2), then the process Z admits a
càdlàg version.

(ii) Suppose that � takes the special form: �(X) = g(Xt0, . . . ,Xtn) and that

b,σ,f, g ∈ C1
b . Denote ∇i�


= (∇X,∇iY,∇iZ), i = 0, . . . , n, to be the solution
to the following “variational equations”:

∇Xt = Id +
∫ t

0
∂xb(r)∇Xr dr +

∫ t

0
∂xσ (r)∇Xr dWr,

∇iYt =∑
j≥i

∂jg ∇Xtj +
∫ T

t
∂f (r)∇i�r dr −

∫ T

t
∇iZr dWr,

(2.12)

where Id is the d × d identity matrix, ∂xb(r) is a d × d matrix whose j th column

is ∂jb(r,Xr), ∂σ and ∂f are defined in a similar manner, and ∂f (r)∇i�r

=

∂xf (r)∇Xr + ∂yf (r)∇iYr + ∂zf (r)∇iZr . Then, for ∀ t ∈ [0, T ], it holds that

Zt = ∇Yt [∇Xt ]−1σ(t,Xt ),(2.13)

where

∇Yt =
n∑

i=1

∇iYt1[ti−1,ti )(t) + ∇nYT − 1{T }(t).(2.14)

REMARK 2.6. (i) Parts (i) and (ii) in Lemma 2.4 are standard for SDEs and
BSDEs (see, e.g., [10, 11]). The part (ii) can be found in [16].

(ii) Lemma 2.5 gives sufficient conditions for the path regularity of Z. By
Remark 3.2.3 of [22], Z is also càdlàg if, in addition to Assumption 2.3, σ is
uniformly Lipschitz with respect to t .
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To end this section, we give a useful representation formula for the martingale
integrand Z in the simplest BSDE case.

LEMMA 2.7. Assume that g is a Lipschitz continuous function and that
g(WT ) = E{g(WT )} + ∫ T

0 ηt dWt for some predictable process η. Then ηt is a
martingale and η0 = 1

T
E{g(WT )WT }.

PROOF. Since g is Lipschitz, by [19] we know that there exists ζ ∈ L2(FT )

such that ηt = E{ζ |Ft}, thus ηt is a martingale. The formula for η0 is a result
of [17]. �

3. L2-regularity. In this section we establish the first main result of this
paper, which we shall call the L2-regularity of the martingale integrand Z. Such a
regularity, combined with the estimate for X and Y (3.2) below, plays a key role
for deriving the rate of convergence of our numerical scheme in Section 5.

To begin with, let π : 0 = t0 < · · · < tn = T be a partition of [0, T ]. We would

like to estimate ‖Zt − Zti−1‖2 in terms of the partition size |π | 
= maxi �ti ,

where �ti

= ti − ti−1. We note that in general one cannot expect an estimate of

E{|Zt − Zs |2} as strong as that for X (2.10) or that for Y (2.11). In light of the
norm for the process Z in (2.9), we will try to derive an estimate in the space of⊕n

i=1 L2([ti−1, ti] × �).
Our main result is the following theorem.

THEOREM 3.1. Assume that Assumption 2.3 holds true and that Z is càdlàg.
Let π be any partition of [0, T ], then the following estimate holds:

n∑
i=1

E

{∫ ti

ti−1

[∣∣Zt − Zti−1

∣∣2 + ∣∣Zt − Zti

∣∣2]dt

}
≤ C(1 + |x|2)|π |,

where C > 0 is a constant depending only on T and K , but independent of the
partition π .

We note again that Lemma 2.5 and Remark 2.6 give some sufficient conditions
for the path regularity of Z. The proof of Theorem 3.1 is quite lengthy, we split it
into several lemmas. The first result is interesting in its own right.

LEMMA 3.2. Assume Assumption 2.3 holds true. Then for ∀p ≥ 2, there
exists a constant Cp > 0, depending only on T , K and p, such that,

‖Zt‖p ≤ Cp(1 + |x|) a.e. t ∈ [0, T ].(3.1)

Moreover, for any partition π , we have the following estimate:

max
1≤i≤n

sup
t∈(ti−1,ti ]

E
{∣∣Xt − Xti−1

∣∣2 + ∣∣Yt − Yti−1

∣∣2}≤ C(1 + |x|2)|π |,(3.2)
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where C > 0 is a constant depending only on T and K , but independent of the
partition π .

PROOF. First we assume that all the conditions in Lemma 2.5(ii) hold true
(recalling that a function in C1/2,1 is only Lipschitz continuous, but not necessarily
differentiable on x, y, z!), and that g satisfies (2.4). For ∀p ≥ 2, by (2.8) we have
E{sup0≤t≤T |∇Xt |p} ≤ Cp and by (2.9) we get, for i = 0, . . . , n,

E

{
sup

0≤t≤T

|∇iYt |p
}

≤ CpE

{∣∣∣∣∣∑
j≥i

∂j g ∇Xtj

∣∣∣∣∣
p

+
∫ T

0
|∂xf (r)∇Xr |p dr

}

≤ CpE

{[(
n∑

j=0

|∂jg|
)p

+ 1

]
sup

0≤t≤T

|∇Xt |p
}

≤ Cp.

Since ∇X is the solution to the linear SDE (2.12), one can easily check that
[∇X]−1 also satisfies a linear SDE and it holds that

E

{
sup

0≤t≤T

∣∣[∇Xt ]−1∣∣p}≤ Cp.

Now recalling (2.13) and (2.14) and applying Hölder’s inequality, we have

‖Zt‖p ≤ ‖∇Yt‖3p

∥∥[∇Xt ]−1∥∥
3p‖σ(t,Xt )‖3p

≤ Cp(1 + ‖Xt‖3p) ≤ Cp(1 + |x|).
For the general case, let {π} be a sequence of partitions of [0, T ], such

that |π | → 0. By Lemma 2.2, we may choose smooth functions {gπ } satisfying
(2.4) and (2.5). Now let bπ,σπ,f π be smooth molifiers of b,σ,f , respectively.
For each π , by the above arguments we know ‖Zπ

t ‖p ≤ Cp(1+|x|), where Cp > 0
is independent of π . Moreover, applying Lemma 2.4(ii) we get that

lim|π |→0
E

{∫ T

0
|Zπ

t − Zt |2 dt

}
= 0.(3.3)

Therefore, for a.e. t ∈ [0, T ], there exists a subsequence of {π} such that
lim|π |→0 Zπ

t = Zt , in probability. Applying Fatou’s lemma, we then obtain that
‖Zt‖p ≤ Cp(1 + |x|).

To finish the proof we note that in (3.2) the estimate for X is a direct
consequence of (2.10), while by applying (3.1) and (2.11) we can easily get
E{|Yt − Yti−1 |2} ≤ C(1 + |x|2)�ti . The proof is now complete. �

The following technical lemma is the building block of the proof of Theo-
rem 3.1.
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LEMMA 3.3. Assume � ∈ L2(F) and ηj ∈ L2(F), j = 1, . . . , n. Denote

ξ
j
t


= αj + ∫ t
0 η

j
r dWr , where αj are some constants. Then

E

{
n∑

i=1

∫ ti+1

ti−1

∣∣∣∣∣∑
j≥i

ηj
r

∣∣∣∣∣
2

dr �ti−1

}
≤ CE

{(
sup

0≤t≤T

n∑
j=1

|ξj
t |
)2

�∗
T

}
,

where tn+1

= tn and �∗

t


= sup0≤s≤t |�s |.

