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ABSTRACT

An explicit numerical solution of the compressible Navier-Stokes

equations is applied to the thermodynamic analysis of supercritical

oxygen in the Apollo cryogenic storage system. The wave character is

retained in the conservation equations which are written in the basic

fluid variables for a two-dimensional Cartesian coordinate system.

Control-volume cells are employed to simplify imposition of boundary

conditions and to ensure strict observance of local and global conser-

vation principles. Non-linear real-gas thermodynamic properties respon-

sible for the pressure collapse phenomonon in supercritical fluids are

represented by tabular and empirical functions relating pressure and

temperature to density and internal energy. Wall boundary conditions

are adjusted at one cell face to emit a prescribed mass flowrate. Elec-

trical heater input is treated as localized internal heat generation,

a fraction of which may be radiated to the walls where it is added to

the prescribed boundary heat flux. The effect of "tank stretch" on

dP/dt is included as out-of-plane fluid expansion. Scaling principles

are invoked to achieve acceptable computer execution times for very low

Mach number convection problems. Detailed simulations of thermal

stratification and fluid mixing occurring under low acceleration in the

Apollo 12 supercritical oxygen tank are presented which model the

pressure decay associated with de-stratification induced by an ordinary

vehicle maneuver and heater cycle operation.
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INTRODUCTION

Origin of Problem

Gaseous oxygen required for life-support and electrical power

generation aboard the Apollo Command and Service Module is stored in

super-insulated double-wall spherical tanks which are a portion of the

storage and supply system. In these tanks, oxygen is maintained at

cryogenic temperatures and at pressures somewhat above the critical

pressure. (See Table 1 for system operating parameters.) Under these

conditions, the oxygen is in the super-critical state which results in

a high-density single-phase compressible fluid suitable for expulsion

under zero-gravity conditions.

Storage tank pressure is maintained relatively constant during

fluid withdrawal by increasing the fluid temperature using an internal

filament-type electrical heater. Prior to and including Apollo 13, the

energy supplied by this heater was dispersed throughout the fluid by
means of internal mixing fans. However, following the failure of the

oxygen system during the Apollo 13 mission, the mixing fans were re-

moved from subsequent oxygen tanks to minimize the possible combustion

hazard.

Numerical studies by Kamat and Abraham [2]have shown that a

substantial decrease in pressure can result from fluid mixing if the

heater input is not well distributed beforehand. The decrease in pres-

sure can be of sufficient magnitude to cause the fluid to return to a

two-phase condition. Since natural convection would have to be relied

upon to limit the temperature concentrations, a considerable effort was

initiated to refine the understanding of the thermodynamic and fluid

dynamic behavior of locally-heated supercritical oxygen stored in a

low acceleration environment.

Stratification and Pressure Collapse

Due to the low thermal conductivity of supercritical oxygen,

electricial heaters generate local heat concentrations. Under low

accelerations, these concentrations do not disperse rapidly. Without

a mechanical means of mixing the heated fluid with the surrounding

cold fluid, subsequent heater cycles result in increasingly severe

heat concentrations, or "thermal stratification."

Thermophysical properties of oxygen in the vicinity of the criti-

cal point are strongly nonlinear and therefore deviate from the pro-

perties of an ideal gas. One of the ramifications of the specific heat
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nonlinearity is that the bulk fluid temperature is not equal to the

equilibrium temperature which would exist if the fluid were mixed or

otherwise brought to thermal equilibrium.

The equation of state is also nonlinear in this region and is

sensitive to small changes in temperature. The result is that a

modest drop in the bulk temperature brought about by fluid mixing from

a stratified condition can cause a substantial decrease in pressure or

'pressure collapse". Kamat and Abraham [2] have shown that the pres-

sure decreases monotonically with mixing so that the final pressure is

always below any intermediate pressure. It is possible for the

collapse pressure to drop below the critical pressure in which case

the fluid becomes sub-critical, a condition in which liquid and gaseous

phases may co-exist. This condition must be avoided if a uniform single

phase fluid expulsion is to be maintained.

This paper describes an explicit numerical solution of the com-

pressible conservation equations that govern natural convection in

compressible fluids. Real fluid thermodynamic relations are employed

so that the pressure collapse phenomenon can be observed in super-criti-

cal fluids. A number of additional effects have been incorporated in

the solution for engineering application including "tank stretch,"

heater thermal mass, and heater radiation.

Comparisons are made between the results of the present solution

and Apollo 12 flight data occurring at 8 hours GET. Several other

verification test cases also are presented to demonstrate the program

.capability.

Table 1 Cryogenic System Operational Parameters - Oxygen

(Apollo 14 And Subsequent)

Stored Fluid Weight (100% indication) 330.1 lb

Usable Fluid Weight 323.5 lb

Tank Volume 4.75 ft3

Normal Operating Pressure 900 + 35 psi

Pressure Switch Deadband (Min) 30 psi

Total Heater Power 434.8 B/hr

(prior to Apollo 14) (528.6)

Bulk Fluid Temperature 160 to 530 °R

* Data taken from Reference 1
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APPROACH

Under low acceleration conditions, the potential pressure collapse

depends primarily upon the amount of heat concentrated in the portion

of fluid surrounding the heater. The heater cycle time, however, de-

pends upon the actual pressure rise and decay rates which, in turn,

are related to the processes taking place in the heater thermal boun-

dary layer and to other effects such as tank stretch. At 95% of tank

quantity, tank stretch decreases the magnitude of the pressure rate and

therefore the cycle time by almost a factor of two[1 ] .

A detailed knowledge of the temperature, density, and fluid

velocity distributions is necessary in order to describe the heating

and mixing processes and the resulting thermodynamic behavior of super-

critical oxygen in the Apollo cryogenic storage tanks. This informa-

tion can be obtained only by simultaneously solving the conservation

equations of mass, momentum, and energy. These equations are coupled

nonlinear partial differential equations which are not amenable to

analytical solutions for any but the most restrictive of problems.

