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A NUMERICAL SCHEME FOR IMPACT PROBLEMS I: THE

ONE-DIMENSIONAL CASE∗

LAETITIA PAOLI† AND MICHELLE SCHATZMAN‡

Abstract. We consider a mechanical system with impact and one degree of freedom. The system
is not necessarily Lagrangian. The representative point is subject to the constraint u(t) ∈ R

+ for all t.
We assume that, at impact, the velocity is reversed and multiplied by a given coefficient of restitution
e ∈ [0, 1]. We define a numerical scheme which enables us to approximate the solutions of the Cauchy
problem: this is an ad hoc scheme which does not require a systematic search for the times of impact.
We prove the convergence of this numerical scheme to a solution. Many of the features of this proof
will be reused in the nonconvex, multidimensional case, written in generalized coordinates, given in
the companion paper [L. Paoli and M. Schatzman, SIAM J. Numer. Anal., 40 (2002), pp. 734–768].
We present some numerical results obtained with the scheme for a spring-dashpot system and we
compare them to the results obtained by impact detection and penalization.

Key words. impact, coefficient of restitution, numerical scheme, convergence, local existence,
global existence

AMS subject classifications. Primary, 65J10, 65M20, 65B05; Secondary, 17B09, 46N20,
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1. Introduction. We study in this article a numerical approximation of dynam-
ics with impact with one degree of freedom when the representative point u is subject
to the constraint

u ∈ K = [0,∞).

Let f be a continuous function from [0, T ]×R×R to R which is locally Lipschitz
continuous with respect to its last two arguments.

The free dynamics of the system are written as

ü = f(·, u, u̇).(1.1)

This system is more general than the system obtained in Lagrangian mechanics,
since we want to include possible dissipative terms in the dynamics of the problem
under discussion. There is no need for a mass matrix: in the one degree of freedom
case, the velocity is always proportional to the impulsion, and an obvious change of
variable enables us to forget about any other metric other than the Euclidean one.

Let us describe now the system satisfied by the problem with impact: we re-
place (1.1) with

ü = μ + f(·, u, u̇),(1.2)

and since we cannot expect to have global solutions in general, μ is an unknown
nonnegative measure on [t0, t0 + τ ] which describes the reaction of the constraints; μ
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has the following properties:

supp(μ) ⊂ {t ∈ [t0, t0 + τ ] : u(t) = 0},(1.3a)

μ ≥ 0.(1.3b)

We require the following functional properties for u:

u is a continuous nonnegative function on [t0, t0 + τ ],(1.4a)

u̇ is of bounded variation over [t0, t0 + τ ].(1.4b)

We have to make a supplementary assumption in order to have a complete de-
scription of the impact; we choose a constitutive law of the impact using a coefficient
of restitution. Thus we will assume that there exists e ∈ [0, 1] such that u̇(t + 0) is
equal to −e times u̇(t− 0). In other words, we have

u̇(t + 0) = −eu̇(t− 0).(1.5)

The set of admissible initial data D will be

D =
{
(t0, u0, v0) ∈ [0, T ) ×K × R : if u0 = 0, then v0 ≥ 0

}
.

This choice is equivalent to the convention that there is no impact at the initial time
t0.

Given initial conditions (t0, u0, v0) ∈ D, we require that the following Cauchy
data be satisfied:

u(t0) = u0(1.6)

and

u̇(t0) = v0.(1.7)

For all initial data (t0, u0, v0) ∈ D we will obtain the existence of a local solution
to (1.2), (1.3a), (1.3b), and (1.5) belonging to the functional class defined by (1.4a)
and (1.4b) and satisfying the initial conditions (1.6) and (1.7).

The existence of this local solution is obtained by defining a numerical scheme,
whose convergence will be shown in appropriate functional spaces; the limit of the
approximation will be a solution of our problem. The projection on K is given by

PK(x) = max(x, 0) = x+.(1.8)

Given two positive numbers h∗ ≤ 1 and T , assume that F is a continuous function
from [0, T ]×R×R×R× [0, h∗] to R, which is locally Lipschitz continuous with respect
to its second, third, and fourth arguments. Assume, moreover, that F is consistent
with f , i.e., that for all t ∈ [0, T ], for all u and v in R,

F (t, u, u, v, 0) = f(t, u, v).(1.9)

We approximate the solution of (1.2), (1.3a), (1.3b), and (1.4a), (1.4b), (1.5),
(1.6), (1.7) by the following numerical scheme: the initial values y0 and y1 are given
by the initial position

y0 = u0,(1.10)
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and the position at the first time step

y1 = u0 + hv0 + hz(h),(1.11)

where z(h) tends to 0 as h tends to 0.
Henceforth, we will systematically use the notation

tm = t0 + mh.

Given ym−1 and ym, ym+1 is defined by the relations

ym+1 = −eym−1 +
(
2ym − (1 − e)ym−1 + h2Fm

)+
(1.12)

and

Fm = F

(
tm, ym, ym−1,

ym+1 − ym−1

2h
, h

)
.(1.13)

The reader should be aware at this point that, given ym−1 and ym, the existence
of ym+1 is an easy consequence of the strict contraction theorem; but we might be in
trouble here, since F is locally Lipschitz continuous and we are not sure about the
existence of a solution on a finite time interval. This existence is not a trivial question
and it depends on estimates which are at the heart of our subject.

A commentary on the construction of this scheme from the point of view of
convex analysis will be useful here. We refer to the book of Rockafellar [25] for more
information on the basic ideas in convex analysis to be used below.

Recall that the indicator function ψK of the closed convex set K is defined by

ψK(x) =

{
0 if x ∈ K,

+∞ otherwise,
(1.14)

and its subdifferential ∂ψK is a function from K to the set of closed convex sets given
by

∂ψK(x) =

{
{0} if x ∈ int(K),

R
− if x ∈ ∂K.

(1.15)

For all λ > 0, the multivalued equation

x + λ∂ψK(x) ∋ f(1.16)

has a unique solution given by

x = PKf.(1.17)

In the announcement [22], we assumed that the set of constraints K was convex
and the geometry was Euclidean and d-dimensional, and we had defined a numerical
scheme by the multivalued equation

ym+1 − 2ym + ym−1

h2
+ ∂ψK

(
ym+1 + eym−1

1 + e

)
∋ Fm.(1.18)
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We may rewrite (1.18) as

ym+1 + eym−1

1 + e
+

h2

1 + e
∂ψK

(
ym+1 + eym−1

1 + e

)

∋ 2ym − (1 − e)ym−1 + h2Fm

1 + e
,

(1.19)

which reduces, thanks to (1.16), (1.17), and (1.8), to relation (1.12). In contrast with
the original proof of convergence of this scheme, as written in [19], the proof presented
here is written in such a way that many of its features can be reused in the nonconvex,
multidimensional case, written in generalized coordinates. This more general proof
will be given in the companion paper [20].

Let us outline now the structure of the article and of the proofs. The main
estimates are given by Lemma 2.1 in section 2.

Then we find two constants A and τ such that for initial data given by (1.10)–
(1.11), and for all small enough h and all m ≤ τ/h, the discrete velocity is bounded:

sup
∣∣(ym+1 − ym)/h

∣∣ ≤ A.

In sections 4, 5, 6, and 7, we prove estimates on the discrete acceleration, we
establish the variational properties of the limit of the numerical scheme, and we
study the transmission of energy at impact, as well as the passage to the limit for
the initial conditions. All these results are obtained under the assumption that on a
certain time interval starting at t0, the discrete velocity is bounded independently of
the time step.

As a preliminary to the global existence proof, we give a priori estimates on
problem (1.2)–(1.7) in section 8, which is completely independent from the remainder
of the article.

In section 9, we establish a very weak semicontinuity for the supremum of the
local norm of the discrete velocities; this result enables us to obtain a global existence
and convergence theorem.

This article contains theoretical results and reports also on some of the numerical
implementations.

The existence result obtained here is a generalization of [26], [2], [24], [19], [17].
The numerical scheme has been implemented in the one-dimensional case, and the
results were reported in [19], [18], [23]. In all these articles, we compared the per-
formances of this scheme with those of a method based on the detection of impact.
When the impact times are isolated, the algorithm by detection of impacts is more
precise than the present scheme. As soon as the restitution coefficient is strictly less
than one, we find systematically nonisolated impact times. In all cases, the present
scheme is substantially faster. Since the phenomena that we want to approximate are
highly nonlinear and often very sensitive to the initial data, the issue of precision is
not necessarily crucial. Our numerical experiments show that the performance of the
present numerical scheme is quite satisfactory from the point of view of qualitative
conclusions.