PROOF. By Itô’s formula we have

E

{∫ ti+1

ti−1

ηj1
r ηj2

r dr
∣∣∣Fti−1

}
= E

{
ξ

j1
ti+1

ξ
j2
ti+1

− ξ
j1
ti−1

ξ
j2
ti−1

∣∣Fti−1

}
.

Note that since �∗
ti−1

∈ Fti−1 , it holds obviously that

E

{∫ ti+1

ti−1

ηj1
r ηj2

r dr �∗
ti−1

}
= E

{(
ξ

j1
ti+1

ξ
j2
ti+1

− ξ
j1
ti−1

ξ
j2
ti−1

)
�∗

ti−1

}
.

Denote �∗
tn+1


= �∗
T and �∗

t−1


= 0. Since �∗
t is increasing, by some simple

calculation and applying the Abel transformation one can show that

E

{
n∑

i=1

∫ ti+1

ti−1

∣∣∣∣∣∑
j≥i

ηj
r

∣∣∣∣∣
2

dr �ti−1

}

≤ E

{
n∑

i=1

∫ ti+1

ti−1

∣∣∣∣∣∑
j≥i

ηj
r

∣∣∣∣∣
2

dr �∗
ti−1

}

= E

{
n∑

i=1

∑
j1,j2≥i

∫ ti+1

ti−1

ηj1
r ηj2

r dr �∗
ti−1

}

= E

{
n∑

i=1

∑
j1,j2≥i

(
ξ

j1
ti+1

ξ
j2
ti+1

− ξ
j1
ti−1

ξ
j2
ti−1

)
�∗

ti−1

}
(3.4)

= E

{
n∑

j1,j2=1

[ ∑
1≤i≤j1∧j2

ξ
j1
ti+1

ξ
j2
ti+1

(
�∗

ti−1
− �∗

ti+1

)
+ ξ

j1
tj1∧j2

ξ
j2
tj1∧j2

�∗
tj1∧j2

+ ξ
j1
tj1∧j2+1

ξ
j2
tj1∧j2+1

�∗
tj1∧j2+1

− ξ
j1
t0

ξ
j2
t0

�∗
t0

− ξ
j1
t1

ξ
j2
t1

�∗
t1

]}
.
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Note that

E

{
n∑

j1,j2=1

ξ
j1
tj1∧j2

ξ
j2
tj1∧j2

�∗
tj1∧j2

}

≤ 2E

{
n∑

j1=1

n∑
j2=j1

ξ
j1
tj1

ξ
j2
tj1

�∗
tj1

}

= 2E

{
n∑

j1=1

n∑
j2=j1

ξ
j1
tj1

ξ
j2
T �∗

tj1

}

= 2E

{
n∑

j1=1

n∑
j2=j1

E
{
ξ

j1
T

√
�∗

tj1

∣∣∣Ftj1

}
ξ

j2
T

√
�∗

tj1

}

≤ 2E

{
n∑

j1=1

E
{
|ξj1

T |√�∗
T

∣∣∣Ftj1

} n∑
j2=j1

|ξj2
T |√�∗

T

}

≤ 2E

{
n∑

j1=1

E
{
|ξj1

T |√�∗
T

∣∣∣Ftj1

} n∑
j=1

|ξj
T |√�∗

T

}

= 2E

{
n∑

j1=1

|ξj1
T |√�∗

T E

{
n∑

j=1

|ξj
T |√�∗

T

∣∣∣Ftj1

}}

≤ 2E

{
n∑

j1=1

|ξj1
T |√�∗

T sup
0≤t≤T

E

{
n∑

j=1

|ξj
T |√�∗

T

∣∣∣Ft

}}

≤ 2E

{(
sup

0≤t≤T

E

{
n∑

j=1

|ξj
T |√�∗

T

∣∣∣Ft

})2}

≤ CE

{(
n∑

j=1

|ξj
T |√�∗

T

)2}

= CE

{(
n∑

j=1

|ξj
T |
)2

�∗
T

}
,

where the last inequality is thanks to Doob’s inequality. Analogously we have

E

{
n∑

j1,j2=1

ξ
j1
tj1∧j2+1

ξ
j2
tj1∧j2+1

�∗
tj1∧j2+1

}
≤ CE

{(
n∑

j=1

|ξj
T |
)2

�∗
T

}
.
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Then (3.4) leads to that

E

{
n∑

i=1

∫ ti+1

ti−1

∣∣∣∣∣∑
j≥i

ηj
r

∣∣∣∣∣
2

dr �ti−1

}

≤ E

{
n∑

i=1

(
n∑

j=1

∣∣ξj
ti+1

∣∣)2(
�∗

ti+1
− �∗

ti−1

)

+ C�∗
T

(
n∑

j=1

|ξj
T |
)2

−
(

n∑
j=1

∣∣ξj
t0

∣∣)2

�∗
0 −

(
n∑

j=1

∣∣ξj
t1

∣∣)2

�∗
t1

}

≤ E

{
sup

0≤t≤T

(
n∑

j=1

|ξj
t |
)2[ n∑

i=0

(
�∗

ti+1
− �∗

ti−1

)+ C�∗
T

]}

≤ CE

{
sup

0≤t≤T

(
n∑

j=1

|ξj
t |
)2

�∗
T

}
.

This proves the lemma. �

Let ξn = ξ and ξj = 0 for j = 1, . . . , n−1. Then the following result is a direct
consequence of Lemma 3.3.

COROLLARY 3.4. If ξ = α + ∫ t
0 ηr dWr and η,� ∈ L2(F), then

E

{
n∑

i=1

∫ ti+1

ti−1

|ηr |2 dr �ti−1

}
≤ CE

{
sup

0≤t≤T

|ξt |2�∗
T

}
.

We now turn to the proof of Theorem 3.1. We would like to use (3.3) and take
advantage of the representation formula (2.13) of Zπ . But one should be careful
that (3.3) does not imply lim|π |→0 E{|Zπ

ti−1
− Zti−1 |2} = 0.

PROOF OF THEOREM 3.1. We fix a partition π0 : 0 = t0 < · · · < tn = T and
will prove the theorem for π0.

Let π : 0 = s0 < · · · < sm = T be any partition of [0, T ] finer than π0 and
without loss of generality, we assume ti = sli for i = 1, . . . , n. For ϕ = b,σ,f ,
let ϕπ ∈ C1

b be smooth molifiers of ϕ such that the derivatives of ϕ are bounded
by K and lim|π |→0 ϕπ = ϕ. Moreover, since � satisfies the L∞-Lipschitz
condition (2.2), by virtue of Lemma 2.2 one can find gπ ∈ C1(Rd(m+1)) satisfying

(2.4) and (2.5). Let �π 
= (Xπ,Y π,Zπ) denote the adapted solution to the
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following FBSDE:

Xπ
t = x +

∫ t

0
bπ(r,Xπ

r ) dr +
∫ t

0
σπ(r,Xπ

r ) dWr,

Y π
t = gπ

(
Xπ

s0
, . . . ,Xπ

sm

)+ ∫ T

t
f π (r,�π

r ) dr −
∫ T

t
Zπ

r dWr.