However, finite-difference numerical techniques have been developed

which allow these equations to be solved in their entirety.

The general solution procedure is to integrate numerically the

conservation equations from a given set of initial conditions subject

to the various boundary conditions imposed by the physical system.

Although the fluid motion in the Apollo storage tanks is three-dimen-

sional, a two-dimensional solution of the conservation equations is

adequate to resolve the basic mechanisms which produce stratification

and mixing.

The basic model consists of a two-dimensional fluid slab of unit

depth to which the conservation equations are applied. The momentum

equations include the gravitational body force terms so that natural

convection may develop. The basic provisions necessary to model the

Apollo storage tank are: two acceleration components, a localized

internal heat source, external heat leak, and a fluid outlet port.

Non-linear thermodynamics require that real-gas properties be used.

To adequately describe the actual pressure rise rate for engineering

purposes, a number of refinements to the idealized model were required

which include accounting for the thermal mass of the heater, heater

radiation to the tank wall, and tank stretch.

Acceleration Components

In general, two acceleration components are required to describe

the body forces acting on the fluid. Stratification develops under a
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uniform low-level acceleration in a constant relative direction. Such

an acceleration arises from the centripetal acceleration ( x X x r)

associated with the three revolutions per hour roll rate used for pas-,

sive thermal control (PTC).

Maximum mixing resulting from a G-spike, (e.g., RCS thruster fir-

ing) occurs when the direction of the G-spike is normal to the density

gradient. A tangential acceleration (I x r) results from a change in
the roll rate during spin-up to or de-spin from the PTC mode. The

effects of coriolis acceleration, non-constant radius vector, and

planetary gravity gradient are insignificant compared to the accelera-

tion forces discussed above and are not considered in this analysis.

Internal Heater

The heater element is simulated as an internal energy source at

an appropriate location in the fluid volume. No velocity boundary

conditions are attempted at these "heater cells" due to the computa-

tional difficulty in resolving the flow boundary layer. The heater

does not represent the heater cylinder itself but rather the heated

fluid sheath surrounding the heater cylinder. The number of heater

cells is selected such that the combined volume is equal to the

"effective boundary layer volume". This effective volume has been

postulated in order to explain observed pressure rise rates, since the

grid spacing of the numerical solution is too coarse to resolve the

actual thermal boundary layer. The effective boundary layer volume

was derived on the basis of empirical flight data.

Heater Thermal Mass Effect

Heater-on operation is modeled as a prescribed heat generation

rate within the heater cells. When steady-state heating conditions are

approached, a power balance at the heater implies that the impressed

electrical power is converted directly to a heating rate of the fluid
sheath surrounding the heater. The heater thermal mass absorbs heater

power until heat conduction into the fluid reaches steady-state. For

the present purposes, this build-up rate is approximated as an equi-

valent linear ramp up to the steady-state rate which occurs during

the interval Tlag. (See Nomenclature.) Defining Clag

as a ramp function, the internal heat generation rate then is given

by: *

Q = Clag Qheater (1)
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After the heater is turned off, the heater cylinder rejects the

heat stored in its thermal mass. Assuming that the heater temperature

returns to the previous low temperature, the inverse linear ramp was

used for flux decay. The internal heat generation rate during the

heater-off ramp then becomes

Q= (1 - Clag) Qheater (2)

Heater Radiation

During the latter portions of the Apollo mission, the heater

temperature rises high enough that thermal radiation plays an import-

ant heat transfer role. At a specified time in the mission, the energy

radiated from the heater may be represented as a constant fraction of

the heater power not absorbed by the thermal mass:

Q rad rad (Clag Qheater (3)

and the rate of heat entering the fluid becomes:

Q = ( Crad) Clag Qheater (4)

Outlet Port

A fluid outlet port is modeled at the periphery of the fluid

volume by specifying a fluid velocity at a location on the boundary

such that the prescribed mass withdrawal rate occurs. This same

velocity is used to convect momentum and energy from the system.

It was necessary to relocate the outlet port from its actual

position to a position lying in the plane of the model. The flow

distortion introduced by this relocation appears to be negligible for

the flowrates presently being considered.

Heat Leak

Heat entering the fluid after passing through the super-insulation

surrounding the storage tank is called heat leak and for the Apollo oxy-

gen tank has a nominal value of about 25 BTU/hr. The quantity enter-

ing the fluid model is proportioned according to the volume ratio Col'

Heat leak is imposed as a uniformly distributed heat flux over the

exposed fluid boundary. The decision to specify the heat flux at the
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boundary as opposed to specifying the boundary temperature was based

upon the fact that the rate of heat leak into the fluid is more

accurately known than the wall temperature of the inner tank. Global

conservation principles also are more easily satisfied. Since oxygen

is primarily transparent in the region, the energy radiated from the

heater cylinder is not absorbed until it reaches the tank wall from

which it enters the fluid by conduction.

Tank Stretch/Line Compression

The elasticity of the thin-wall tank permits a volume expansion

with pressure (dV/dP) of about 3.6 x 10 ft3/psi at the normal

operating pressure. At high tank quantities (80%-100%) fluid pressure

is very sensitive to density, and variations in tank volume have a

significant effect on the pressure rise rate [1, p3-1 6 ] decreasing

the magnitude of dP/dt by over 40% at 95% quantity. Tank stretch is

modeled as an out-of-plane fluid expansion by permitting the unit z

dimension to vary with pressure according to dV/dP.

[3]
Seto derived an expression for the effect on dP/dt of fluid

compression in the external plumbing. Tests with the equilibrium

tank model described in this reference show that this effect is of the

same order as the effect of tank stretch. For the present purpose,

line compression is represented as an increase in the tank stretch

factor dV/dP.
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GOVERNING EQUATIONS

General Discussion

The equations governing the conservation of mass, momentum, and

energy in a fluid system may be formulated in either Eulerian or

Lagrangian coordinates. The Lagrangian formulation fixes the coordinate

system in the fluid mass and is convenient for problems involving a

free surface. However, accuracy is seriously impared with time as the

coordinates deform and move with fluid convection.[4] In the Eulerian

formulation, the coordinate system is fixed in the fluid volume so that

the fluid moves through the coordinate system. For this reason, the

Eulerian formulation is generally superior for complex convection

problems and is used for the present analysis.