The aforementioned references also concern the multidimensional case.
Let us remark that many articles have been devoted to the problem treated here

under the assumption of inelasticity, i.e., a situation where the normal component of
the impulsion vanishes after the impact. Moreau applied Gauss’s principle of least
constraint to unilateral problems in order to justify his choice of inelastic impact
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[11], which eventually led him to sweeping processes [14], followed by [12], [13]. Dry
friction enters in Moreau’s work as [15]; frictionless inelastic impact starts as [16], and
the mathematical theory is tackled by M. Monteiro Marques in a series of articles:
his main contributions are [9] for the general theory of differential inclusions, [10] for
one-dimensional dynamics with friction, and [5] which adds percussion to the previous
framework; this work is improved as [6], where dynamics of n particles on a plane
with normal friction are considered. The discretization approach has been taken up
by Kunze and Monteiro Marques in [4], but most significantly by Stewart and Trinkle:
they use that approach in [27], [29], and [30]. The real coronation is the beautiful and
difficult article of Stewart [28], which concludes the study of dynamics with friction
and inelastic impact for a finite number of degrees of freedom and one constraint;
his results are not quite so precise in the case of many constraints but are still very
important.

The philosophy of this long list of works is somewhat different from ours: we feel
that not all impacts are inelastic, and we were originally motivated by continuous
media; thus, we wanted to develop methods which work well for stiff systems of
ordinary differential equations. From this point of view, any method which has to
calculate with some precision the impact times is doomed to failure. On the other
hand, the precision of the method presented here needs improvement, and globally it
would make sense to agree on benchmarks which would enable the end-user to decide
between different numerical methods.

Our approach is not the only possible one. In particular, in recent work, Mabrouk
in [7] and [8] defines a numerical scheme for vibro-impact as a tool for proving ex-
istence of dynamics with impact; he allows for elastic, partially elastic, or inelastic
impact. In his work, the mass matrix is assumed to be scalar, and therefore the met-
ric is Euclidean. The idea is to discretize Moreau’s formulation which describes the
constraint in terms of velocity instead of describing it in terms of position, as we do
here.

From a practical point of view a nice property of Mabrouk’s scheme is that the
velocity is reversed immediately upon impact. However, the number of steps during
which the representative point of the system is outside of the set of constraints can
be very large. For e = 0, the representative point of the system can even leave for
ever the set of constraints, while remaining close to it.

Therefore, numerical simulations will probably decide which of all these numerical
schemes gives the most reliable simulations of dynamics with impact. It may well be
that a future scheme will conciliate the two distinct approaches and perform better
than them: the road is open to researchers to try their ingenuity on these challenging
problems.

2. The heart of the estimates. In the one-dimensional case, the main estimate
on the numerical scheme is described in the following lemma; we recall the definition

r+ = max(r, 0).

Lemma 2.1. Let the real-valued sequence
(
ym

)
m

satisfy the following recurrence

relation for all m ≥ 1:

ym+1 = −eym−1 +
(
2ym − (1 − e)ym−1

)+
+ h2λm.(2.1)

Then, for all m ≥ 2, the discrete velocity

ηm =
(
ym+1 − ym

)
/h(2.2)
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satisfies the estimate

|ηm| ≤ max
(∣∣ηm−1

∣∣ , e
∣∣ηm−2

∣∣) + h |λm| + h
∣∣λm−1

∣∣ .(2.3)

Proof. Assume first that 2ym−(1−e)ym−1 is nonnegative, and substitute ym+1 =
ym + hηm, ym−1 = ym − hηm−1 into (2.1); we obtain

ηm = ηm−1 + hλm

so that

|ηm| ≤
∣∣ηm−1

∣∣ + h |λm| .(2.4)

Assume now that 2ym − (1 − e)ym−1 is strictly negative. On the one hand, (2.1)
implies the relation

ηm = eηm−1 − 1 + e

h
ym + hλm;

the assumption on the sign of 2ym − (1 − e)ym−1 is equivalent to

(1 + e)ym

h
< −(1 − e)ηm−1,

and therefore

ηm > ηm−1 + hλm.(2.5)

On the other hand, we subtract from the relation

ym+1 + eym−1 = h2λm

the inequality implied by (2.1) with m substituted by m− 1:

ym + eym−2 ≥ h2λm−1,

and we infer that

ηm ≤ −eηm−2 + h
(
λm − λm−1

)
.(2.6)

When we summarize (2.4), (2.5), and (2.6), we find (2.3).

3. Existence of a discrete solution and estimates on the discrete veloc-

ity. We systematically use the floor and ceiling notations: when r is a real number,
the floor ⌊r⌋ of r is the largest integer at most equal to r, and the ceiling ⌈r⌉ is
the smallest integer at least equal to r. In this section we prove that for h and τ
small enough, relations (1.12) and (1.13) uniquely define a numerical solution while
(m+1)h ≤ τ ; moreover the discrete velocity of this solution is bounded independently
of h.

The idea of this result is to show the existence by the Brouwer fixed point argu-
ment and the uniqueness by local considerations.

We say that a pair of numbers y0 and y1 satisfy the property P (a, h) if the
following conditions are true:

|y0| ≤ a, |y1| ≤ a,(3.1a)

|y1 − y0| ≤ ah,(3.1b)
{

There exists y2 such that |y2 − y1| ≤ ah

and y2 + ey0 −
(
2y1 − (1 − e)y0 + h2F (t1, y0, y1, (y2 − y0)/2h, h)

)+
= 0.

(3.1c)
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Theorem 3.1. For all a > 0 and for all A > a, there exists τ > 0 such that,

for all t0 ∈ [0, T ) and for all y0 and y1 satisfying property P (a, h), there exists a

numerical solution of the scheme (1.12) and (1.13) for 0 ≤ mh ≤ τ , which satisfies,

moreover, the estimate

∀m ∈ {0, . . . , ⌊τ/h⌋ − 1}, |ym+1 − ym| ≤ Ah.(3.2)

Proof. Define

C1 = sup{|F (t, u, u′, 0, h)| : 0 ≤ t ≤ T, |u| ≤ a, |u′| ≤ a, 0 ≤ h ≤ h∗}.

Let L be the local Lipschitz constant of F defined by

∀(t, ui, u
′
i, vi, h) ∈ [0, T ] × [−a−AT, a + AT ]2 × [−A,A] × [0, h∗], i = 1, 2,

|F (t, u1, u
′
1, v1, h) − F (t, u2, u

′
2, v2, h)| ≤ L

(
|u1 − u2| + |u′

1 − u′
2| + |v1 − v2|

)
.

Choose τ > 0 such that

2τ
(
C1 + LA + 2LAτ

)
≤ A− a.(3.3)

We will apply a Brouwer fixed point argument; we choose y2 according to (3.1c), and
we define a compact convex set Bh by

Bh =
{
ŷ =

(
ŷm)0≤mh≤τ : ŷ0 = y0, ŷ1 = y1, ŷ2 = y2,

∀m ∈ {1, . . . , ⌊τ/h⌋ − 1} : |ŷm+1 − ŷm| ≤ Ah
}
.

Assuming that ŷ belongs to Bh, we define F̂ by

F̂m = F (tm, ŷm, ŷm−1, (ŷm+1 − ŷm−1)/2h, h), m ∈ {1, . . . , ⌊τ/h⌋ − 1}.

We now write the numerical scheme

ym+1 + eym−1 −
(
2ym − (1 − e)ym−1 + h2F̂m

)+
= 0,(3.4)

which can be put under the form (2.1), provided that we define

h2λm =
(
2ym − (1 − e)ym−1 + h2F̂m

)+ −
(
2ym − (1 − e)ym−1

)+
.(3.5)

It should be remarked that (3.4) possesses a unique solution, since it is explicit in
ym+1, and that if the mapping ŷ → y possesses a fixed point, this fixed point is
precisely the numerical solution sought here. We estimate the discrete velocity ηm

thanks to Lemma 2.1: the number λm is estimated by

|λm| ≤ |F̂m|
≤ |F (tm, y0, y0, 0, h)| + L

(
|ŷm − y0| + |ŷm−1 − y0| + |η̂m|/2 + |η̂m−1|/2

)
,

and the assumption ŷ ∈ Bh guarantees that

|λm| ≤ C1 + 2LAτ + LA.(3.6)

Estimate (2.3) implies

|ηm| ≤ max
(
|η0|, |η1|

)
+ 2

(
C1 + 2LAτ + LA

)
mh
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by discrete integration. We may conclude now that for (m + 1)h ≤ τ ,

|ηm| ≤ a + 2
(
C1 + 2LAτ + LA

)
τ,

and thanks to assumption (3.3), y also belongs to Bh. This mapping is clearly con-
tinuous, which implies the existence of a fixed point thanks to Brouwer’s fixed point
theorem.

There remains two easy lemmas; the first one settles for h small the question of
the uniqueness of the numerical solution.

Lemma 3.2. Under the hypotheses of Theorem 3.1, there exists h1 > 0 such

that for all h ∈ (0, h1], for all y0 and y1 satisfying condition P (a, h), the numerical

solution of (1.12) and (1.13) satisfying estimate (3.2) is unique.

Proof. Given ym−1 and ym, the discrete velocity ηm is a fixed point of the mapping

η → h−1
(
−eym−1 − ym

+
(
2ym − (1 − e)ym−1 + h2F (tm, ym, ym−1, (η + ηm−1)/2, h)

)+)
.

