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1. INTRODUCTION 

Numerical models of short waves in shallow water, which are 

of particular interest for the calculation of the wave cli- 

mate in harbours and coastal areas, have been presented by 

Abbott et al. (1978) and by Hauguel (1980). These models 

are based on the solution of the Boussinesq or Serre type 

equations. A recent discussion of the range of application 

for the equations has been presented by McCowan (1982). 

Nevertheless, there is some uncertainty as to which terms 

in the differential equations are of importance, and how 

they are to be approximated. Therefore, no final judgement 

can presently be made on the accuracy and credibility of 

the solutions. Research on such models is still in progress 

and is of high theoretical and practical interest. 

Some of the aspects of current research relate to the hand- 

ling of nonlinear terms, the non-reflecting boundary condi- 

tions and the transfer capability of the models for spectral 

input. This paper will reflect on these points. 
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2. BASIC EQUATIONS 

For simplicity, we will restrict ourselves to the one-dimen- 

sional case, for which the Boussinesq type equations read 
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with D=mean water depth, g =surface elevation, h=D + 5 

p= flux per unit width, g= acceleration due to gravity. 

For the actual calculation with a finite difference method, 

the third order terms on the right hand side of (1) have to 

be rewritten such that each term contains only derivatives 

of either p or 5. Two third order terms remain, as well as 

some 15 other terms with products of first and second order 

derivatives: 
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We assume that the productterms are small in comparison to 

the third order terms (Abbott et al., 1978). Equations (1') 

and (2) can be collected in matrix form 
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3. NUMERICAL APPROXIMATION 

In order to implement the third order terms of (3), a two 

level scheme with central differences is used, the differen- 

ce star being given in Fig. 1.  The finite difference 

approximations of the 

partial derivatives are 

given by equations (4.a) 

- (4.c). At 
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The third order correction terms are detected by Taylor 

series expansion of the used grid points. 

At the boundary nodes 0 and N one sided difference stars 

have to be used and one coefficient of the correction terms 

is changed 
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Clearly all the correction terms cannot be approximated 

with the used 6 - point star, because only a derivative of 

the kind 3 /3x 3t is possible. So the correction terms 

needed to be transformed into this form. As pointed out in 

literature (Peregrine, 1967, Abbott et al., 1978) the linea- 

rised equations (5) can be used and the transformations are 

given in (5.a) - (5.c). 
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Substitution of the finite difference approximations into 

equation  (3) leads to 

At 
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The product AL   can be replaced by the unit matrix, be- 

cause L is the linearised form of A. The product AL is line- 
2 

arised to L , and all third order terms can be collected in 

matrix C. 

(7) w,t + Aw>x + (B+f-L* +M-i)w.xxt =R 

Now equation (7) can be rearranged with respect to the used 

grid points 
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(8) 
4AX

A
 

+ Ax21- •tt* AX2 w?+1  + 
4AX

A
 

+ AX2 L .n+1 

-^A + -J-C 
4AX

A
 

+ AX2 wn      + wi-1 + -C w» + -^A + -Lc 
4AXA  +  AX2 L Wj+1   +  At  R 

and the coefficients of the unknowns can be collected in the 

matrices D, E, F, while the right hand side of (8) is collec- 

ted in the vector G. 
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Equation (9) ist applied to all internal grid points 1...N-1 

Similar equations can be performed for the boundary nodes 0 

and N. 

Neglecting the nonlinearity and the implementation of 

boundary conditions, which are described in detail later, 

a linear equation system of the following form arises. 
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This system is solved very efficiently by a double sweep al- 

gorithm, taking into account the matrices F- and D . 
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4. NONLINEAR TERMS 

The differential equations are solved in the points *(i,n+1/2). 

The matrices A and B, therefore, have to be evaluated at the 

time level n+1/2. A linearization by using the time level n 

can only be accepted, when calculating sufficiently long 

and shallow waves. The unknown values of W      , arising 

in A and B, can be calculated explicitly form a Taylor se- 

ries expansion 

, n+1/2   n   At ,. aw . p a
3
w    D1 . At

2
 a'w 

do)  Wj    = wj + ^(A— + B^^ - R) +  8 ata + • • 

by substitution of the differential equations (3) for 3w/3t. 

Some remarks should be made to this point: 

- the third order terms of (3) are neglegible, because of 

less influence; 

- the second order term in (10) can also be neglected 

- the convective parts of the first order terms of (3) can- 

not be neglected, especially in the calculation of high 

5. BOUNDARY CONDITIONS 

It is of great interest for the practical application of nume- 

rical wave models, to introduce the waves at the boundary of 

the model using a time serie of the water elevation. 

Such a condition is introduced by substitution of 

(11)     SQ = f(t) 

for either the momentum or the continuity equation at the 

node 0. 