Richtmyer and Morton [4] and others recommend the use of conser-

vation equations in the "conservative" or "divergence" form which

preserves the conservation principles when solved at a finite number of

discrete points. If the conservative form is not used, computational

sources and sinks can appear as fluid is convected from one cell to

the next, their origin being the non-constant coefficients appearing in

front of the derivatives. For example, the mass leaving a cell through

one of its faces does not necessarily appear in total in the adjacent

cell. Although these errors are small, they occur at each cell inter-

face at each time step and can accumulate with time. The propagation

of these errors eventually can lead to computational instability. Com-

putationally non-conservative equations are derived by performing flux

[51
balances on an infinitesimal control volume . These equations can be

converted to conservative form by adding the continuity equation to

each of the other three conservation equations. The divergence form is

developed directly from surface and volume integrals of flux vectors

[61
employing the Gauss Divergence Theorem

A very clean form of the general conservation equations was ob-

171
tained with minor modification from Goodrich . These equations are

in conservative form and are written in terms of the basic fluid vari-

ables for a two-dimensional Cartesian coordinate system. The non-

dimensional form was not used because of the difficulty in assigning

characteristic reference values for non-linear real fluid thermodynamic

properties.
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The general equations governing a compressible viscous fluid with body

forces and internal heat source are:

Mass Continuity

Dp a (pu) a (pv) 0 (5)
at + ax av

X-Component Momentum

a + a x(p u u + P + Txx) + ay(pUV + T) =pg (6g

Y-Component Momentum

a ) + a(pvu + T) + a(VV + P + T) = gy (7)at ax xy ay yy y

Energy

atE + (pE + P)u+q +u q x + VT ]TX xx xy

+ - (pE + P)v + q + qyVT + UTxy] = Qv (8)

where:

E = e + (u + v 2
) (9)

P = P(p,e) (10)

T = T(p,e) (11)

aT
qx = -k -

(12)

k aT
ay

= = -(2- av)

2 av au
yy = -(2- a) (13)

au av
xy ay ax
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The form of the energy equation in which temperature is the inte-

grated variable [5 Ch XIV] is not appropriate for supercritical fluid

analysis since this form assumes a constant specific heat (Cv).

Program Formulation

The above equations are more general than necessary for the present

analysis so that a number of non-critical terms were eliminated to

improve computational speed.

An advantage in using the internal energy form of the energy equation

is that the fluid temperature is almost entirely dependent upon the

specific internal energy and only slightly dependent upon density.

Therefore, over a relatively wide range of pressures, the relation T=

T(p,e) was replaced by the computationally simpler function involving

only a one-dimensional table interpolation:

T = T (e) (14)

Figure 1 shows this function (obtained from Weber's [8] data)

platted at 55, 60 and 65 atmospheres to indicate the error incurred by

neglecting pressure variation in the vicinity of the critical point.

The form of the equation of state shown by eqn. (10) was not

available, so that it was necessary to use the equivalent (though for

this application computationally less desirable) relation

P = P (p, T) (15)

[9]
which was available in Stewart's equation of state The relations

selected for pressure and temperature are acceptable in that an itera-

tive procedure is not required. However, if pressure is to be computed

from temperature, the above approximation to the temperature-energy

function may be more critical than if temperature is used only for heat

conduction.

The general governing equations assume only that Stokes hypothesis

regarding the viscosity coefficients holds, and that thermal radiation/

absorbtion effects are insignificant. For the present application, a

number of simplifications to these equations are made. First, the

velocities developed in the low acceleration environment are so small

that the kinetic energy terms in the energy equation may be neglected.

Second, the low velocities coupled with the low viscosity of oxygen

make the viscous terms in the energy equation negligible. For compu-

tational simplicity thermal conductivity and viscosity are assumed

constant. The remaining viscous terms are further simplified by

assuming that the fluid is incompressible as far as viscous dissipation

is concerned.
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Incorporating these simplifications in the general equations and
rearranging, the governing equations used in this analysis are written.

Continuity

p : a (pu) Ba(pv) (16)
at ax ay

X-Component Momentum

a(pu) . a(puu) a(puv) ap a2 u a2 U

at = - ax a ay ax + Pgx + Jx + a y) (17)

Y-Component Momentum

3(pv) a(pvu) a(pvv) _ aP + v 18B-~-'-:(m~v~)_~ieg ax (ayv v (18)

Energy

at ax a By +g + --v ) + v

a(pe) - a(pe+P) a(pe+P) a2 T a2 T
at ax ay ax+a(

Thermodynamic Relation

T = T(e) (20)

Equation of State

P = P(p,T)
(21)

Typical initial conditions are:

u(x,y,o) = 0

V(x,y,o) = 0 (22)

P(x,y,o) = P (x,y) (specified to balance body forces)

T(x,y,o) = To

p(x,y,o) = Po(P,To)

e(x,y,o) = eo(T
o

)
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Boundary conditions for a closed tank take the form:

u(w,y,t) = u(x,w,t) = 0

v(w,y,t) = v(x,w,t) = 0 (23)

a- (w,y,t) = Dy (x,w,t) = - q(t) (heat leak)

where w indicates a value of x or y at any wall.