(3.7)

Let L be the Lipschitz constant of the mapping

z → F (t, y, y′, z, h)

for t ∈ [0, T ], y and y′ in [−a − TA, a + TA], |z| ≤ A, and 0 ≤ h ≤ h∗. Then the
Lipschitz constant of the mapping (3.7) is hL/2, and therefore, if h1 < 2/M , the
uniqueness of ηm is guaranteed and the lemma is proved.

The second lemma establishes that under conditions (1.10) and (1.11), property
P (a, h) holds.

Lemma 3.3. Assume that y0 = u0 and y1 = u0 + hv0 + ho(h) as in (1.11); then

there exists h1 > 0 such that for all h ∈ (0, h1], there exists a unique y2 such that

y2 + ey0 −
(
2y1 − (1 − e)y0 + h2F (t1, y0, y1, (y2 − y0)/2h, h)

)+
= 0

and

max(|y1 − y0|, |y2 − y1|) ≤ (3|v0| + 1)h.

Proof. Define a mapping

z → h−1
((

(1 + e)y0 + 2η0h + h2F (t1, y0, y1, z/2, h)
)+ − (1 + e)y0

)
,(3.8)

which is slightly different from the mapping (3.7), since its fixed point will be (y2 −
y0)/h. Standard arguments show that it is possible to find h1 > 0 such that for all
h ∈ (0, h1] and all y1 in [y0 − 1, y0 + 1], the mapping (3.8) is a strict contraction from
the ball of radius 2|v0| + 1/2 to itself. We set y2 = y0 + hz, where z is the fixed point
of the above mapping. Then it is clear that for h small enough,

|η2| = |(y2 − y1)/h| ≤ |z| + |η0|,

and the lemma is proved.
As a consequence of Theorem 3.1 and Lemma 3.2, we have the following result.
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Proposition 3.4. For all (t0, u0, v0) ∈ D, there exists A > 0, τ ∈ (0, T −t0], and

h1 ∈ (0, h∗] such that for all m ∈ {0, . . . , ⌊τ/h⌋}, ym is uniquely defined by (1.10),
(1.11), and the recursive formulas (1.12), (1.13) and satisfies the estimate

∀m ∈
{
0, . . . , ⌊τ/h⌋ − 1

}
, |ym+1 − ym| ≤ Ah.

Proof. The main observation is that we have to choose A as a function of the
initial data. Thanks to Lemma 3.3, it suffices to take

A ≥ max
(
3|v0| + 1, |u0| + 1

)
;

the remainder of the argument is clear.

4. Estimates on the discrete acceleration. In this section and the three
following ones, we assume that there exist strictly positive numbers τ , A, and h1 and
a subsequence of time steps to which correspond solutions of the numerical scheme
defined by (1.10), (1.11), (1.12), and (1.13), which satisfy the estimate, for all h ≤ h1,

∀l ∈ {0, . . . , P − 1},
∣∣yl+1 − yl

∣∣ ≤ Ah,(4.1)

where

P = ⌊τ/h⌋.

Here we estimate the discrete total variation of the sequence
(
ηm

)
m

.
Theorem 4.1. Under assumption (4.1), there exists a constant C2 such that for

all h ≤ h1

P−1∑

m=1

∣∣ηm − ηm−1
∣∣ ≤ C2.(4.2)

Proof. The constant C3 is taken as a majorant of |Fm|; we can take it as equal
to

C3 = max
{
|F (t, y, y′, z, h)| : t ∈ [0, T ], |y − u0| ≤ AT,

|y′ − u0| ≤ AT, |z| ≤ A, 0 ≤ h ≤ h∗
}
.

(4.3)

We put the numerical scheme under the form (2.1) by defining λm through

h2λm =
(
2ym − (1 − e)ym−1 + h2Fm

)+ −
(
2ym − (1 − e)ym−1

)+
,(4.4)

which differs slightly from (3.5), since it involves Fm instead of F̂m. The number λm

is estimated by

|λm| ≤ |Fm| ≤ C3.

We observe that

ηm − ηm−1 = hλm + (2ym − (1 − e)ym−1)−/h.(4.5)

Therefore, by the triangle inequality,

|ηm − ηm−1| ≤ hC3 + (2ym − (1 − e)ym−1)−/h.
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Using (4.5) again, we obtain

|ηm − ηm−1| ≤ 2hC3 + ηm − ηm−1.(4.6)

We observe that we have the elements of a telescoping sum: we sum (4.6) for m
varying from 1 to P − 1 and we get

P−1∑

m=1

|ηm − ηm−1| ≤ 2hC3P + ηP−1 − η0 ≤ 2C3τ + 2A.

5. Variational properties of the limit of the numerical scheme. In this
section, we work under the assumption (4.1). We define a function uh by affine
interpolation, as follows:

⎧
⎪⎪⎨

⎪⎪⎩

uh(t) = ym + (t− t0 −mh)
ym+1 − ym

h
for t− t0 ∈ [mh, (m + 1)h

)
, 0 ≤ m ≤ P − 1,

uh(t) = yP for t− t0 ∈ [Ph, τ ].

(5.1)

We also define a measure Fh as the following sum of Dirac masses:

Fh(t) =

P−1∑

m=1

hFmδ(t− t0 −mh).(5.2)

In this section we prove that the sequence (uh)h converges in an appropriate sense
to a function u which satisfies (1.2) to (1.4b) with τ instead of τ . We delay the proof
of (1.5), the transmission condition at impacts, to a later section.

There are three steps in the convergence proof: the first is to prove that the limit
u exists in an appropriate sense and takes its values in K; in the second step, we show
that u̇h is of bounded variation uniformly in h and that Fh converges to f(·, u, u̇)
weakly in the space of R-valued measures. The last step is the characterization of the
measure μ = ü−f(·, u, u̇): there we show that μ satisfies conditions (1.3a) and (1.3b).

Lemma 5.1. From all sequence of functions (uh)h indexed by a sequence h tending

to 0, it is possible to extract a subsequence, still denoted by (uh)h, such that

uh → u in C0([t0, t0 + τ ]) strong,(5.3)

u̇h → u̇ in L∞([t0, t0 + τ ]) weak *.(5.4)

The function u takes its values in K.

Proof. Thanks to assumption (4.1), we know that (uh)0<h≤h1
is uniformly Lip-

schitz continuous over [t0, t0 + τ ]. Therefore, we may extract a subsequence, still
denoted by uh, such that (5.3) and (5.4) hold. Thus u belongs to W 1,∞([t0, t0 + τ ])∩
C0([t0, t0 + τ ]), which means that u is a Lipschitz continuous function [1]. For all m
belonging to {1, . . . , P − 1}, we have that

ym+1 + eym−1

1 + e
= ym + h

ηm − eηm−1

1 + e
≥ 0.(5.5)

It follows that, for all m ∈ {1, . . . , P − 1}, the Euclidean distance between ym and K
can be estimated as follows:

(ym)− ≤ h
∣∣ηm − eηm−1

∣∣ /(1 + e) ≤ hA.(5.6)

10



Thanks to the definition (5.1), we can see that for all t ∈ [t0, t0 + τ ] the Euclidean
distance between uh(t) and K is estimated by 2hA. This allows us to pass to the
limit when h tends to 0 and to conclude.

The next lemma describes the convergence of the measures involved in our prob-
lem; we denote by M1

(
(t0, t0 + τ)

)
the space of bounded measures over (t0, t0 + τ).

Lemma 5.2. The measures üh and Fh converge weakly ∗ in M1
(
(t0, t0 + τ)

)
to

ü and f(·, u, u̇), respectively.

Proof. The measure üh is a sum of Dirac measures on (t0, t0 + τ); more precisely,
we have

üh(t) =
P−1∑

m=1

(ηm − ηm−1)δ(t− t0 −mh) − ηP−1δ(t− t0 − Ph),

and the total variation of u̇h on (t0, t0 + τ) is estimated by

TV (u̇h) ≤
P−1∑

m=1

∣∣ηm − ηm−1
∣∣ +

∣∣ηP−1
∣∣ .

Theorem 4.1 implies that (u̇h)0<h≤h1
is a bounded family in BV

(
(t0, t0 + τ)

)
, the

space of functions of bounded variation over (t0, t0+τ). Using Helly’s theorem, we can
extract another subsequence

(
u̇h

)
h

which converges, except perhaps on a countable
set of points, to a function of bounded variation. Hence

u̇ ∈ BV
(
(t0, t0 + τ)

)
.

Moreover,

üh → ü weakly ∗ in M1
(
(t0, t0 + τ)

)
.

Lebesgue’s theorem implies that u̇h converges to u̇ in L1
(
t0, t0 + τ). We extend

u̇h and u̇ to R by 0 outside of (t0, t0 + τ) and still denote the respective extensions by
u̇h and u̇. The set {u̇h : h ∈ (0, h1]}∪{u̇} is a compact subset of L1(R). The classical
characterization of compact subsets of L1(R) [3] implies that

lim
θ→0

sup
0<h≤h1

∫

R

|u̇h(t− θ) − u̇h(t)| dt = 0.