(3.5)

Now by (2.5), applying Lemma 2.4(ii) we know that

lim|π |→0
E

{
sup

0≤t≤T

[∣∣Xπ
t − Xt |2 + |Yπ

t − Yt |2]+ ∫ T

0
|Zπ

t − Zt |2 dt

}
= 0.(3.6)

By (3.6) there exists a subsequence of {π} such that lim|π |→0 E{|Zπ
t −

Zt |2} = 0, for dt-a.s. t . From now on we always assume π is in that subsequence.
Obviously we may find a sequence rk ↓ 0 such that

lim|π |→0
E
{∣∣Zπ

ti+rk
− Zti+rk

∣∣2}= 0 ∀ i,∀ k.(3.7)

Without loss of generality, we assume ti + rk ∈ (ti , ti+1), for all i and k. Note that,
for t ∈ [ti−1, ti),

E
{∣∣Zt − Zti−1

∣∣2 + ∣∣Zt − Zti

∣∣2}
≤ CE

{
|Zt − Zπ

t |2 + ∣∣Zπ
t − Zπ

ti−1

∣∣2 + ∣∣Zπ
ti−1

− Zπ
ti−1+rk

∣∣2
(3.8)

+ ∣∣Zπ
ti−1+rk

− Zti−1+rk

∣∣2 + ∣∣Zti−1+rk − Zti−1

∣∣2
+ ∣∣Zπ

ti−1
− Zπ

ti+rk

∣∣2 + ∣∣Zπ
ti+rk

− Zti+rk

∣∣2 + ∣∣Zti+rk − Zti

∣∣2}.
By (3.6), (3.7) and the right continuity of Z, to prove the theorem it suffices to
estimate E{|Zπ

t − Zπ
ti−1

|2} for t ∈ (ti−1, ti+1).
To this end we recall Lemma 2.5 with the coefficients ϕ replaced by ϕπ and

denote ∇Xπ,∇Yπ as the terms corresponding to ∇X and ∇Y , respectively. For
the convenience of application, we shall rewrite ∇Yπ in some other form. Note
that for each i (2.12) is linear. Let (γ 0, ζ 0) and (γ j , ζ j ), j = 1, . . . ,m, be the
adapted solutions to the BSDEs

γ 0
t =

∫ T

t

[
f π

x (r)∇Xπ
r + f π

y (r)γ 0
r + f π

z (r)ζ 0
r

]
dr −

∫ T

t
ζ 0
r dWr,

γ
j
t = ∂jg

π ∇Xπ
tj

+
∫ T

t

[
f π

y (r)γ j
r + f π

z (r)ζ j
r

]
dr −

∫ T

t
ζ j
r dWr,

(3.9)

respectively, then we have the following decomposition:

∇iY π
t = γ 0

t +
m∑

j=i

γ
j
t , t ∈ [si−1, si).(3.10)
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We may simplify (3.10) further. Let us define

�t

= exp

{
−
∫ t

0
f π

y (r) dr

}
,

Mt

= exp

{∫ t

0
f π

z (r) dWr − 1
2

∫ t

0
|f π

z (r)|2 dr

}
.

(3.11)

Since f π
z is uniformly bounded, by Girsanov’s theorem (see, e.g., [12]) we know

that M is a P -martingale on [0, T ], and W̃t

= Wt − ∫ t

0 f π
z (r) dr , t ∈ [0, T ], is an

F-Brownian motion on the new probability space (�,F , P̃ ), where P̃ is defined
by dP̃

dP
= MT . Moreover, noting that f π

y and f π
z are uniformly bounded, one can

deduce easily from (3.11) that, for ∀p ≥ 1, there exists a constant Cp depending
only on T,K and p, such that

sup
0≤t≤T

[|�t |p + |�−1
t |p]≤ Cp,

E

{
sup0≤t≤T

[|Mt |p + |M−1
t |p]}≤ Cp,

|�t − �s |p + |�−1
t − �−1

s |p ≤ Cp|t − s|p,

E
{|Mt − Ms |p + |M−1

t − M−1
s |p}≤ Cp|t − s|p/2.

(3.12)

Now we define

ξ̃0 
=
∫ T

0
f π

x (r)∇Xπ
r �−1

r dr, ζ̃ 0
t


= ζ 0
t �−1

t ,

γ̃ 0
t


= γ 0
t �−1

t +
∫ t

0
f π

x (r)∇Xπ
r �−1

r dr,

ξ̃ i 
= ∂ig
π∇Xπ

si
�−1

T , ζ̃ i
t


= ζ i
t �

−1
t , γ̃ i

t


= γ i
t �−1

t .

(3.13)

Then by (3.9) we have, for i = 0, . . . ,m,

γ̃ i
t = ξ̃ i −

∫ T

t
ζ̃ i
r dW̃r, t ∈ [0, T ].

Therefore, by the Bayes rule (see, e.g., [12], Lemma 3.5.3) we have, for t ∈ [0, T ]
and i = 1, . . . ,m,

γ i
t = γ̃ i

t �t = Ẽ
{̃
ξ i |Ft

}
�t

= E
{
MT ξ̃ i|Ft

}
M−1

t �t = ξ i
t M

−1
t �t ,

γ 0
t = γ̃ 0

t �t −
∫ t

0
f π

x (r)∇Xπ
r �−1

r dr �t

= ξ0
t M−1

t �t −
∫ t

0
f π

x (r)∇Xπ
r �−1

r dr �t,

(3.14)
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where, for i = 0,1, . . . ,m,

ξ i
t


= E
{
MT ξ̃ i |Ft

}= E
{
MT ξ̃ i}+

∫ t

0
ηi

r dWr.(3.15)

Note that f π
z is bounded, thus MT ∈ Lp(FT ) and ∇Xπ ∈ Lp(F) for all p ≥ 2.

Therefore for each p ≥ 1, (2.4) leads to

E

{
n∑

j=1

∣∣MT ξ̃j
∣∣}p

≤ CpE

{
|MT |p sup

0≤t≤T

|∇Xπ
t |p
}

≤ Cp.(3.16)

In particular, for each j , MT ξ̃j ∈ L2(FT ), thus (3.15) makes sense.
Now we fix i0. For t ∈ [si−1, si), by applying Lemma 2.5, (3.10) and (3.14)

imply that

Zπ
t =

[(
ξ0
t +∑

j≥i

ξ
j
t

)
M−1

t −
∫ t

0
fx(r)∇Xπ

r �−1
r dr

]
�t [∇Xπ

t ]−1σπ(t,Xπ
t ).

Therefore, ∣∣∣Zπ
t − Zπ

ti0−1

∣∣∣≤ I 1
t + I 2

t + I 3
t ,(3.17)

where (recalling that ti0−1 = sli0−1 !)