The addition of boundary conditions defining a heater and an out-

let port is discussed more thoroughly in a following section. Basic-

ally, however, the heater is a region of fluid in which internal heat

generation is specified, and the outlet port is defined by a normal

velocity at a section of the tank wall such that a prescribed mass

withdrawal rate occurs. This exit velocity convects mass, momentum,

and energy from the system.
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FINITE DIFFERENCE FORMULATION

Discussion of Numerical Techniques

A wide variety of finite-difference schemes are available for

[4]
evaluating the governing equations, and Richtmyer and Morton pro-

vides a good source reference. The AIAA reprint series [10] contains

an extensive bibliography and a collection of the more interesting

recent papers relating primarily to high-speed flow. Numerical methods

discussed in Ralston and Wilfe[ll], and Cheng[
1
2 ] summarizes the funda-

mental principles relating to the numerical solution of the Navier-Stokes

equations.

The numerical integration of the governing equations is performed

at a finite number of discrete points located throughout the fluid

volume. The difference equations are obtained by replacing the partial

derivatives with suitable finite-difference approximations typically

derived by Taylor-series expansions in space and time. Alternately,

the difference equations can be derived directly from fundamental con-

[12]
servation principles applied to a fluid control volume . This

method avoids taking the limit as AV+O to form the differential equa-

tions followed by the reverse process of discretization. The two

methods are basically equivalent; however, the latter is quite useful

for visualizing and formulating conservative-form difference equations

particularly in curvilinear coordinate systems and parameter spaces.

The time variable is discretized and is given by tn = n At. The

fluid state is advanced from the (n) time plane to the (n+l) time plane

by integration. When the time derivative is approximated by a forward

difference, all information used to advance the state to (n+l) At is

available at the nth time plane. This is the explicit formulation and

is equivalent to a step integration procedure. The two-step Lax-Wen-

droff [4] scheme generates provisional values at (n + ½) At which are
used to advance to the (n+l) time plane. This procedure centers the

time difference which gives second order accuracy in time.

Various other numerical schemes are available which use weighted

averages of data obtained from several time planes (n-l), (n), and

(n+l) to obtain the updated value at (n+l). Schemes which require data

at the (n+l) time plane to advance the time to (n+l) At are implicit

and require the simultaneous solution of high-order systems of equations.

Efficient relaxation techniques make the implicit formulation quite

powerful for certain types of problems.



Most implicit schemes are unconditionally stable for any time step,

whereas, explicit schemes are stable only when rather stringent stability

conditions are observed. However, explicit schemes are straight forward

and require the least computation per time step. The advantage of one

scheme over the other depends upon the rate at which the fluid properties

are changing. Explicit schemes are preferred for time-dependent prob-

lems in high-speed flow and for problems in which wave propagation is

important. Implicit schemes are effective for problems in low speed

flow and certain steady-state problems. The use of scaling principles

to transform the low speed flow problem into one in which the transport

mechanisms occur very much faster than in real time appears to be effec-

tive in broadening the class of problems which may be solved efficiently

using the explicit formulation.

Problems can arise in achieving stability in the explicity-formulated

[4]1
conservation equations. Lax and Wendroff used second-order accurate

centered time differences. Rusanov[l3] added numerical damping terms to

the space differences. Goodrich[l4] has shown that the numerical damp-

ing terms of Rusanov can be represented by a weighted biasing of the

convective difference terms; a method which is similar to the upstream

differencing technique used below. Richtmyer[
4
] has suggested adding

pseudo-viscosity terms of the form a x- u I to stabilize the momentum

equations.

Technique Employed

The technique employed in this analysis is patterned after the method

of Courant, Fredricks, and Lewy (1929) for the wave equation 
4' p 292]

In this method, the momentum equations are advanced to the (n+l) time
n+l n+l

plane first, and the updated velocities u , v are then used to

advance the continuity and energy equations. By performing the integra-

tion in two steps, the continuity and energy equations appear to be semi-

implicit, although they are effectively explicit since the necessary

information is available from previous calculation. However, when this

method is used with centered space differences, physically unrealistic

temperature profiles result as fluid convection takes place. Richtmyer

[4, p 292] credits the cure for this problem to Lelevier. This solution

replaces the centered space differences used for the convective terms

by forward or backward space differences as the sign of the convecting

velocity is negative or positive. This procedure is quite common and goes

by a number of names including upwind or upstream differencing and

donor-cell differencing. These differences, however, are only of first

order accuracy.
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As applied to the grid system used in this analysis, upstream
differencing has the effect of defining the values of the convected
properties at the control-volume interface as being the values of the
upstream cell. Central differencing implies averages of the adjacent

cell values at the interface.

Grid System

Grid points are uniformly spaced in the x and y directions at

constant intervals Ax = Ay = L. It is convenient to visualize an
elemental control volume AV = Ax Ay Az = L , referred to as a cell,

surrounding each grid point. According to Cheng [12], "The fluxes must
be evaluated on the cell boundary while the conserved quantities are

determined only as averages over the cell."

The two- dimensional fluid volume is characterized by several

hundred of these cubic cells arranged in a plane. The circular con-

figuration of the oxygen tank crosssection is approximated in a step-

wise fashion by removing cells from corners of the rectangular cell

grid. For example see Figure 9.

Individual cells are identified by the indicies (i,j) in the x-
and y- direction as shown in Figure 2 so that the physical position

of the center of cell (i,j) is located at

(xi,y
j )

= (i-½)Ax, (j-½)Ay (24)

The integrated fluid properties p, pu, pv, and pe are identified

with each cell center and represent the average properties over the cell
volume. The value of a property at the center of cell (i,j) is design-
ated for example as

Pij = P(XiYj) (25)

For mathematical consistency, the velocities and the thermodynamic

properties of the fluid in the cell also are defined at the cell center
so that the following relationships can be used:

Uij = P uij/Pij



vij -Pvij/Pij (26)

Tij = T (Peij/Pij)

Pij = P (Pij,Tij)

It is convenient to define properties, certain gradients, and

convection velocities at the cell walls which lie midway between grid

points, and which are indicated by half-subscripts. Convection velo-

cities at these faces are evaluated by linear interpolation:

u. ½,i = ½(ui.1, + ui.) (27)

vi-1 '- 2 u ij

To achieve upstream differencing for the convection terms, the value of

a convected property is defined as the value existing in the upstream

cell as determined by the sign of the convecting velocity at the cell

interface. Convected properties evaluated in this manner are p,pu,pv,

and (pe + p). The result is that the upstream property is convected

across the interface at the average velocity. A typical flux at the

left face of cell (i,j) is illustrated as

Pi-½1 'j uii-..½Ij (28)

The difference in mass flux across cell (i,j) in the x-direction

becomes

x (P)ij Pi+A,jUi+2 ,i Pi-.,j ui- , J (29)

Since the quantities at cell walls are invarient during calculations

at the upstream and downstream cells, local conservation principles are

observed identically. Whatever quantity leaves one cell across a cell

wall must enter the adjacent cell.