Letting θ = h, we can see that u̇h(· − h) converges to u̇ in L1
(
R). Let us define an

approximate velocity vh on R by

vh(t) =
u̇h(t− h + 0) + u̇h(t + 0)

2
.

The sequence vh converges to u̇ in L1
(
R
)
. Moreover, for all t ∈ [tm, tm+1) and for all

m ∈ {1, . . . , P − 1}, we have the identity

vh(t) =
ηm + ηm−1

2
.

We immediately have the following estimates for all t ∈ (t0, t0 + τ) and all h ∈ (0, h1]:

|vh(t)| ≤ A, |uh(t) − u0| ≤ A(t− t0) ≤ Aτ.(5.7)
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Let ψ be a continuous function over [0, T ] with compact support included in (t0, t0+τ).
For all small enough h, the support of ψ is included in [t0 + h, t0 + (P − 1)h]. The
duality product 〈Fh, ψ〉 has the expression

〈Fh, ψ〉 =
P−1∑

m=1

hψ(t0 + mh)Fm.(5.8)

We wish to compare the expression (5.8) to

∫ t0+τ

t0

ψf(·, u, u̇) dt.(5.9)

We compare the right-hand side of (5.8) which is basically a numerical quadrature
by the formula of rectangles to an appropriate integral. Let us rewrite the individual
terms of the right-hand side of (5.8) as

hψ(tm)Fm =

∫ tm+1

tm
ψ(t)Fm dt +

∫ tm+1

tm

(
ψ(tm) − ψ(t)

)
Fm dt.(5.10)

Consider now the second term on the right-hand side of (5.10). Recalling estimate
(4.3),

max
0≤m≤n

|Fm| ≤ C3,(5.11)

and denoting by ωψ the modulus of continuity of ψ we can see that

∣∣∣∣∣

∫ tm+1

tm

(
ψ(tm) − ψ(t)

)
Fm dt

∣∣∣∣∣ ≤ C3ωψ(h)h.(5.12)

We consider now the first term on the right-hand side of (5.10), which we would like
to compare to expression (5.9). Thanks to the consistency assumption (1.9) we have
the following inequalities, for all t ∈ [tm, tm+1) and all m ∈ {1, . . . , P − 1}:

∣∣Fm − f
(
t, uh(t), vh(t)

)∣∣

≤
∣∣F

(
tm, ym, ym−1, vh(tm), h

)
− F

(
tm, uh(t), uh(t), vh(tm), h

)∣∣

+
∣∣F

(
tm, uh(t), uh(t), vh(tm), h

)
− F

(
tm, uh(t), uh(t), vh(t), 0

)∣∣

+
∣∣f
(
tm, uh(t), vh(t)

)
− f

(
t, uh(t), vh(t)

)∣∣.

Denote by D the set

D =
{
(t, u1, u2, v, h) : 0 ≤ t ≤ T, |u1 − u0| ≤ AT,

|u2 − u0| ≤ AT, |v| ≤ A, 0 ≤ h ≤ h∗}.

Let L be the Lipschitz constant of (u1, u2) → F (t, u1, u2, v, h) restricted to D and let
ωF be the modulus of continuity of F on D. With these notations, we can see that

∣∣Fm − f
(
t, uh(t), vh(t)

)∣∣

≤ L
(
|ym − uh(t)| +

∣∣ym−1 − uh(t)
∣∣) + 2ωF (h).

(5.13)
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Since (uh)h converges strongly in C0([t0, t0 + τ ]) and (vh)h converges strongly to
u̇ in L1(R) and almost everywhere on (t0, t0 + τ), we see that f(·, uh, vh) tends to
f(·, u, u̇) strongly in L1(t0, t0+τ) and almost everywhere on (t0, t0+τ). We summarize
relations (5.12) and (5.13) together with the above convergence result, and we find
that

∣∣∣∣〈Fh, ψ〉 −
∫ t0+τ

t0

ψf(·, u, u̇) dt

∣∣∣∣

≤
∫ t0+τ

t0

∣∣f
(
·, uh, vh

)
− f

(
·, u, u̇

)∣∣ |ψ| dt

+ C3ωψ(h)τ + (3LAh + 2ωF (h))

∫ t0+τ

t0

|ψ| dt,

which concludes the proof.
Let us prove now that the measure μ has the required variational properties.
Lemma 5.3. The measure μ satisfies properties (1.3a) and (1.3b).
Proof. Define

μh = üh − Fh;

μh is a sum of Dirac measures on (t0, t0 + τ). More precisely

μh =

P−1∑

m=1

(
ηm − ηm−1 − hFm

)
δ(t− t0 −mh)

− ηP−1δ(t− t0 − Ph).

With all the previous results, we know that μh converges to μ = ü− f(·, u, p) weakly
* in M1

(
(t0, t0 + τ)

)
. Let us prove property (1.3a). Assume that τ0 is a point of

(t0, t0 + τ) such that u(τ0) > 0. Then, by continuity of u, there exist ε > 0 and ρ > 0
such that

∀t ∈ (τ0 − ε, τ0 + ε), u(t) ≥ 3ρ.

Since the sequence (uh)h converges uniformly to u as h tends to 0, we can decrease
h1 so that

∀h ∈ (0, h1], ∀t ∈ (τ0 − ε, τ0 + ε), uh(t) ≥ 2ρ.

Replacing ym−1 by ym − hηm−1, we have

2ym − (1 − e)ym−1 + h2Fm = (1 + e)ym + (1 − e)hηm−1 + h2Fm,

and relations (4.3) and (4.1) imply that

2ym − (1 − e)ym−1 + h2Fm ≥ (1 + e)ym − (1 − e)hA− h2C3.

Possibly decreasing h1, we have

∀h ∈ (0, h1], ∀tm ∈ (τ0 − ε, τ0 + ε), 2ym − (1 − e)ym−1 + h2Fm ≥ ρ,

and thus

∀h ∈ (0, h1], ∀tm ∈ (τ0 − ε, τ0 + ε), ηm − ηm−1 − hFm = 0.
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This proves that, for h small enough, the support of μh does not intersect the open
set (τ0 − ε, τ0 + ε) and therefore relation (1.3a). In order to conclude the proof, we
observe that

ηm − ηm−1 − hFm =
1

h
(2ym − (1 − e)ym−1 + h2Fm)− ≥ 0.

Thus, for all τ ′ ∈ (0, τ), the measure μh is nonnegative on (t0, t0 + τ ′) for h small
enough, which implies by a straightforward passage to the limit that μ is nonnegative.
This concludes the proof of the lemma.

6. Transmission of energy during impact. The basic assumption is still the
one made at the beginning of section 4.

Let τ ∈ (0, τ) be such that u(t0 + τ) vanishes. Write t = t0 + τ .
We will prove the relation

u̇(t + 0) = −eu̇(t− 0)

by performing a precise analysis of the transmission of the energy by the scheme.
Possibly decreasing h1, there exists a nonempty interval [τ−5, τ2] containing τ

and included in [h, (P − 1)h]. The apparently strange notations τ−5 and τ2 have been
chosen in view of the upcoming construction of Lemmas 6.1 and 6.2, where we will
consider relative times

τ−5 < · · · < τ−1 < τ < τ1 < τ2.

Define

P = ⌈τ−5/h⌉ + 1 and Q = ⌊τ2/h⌋ − 1.

The measure üh is a sum of Dirac measures on (t0 + τ−5, t0 + τ2). We define two
measures ωh and λh on (t0 + τ−5, t0 + τ2) by

ωh(t) =

Q∑

m=P

(
−2ym + (1 − e)ym−1

)+

h
δ(t− t0 −mh)

and

λh(t) =

Q∑

m=P

hλmδ(t− t0 −mh).

We have

üh = ωh + λh,

and it is obvious that ωh is a nonnegative measure.
Since the real numbers λm are bounded independently of h and m, the measure

by |λh| of any subinterval [a, b] of (t0 + τ−5, t0 + τ2) is bounded by C3(b − a + h),
and it is clear therefore that there exists a function λ ∈ L∞(t0 + τ−5, t0 + τ2) and a
subsequence λh converging to λ in the weak * topology of M1

(
(t0 + τ−5, t0 + τ2)

)
.

The measure ωh converges in the weak * topology of M1
(
(t0 + τ−5, t0 + τ2)

)
to a

nonnegative measure ω and in the limit

ü = ω + λ,(6.1)
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while

|λ|L∞ ≤ C3.(6.2)

Since u is nonnegative on (t0 + τ−5, t0 + τ2) and u(t) vanishes, we must have

u̇(t + 0) ≥ 0, u̇(t− 0) ≤ 0.