I 1
t


=
∣∣∣∣∣
[
ξ0
t +∑

j≥i

ξ
j
t

]
−
[
ξ0
ti0−1

+ ∑
j≥li0−1+1

ξ
j
ti0−1

]∣∣∣∣∣
×
∣∣∣M−1

ti0−1
�ti0−1

[
∇Xπ

ti0−1

]−1
σπ (ti0−1,X

π
ti0−1

)∣∣∣,
I 2
t


=
∣∣∣∣∣ξ0

t +∑
j≥i

ξ
j
t

∣∣∣∣∣∣∣∣M−1
t �t [∇Xπ

t ]−1σπ(t,Xπ
t )

− M−1
ti0−1

�ti0−1

[
∇Xπ

ti0−1

]−1
σπ
(
ti0−1,X

π
ti0−1

)∣∣∣,
I 3
t


=
∣∣∣∣ ∫ t

0
f π

x (r)∇Xπ
r �−1

r dr �t [∇Xπ
t ]−1σπ(t,Xπ

t )

−
∫ ti0−1

0
f π

x (r)∇Xπ
r �−1

r dr �ti0−1

[
∇Xπ

ti0−1

]−1
σπ (ti0−1,X

π
ti0−1

)∣∣∣∣.
We assume t ∈ (ti0−1, ti0+1). Recalling (3.12) and applying Lemma 2.4 one can
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easily show that

E{|I 3
t |2} ≤ C(1 + |x|2)|π0|.(3.18)

Recalling (3.15), (3.13) and (3.12) we have

m∑
j=0

|ξj
t | ≤

m∑
j=0

E
{∣∣MT ξ̃j

∣∣|Ft

}

≤ E

{∣∣∣∣MT

∫ T

0
f π

x (r)∇Xπ
r �−1

r dr

∣∣∣∣
(3.19)

+ |MT �−1
T |

m∑
j=1

∣∣gπ
j ∇Xπ

sj

∣∣∣∣∣Ft

}

≤ CE

{
MT sup

0≤s≤T

|∇Xπ
s |
∣∣∣Ft

}
,

where the last inequality is due to (2.4) and the fact that �−1 and f π
x are uniformly

bounded. Then by applying (3.16), (3.12) and Lemma 2.4, one can show that

E
{|I 2

t |2}≤ C(1 + |x|2)|π0|.(3.20)

It remains to estimate I 1
t . To this end we denote

�t

= sup

0≤s≤t

{
1 + |∇Xπ

s | + |[∇Xπ
s ]−1| + |M−1

s |},
�̄t


= sup
0≤s≤t

{1 + |Xπ
s |}.

Noting that � is bounded and that �ti0−1, �̄ti0−1 ∈ Fti0−1 , and recalling that ti0−1 =
sli0−1 , by (3.15) we have

E
{|I 1

t |2} ≤ CE

{
�4

ti0−1
�̄2

ti0−1

∣∣∣∣∣
[
ξ0
t +∑

j≥i

ξ
j
t

]

−
[
ξ0
ti0−1

+ ∑
j≥li0−1+1

ξ
j
ti0−1

]∣∣∣∣∣
2}

≤ CE

{
�4

ti0−1
�̄2

ti0−1

[∣∣∣ξ0
t − ξ0

ti0−1

∣∣∣2

+
∣∣∣∣∣ ∑
li0−1<j<i

ξ
j
t

∣∣∣∣∣
2

+
∣∣∣∣∣ ∑
j>li0−1

(
ξ

j
t − ξ

j
ti0−1

)∣∣∣∣∣
2]}

(3.21)
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= CE

{
�4

ti0−1
�̄2

ti0−1

∣∣∣∣∣E
{ ∑

li0−1<j<i

ξ
j
T

∣∣∣Ft

}∣∣∣∣∣
2

+ �4
ti0−1

�̄2
ti0−1

E

{∣∣∣ξ0
t − ξ0

ti0−1

∣∣∣2

+
∣∣∣∣∣ ∑
j>li0−1

(
ξ

j
t − ξ

j
ti0−1

)∣∣∣∣∣
2∣∣∣Fti0−1

}}

≤ CE

{
�4

ti0−1
�̄2

ti0−1

[∣∣∣∣∣ ∑
li0−1<j<i

ξ
j
T

∣∣∣∣∣
2

+
∫ t

ti0−1

|η0
r |2 dr

+
∫ t

ti0−1

∣∣∣∣∣ ∑
j>li0−1

ηj
r

∣∣∣∣∣
2

dr

]}

≤ CE

{
�4

ti0−1
�̄2

ti0−1

[( li0+1∑
j=li0−1

|ξj
T |
)2

+
∫ ti0+1

ti0−1

|η0
r |2 dr

+
∫ ti0+1

ti0−1

∣∣∣∣∣ ∑
j>li0−1

ηj
r

∣∣∣∣∣
2

dr

]}
.

Applying Lemma 3.3 and Corollary 3.4, (3.21) leads to that
n∑

i=1

E

{∫ ti

ti−1

|I 1
t |2 dt + �ti

[∣∣I 1
ti−1+rk

∣∣2 + ∣∣I 1
ti+rk

∣∣2]}

≤
n∑

i=1

C �ti E

{
�4

T �̄2
T

( ∑
li−1+1≤j≤li+1

|ξj
T |
)2

+ �4
ti−1

�̄2
ti−1

[∫ ti+1

ti−1

|η0
r |2 dr

+
∫ ti+1

ti−1

∣∣∣∣∣∑
k≥i

( ∑
lk−1+1≤j≤lk

ηj
r

)∣∣∣∣∣
2

dr

]}

≤ C|π0|E
{
�4

T �̄2
T

[
n∑

i=1

( ∑
li−1+1≤j≤li+1

|ξj
T |
)2

+ sup
0≤t≤T

|ξ0
t |2 +

(
sup

0≤t≤T

n∑
k=1

∣∣∣∣∣ ∑
lk−1+1≤j≤lk

ξ
j
t

∣∣∣∣∣
)2]}

(3.22)
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≤ C|π0|E
{
�4

T �̄2
T

(
sup

0≤t≤T

m∑
j=0

|ξj
t |
)2}

≤ C|π0|‖�4
T ‖3‖�̄2

T ‖3

∥∥∥∥∥
(

sup
0≤t≤T

m∑
j=0

|ξj
t |
)2∥∥∥∥∥

3

≤ C(1 + |x|2)|π0|
∥∥∥∥∥ sup

0≤t≤T

m∑
j=0

|ξj
t |
∥∥∥∥∥

2

6

.