An attempt was made to describe the transition of fluid properties

from one cell to the next as a parabola which was biased in the upstream

direction.[1 5] While this scheme was numerically stable, it did not

eliminate temperature decreases in cells surrounding the high temperature

heater cell.



The pressure gradient across the node is represented by a centered

space difference. To accomplish this in the present formulation, the

cell wall pressure is defined as an average:

Pi-½,j = (Pil,j+ Pi,j) (30)

The resulting pressure difference at cell (i,j),

6x Pij Pi+ ½, j (31)

is identical to the centered pressure difference taken across two cell

intervals.
2
aT 2u

The diffusion terms such as v and I are not influenced by

fluid convection and usual centered differences are used:

6 2 T T -2T +T
x ij i-lj - 2Tij + i+l,j (32)

While not employed here due to time limitation, it would be convenient

to express the first temperature differences at the cell walls and

obtain the second differences as

x ij x i+½,j x Ti-,j (33)

A temperature-dependent conductivity could be added by a simple

extension as:

6x( 6
x
T)ij = (k 6x T)i+ - (k 6x T)i-,j (34)

The difference forms of the governing equations employed are shown be-

low along with the necessary supporting equations and definitions.

Unless otherwise indicated, data is taken at the nth time plane.

uij = pun + A [-6xPUUij -6puvij -6xPij - gx + -(6 puij+6 pv. )]

n+l n At[ u V 2 2
Pvij = Pv + A [6x ij 6y i -6xPi -Pigx + x x ij +yPij)]pvij = ij Ax x ij yP jj 6 y 1j

n+l n At

0ij = ij +(x (xPui -6 PVij)
~ij = eij + Ax t6x ~ij -6yp ij + T +(35)

en+ = Peij + t [-6 Pxhuij -6 phv +I-62 T + 62 T)]
Peij i Ax x j y iJ Ax x y
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Typical quantities used in the above equations are illustrated

below in the.x-direction. Quantities relating to the y-direction are
analogous.

phij = peij + Pij

n+l n+l
6xPuij = Pi0-,jui3-,j - 0i_½,jUi_½, j

6xpuuij = pUi+½,jui+½,j - Pui-_,jui_-, j

(36)

(37)

xP vuij = PVi3,jui4 ,j - PVi_½,juiI, j

Sphu.ij =(pei. +P, ) in+l - (pe. 1 j+P ) un+l

2 ij il j - 2ij + PUi+l, j

(38)

62pvij = PVi_l, jx ij i-1,j - 2pvij + pvi+l
j

n+l

ui+-I ,j
(39)

(40)

If u > 0

Pi+,j 
=

Pij

If u , < 0
i+

Pi+½,j = Pi+l,j

pui+½l,j = PUi+l, j
Pui+½,j = puij

Pvi+, j = pvij Pvi*+, j = PVi+l,j

PeiA+,
j

= Peij pei+,j = pei+l, j

Pi+, j : Pi+l, jPi+,j 
=

Pij (work terms)
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Pi+iIJ = ½(Pij 
+

Pi+l,j
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Stability Conditions

Stability of finite-difference equations is discussed in detail

in Richtmyer and Morton.[
4
] The basic requirements for a stable

differencing scheme is that the difference equations converge to the

differential equations in the limit as Ax + 0, At -+ 0 which implies

that disturbances in the solution decay with time. Stability con-

straints limit the maximum time increment (At) permissible.

The difference analogs Df the Navier-Stokes equations are too

complex to be fully analyzed with current stability analysis methods.

The standard procedure is to evaluate the stability of the hyperbolic

and the parabolic terms separately and to use the more restrictive of

the two stability constraints.

In the explicit formulation of the Navier-Stokes equations, the

hyperbolic limit is usually the most restrictive and results in the

stability condition

(lu + c) At 1 (42)
Ax -

where u is the fluid velocity and c is the local adiabatic speed of

sound. If u << c, the condition may be interpreted as limiting the

propagation of a pressure wave to the distance of one space increment

during a time step At.

For a two-dimensional problem, the stability condition becomes

At 1
(lu l+ c) t (43)

In the present problem, under the conditions being considered,

the speed of sound is about 2500 ft/sec. With a grid spacing of

Ax=.l ft. the theoretical stability limit gives At=.283 x 10
-
4 sec.

Modification For Tank Stretch

Tank stretch affects the fluid state primarily by changing the

density of the fluid properties. The work done on the boundaries

changes the internal energy and also must be included.

During a tank expansion, the mass residing in an arbitrary volume

becomes distributed throughout a larger volume. In the present Eulerian

formulation, it is very difficult to adjust the x-y fluid boundaries to
achieve this volume increase. The change was taken up in the z direction
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by permitting the unit depth to increase. Since no fluid crosses a node

boundary during such an expansion, the mass (m) in the volume is un-

changed.

Multiplying through by the node volume, V=L 2L the continuity

equation on a mass basis becomes:

am - apV = _v(Up + (44)
at at ax ay

Upon discretizing the time variable and introducing the forward time

difference, the equation becomes:

mn+l-mn nl n+lvn = Vn (apu apv (45)
m -m pn V -p(_ V n , aP Up {an

At At ax ay

vn+l
Finally, dividing by At and rearranging,

n+l V n (t Pu + ] (46)

P Vn+l [p + At (ax ay(46)
V n+1 ax ay

The above volume ratio is represented as

Vn Vn
C = = (47)str Vn+l n +47

str VV1 Vn + AV

where dV

AV = d AP (48)

AP = change in average tank pressure during At.