In this case, for example, the coefficient matrices will 

take the following form, where the coefficients of the re- 

maining original equation are denoted by x 
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In the same way, a condition of total reflection may be in- 

troduced at the node N, which means 
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If waves are reflected form within the domain, non reflec- 

ting boundary conditions have to be used, which allow waves 

to leave the domain undisturbed. In this case, we use the 

equation given by Hanguel (1980), which he adopted from long 

wave theory. 

(13) pn - c C = -2c f (t) 

with p  flux normal to the boundary, C water elevation, 

c wave celerity, f (t) water elevation of the incoming 

wave 

Equation (13) may be slightly changed for simulation of par- 

tial reflection, occuring at breakwaters, for example. Na- 

turally f (t) is equal to zero in this case, and with a re- 

flection coefficient y  we get: 

(14) pn - (1-Y) c ? = 0 

Both conditions (13) and (14) are as well easily introduced 

as (11) and (12) . 
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6. NUMERICAL RESULTS 

Regular as well as irregular waves may be input, using the 

time function f(t). For test calculations waves of permanent 

form, cnoidal waves, as well as their limiting case, solitary 

waves, are of particular interest. 

Figures 2 and 3 show calculations of solitary waves where 

the coefficients are based only on the old time level n. As 

shown in Fig.2 for waves with an amplitude of 1m, the errors 

due to the nonlinearity may be suppressed by using a very 

small time step (Fig. 2b). This was not possible for 2 m 

waves (Fig. 3). 

SOLITARY WAVE 
1M=L  Q-H VERS.3.1.0 
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SOLITARY WAVE 

1MPL  Q-H VERS.3.1 .0 

DX=   6.25  M DT =   0.63   SEC        CR-    0.9303 

DEPTH-   8.0 0   M        AMPL-   2.00   M 

COMPUTED 

THEORY 

450      500 

Fig. 3 a 

DX» S.25 M      DT. 0.10 SEC   CR- 0.158C 

DEPTH. 8.00 M   AMPL- 2.00 M 

T- 10 .00 SEC 

1. 20.0 0 SEC 

'I. 30 .00 SEC 

T- 4-Q .00 SEC 

I- SO.00 SEC 

Fig. 3. 
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The advantage of determining the coefficients from the time 

level n+ 1/2 (equation (10)) is shown in Fig. 4, for the 

case of 2 m waves and a time step of 0,625 sec. 

DX-   6.25  M DT=   0.S3   SEC        CR.   0.9303 

DEPTH.   8.00   M        AMPL-   2.00   M 

It-PL   0-H  VERSA. I .0 

    THEORY 

4-0 0 4-SO 

Fig.   4 

Fig. 5 shows calculations for a solitary wave of limited 

height. Again it should be noted, that the wave is fed into 

the system using a time function for the water elevation 

only. 

DX-   2.50   M DT=   0.12   SEC        CR.   0.660B 

DEPTH-    10.00   M     AMPL-   7.80   M 

T- 10.00 SEC 

T- 20.00 SEC 

7- 30.00 SEC 

T.   4.Q .00   SEC 

t-so soo 

x   r  ri   } 

Fig.   5 
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The behavior of the non-reflecting boundary conditions is 

shown in Fig. 6. In case (a) the reflection coefficient is 

zero and the wave leaves through the right boundary, loca- 

ted at x= 300 m. In case (b) where gamma is equal to one, 

the wave is totally reflected at the boundary and leaves 

the solution domain through the left boundary. In case (c) 

the reflection coefficient is 0,7 and the wave is partially 

reflected. 

DX. 5.00 M 

DEPTH- 8.00 M 

DT. 0.50 SCC 

AMPL- 2.00 M 

CR- 0.9903   ALPH/U 0.00 

GAMMA- 0.00    THEORY 

T. 7.50 SEC 

T- 20.00 SEC 

T. 30.00 SEC 

T- 37.50 SEC 

T. 4.0.00 SEC 

T- C2.50 SEC 

T- 50.00 SEC 

Fig. 6 a 

T- 8.00 SEC 
T. Z0.00 SEC 
T. 30.00 SEC 
T- 38.00 SEC 
T- t.2.00 SEC 

T- 52.00 SEC 
T- E2.00 SEC 
T. 72.00 SEC 

Fig. 6 b 

T- 8.00 SEC 

T- 20.00 SEC 
T- 30.00 SEC 
T- 38.00 SEC 
T. V2.00 SEC 
T- 52.00 SEC 

T- EZ.00 SEC 
T. 72.00 SEC 

j 

Fig. 6 c 



1068 COASTAL ENGINEERING-1984 

Figure 7 shows the transformation of a solitary wave into 

several waves, due to its passing over a sloped bottom onto 

a shelf. These results are in good agreement with those of 

Hauguel (1980). 

ox. 2.50 n OT. o .as sec 
OCPTH. a.oo M    jtm.« 1.00 M 

ALPHA'   0.00 
OAftlA-   0.08 

IHPL 0-H VCRS.3.1.9 
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100 200 300 400 500 600 
X(M) 
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20 

T. 10.00 sec 
T- 10.00 SCC 

1- 30.00 SCC 

T. 10.00 SCC 

T. 50.00 SCC 

T. 60.00 SCC 

T. 70.00 SCC 

T. 10.00 SCC 

1. 30.00 SCC 

Fig. 7 

Figures 8 a, b show the calculation of a cnoidal wave with a 

wave height of 2 m and a period of 12 sec. The water depth 

was held constant at 10 m. 