Now by (3.19) and applying Doob’s inequality one has

E

{(
sup

0≤t≤T

m∑
j=0

|ξj
t |
)6}

≤ CE

{
sup

0≤t≤T

∣∣∣∣E{MT sup
0≤s≤T

|∇Xπ
s |
∣∣∣Ft

}∣∣∣∣6}

≤ CE

{
M6

T sup
0≤t≤T

|∇Xπ
t |6
}

≤ C,

which, together with (3.22), implies that

n∑
i=1

E

{∫ ti

ti−1

|I 1
t |2 dt + �ti

[∣∣I 1
ti−1+rk

∣∣2 + ∣∣I 1
ti+rk

∣∣2]}≤ C(1 + |x|2)|π0|.(3.23)

Combining (3.23), (3.20) and (3.18), we deduce from (3.17) that

n∑
i=1

E

{∫ ti

ti−1

∣∣Zπ
t − Zπ

ti−1

∣∣2 dt + �ti
[∣∣Zπ

ti−1+rk
− Zπ

ti−1

∣∣2 + ∣∣Zπ
ti+rk

− Zπ
ti−1

∣∣2]}
≤ C(1 + |x|2)|π0|,

which, combined with (3.8), leads to

n∑
i=1

E

{∫ ti

ti−1

[∣∣Zt − Zti−1

∣∣2 + ∣∣Zt − Zti

∣∣2]dt

}

≤ CE

{∫ T

0
|Zπ

t − Zt |2 dt +
n∑

i=1

�ti
∣∣Zπ

ti−1+rk
− Zti−1+rk

∣∣2}
(3.24)

+ C

n∑
i=1

�ti E
{∣∣Zti−1+rk − Zti−1

∣∣2 + ∣∣Zti+rk − Zti

∣∣2}
+ C(1 + |x|2)|π0|.
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Recalling (3.6) and (3.7) and letting |π | → 0, (3.24) implies that

n∑
i=1

E

{∫ ti

ti−1

[∣∣Zt − Zti−1

∣∣2 + ∣∣Zt − Zti

∣∣2]dt

}

≤ C

n∑
i=1

�ti E
{∣∣Zti−1+rk − Zti−1

∣∣2 + ∣∣Zti+rk − Zti

∣∣2}(3.25)

+ C(1 + |x|2)|π0|.
Finally, since Z is càdlàg, applying Lemma 3.2 and Fatou’s lemma we get
that E{|Zt |p} ≤ Cp(1 + |x|) for all t ∈ [0, T ], which implies that {Zt}0≤t≤T is
uniformly integrable. Now let rk → 0, again by the assumption that Z is càdlàg,
we have

lim
k→∞E

{∣∣Zti−1+rk − Zti−1

∣∣2 + ∣∣Zti+rk − Zti

∣∣2}= 0,

which, combined with (3.25), proves the theorem. �

4. Discretization of the FSDE. In this section, we briefly review the Euler
scheme for the forward diffusion X. Let π : 0 = t0 < t1 < · · · < tn = T be a
partition of [0, T ]. Define π(t)


= ti−1, for t ∈ [ti−1, ti). Let Xπ be the solution
of the following SDE:

Xπ
t = x +

∫ t

0
b
(
π(r),Xπ

π(r)

)
dr +

∫ t

0
σ
(
π(r),Xπ

π(r)

)
dWr,(4.1)

and we define a “step process” X̂π as follows.

X̂π
t


= Xπ
π(t), t ∈ [0, T ].(4.2)

The following estimates are well known (see, e.g., [13]).

LEMMA 4.1. Assume that b and σ satisfy the conditions in Assumption 2.3.
Then for X and Xπ defined as in (1.1) and (4.1), respectively, there exists a
constant C, depending only on T and K , such that

E

{
sup

0≤t≤T

|Xπ
t |4
}

≤ C(1 + |x|4),

E

{
sup

0≤t≤T

|Xt − Xπ
t |2
}

≤ C(1 + |x|2)|π |.

We now turn our attention to the estimates involving X̂π . The following theorem
is more or less standard. For completeness we shall sketch a proof.
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THEOREM 4.2. Assume that b and σ satisfy the conditions in Assumption 2.3.
Then there exists a constant C > 0, depending only on T and K , such that the
following estimates hold:

sup
0≤t≤T

E
{|Xt − X̂π

t |2}≤ C(1 + |x|2)|π |;

E

{
sup

0≤t≤T

|Xt − X̂π
t |2
}

≤ C(1 + |x|2)|π | log
1

|π | .

PROOF. First, for t ∈ [ti−1, ti), applying Lemmas 3.2 and 4.1 we have

E
{|Xt − X̂π

t |2}= E
{∣∣Xt − Xπ

ti−1

∣∣2}
≤ 2E

{∣∣Xt − Xti−1

∣∣2 + ∣∣Xti−1 − Xπ
ti−1

∣∣2}
≤ C(1 + |x|2)|π |.

Next, recalling (4.1) one can easily get

sup
0≤t≤T

|Xt − X̂π
t | ≤ sup

0≤t≤T

|Xt − Xπ
t | + max

1≤i≤n
sup

ti−1≤t<ti

∣∣Xπ
t − Xπ

ti−1

∣∣
≤ sup

0≤t≤T

|Xt − Xπ
t | + max

1≤i≤n

[∣∣b(ti−1,X
π
ti−1

)∣∣�ti
]

(4.3)

+ max
1≤i≤n

[∣∣σ (ti−1,X
π
ti−1

)∣∣ sup
ti−1≤t<ti

∣∣Wt − Wti−1

∣∣].
Now using Lemmas 2.8 and 4.1, we infer from (4.3) that

E

{
sup

0≤t≤T

|Xt − X̂π
t |2
}

≤ CE

{
sup

0≤t≤T

|Xt − Xπ
t |2 + |π |2 max

1≤i≤n

∣∣b(ti−1,X
π
ti−1

)∣∣2
+ max

1≤i≤n

∣∣σ (ti−1,X
π
ti−1

)∣∣2 max
1≤i≤n

sup
ti−1≤t<ti

∣∣Wt − Wti−1

∣∣2}(4.4)

≤ C(1 + |x|2)
[
|π | +

√
E

{
max

1≤i≤n
sup

ti−1≤t<ti

∣∣Wt − Wti−1

∣∣4}]

≤ C(1 + |x|2)
[
|π | +

√
E

{
max

1≤i≤n
(�ti)

2N4
i

}]
,
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where Ni , i = 1,2, . . . , n, are i.i.d. random variables with standard Normal

distribution. Denote Cε

= 2ε log(1/ε), then we have C|π |/�ti ≥ 2 log(1/|π |) and

E

{
max

1≤i≤n
(�ti)

2N4
i

}

= E

{
max

1≤i≤n
(�ti)

2N4
i 1{maxi �tiN

2
i ≤C|π |}

}

+ E

{
max

1≤i≤n
(�ti)

2N4
i 1{maxi �tiN

2
i ≥C|π |}

}
(4.5)

≤ C2|π | +
n∑

i=1

(�ti)
2E
{
N4

i 1{N2
i ≥C|π |/�ti}

}
≤ C2|π | + T |π |E{N4

1 1{N2
1 ≥2 log(1/|π |)}

}
.

Moreover, by direct calculation we have, for ∀a ≥ 1,

E
{
N4

1 1{N2
1 >a}

}≤ C
√

a3 exp
(
−a

2

)
.(4.6)

Setting a = 2 log(1/|π |) and assuming that the partition π is fine enough so that
a ≥ 1, we obtain from (4.6) and (4.5) that

E

{
max

0≤i≤n−1
(�ti)

2N4
i

}
≤ C2|π | + C|π |

(
log

1

|π |
)3/2

exp
(
− log

1

|π |
)

≤ C|π |2
(

log
1

|π |
)2

.

This, together with (4.4), proves the theorem. �

REMARK 4.3. We note that |π | log(1/|π |) is indeed sharp. In fact, let
Xt = Wt and π be a partition with equal size, one can show that [|π | ×
log(1/|π |)]−1 sup0≤t≤T |Xt − X̂π

t |2 → √
2 in distribution (see, e.g., [1], Propo-

sition 1).

The following result is a direct consequence of Theorem 4.2.