The same argument can be used to develop the expressions for the

momentum and energy equations. However, the rate of work done on the

boundary during an expansion must be included in the energy equation.

dW pL2 dz dV

dt dt dt(49)
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Upon discretization

AW AV
At = P At (50)At At

Next, dividing by V as before, the work done per unit volume during

At becomes: At

AW PAV = p (51)

n+l n+l vn+l
V V V

or

AW V
n

nl= P (1- n+l) (52)
vn1 vn+l

and finally,

AW

n+l =P (l-Cstr) (53)

Since this is the work done on the boundary by the fluid, it must be
subtracted from the available internal energy in the cell.

The conservation equations modified for tank stretch are collected
together below in a form showing just the time differences:

pn+l = C [n + At (apu + apv)]
= str ax ay

n+l = C [pun + At (... )]
str

(54)

pv+l = C [pvn + At (... )]
str

pn+l [pe + At (...)] - P (1-Cst
r
)pe = Cstr

where the average tank pressure P is used for the work term.

For computational reasons, Cst
r

lags by one time step the above

calculations so that in reality it is defined as:

Vn -1 (55)
C 
str Vn
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NUMERICAL BOUNDARY CONDITIONS

Boundary Location

Consistent with the control-volume concept, solid boundaries were

located at the outward-looking faces of the boundary cells. This

location has distinct advantages in simplifying the definition and

imposition of boundary conditions.

The alternative to this formulation (i.e. placing boundary mesh

points at the wall surface) creates problems in evaluating the fluid

properties at the wall, and global conservation may not be observed

computationally. In thiq context, Roache and Mueller[
1 6

] cited the

difficulty of imposing adiabatic (and therefore any chosen heat flux)

conditions at the wall. They also observed that non-conservative

methods used to define the wall density led to slow but continuous mass

loss in a flow problem over a backstep.

The procedure of defining flux quantities and convection velocities

at cell faces further simplifies the imposition of boundary conditions,

and permits a unified application of the conservation equations to both

interior and boundary cells. This procedure also avoids the use of

imaginary grid points located outside the fluid boundary defined by

reflection principles. The present method is considerably simpler to

apply when flow obstructions or wall irregularities are considered.

Boundary Values

Convection velocities are set to zero at boundary surfaces thus

assuring strict global conservation for convective terms. Pressure at

the wall, which is necessary only for the momentum equations, is

obtained by linear extrapolation from the first two normal interior

grid points. Thermal boundary conditions take advantage of the fact

that the heat leak is more accurately known than the temperature of

the inner tank wall. When calculated at a boundary cell, temperature

difference equations are employed which make use of the relations

aT a qx leak

wall k (56)

aT = qy leak

aY wall k

where qx leak and qy leak are the boundary heat fluxes obtained by

distributing the known heat leak rate Qleak uniformly over the exposed

surface area. This formulation identically satisfied the global energy
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balance and avoids the difficulty in defining the thermal boundary condi-

tion discussed by Roach and Mueller.[16]

Separate equations are used at boundary cells to evaluate the

viscous dissipation terms in the momentum equations. For example,

instead of the centered second difference terms used at interior cells

which have the form:

(6 2 u)i
j

= (puil,j - 2puij+PUi+l j) (57)

forward and backward second differences are employed which make use

of the zero velocity conditions at the wall:
2

(6x Pu)ij = (-3 puij+ PUi+l,
j
) at left wall

(58)
2

(6x Pu)i
j

= (PUi-1,
j
- 3puij) at right wall

Boundary conditions are imposed at the exterior face of cell

(20, 10) such that the prescribed mass withdrawal rate occurs. Since

the sign of the convection velocity u 2 0 ½,10 must be positive, the

necessary quantities at the cell wall (P,p, pu, pv, and pe) are obtain-

ed by linear extrapolation of the form

Pi+ ½,j = (-Pil,j+3Pij ) (59)

The necessary convection velocity is obtained from the mass flow

relation f=pAu as

m

U2 0 ½,10 2 (60)

P20½,10L

With the cell wall quantities thus defined, the difference equations

are applied at the outlet port cell as at any other cell. The convec-

tion of mass,x- and y- momentum, and enthalpy from the system takes
place automatically.
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SCALING PRINCIPLES

Computational stability considerations place stringent require-

ments on the permissible size of the time step (At) required to inte-

grate the governing equations in the explicit formulation. The time

step is determined by the time interval required for a pressure wave

to propagate the distance of one cell. Time steps of this order are

required for problems in high-speed flow or for problems in which pres-

sure wave propagation contributes significantly to the solution. In the
present problem, wave propagation may be of importance if fluid oscil-

lations following a G-spike are of sufficient magnitude to destroy

thermal gradients generated by heater operation under a low-g environ-

ment.

However, fluid heating and stratification occur on a time scale

very much larger than that of wave motion, and the resulting computer

time required to simulate an appropriate duration of flight is exces-

sive. For this reason it was necessary to introduce scaling principles

to transform the original problem into an equivalent scaled problem in

which certain mechanisms of importance occur in the scaled time very

much faster than in real time. Since non-linear real gas properties

are used to describe the fluid temperature and pressure, the thermo-

dynamic state cannot be scaled easily. Therefore, the conditions

governing thermal stratification and fluid mixing are adjusted so that

these mechanisms operate in scaled time. The desired rates of heating,

fluid withdrawal, and fluid motion are increased such that the result-

ing pressures and temperatures remain unaltered at corresponding times

in the scaled and unscaled systems.