On the other hand, u̇(t + 0) − u̇(t− 0) is equal to ω({t}); if ω({t}) vanishes, we have

u̇(t + 0) = u̇(t− 0) = 0,

and the identity

u̇(t + 0) = −eu̇(t− 0)

holds. Therefore, the only interesting case is when

ω({t}) > 0.(6.3)

The following two lemmas enable us to prove in two steps that the velocity is
reversed according to the law described by (1.5). Lemma 6.1 shows that if ω has
a Dirac mass at t, then the left velocity at t is outgoing; Lemma 6.2 indeed shows
that (1.5) holds.

Lemma 6.1. If ω({t}) is strictly positive, then u̇(t− 0) is strictly negative.

Proof. The idea of the proof is to find two successive times tm−1 ≤ tm < t
for which we can write down an estimate on the discrete velocities and then to use
Lemma 2.1 to perform a discrete integration and to obtain a contradiction. We must
deal with the fact that u̇h does not converge uniformly to u̇.

Without loss of generality, we may assume that u̇ is continuous on the right and
that for all h ≤ h1, u̇h is also continuous from the right. According to Helly’s theorem,
there exists a countable set D such that

u̇h(t) → u̇(t) ∀t such that t− t ∈ (τ−5, τ2) \D.

Assume that u̇(t − 0) vanishes; therefore, u̇(t + 0) is strictly positive. Choose α =
u̇(t + 0)/4, and let τ−4 and τ1 be such that

τ−5 ≤ τ−4 < τ < τ1 ≤ τ2,

6C3

(
τ1 − τ−4

)
≤ α,(6.4)

and

ω
(
[t0 + τ−4, t)

)
≤ α, ω

(
(t, t0 + τ1]

)
≤ α.(6.5)

An integration of (6.1) on appropriate intervals yields

∀t ∈ (t0 + τ−4, t), |u̇(t± 0)| ≤ α + C3(t− t),(6.6)

∀t ∈ (t, t0 + τ1), u̇(t± 0) ≥ 2ω
(
{t}

)
− α− C3(t− t).(6.7)

Choose τ−3 ∈ (τ−4, τ) \D and τ−1 ∈ (τ−3, τ) \D; since ωh is a nonnegative measure,
we have the following inequality for all τ ′ ∈ (τ−3, τ−1) and all τ ′′ ∈ (τ ′, τ−1):

|u̇h(t0 + τ ′) − u̇h(t0 + τ ′′)| ≤ ωh((t0 + τ ′, t0 + τ ′′]) + C3(τ
′′ − τ ′ + h)

≤ ωh([t0 + τ−3, t0 + τ−1]) + C3(τ
′′ − τ ′ + h).
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We integrate ωh −ω on the interval
[
t0 + τ−3, t0 + τ−1

]
; since the measures ω and ωh

do not charge t0 + τ−3 and t0 + τ−1, we find that

ωh

([
t0 + τ−3, t0 + τ−1

])
− ω

([
t0 + τ−3, t0 + τ−1

])

= u̇h

(
t0 + τ−1

)
− u̇h

(
t0 + τ−3

)
− u̇

(
t0 + τ−1

)
+ u̇

(
t0 + τ−3

)

+ λ
([
t0 + τ−3, t0 + τ−1

])
− λh

([
t0 + τ−3, t0 + τ−1

])
,

and therefore

ωh

([
t0 + τ−3, t0 + τ−1

])

≤ ω
([
t0 + τ−3, t0 + τ−1

])
+ |u̇h(t0 + τ−1) − u̇(t0 + τ−1)|

+ |u̇h(t0 + τ−3) − u̇(t0 + τ−3)| + C3

(
2
(
τ−1 − τ−3

)
+ h

)
.

Choose now τ−2 ∈
(
τ−3, τ−1

)
\ D; then, for h small enough, tm = h⌊τ2/h⌋ and

tm−1 = tm − h belong to the interval (τ−3, τ−1), and therefore

∣∣u̇h(tm) − u̇h(tm−1)
∣∣ ≤ α + C3

(
2
(
τ−1 − τ−3

)
+ 3h

)
+ εh,(6.8)

where εh tends to 0 as h tends to 0. On the other hand, u̇h(t0 + τ−2) tends to
u̇(t0 + τ−2) and therefore, thanks to relation (6.6), there exists a family ε′h such that

|u̇h(t0 + τ−2)| = |u̇h(tm)| ≤ α + C3

(
τ − τ−2

)
+ ε′h,

which is equivalent to

|ηm| ≤ α + C3

(
τ − τ−2

)
+ ε′h;(6.9)

we infer from (6.8) and (6.9) that

∣∣ηm−1
∣∣ ≤ 2α + C3

(
2
(
τ−1 − τ−3

)
+ τ − τ−2 + 3h

)
+ εh + ε′h.

Thus, for all n ≥ m we infer from Lemma 2.1 that

|ηn| ≤ 2α + C3

(
2
(
τ−1 − τ−3

)
+ 3h

+ τ − τ−2 + 2
(
tn − tm

))
+ εh + ε′h.

Therefore, in the limit, for all t ≥ t0 + τ−2

|u̇(t)| ≤ 2α + C3

(
2
(
τ−1 − τ−3

)
+ τ − τ−2 + 2

(
t− t0 − τ−2

))
,

and for all t ∈ [t0 + τ−2, t0 + τ1]

|u̇(t)| ≤ 2α + C3

(
2
(
τ−1 − τ−3

)
+ τ − τ−2 + 2

(
τ1 − τ−2

))
.(6.10)

On the other hand, relation (6.7) implies that for all t ∈ (t, t0 + τ1),

|u̇(t)| ≥ 3α− C3

(
τ1 − τ

)
.(6.11)

Under assumption (6.4), relation (6.11) contradicts relation (6.10).
We can conclude now the local study of the reflection of the velocity by the

following lemma.
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Lemma 6.2. If ω
(
{t}

)
is strictly positive, then

u̇(t) = −eu̇(t− 0).(6.12)

Proof. Since u̇(t− 0) is strictly negative, there exists a real number τ−3 such that
u(t) is strictly positive on [t0 + τ−3, t) ⊂ [t0 + τ−5, t). For all τ−2 ∈ (τ−3, τ), there
exists τ−1 ∈ (τ−2, τ) and h1 > 0 such that

∀h ∈ (0, h1], ∀t ∈ [t0 + τ−2, t0 + τ−1), uh(t) ≥ u(t0 + τ−2)

2
.(6.13)

We prove now that there exists a maximal integer

m ∈ {⌊τ−3/h⌋, . . . , ⌊(τ2)/h⌋}

such that

∀l ∈
{
⌊τ−3/h⌋, . . . ,m− 1

}
, 2yl − (1 − e)yl−1 ≥ 0,(6.14)

and denoting

ρh = tm−1 − t0,(6.15)

the time ρh satisfies

lim
h→0

ρh = τ .(6.16)

Let us first observe that for all small enough h and all tl belonging to [t0+τ−2, t0+τ−1)
we have

2yl − (1 − e)yl−1 ≥ 0.(6.17)

Indeed,

2yl − (1 − e)yl−1 = (1 + e)yl + (1 − e)hηl−1

≥ 1 + e

2
u(t0 + τ−2) − h(1 − e)A,

and if 2A(1 − e)h ≤ (1 + e)u(t0 + τ−2), we can see that (6.17) holds. Therefore m
exists and

lim inf ρh ≥ τ .

On the other hand, if there existed τ1 > τ such that for all tm ∈ [t0 + τ−3, t0 +
τ1] we had (6.17), then ωh would vanish on (t0 + τ−3, t0 + τ1), which contradicts
assumption (6.3). Therefore, we have shown that

lim sup ρh ≤ τ ,

i.e., (6.16). We integrate (4.4) discretely, and we find that for t ∈
[
t0 + τ−3, t0 + ρh

]

uh(t) =uh(t0 + ρh) − (t0 + ρh − t)u̇h(t0 + ρh)

+

∫ t0+ρh

t

λh((s, t0 + ρh]) ds.
(6.18)
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In the limit we have

u(t) = u(t0 + τ) − (τ + t0 − t) lim
h↓0

u̇h(t0 + ρh + 0) +

∫ t0+τ

t

∫ t0+τ

s

λ(r) dr ds.(6.19)

The comparison of (6.18) and (6.19) shows that

lim
h↓0

u̇h(t0 + ρh + 0) = lim
h↓0

ηm−1 = u̇(t− 0).(6.20)

Our purpose now is to obtain very precise estimates on the behavior of yh beyond
t0 + ρh. Thanks to the maximality of m, we have the relation

ym+1 = −eym−1 + h2λm;(6.21)

let us estimate 2ym+1 − (1 − e)ym. We substitute the value of ym+1 given by (6.21)
into this expression, and we also use (4.4) with m replaced by m− 1; we find that

2ym+1 − (1 − e)ym

= −
[
2ym−1 − (1 − e)ym−2

]
− (1 − e)h2λm−1 + 2h2λm.