COROLLARY 4.4. Assume all the conditions in Theorem 4.2 hold. If � :
D

d �→ R satisfies the L∞-Lipschitz condition (2.2), then

E
{|�(X) − �(X̂π)|2}≤ C(1 + |x|2)|π | log

1

|π | .

Moreover, if � satisfies the L1-Lipschitz condition (2.3) or it takes the form
�(X) = g(XT ), then

E
{|�(X) − �(X̂π)|2}≤ C(1 + |x|2)|π |.
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5. Discretization of the BSDE. In this section, we construct an approximat-
ing solution (Y,Z) by using the “step processes.” Let π : 0 = t0 < · · · < tn = T be
any partition on [0, T ] and define the approximating pairs (Y π ,Zπ) recursively
(in a backward manner), such that

Yπ
tn

= ξπ , Z
π,1
tn = 0,

Y π
t = Yπ

ti
+ f

(
ti ,�

π,1
ti

)
�ti −

∫ ti

t
Zπ

r dWr,(5.1)

t ∈ [ti−1, ti), i = n,n − 1, . . . ,1,

where ξπ ∈ L2(FT ), �
π,1
ti


= (Xπ
ti
, Y π

ti
,Z

π,1
ti

) and

Z
π,1
ti


= 1

�ti+1
E

{∫ ti+1

ti

Zπ
r dr

∣∣∣Fti

}
, i = 0, . . . , n − 1.(5.2)

We should point out here that the family {(Y π ,Zπ)} is different from that in (3.5).
Also, we note that in (5.1) the terminal value of the BSDE is Yπ

ti
+f (ti,�

π,1
ti

)�ti .

REMARK 5.1. As we shall see in (6.4) below, if one chooses ξπ appropriately,
then Z

π,1
ti

= Zπ
ti

. Therefore the computation of the integral and the conditional
expectation in (5.2) becomes redundant and can be omitted. This will be significant
in implementation.

To prove the convergence of (5.1), let us introduce a new notion regarding the
partition π .

DEFINITION 5.2. Let K > 0 be a constant. A partition π is called K-uniform
if �ti ≥ |π |/K for i = 1, . . . , n.

THEOREM 5.3. Assume that all the conditions in Theorem 3.1 hold true and
suppose that the partition π is K-uniform. Then the following estimate holds:

max
0≤i≤n

E
{∣∣Yti −Yπ

ti

∣∣2}+E

{∫ T

0
|Zr −Zπ

r |2 dr

}
≤ C

[
(1+|x|2)|π |+E

{|ξ −ξπ |2}],
where ξ = �(X) and C depends only on T and K .

Before we prove the theorem, let us first give a “discrete version” of the
Gronwall inequality for convenience.

LEMMA 5.4. Assume π : 0 = t0 < · · · < tn = T . If ai, bi, i = 0,1, . . . , n,
satisfy that an ≥ 0, bi ≥ 0 and that ai−1 ≤ (1 + C �ti)ai + bi for i = 1, . . . , n.
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Then we have max0≤i≤n ai ≤ eCT [an +∑n
i=1 bi].

PROOF. Note that 1 + C �ti ≤ eC �ti . By induction one can easily show that

ai ≤ eC(T −ti )

[
aT +

n∑
j=i+1

bj

]
,

which clearly proves the lemma. �

PROOF OF THEOREM 5.3. We first denote, for i = 1, . . . , n,

Ii−1

= E

{∣∣Yti−1 − Yπ
ti−1

∣∣2 +
∫ ti

ti−1

|Zr − Zπ
r |2 dr

}
.

By (2.1) and (5.1) we have

Yti−1 − Yπ
ti−1

+
∫ ti

ti−1

(Zr − Zπ
r ) dWr

= Yti − Yπ
ti

+
∫ ti

ti−1

f (r,�r) dr − f (ti,�
π,1
ti

)�ti .

Squaring both sides and then taking expectations, also noting that Yti−1 − Yπ
ti−1

is

uncorrelated with
∫ ti
ti−1

(Zr − Zπ
r ) dWr , we get

Ii−1 = E

{[(
Yti − Yπ

ti

)+ ∫ ti

ti−1

(
f (r,�r) − f

(
ti ,�

π,1
ti

))
dr

]2}

≤ E

{∣∣Yti − Yπ
ti

∣∣
+ C

∫ ti

ti−1

[√
ti − r + ∣∣Xr − Xπ

ti

∣∣+ ∣∣Yr − Yπ
ti

∣∣+ ∣∣Zr − Z
π,1
ti

∣∣]2 dr

}
.

Note that for any ε > 0, one has

(a + b)2 = a2 + b2 + 2ab ≤
(

1 + �ti

ε

)
a2 +

(
1 + ε

�ti

)
b2.

Thus we have

Ii−1 ≤ E

{(
1 + C�ti

ε

)∣∣Yti − Yπ
ti

∣∣2
+ C

(
1 + ε

�ti

)

×
(∫ ti

ti−1

[√|π | + ∣∣Xr − Xπ
ti

∣∣+ ∣∣Yr − Yti

∣∣+ ∣∣Zr − Z
π,1
ti

∣∣]dr

)2}
(5.3)
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≤ E

{(
1 + C�ti

ε

)∣∣Yti − Yπ
ti

∣∣2
+ C(ε + �ti)

∫ ti

ti−1

[|π | + ∣∣Xr − Xti

∣∣2 + ∣∣Xti − Xπ
ti

∣∣2
+ ∣∣Yr − Yti

∣∣2 + ∣∣Zr − Zti

∣∣2 + ∣∣Zti − Z
π,1
ti

∣∣2]dr

}
≤ E

{(
1 + C�ti

ε

)∣∣Yti − Yπ
ti

∣∣2 + C

∫ ti

ti−1

∣∣Zr − Zti

∣∣2 dr

+ C(ε + �ti)�ti
∣∣Zti − Z

π,1
ti

∣∣2 + C|π |2
}
,

thanks to Lemmas 3.2 and 4.1.
Since π is K-uniform, we have �ti ≤ K�ti+1. Therefore,

E
{
�ti

∣∣Zti − Z
π,1
ti

∣∣2}
≤ CE

{
�ti+1

∣∣Zti − Z
π,1
ti

∣∣2}
= C

�ti+1
E

{[
E

{∫ ti+1

ti

(
Zπ

r − Zti

)
dr
∣∣∣Fti

}]2}

≤ CE

{∫ ti+1

ti

∣∣Zπ
r − Zti

∣∣2 dr

}

≤ C

{∫ ti+1

ti

[|Zπ
r − Zr |2 + ∣∣Zr − Zti

∣∣2]dr

}
.

Thus (5.3) leads to

Ii−1 ≤ E

{(
1 + C�ti

ε

)∣∣Yti − Yπ
ti

∣∣2 + C1(ε + �ti)

∫ ti+1

ti

|Zπ
r − Zr |2 dr

+ C

∫ ti+1

ti−1

∣∣Zr − Zti

∣∣2 dr + C|π |2
}
.

Now choosing ε = 1/(4C1), then for |π | ≤ 1/(4C1), we have

Ii−1 ≤ E

{
(1 + C�ti)

∣∣Yπ
ti

− Yti

∣∣2 + 1
2

∫ ti+1

ti

|Zπ
r − Zr |2 dr

+ C

∫ ti+1

ti−1

∣∣Zr − Zti

∣∣2 dr + C|�ti |2
}
.