The specific heat (C ), pressure (P), temperature (T), and density

(p) are not altered. However, the transport constants, thermal con-

ductivity (k) and absolute viscosity (p),are adjusted as required.

Since the values of p and k for supercritical oxygen are small and do

not dominate the stratification and mixing mechanisms, these parameters

are considered constant. Therefore, the following principles have been

applied. The scale factor is designated by s, and the subscript s

represents a value appearing in the scaled system such that the real

time t is given by

t = sts (61)

The following constraints have been placed upon the scaled system:

p = P (density)

(62)
T = T (temperature)
s
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(specific heat)
p

L =L
S

(characteristic length)

Since it is desired that the flow processes occur more rapidly,

(x velocity)

(y velocity)

(heat flux)

= sm mass flow rate (mass flow rate)

The similarity parameters which apply are:The similarity parameters which apply are:

Reynolds Number

Prandtl Number

Nusselt Number

Grashof Number

R = pVL inertial forces
e P = viscous forces

p -_ heat generation

r k heat conduction

N =qL total heat transfer

u kAT conductive heat transfer

G = p2 gaAT L3 bouyant forces

r P = viscous forces

To maintain similarity of R ,. is scaled as:

Ps
= sp.

Similarity of both Pr and Nu require that:

k = sk.
S

Recognizing that the heat diffusion rate must be scaled, the require-

ment placed upon k can be obtained directly from the definition of the

thermal diffusivity.

k

s ~~~~Pp
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(66)

(Cp)
s

U = SU
s

v = sV
s

q, = sq

(63)

(64)

(65)



Since the compressibility (B) remains unchanged bythe initial con-

straints, to maintain Grashof number similarity, the acceleration

must be scaled as:

2
gs = s g. (67)

It should be emphasized that this scaling procedure speeds up the

physical processes occurring in the fluid without disturbing the

thermodynamic properties of the fluid itself. To accomplish this, it

is necessary to adjust only the transport properties p and k. In par-

ticular, the properties which determine the sonic velocity in the fluid

have been preserved. The basic purpose for scaling is to increase the

ratio of the fluid velocity to the sonic velocity (Mach number)

because the sonic velocity of the explicit numerical solution limits the

size of the permissible computation time steps.

Verification of this scaling procedure was performed by comparing

temperature and velocity profiles taken at corresponding times from com-

puter runs in which differing scale factors are used. In addition, good

results were obtained for the Apollo 12 pressure collapse and heater

cycle simulations in which scale factors of 2400 and 6000 were employed.

The increase in acceleration required to maintain the Grashof

number in the scaled solution affects the required hydrostatic pres-

sure distribution and, therefore, the distribution of the fluid mass.

However, for problems involving a low-G environment, a scale factor

which permits a reasonable simulation time gives rise to a negligibly

small fictitious pressure gradient.

It appears that the maximum valid scale factor is restricted

by the magnitude of the acceleration. Figure 3 shows the relative

increase in hydrostatic pressure from the center of the tank to the

tank wall necessary to counteract the scaled gravitational body forces.

At a given G-level, experimentation indicates that a scale factor that

produces a 1% pressure increase does not alter the convection or thermo-

dynamic behavior observed in the Apollo 12 simulation. It should be

cautioned that scaling amplifies fluid-dynamic start-up transients

resulting from imprecisely known initial conditions (eg. the velocity

profile around the outlet port), so that additional scaling restrictions

must be considered.

In addition, it should be noted that stability conditions relate

permissible time steps to thermal conductivity and to fluid viscosity.

However, these constraints are less restrictive of the scale factor

than the G-constraint for the present problem.
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NUMERICAL RESULTS

Natural Convection in a Rectangular Enclosure

A test case in natural convection was run and the results are

compared with an incompressible solution of a similar problem obtained

by Wilkes and Churchill.[17]

A two-dimensional rectangular enclosure containing an incompressi-

ble fluid is oriented in a vertical plane with respect to the gravity

vector. The left wall is held at a constant temperature T1, and the

right wall is held-at a higher temperature T
2
also assumed constant.

The other two walls are insulated. Initially, the fluid is at rest and

at a temperature equal to the average of the boundary wall temperatures.

The problem is to find the fluid velocity components and temperature

at points throughout the fluid as steady-state conditions are approached.

As heat conduction takes place, a negative horizontal density

gradient develops. The resulting unbalanced vertical buoyant forces

cause two vortices to form with a net counter-clockwise rotation of the

fluid. As the flow continues, the density gradient deforms and the two

vortices eventually merge into one due to the viscous dissipation of
momentum. As steady-state conditions are approached, the moment pro-

duced by the viscous forces acting at the walls balances the net buoy-

ant moment.

Wilkes and Churchill introduced the vorticity and stream functions

into the non-dimensionalized equations of motion. A linear density

dependence upon temperature was used to produce the essential density
gradients for natural convection. An implicit alternating direction

technique was used to advance the time-dependent solution toward steady

state. Figures presented 
1 7

show the stream function and isotherms
at several times including steady state. The dimensionless conditions

associated with these figures are: Pr = .733, Gr = 20,000, Nn = 2.874.

The formulation used in the present solution necessitated two

modifications to the problem. First, fluid compressibility was intro-

duced in order to compute pressure explicity in terms of temperature

and density. The ideal gas relation was assumed for this purpose.

Second, the constant-temperature boundary conditions were changed to

constant-heat-flux boundary conditions to be compatible with the model

capability developed for simulation of heat leak into the Apollo oxygen

tank.
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The compressibility modification had a negligible effect on the

solution since the vertical pressure differential was kept small with

respect to the bulk fluid pressure. The second modification resulted

in observable differences in the temperature profiles near the vertical

walls. However, the basic character of the temperature profile away

from these walls is preserved, and the resulting velocity profiles

are similar to those obtained by Wilkes and Churchill.