We apply relation (2.1) for n = m + 1 and we find that

ηm+1 + eηm−1 = h
(
λm+1 − λm

)

+
{
−
[
2ym−1 − (1 − e)ym−2

]
h−1 − (1 − e)hλm−1 + 2hλm

}+
.

Therefore, we have

ηm+1 + eηm−1 ≥ −2hC3.

On the other hand, if ξ = −
[
2ym−1 − (1− e)ym−2

]
h−1 − (1− e)hλm−1 + 2hλm is less

than or equal to 0,

∣∣ηm+1 + eηm−1
∣∣ ≤ 2hC3;

if ξ is positive, then the sign condition on 2ym−1 − (1 − e)ym−2 implies that

ηm+1 + eηm−1 ≤ h
(
λm+1 + λm

)
− (1 − e)hλm−1.

Thus, we have shown that

∣∣ηm+1 + eηm−1
∣∣ ≤ 3C3h.(6.22)

If e is strictly positive, then for all small enough h,

ηm+1 ≥ e
∣∣u̇(t− 0)

∣∣ /2.

Let us estimate now the expression 2ym+2 − (1 − e)ym+1: we have

2ym+2 − (1 − e)ym+1 = −e
[
2ym − (1 − e)ym−1

]
+ O(h2).

If 2ym+2 − (1 − e)ym+1 is nonnegative, then

ym+3 = 2ym+2 − ym+1 + h2λm+2.
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We must estimate 2ym+3 − (1 − e)ym+2:

2ym+3 − (1 − e)ym+2 − 2ym+2 + (1 − e)ym+1

= h
(
2ηm+2 − (1 − e)ηm+1

)

= h(1 + e)ηm+1 + 2h2λm+2,

and therefore 2ym+3−(1−e)ym+2 is nonnegative for all small enough h; the repetition
of the argument shows that there exists θ > 0 such that for all small enough h and
all n ∈ {m+ 2, . . . ,m+ ⌊θ/h⌋}, the expression 2yn+1 − (1− e)yn is nonnegative, and
thus we have the relations

yn = ym+1 + h(n−m− 1)ηm+1 +

n−1∑

j=m+2

(
n− j)h2λj .

On the other hand, if 2ym+2 − (1 − e)ym+1 is negative, we must have

ym = − (1 − e)hηm−1

1 + e
+ O(h2),

and therefore

ym−1 = −2hηm−1

1 + e
+ O(h2).

These relations and the assumption on the sign of 2ym+2 − (1 − e)ym+1 imply that

2ym+3 − (1 − e)ym+2 = −
(
4e2 + e(1 − e)2

)
hηm−1

1 + e
+ O(h2),(6.23)

which is strictly positive for h small enough. But now, we can see that

ym+3 − ym+2 = −ehηm−1 + O(h2),

which is strictly positive for small enough h, and therefore 2ym+4 − (1 − e)ym+3 is
strictly positive for h small enough, since

2ym+4 − (1 − e)ym+3 ≥ −he(1 + e)ηm−1 + O(h2);

the same argument as above shows now that there exists θ > 0 such that for all
n ∈ {m + 3, . . . ,m + ⌊θ/h⌋},

yn = ym+2 + h(n−m− 2)ηm+2 +

n−1∑

j=m+3

(
n− j)h2λj .

If we let ρ′h = tm+1 − t0 in the first case and ρ′h = tm+2 − t0 in the second case, we
have now for ρ′h ≤ t− t0 ≤ ρ′h + θ − h

uh(t) = uh(t0 + ρ′h) + (t− ρ′h − t0)u̇h(t0 + ρ′h) +

∫ t

t0+ρ′

h

λh((s, t]) ds(6.24)

and

uh(t0 + ρ′h) = O(h), u̇h(t0 + ρ′h) = −eηm−1 + O(h).(6.25)
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Passing to the limit in (6.24), we can see that

u̇(t + 0) = −eu̇(t− 0).

If we assume now that e vanishes, relation (6.22) implies

ηm+1 = O(h).

We observe that Lemma 2.1 implies that for all n

|ηn| ≤
∣∣ηn−1

∣∣ + 2C3h,

which implies immediately that for n ≥ m + 1

|ηn| ≤
∣∣ηm+1

∣∣ + 2hC3(n−m− 1),

which proves by a straightforward passage to the limit that

u̇(t + 0) = 0.

This completes the proof of the lemma.

7. Initial conditions. In this section we prove that the solution that we have
constructed satisfies the initial conditions; we work under the hypotheses stated at
the beginning of section 4.

Lemma 7.1. The function u satisfies the initial conditions

u(t0) = u0, u̇(t0 + 0) = v0.

Proof. By uniform convergence of uh to u, it is clear that u(t0) is equal to u0.
There remains to show that the initial condition on the velocity is satisfied.

Assume first u0 > 0; then there exist h1 > 0 and τ1 > 0 such that for all h ∈ (0, h1]
and for all t− t0 ∈ [0, τ1]

uh(t) ≥ u0/2.

Then, for all tm − t0 ∈ (0, τ1], 2ym − (1 − e)ym−1 + h2Fm belongs to K for h small
enough; we indeed have

2ym − (1 − e)ym−1 + h2Fm ≥ (1 + e)ym − (1 − e)hA− h2C3

≥ (1 + e)u0/2 − (1 − e)hA− h2C3,

which is strictly positive for h small enough. Thus the constraints are not active for
t0 ≤ tm ≤ t0 + τ1 and the convergence is clear.

In the second case, u0 vanishes; we have taken admissible initial conditions, so
that

v0 ≥ 0.

Let us show that

u̇(t0 + 0) = v0,
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considering two cases: v0 > 0 and v0 = 0. When v0 vanishes, we have

y1 = y0 + hv0 + O(h2) = O(h2)

and

y2 = −ey0 +
(
2y1 − (1 − e)y0

)+
+ h2λ1

= 2
(
y1
)+

+ h2λ1 = O(h2).

Thus,

η0 = O(h), η1 = O(h),

and relation (2.3) implies

|ηm| ≤ O(h) + 2C3h(m− 1);

therefore, a passage to the limit immediately gives

u̇(t0 + 0) = 0.

If, on the other hand, v0 is strictly positive, then

2y1 − (1 − e)y0 = 2y1 = 2hv0 + O(h2),

which is strictly positive if h is small enough. Let {1, . . . ,m} be the maximal interval
such that

2yn − (1 − e)yn−1 > 0 if n ≤ m.

Then, for all n ∈ {1, . . . ,m},

ηn − ηn−1 = hλn,

which implies by discrete integration that

ηn ≥ η0 − hnC3,

as long as n belongs to {1, . . . ,m}. Moreover, if we choose any τ1 < v0/(2C3) and if
n is at most equal to min

(
m, ⌊τ1/h⌋

)
, we can see that

yn = y0 + h
(
η0 + · · · + ηn−1

)
≥ hnv0

2

for all small enough values of h.
In particular, for all n ≤ min

(
m, ⌊τ1/h⌋

)
,

2yn − (1 − e)yn−1 ≥ (1 + e)hnv0

2
− (1 − e)hA,

which proves that m is at least equal to ⌊τ1/h⌋. Therefore, ωh vanishes on the interval
(t0, t0 + τ1 − h); in the limit, ω vanishes on (t0, t0 + τ1) and therefore

u̇(t0 + 0) = v0,

which completes the proof of the lemma.
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8. A priori estimates. In this section we prove that solutions of the problem
(1.2), (1.3a), (1.3b), (1.4a), (1.4b), (1.5), (1.6), and (1.7) satisfy an a priori estimate
on an interval with nonempty interior.

Lemma 8.1. Let R be strictly larger than |v0|. Then there exists τ(R) > 0 such

that for all solution u of (1.2), (1.3a), (1.3b), (1.4a), (1.4b), (1.5), (1.6), and (1.7)
defined on [t0, t0 + τ ], the following estimates hold:

∀t ∈ [t0, t0 + min(τ, τ(R))], |u(t) − u0| ≤ R, |u̇(t)| ≤ R.(8.1)

Proof. The measure μ appearing in (1.3b) can be decomposed in the sum of an
atomic part μa and a diffuse part μd. There might be a continuous singular part in
the measure μ, and it is convenient to see μ as the sum of the derivative of a jump
function and of the derivative of a continuous function. At each point of the support
of μa we have

|u̇(t + 0)| ≤ |u̇(t− 0)|(8.2)

thanks to relation (1.5). On any interval (t1, t2) which does not intersect the support
of μa, we multiply relation (1.2) by u̇, and we find that

d

dt

1

2
|u̇|2 = u̇f(·, u, u̇).(8.3)

Define

z = |u̇|.

Relations (8.2) and (8.3) imply that in the sense of measures

zż ≤ u̇f(·, u, u̇).(8.4)

Our purpose now is to transform (8.4) into a differential inequality. We write

u̇f(t, u, u̇) = u̇
[
f(t, u, u̇) − f(t, u0, 0) + f(t, u0, 0)

]
.