Case (a), with a zero reflection coefficient, is again a 

test for the radiation condition at the right boundary. 

In case (b), with total reflection, a standing wave results 

with a wave height of 4.30 m. The period of 12 sec and the 

wave length of 115 m remain unchanged. This example is a 

severe test of the left boundary condition. 
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OX-   5.00  M 

DEPTH-   10.00 M 

HL-   HV.34. M 

OT- ].U SCC 

AMPL- 4.00 M 

PERIOD-   12.00  SCC 

CR.   0.7663       ALPHA.   0.00 

GAMMA-   0.00 

URSCLL NR.-  26.1 

COMPUTED 

THEORY 

T.  108.00 SCC 

csro 

Fig.   8 a 

100 4.30 'OO 

DX.  5.00 M 

DEPTH.   10.00 M 

WL-   U4-.94 M 

DT.  0.4-0  SEC CR.   0.7663 ALPHA-   0.00 

AMPL- 2.00 M GAMMA-   1.00 

PERIOD, iz.oo scc URSCUU m.- 26.t. 120.B0 SEC 
122.80 SEC 
124..80 SCC 
126.SO SCC 
12fl.60 SCC 
130.ao scc 
132.80 SCC 

Fig. 8 b 

One of the attractive features of a Boussinesq type wave 

model is the ability to calculate nonlinear irregular waves. 

The transformation of a Jonswap spectrum into a time series 

is used as input to the numerical model (Fig. 9 a, c). The 

wave length at the peak frequency was approximately 50 m 

and the shortest components less than 30 m. The water depth 

was held constant at 10 m. Figure 9 b shows the water ele- 

vations at x = 200 m and Figure 9 d the spectra, calculated 

with Fast Fourier Transformation. 
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The dotted lines in Figs. 9 a, b are obtained analytically 

from a superposition of the single frequency components. 

One can observe that some interaction between frequencies 

occures in the numerical model. The results can be better 

understood, however, if one considers the frequency domain, 

which includes lower frequencies (Fig. 9c). Only a compa- 

rison with experimental data can verify, wheather these 

frequencies are physically meaningful. Experiments to ob- 

tain such data are planned for the near future. 

1.0 

0.0 

-l.Q 

50 

SEAPAGE FROM JONSWAP-SPECTRUM 

0x=4.00 H   DT=0.25 SEC   DEPTIMO.00 H 

IMPL Q-H VERS.4.1.0 

Fig.    9 a 100 150 

x=0.0 

,    ,    ,    ,  T(SEC) 

200 

x=200 M 

T(SEC) 

INPUT SPECTRUM 
X«0.0 M 

FREQUENCY (Hz) 

Fig. 9 c 

1'-''',  ,   , 
0.23      0.30 

CALCULATED SPECTRUM 
X=200 M 

FREQUENCY (Hz) 

Fig. 9d 

"V- i 
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The last test illustrates the essential differences be- 

tween the results of a Boussinesq type wave equation and 

a shallow water wave equation. Fig.10 shows, that a hydrau- 

lic surge, under certain conditions, is transformed into a 

moving undular hydraulic jump. 

These undulations are a result of the vertical accelera- 

tions included in Boussinesq type wave equations. Shallow 

water wave equations, which neglect vertical accelerations, 

would produce only a step in the water elevation, as indi- 

cated by the dotted line in Fig.10. 

The frequencies, as well as the amplitudes of the undula- 

tions, are in good agreement with experimental results given 

by Favre (1935). 

DX- 0.10 M     DT. 0.05 SEC 
DEPTH. 0.21 M  AMPL- 0.04- M 

CR.  0.7750 

GAMMA-   0.00 

. COMPUTED 

TWEGRY 

T . 25.00 SEC 

X    I   M   > 

Fig.    10 

CONCLUSIONS 

Numerical solutions of Boussinesq type wave equations pro- 

vide a powerful tool for the prediction of short waves in 

shallow water. They cover a wide range, including interme- 

diate depth conditions and wave heights just before break- 

ing. 
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Solitary  and  cnoidal waves,   as  well  as   irregular waves 

have  been  calculated.   The  necessary boundary conditions, 

such as  total  reflection,   partial  reflection and  non- 

reflection  have  been  successfully  incorporated  in  the  model. 

The  results  presented  in this  paper  are   limited to  the  one 

dimensional  case.   Fig.11   shows  a  result of  the  two dimen- 

sional  version,   currently  under  investigation. 
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