Therefore,

I i−1 + 1
2E

{∫ ti+1

ti

|Zπ
r − Zr |2 dr

}
≤ (1 + C �ti)Ii + CE

{∫ ti+1

ti−1

∣∣Zr − Zti

∣∣2 dr + |π |2
}
.

(5.4)
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Applying Lemma 5.4 and recalling Theorem 3.1, we have

max
0≤i≤n

Ii ≤ CE

{
|ξ − ξπ |2 +

n∑
i=1

∫ ti

ti−1

[∣∣Zr − Zti−1

∣∣2 + ∣∣Zr − Zti

∣∣2]dr

+ (1 + |x|2)|π |
}

(5.5)

≤ C
[
(1 + |x|2)|π | + E

{|ξ − ξπ |2}].
Moreover, summing both sides of (5.4) over i from 0 to n − 1, we have

n−2∑
i=0

Ii + 1
2E

{∫ T

0
|Zπ

r − Zr |2 dr

}

≤
n−1∑
i=0

(1 + C �ti)Ii + C
[
(1 + |x|2)|π | + E

{|ξ − ξπ |2}].
Therefore,

E

{∫ T

0
|Zπ

r − Zr |2 dr

}
≤ 2(1 + C �tn−1)In−1(5.6)

+ C

[
n−1∑
i=0

�ti Ii + (1 + |x|2)|π | + E
{|ξ − ξπ |2}].

Plugging (5.5) into (5.6), one can easily prove that

E

{∫ T

0
|Zr − Zπ

r |2 dr

}
≤ CE

{|ξ − ξπ |2 + C(1 + |x|2)|π |},
which, combined with (5.5), proves the theorem. �

REMARK 5.5. If f is independent of z, then the “K-uniform” assumption
of π is not necessary. In fact, in such a case (5.3) does not involve the process Z.
Thus, one may apply Lemma 5.4 directly on (5.3) and obtain a simplified proof.

Now let us define the following two step processes:

Ŷ π
t


= Yπ
ti−1

, Ẑπ
t


= Z
π,1
ti−1

for t ∈ [ti−1, ti).

Then we have the following theorem.

THEOREM 5.6. Assume that all the conditions in Theorem 3.1 hold true and
let K > 0 be given. Then for any K-uniform partition π , the following estimate
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holds:

sup
0≤t≤T

E
{|Yt − Ŷ π

t |2}+ E

{∫ T

0
|Zr − Ẑπ

r |2 dr

}
≤ C

[
(1 + |x|2)|π | + E

{|ξ − ξπ |2}].
PROOF. First, combining Lemma 3.2, Theorem 5.3 and Lemma 2.4 we have,

for ∀ t ∈ [ti−1, ti),

E
{|Yt − Ŷ π

t |2}≤ 2E
{∣∣Yt − Yti−1

∣∣2 + ∣∣Yti−1 − Yπ
ti−1

∣∣2}
≤ C

[
(1 + |x|2 + E|ξ |2)|π | + E

{|ξ − ξπ |2}](5.7)

≤ C
[
(1 + |x|2)|π | + E

{|ξ − ξπ |2}].
To estimate Z − Ẑπ , we recall that a conditional expectation minimizes the

conditional mean square error. By (5.2) one can easily show that

E

{∫ ti

ti−1

∣∣Zπ
r − Z

π,1
ti−1

∣∣2 dr

}
≤ E

{∫ ti

ti−1

∣∣Zπ
r − Zti−1

∣∣2 dr

}
.

Therefore, by Theorems 3.1 and 5.3, we have

E

{∫ T

0
|Zt − Ẑπ

t |2 dt

}
≤ 2E

{∫ T

0
|Zt − Zπ

t |2 dt +
n∑

i=1

∫ ti

ti−1

∣∣Zπ
t − Z

π,1
ti−1

∣∣2 dt

}

≤ 2E

{∫ T

0
|Zt − Zπ

t |2 dt +
n∑

i=1

∫ ti

ti−1

∣∣Zπ
t − Zti−1

∣∣2 dt

}

≤ CE

{∫ T

0
|Zt − Zπ

t |2 dt +
n∑

i=1

∫ ti

ti−1

∣∣Zt − Zti−1

∣∣2 dt

}

≤ C
[
(1 + |x|2)|π | + E

{|ξ − ξπ |2}].
This, combined with (5.7), proves the theorem. �

6. Numerical schemes. In this section we propose a numerical scheme based
on the results of previous sections. To present our scheme explicitly, we first recall

the process X̂π defined by (4.2) and define the “discrete” functional ξπ 
= �(X̂π)

in (5.1). Next, note that we can rewrite (4.1) as

Xπ
ti

= Xti

(
ti−1,X

π
ti−1

)
,(6.1)

where, for 0 ≤ s < t ≤ T and x ∈ R,

Xt(s, x)

= x + b(s, x)(t − s) + σ(s, x)(Wt − Ws).(6.2)

Further, for each 0 ≤ i ≤ n, we denote x(i) = (x0, . . . , xi). Our scheme is as
follows.
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THEOREM 6.1. Let ξ = �(X) and ξπ = �(X̂π), (Y,Z) and (Y π,Zπ) are
solutions to BSDEs (2.1) and (5.1), respectively. Assume that all the conditions in
Theorem 3.1 hold true. Define uπ

i , vπ
i : Rd(i+1) → R, i = 0, . . . , n, as follows:

uπ
n

(
x(n)

) 
= �

(
n∑

i=1

xi−11[ti−1,ti )(·) + xn1{T }(·)
)
, vπ

n

(
x(n)) 
= 0,

Uπ
i (x(i−1),ω)


= uπ
i

(
x(i−1),Xti (ti−1, xi−1)

)
+ f

(
ti ,Xti (ti−1, xi−1), u

π
i

(
x(i−1),Xti (ti−1, xi−1)

)
,

vπ
i

(
x(i−1),Xti (ti−1, xi−1)

))
�ti,

uπ
i−1

(
x(i−1)

) 
= E
{
Uπ

i (x(i−1),ω)
}
,

vπ
i−1

(
x(i−1)

) 
= 1

�ti
E
{
Uπ

i

(
x(i−1),ω

)[
Wti − Wti−1

]}
.

(6.3)

Then we have

Ŷ π
ti

= Yπ
ti

= uπ
i

(
Xπ

t0
, . . . ,Xπ

ti

)
, Ẑπ

ti
= Z

π,1
ti

= Zπ
ti

= vπ
i

(
Xπ

t0
, . . . ,Xπ

ti

)
.(6.4)

If f is independent of z, or if π is K-uniform, then it holds that

sup
0≤t≤T

E
{|Yt − Ŷ π

t |2}+ E

{∫ T

0
|Zt − Ẑπ

t |2 dt

}
≤ C(1 + |x|2)|π | log

1

|π | .(6.5)

Moreover, if � satisfies the L1-Lipschitz condition (2.3) or it takes the form
�(X) = g(XT ), then we have

sup
0≤t≤T

E
{|Yt − Ŷ π

t |2}+ E

{∫ T

0
|Zt − Ẑπ

t |2 dt

}
≤ C(1 + |x|2)|π |.(6.6)

PROOF. By Theorem 5.3 and Corollary 4.4, it suffices to prove (6.4). We
would also show simultaneously that, for each i, uπ

i and vπ
i are Lipschitz. (In

fact it can be shown that uπ
i is uniformly Lipschitz, uniformly in π and i.) We

proceed both by induction. For i = n obviously (6.4) holds true and uπ
n and vπ

n are
Lipschitz.