Define

g(t) = |f(t, u0, 0)|,

fix R > |v0|, and let ω(R) be the Lipschitz constant of (u, v) → f(t, u, v) for t ∈ [0, T ]
and max(|u − u0|, |v|) ≤ R. By construction, ω is continuous and it is an increasing
function of R.

If t0 ≤ t ≤ t0 + τ and if max(|u(t) − u0|, |u̇(t)|) ≤ R on [t0, t0 + τ ], we have the
inequality

zż ≤ |u̇f(·, u, u̇)| ≤ z
(
g + ω(R)(|u− u0| + |u̇|)

)
.

But we can estimate u(t) − u0:

|u(t) − u0| ≤
∫ t

t0

|u̇(s)| ds ≤
∫ t

t0

z ds.

Therefore we have the estimate

|u̇f(·, u, u̇)| ≤ zg + zω(R)

(∫ t

t0

z ds + z

)
,
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and we conclude that z satisfies the differential inequality

ż ≤ g + ω(R)

[∫ t

t0

z ds + z

]
.

Let ẑ be the solution of the integro-differential equation

dẑ

dt
= g + ω(R)

[∫ t

t0

ẑ ds + ẑ

]
, ẑ(t0) = |v0|.

Such a ẑ exists and is unique, by very classical arguments, and it is also a majorant
of z. Let τ(R) be the largest number in (0, T − t0] such that

∀t ∈ [t0, t0 + τ(R)], ẑ(t) ≤ R,

∫ t

t0

ẑ(s) ds ≤ R.

Such a number exists since ẑ(t0) is strictly inferior to R. On the interval [t0,
t0 + min(τ, τ(R))] we have the desired estimate.

9. Global results. We summarize the results obtained so far in the following
proposition.

Proposition 9.1. Assume that there exist strictly positive numbers τ , A, and

h1 > 0 and a sequence of solutions of the numerical scheme defined by (1.10), (1.11),
(1.12), and (1.13), which satisfies the estimate (4.1). Then it is possible to extract

from the sequence uh defined by (5.1) a subsequence which converges to a solution of

(1.2), (1.3a), (1.3b), (1.4a), (1.4b), (1.5), (1.6), and (1.7). The convergence holds in

the following sense: uh converges uniformly to uh on [t0, t0 + τ ]; u̇h converges to u̇ in

L∞(t0, t0 + τ) weakly ∗ and almost everywhere on [t0, t0 + τ ]; and üh converges to ü
in the weak ∗ topology of measures. Moreover, for all τ̄ ∈ (0, τ ], we have the following

convergence:

lim sup
h↓0

sup
{
|ηm| : t0 ≤ tm ≤ t0 + τ

}

≤ ess sup
{
|u̇(t)| : t0 ≤ t ≤ t0 + τ

}
.

(9.1)

Proof. The only statement which deserves a proof is the last one; if it is not true,
there exists γ > 0, a sequence of time steps still denoted by h, and a sequence of
integers m(h) such that

∣∣∣ηm(h)
∣∣∣ ≥ ess sup

{
|u̇(t)| : t0 ≤ t ≤ t0 + τ

}
+ γ.(9.2)

Without loss of generality, we may assume that hm(h) tends to τ2 ∈ [0, τ ].
First, τ2 cannot be equal to 0: we have learnt in section 7 that there exists a

constant C4 and a time τ1 such that for all h ≤ h1 and all m ≤ τ1/h,
∣∣ηm − η0

∣∣ ≤ C4mh.

In particular, this estimate implies that
∣∣∣ηm(h)

∣∣∣ = |v0| + O(mh);

but |v0| is at most equal to ess sup
{
|u̇(t)| : t0 ≤ t ≤ t0 + τ

}
, which contradicts (9.2).

In the same fashion, we cannot have u(t0+τ2) > 0; if it were the case, we could find an
23



interval [τ1, τ3] containing τ2 and h1 > 0 such that for all h ∈ (0, h1], uh([τ1, τ3]) be-
longs to the interior of K. But, in this case, u̇h converges uniformly to u̇ in C0([τ1, τ3])
and this contradicts again (9.2).

Thus, we assume that τ2 is strictly positive and that u(t0 + τ2) vanishes.
We infer from (2.3) that

|ηm+1| ≤ max
(
|ηm|, |ηm−1|

)
+ 2C3h.

We now use (9.2). We can see that for all m ≤ m(h),

|ηm(h)| ≤ max
(
|ηm|, |ηm−1|

)
+ 2C3

(
m(h) −m

)
h,

so that

max
(
|ηm|, |ηm−1|

)
≥ |ηm(h)| − 2C3

(
m(h) −m

)
h.

If τ4 < τ2 is such that

τ2 − τ4 ≤ γ/4C3,

we can see that for all m ∈ {⌈τ4/h⌉, . . . ,m(h)}, the following estimate holds:

max
(
|ηm|, |ηm−1|

)
≥ ess sup

{
|u̇(t)| : t0 ≤ t ≤ t0 + τ

}
+ γ/2.(9.3)

But the function |u̇h| converges almost everywhere on [t0, t0 + τ ] to |u̇|, and so does
max(|u̇h(· − h)|, |u̇h|). Therefore, in the limit, relation (9.3) leads to

lim inf
h↓0

ess sup
{
|u̇h(t)| : t ∈ [t0 + τ4, t0 + τ2]

}

≥ ess sup
{
|u(t)| : t0 ≤ t ≤ t0 + τ

}
+ γ/2,

which is a contradiction.
A corollary can be inferred imediately from this proposition and Proposition 3.4.
Corollary 9.2. For all admissible initial conditions (t0, u0, p0), there exists

τ > 0 and a solution of (1.2), (1.3a), (1.3b), (1.4a), (1.4b), (1.5), (1.6), and (1.7)
defined on [t0, t0 + τ ].

We have proved above the existence of a nonempty interval on which the numerical
scheme converges to a solution of (1.2), (1.3a), (1.3b), (1.4a), (1.4b), (1.5), (1.6), and
(1.7). On the other hand, Lemma 8.1 gives a priori estimates on the solution of such
a problem.

We couple now the a priori estimates with the local convergence result to obtain
a global result.

Theorem 9.3. Let R be strictly larger than |v0|, and let τ(R) be given as

in Lemma 8.1. Then, for all small enough h, the solution ym of the numerical

scheme (1.10), (1.11), (1.12), (1.13) is defined on a discrete interval {0, . . . ,m(h)}
such that

lim inf
h→0

hm(h) ≥ τ(R);

moreover, the approximation uh converges to a solution u of the continuous time

equation, i.e., (1.2), (1.3a), (1.3b), (1.4a), (1.4b), (1.5), (1.6), and (1.7), which is

defined on [t0, t0 + τ(R)].
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Proof. Let A be given by

A = max
(
3R + 1, u0 + T (3R + 1)

)
.

Let {0, . . . ,m(h)} be the maximal discrete time interval for which the numerical
scheme (1.10), (1.11), (1.12), (1.13) has a solution satisfying the estimate

∀m ∈
{
0, . . . ,m(h) − 1}, |ym+1 − ym| ≤ Ah.

Let

τ1 = lim inf
h→0

hm(h).

We know from Proposition 3.4 that τ1 is at least equal to some number τ > 0. Assume
that τ1 is strictly inferior to τ(R). Proposition 9.1 implies in particular that for all
ε > 0

lim sup
h→0

{
sup|ηm| : t0 ≤ tm ≤ t0 + τ1 − ε

}

≤ ess sup
{
|u̇(t)| : t0 ≤ t ≤ t0 + τ1 − ε

}
≤ R,

thanks to the a priori estimates proved in Lemma 8.1. Since the above inequalities
hold for all ε > 0, we see that

lim sup
h→0

{
sup|ηm| : t0 ≤ tm ≤ t0 + τ1

}
≤ R.

Let

a = max
(
R + 1/2, u0 + T (R + 1/2)

)
;

Theorem 3.1 implies the existence of τ2 > 0 such that if ŷ0 and ŷ1 satisfy property
P (a, h), and t̂0 is any time in [0, T ), then there exists a numerical solution of (1.12),
(1.13) which satisfies

∀m ∈ {0, . . . , ⌊τ2/h⌋},
∣∣ŷm+1 − ŷm

∣∣ ≤ Ah.

We denote

l(h) = ⌊(τ1 − τ2/2)/h⌋,

and we initialize with the following choices:

t̂0 = t0 + hl(h), ŷ0 = yl(h), ŷ1 = yl(h)+1.

With these data, we know that ŷm exists for 0 ≤ mh ≤ τ2, so that the numerical
solution ym is extended up to ⌊(τ1 + τ2/2)/h⌋ − 1, and therefore,

lim inf
h→0

hm(h) ≥ τ1 + τ2/2,

which is a contradiction.
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10. Numerical experiments. In this section, we report about the numerical
implementation of our scheme and of the impact detection method; we compare these
results to results obtained for a penalized version of our model, using a freely available
scientific computation package.

In view of its practical importance and of its ease of programming, we have limited
ourselves to vibro-impact, i.e.,

f(t, u, u̇) = a cosωt− u− 2αu̇

with constraint set

K = [umin,+∞).

The following numerical values are kept constant throughout the numerical experi-
ments:

α = 0.5, a = 1, ω = 50, e = 0.5.

Observe that umin/a is the relevant parameter. We have observed in previous work
[17], [19], [18] that if we systematically choose

u(0) = umin, u̇(0) = 0.1,

the variation of the parameter umin triggers a variety of dynamical behaviors: periodic
solutions, period doubling, and chaotic attractors.

All the penalty computations presented here have been implemented as SCILAB

programs, a free high level scientific computation software developed and distributed
by INRIA (http://www-rocq.inria.fr/scilab). Some of the other computations have
been performed in FORTRAN.

10.1. Implementation particulars. The impact detection scheme goes as fol-
lows: starting from initial data tj , u(tj) = umin, u̇(tj), the solution of the linear
problem

ü + 2αu̇ + u = a cosωt

is found explicitly; a nonlinear solver finds the first zero tj+1 > tj of t → u(t)− u(tj)
and this instant is called tj+1. We let

u(tj+1 + 0) = −eu(tj+1 − 0),

and we restart the process.
The foregoing description is slightly too rough: if there is an accumulation of

impact instants, we have to define a threshold of velocity at tj , under which we set
the solution equal to umin, as long as cosωt remains negative. Observe that the
detection method is potentially accurate to machine precision, since the nonlinear
solvers for a scalar function are extremely precise, and the threshold velocity can be
taken very small.

The numerical scheme is implemented as follows:

yn+1 = −eyn−1 + max
(
(1 + e)umin, x

n
)
,

xn =
h2a

1 + αh
cos(ωtn) +

2 − h2

1 + αh
yn − (1 − e) − αh(1 + e)

1 + αh
yn−1.
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Fig. 10.1. The penalized solution on the left and its zoom on the right for time step h =
1.25 10−5 and ε = 10−6/256.

The reader will check that this form is equivalent to (1.12) and (1.13); one of the
advantages of this numerical scheme is that it is absolutely trivial to program.

For the penalty method, we applied the SCILAB function ode with the option
stiff to the ordinary differential system

u̇ = v,

v̇ = a cosωt− u− 2αv +
(u− umin)−

ε
+ 2

β sign− (u− umin)√
ε

,
(10.1)

where

r− = −min(r, 0), sign− (r) =

{
−1 if r < 0,

0 otherwise.

The parameter β is defined in terms of the restitution coefficient e by

β = − ln e√
π2 + (ln e)2

.

It has been proved in [21] that the solution of (10.1) converges to a solution of (1.2),
(1.3a), (1.3b), (1.4a), (1.4b), and (1.5). The choice of β is also justified in that
reference.

10.2. Periodic solution: umin = 0.8. The solution obtained by the scheme
and impact detection agree satisfactorily: they both converge as time increases to a
periodic solution, with an infinite number of impacts per period—of which we calculate
only a finite number, of course!

The penalized approximation is satisfactory for not too small values of the penalty
parameter, but for very small values of the parameter, it completely misses some of
the periods (see Figure 10.1). The choice of parameters corresponds to

√
ε/h = 5,

which is quite sufficient for a good numerical approximation of the rebound.
As a matter of comparison we show in Figure 10.2 that the scheme and the

detection method coincide very precisely.
We cannot offer much in the way of the explanations, since we did not go into

the details of the SCILAB code to understand its inner workings; though it is an open
package, with freely accessible code, we treated it as a black box.
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Fig. 10.2. The scheme for h = 0.0003125 superposed to the solution by detection.
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Fig. 10.3. On the left: detection (solid) and scheme (dotted); on the right: detection (solid)
and penalty (dotted).

10.3. Period doubling: umin = 0.57. We observe period doubling slightly
above this value, and the scheme continues to agree satisfactorily with the detection
method.

The penalty method gives also period doubling, but, depending on ε and the
time step, we may obtain either a good approximation of the period doubled solution
obtained by the previous two approaches or its translate by a half (doubled) period,
i.e., 2π/ω.

For instance, Figure 10.3 shows the results of the calculation with the detection
scheme, our ad hoc scheme with a time step h = 5 10−4, and the penalty method for
ε = 10−7 with a time step h = 2 10−5.

The results of the numerical scheme do not seem to depend on the time step,
once convergence is experimentally achieved; see Figure 10.4, left, where the solution
is significantly improved by decreasing the time step from 6.25 10−4 to 5. 10−4. In
contrast, on the right, decreasing the time step with the same penalty parameter
ε = 10−6 does not give a significant improvement: for the larger time parameter, the
beginning of the numerical solution is bad, and for the smaller one, we hit a phase
shifted solution.

The penalized solution is also very sensitive to the choice of the penalty parameter;
see Figure 10.5, with the same time step of 2 10−5 and penalty parameters of 10−7

and 10−8.
The results of the penalty method keep depending on the choice of the time step

and ε (see Figures 10.4, right, and 10.5), and we have not been able to establish the
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Fig. 10.4. Left: the scheme with h = 6.25 10−4 (solid line) and with h = 5 10−4 (dashed line);
right: the penalty method with h = 2 10−5, ε = 10−6 (solid line) and with h = 10−4, ε = 10−6

(dashed line).
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Fig. 10.5. The penalty method with h = 2 10−5, ε = 10−8 (solid line) and with h = 2 10−5, ε =
10−7 (dashed line).

pattern of dependency.

10.4. Strange attractor: umin = 0.54. We picture a stroboscopic view of the
attractors by displaying the sequences

(
u((2k + 1)π/ω), u̇((2k + 1)π/ω)

)

for 1989 values of k.
Figure 10.6 displays a superposition of the computation by the detection method

and the scheme, in FORTRAN double precision. Figure 10.7 displays a superposition
of the SCILAB computation by the penalty method and by the scheme; it is somewhat
surprising to see so few points of the scheme in this last computation, while the sizes
of vectors are identical: k varies from 1 to 1989, corresponding to a final time of
250 (and not to the bicentennial of the French Revolution). We believe that this
phenomenon may be due to a bad control in SCILAB of the format of the numbers.

Nevertheless, these figures show a very satisfactory agreement between the three
methods.

10.5. Numerical conclusion. We would like to stress the qualitative properties
of numerical schemes in a dynamical systems framework: this scientific program has
been started by several authors, and we refer to [31] for an overview of the subject.
However, the methods of analysis rely heavily on a smoothness assumption which is
not satisfied here, and therefore, they do not apply. Thus, at the present moment, we
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Fig. 10.6. A superposition of the stroboscopic pictures of the attractor obtained by the detection
method (dots) and the scheme (points): FORTRAN calculation with time step 510−4.
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Fig. 10.7. A superposition of the stroboscopic pictures of the attractor obtained by the penalty
method (dots) and the scheme (points): SCILAB calculation with time step π/2500.

are reduced to experimental numerics, but we should keep in mind a rational approach
to the numerical analysis of dynamical systems, focusing not only on the accuracy of
a given method for finite time intervals but also on the qualitative properties of the
method for long time ranges. The provisional conclusion for our one-dimensional case
is that the penalty method performs reasonably well, but it misses details, while the
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detection method enables us to benchmark our ad hoc scheme and to certify that it
does not miss details. Our scheme is quite easy to implement, and it contains no black
box; however, it is still missing some bells and whistles, such as time step control. In
any case, our scheme is of very low order: order one with respect to the position and
order zero with respect to the velocity. The reason is that the velocity is discontinuous
and the numerical impact times are usually distinct from their limit. Schemes with a
better order of convergence should approximate very precisely the impact times, but
one cannot but wonder whether it is really necessary to do so.
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[11] J.-J. Moreau, Les liaisons unilatérales et le principe de Gauss, C. R. Acad. Sci. Paris, 256

(1963), pp. 871–874.

[12] J.-J. Moreau, Rafle par un convexe variable. I, Secrétariat des Math. 118, U.É.R. de Math.,
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Paris Sér. II Méc. Phys. Chim. Sci. Univers Sci. Terre, 296 (1983), pp. 1473–1476.

[17] M. Panet, L. Paoli, and M. Schatzman, Vibrations with an obstacle and a finite number
of degrees of freedom, in Proceedings of the International Symposium on Identification of
Nonlinear Mechanical Systems from Dynamic Tests—Euromech 280, L. Jezequel and C.-H.
Lamarque, eds., Balkema, Rotterdam, 1992.

[18] M. Panet, L. Paoli, and M. Schatzman, Theoretical and numerical study for a model of
vibrations with unilateral constraints, in Contact Mechanics, M. Raous, M. Jean, and J.-J.
Moreau, eds., Plenum Press, New York, 1995, pp. 457–464.

[19] L. Paoli, Analyse numérique de vibrations avec contraintes unilatérales, Ph.D. thesis, Univer-
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