Assume that for i both (6.4) and the Lipschitz continuity hold true. First,
by (5.1) obviously we have

Yπ
ti−1

= E
{
uπ

i

(
Xπ

t0
, . . . ,Xπ

ti

)
+ f

(
ti ,X

π
ti
, uπ

i

(
Xπ

t0
, . . . ,Xπ

ti

)
, vπ

i

(
Xπ

t0
, . . . ,Xπ

ti

))
�ti
∣∣Fti−1

}
,

which, combined with (6.1), implies that Yπ
ti−1

= uπ
i−1(X

π
t0
, . . . ,Xπ

ti−1
).

Next, by the Lipschitz continuity assumption, one may apply Lemma 2.7. So
Zπ

r is a martingale on [ti−1, ti), therefore Z
π,1
ti−1

= Zπ
ti−1

. Moreover, following the
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formula of η0 in Lemma 2.7, we get Zπ
ti−1

= vπ
i−1(X

π
t0
, . . . ,Xπ

ti−1
). This proves (6.4)

for i − 1.
Finally, by (6.2) and (6.3) one can easily check that uπ

i−1 and vπ
i−1 are also

Lipschitz. This finishes the induction and thus proves the theorem. �

REMARK 6.2. By (6.2) and (6.3), to calculate (uπ
i−1, v

π
i−1) from (uπ

i , vπ
i )

one needs only approximate an expectation involving Wti − Wti−1 , that is, a one-
dimensional integral. We note that in Bally’s method [2] one has to approximate
integrals whose dimension is proportional to the partition size n.

There still remains, however, another type of high dimensionality: in (6.1)
one has to compute the values of �(X̂π) for all possible choices of the high-
dimensional vector (Xπ

t0
, . . . ,Xπ

tn
). That is, if we discretize the real line R into M

parts, then the number of values involved in the scheme is of the order Md(n+1),
which would cause significant technical difficulties in implementation. We
therefore impose the following restriction on �, motivated by applications in
finance theory, so as to make our scheme implementable.

DEFINITION 6.3. Let E1 and E2 be two generic Euclidean spaces. A func-
tional � : DE1[0, T ] �→ E2, is called “constructible with construction ϕ” if for
each 0 ≤ s < t ≤ T there exists a function �t : DE1[0, t] �→ E2 and ϕs,t : E2 ×
DE1[s, t] �→ E2, such that for 0 ≤ s < t ≤ T :

(i) �T = � and �t(x) = �t(x 1[0,t));
(ii) �t(x) = ϕs,t (�s(x),x 1[s,t));

(iii) all ϕs,t satisfy the L∞-Lipschitz condition (2.2) with a uniformly Lipschitz
constant.

We should point out here that since X is Markovian, by (ii) one can easily see
that {(�·(X),X·)} is Markovian. Thus this definition essentially amounts to saying
that we may add a state variable {�·(X)} such that {(�t(X),Xt , Yt ,Zt )}0≤t≤T is
Markovian. Moreover, it is fairly easy to see that � also satisfies the L∞-Lipschitz
condition (2.2). [In fact, under assumptions (i) and (ii), � satisfies (2.2) if and only
if (iii) holds true.]

The following are some easy examples of constructible functionals.

EXAMPLE 6.4. (i) The functional � : x �→ ∫ T
0 x(t) dt , x ∈ D

d [0, T ], is
constructible. Indeed, if we define

�t(x)

=
∫ t

0
x(r) dr, ϕs,t (a,x)


= a +
∫ t

s
x(r) dr,

then � is constructible with construction ϕ.
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(ii) The functional � : x �→ sup0≤t≤T x(t), x ∈ D
1[0,1], is also constructible,

with

�t(x) = sup
0≤r≤t

x(r), ϕs,t (a,x)

= a ∨ sup

s≤r≤t
x(r).

In the sequel, by a slight abuse of notations we denote

ϕs,t (a, x)

= ϕs,t

(
a, x1[s,t)

) ∀ (a, x) ∈ R
k × R

d .

Now we can simplify the numerical scheme (6.1) as follows.

THEOREM 6.5. Assume that in BSDEs (2.1) and (5.1) ξ = g(�(X),XT ) and
ξπ = g(�(X̂π), X̂π

T ), respectively, and denote (Y,Z) and (Y π,Zπ) to be the
corresponding solutions. Assume also that all the conditions in Theorem 3.1 hold
true and assume further that g is Lipschitz continuous, and � : Dd [0, T ] �→ R

k is
constructible with construction ϕ. Define, for ∀ (a, x) ∈ R

d+k ,

uπ
n (a, x)


= g(a, x), vπ
n (a, x)


= 0,

Uπ
i (a, x,ω)


= uπ
i

(
ϕti−1,ti (a, x),Xti (ti−1, x)

)
+ f

(
ti ,Xti (ti−1, x), uπ

i

(
ϕti−1,ti (a, x),Xti (ti−1, x)

)
,

vπ
i

(
ϕti−1,ti (a, x),Xti (ti−1, x)

))
�ti,

uπ
i−1(a, x)


= E{Uπ
i (a, x,ω)},

vπ
i−1(a, x)


= 1

�ti
E
{
Uπ

i (a, x,ω)
[
Wti − Wti−1

]}
.

(6.7)

Then all the results in Theorem 6.1 hold true.

We note that if we discretize the real line R into M parts, then for each i, the
number of grid points for a is Mk and that for x is Md . Therefore, the total number
of values involved in scheme (6.7) is of the order Md+k(n+1), rather than Md(n+1)

as in scheme (6.4).

REMARK 6.6. In Theorem 6.5, if we assume that ξ = g(XT ), then we may
consider � as a constant functional. In this case, ϕs,t are also constant functionals,
thus (6.7) becomes

uπ
n (x)


= g(x), vπ
n (x)


= 0,

Uπ
i (x,ω)


= uπ
i

(
Xti (ti−1, x)

)
+ f

(
ti ,Xti (ti−1, x), uπ

i

(
Xti (ti−1, x)

)
, vπ

i

(
Xti (ti−1, x)

))
�ti,

uπ
i−1(x)


= E{Uπ
i (x,ω)}, vπ

i−1(x)

= 1

�ti
E
{
Uπ

i (x,ω)
[
Wti − Wti−1

]}
.

(6.8)
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We still have

Ŷ π
ti

= Yπ
ti

= uπ
i

(
X̂π

ti

)
, Ẑπ

ti
= Z

π,1
ti

= Zπ
ti

= vπ
i

(
X̂π

ti

)
.

Moreover, since E{|g(XT )−g(X̂π
T )|2} ≤ C(1+|x|2)|π |, we conclude that the rate

of convergence becomes C(1 + |x|2)|π |, which coincides with the result of [16].
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