The fluid properties, heating rate, and acceleration were adjusted

so that the proper boundary temperatures were approached at steady-

state. The final dimensionless quantities achieved were: Pr = .611,

Gr = 21,000, and Nu = 3.88 which are in reasonable agreement with the

Wilkes and Churchill values and yielded similar results. These values

were computed using the average extrapolated wall temperatures.

A 10 x 10 cell grid was used to describe the fluid volume.

Dimensions of the square enclosure, the bulk density, and the compressi-

bility of the fluid were selected to yield a problem in which heating

and fluid motion took place rapidly in real time in order to minimize

computer time. Problem conditions are shown in Figure 4.

Figure 5a is a computer-generated velocity vector plot which shows

the two initial counter-clockwise rotating vortices after 1/2 second

of flow development. Figures 5b and 5c show the two vortices merging

into one and the development of circularized flow. Figure 5d shows

the essentially steady velocities at 4.95 seconds. Figure 6 shows the

same vector plot at 4.95 seconds on which the dimensionless stream

function obtained from the Wilkes and Churchill solution has been super-

imposed. Steady-state temperature profiles at ten horizontal cross-

sections and fluid isotherms are shown in Figures 7 and 8. The general

shape of the isotherms is in good agreement with the dimensionless

isotherms of Wilkes and Churchill.

It is important to note the difference in the thermal boundary

conditions. Isotherms cannot intersect the constant temperature walls

used by Wilkes and Churchill. However, to maintain a uniform heat flux

at the wall as assumed in the present solution, the wall temperature

must vary in the vertical direction and isotherms intersect these walls

as shown. Although the present results cannot be compared directly with

those of Wilkes and Churchill, the general character of-the solutions

appears to be in reasonable agreement.
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It is interesting to note that starting from zero, the fluid

rotation rate passes through a maximum before approaching the steady-

state rate. This phenomenon is the result of the inertial lag in

responding to a change in heat flux at the walls (as occurs at t = 0).

During this lag, high temperature and low temperature fluid masses

accumulate near the respective walls, resulting in an over-acceleration

of the fluid. The bulk rotation rate then builds up to a maximum and

carries the heated and cooled fluid elements across the vertical center-

line. At this point, a net counter-acting moment develops which re-

tards the bulk rotation, and the steady-state rate is approached

asymptotically.

Apollo 12 Pressure Collapse Simulation

The program was operated for flight conditions to demonstrate

capability to simulate the stratification and mixing of supercritical

oxygen which takes place under a flight-type acceleration environment.

These conditions are shown in Figure 9 and are approximately those of
the Apollo 12 mission at 7:30 GET. The density corresponds to the 95%

tank quantity.

The heat added to the fluid cross section was input at cell

(12,10) as shown in Figure 9. This single heater cell represents

a heater boundary layer volume of 1.73 cubic inches. The rate of oxygen

withdrawal was 1.4 lbm/hr. The outlet port was the exterior face of

cell (20,10). The pressure limits for the heater switch were set at

860 and 900 psi so that the heater cycled automatically keeping the bulk

pressure within a 40 psi dead band. A constant acceleration of

2x10 8 G's was applied in the -Y direction. At a simulation time of

70.5 minutes, an acceleration step to 10 G's was applied in the -X

direction and the heater was turned off. The scale factor of 2400

was used in this simulation to achieve a computer time to simulation

time ratio of 5/1 using a program time step of .5 x 10- 4 seconds.

Figure 10 shows the stratified tank pressure (upper curve) and

the equilibrium pressure (lower curve) as functions of time. The simu-

lation started from equilibrium conditions. The equilibrium pressure

rise rate was 3.7 psi/minute and the decay rate was -3.8 psi/minute.

After 70 minutes of stratification, the minimum potential pressure

collapse developed was 80 psi. The general divergence of the two curves

shows that a quasi-steady state pressure collapse potential had not been

reached after 70 minutes of stratification. The time required for the

first complete heater cycle is about 12 minutes. The cycle time for



succeeding cycles decreased to about 3 minutes per cycle which is about

one-third the time required for a flight heater cycle under similar condi-

tions. The inclusion of tank stretch would about double this cycle

time. The maximum temperature reached in this simulation was 2870 R at
the heater node. Negligible fluid convection occurred in the vertical

direction.

Figure 11 shows the tank pressure decaying toward the equilibrium

pressure in response to the G-step to 10-4 G's at 70.5 minutes simula-

tion time. Fluid oscillations in the tank caused by the G-step and

accentuated by scaling have been smoothed. The pressure decay observed

in the Apollo 12 data at 8:36 GET also is shown for comparison.

Apollo 12 Heater Cycle Simulation

Following the relatively successful initial simulation which

demonstrated thermal stratification with ensuing pressure collapse, it

was decided to incorporate refinements to the idealized model in an

effort to more accurately predict the heater cycle times. These refine-

ments included the effects of tank stretch, line compression, heater

thermal mass, and heater radiation to the tank wall.

Under similar environment and initial conditions but with somewhat

more rigorously defined heating and mass flowrates, a second Apollo 12

simulation was undertaken which incorporated the above refinements.

The time step of .25 x 10- 4 seconds as indicated by stability conditions

was observed even though a time step twice as large did not appear to

alter the numerical stability. The problem was scaled by a factor of

6000 so that 60 minutes of simulation time was covered by 0.6 seconds

of solution time. The associated computer time was three hours result-

ing a computer time/real time ratio of 3/1 on the 1108 system at the

NASA-MSC computing center. Considering the change in scale factor and

the smaller time steps taken, revisions made to the program allow it to

run two times faster than it did for the first Apollo 12 simulation.

Figure 12 shows the resulting computed tank pressure history.

Pressure switch limits were set at 860 and 900 psi. The run was per-

formed in a number of segments using the program re-start capability.

At the beginning of the second and third segments at 13.5 and 23 minutes

the heater switch was inadvertently reset to the "on" position which

accounts for the fact that the pressure does not decay to the lower

pressure limit at the end of the first two cycles.
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The fact that the tank stretch and other refinements do indeed

lengthen the heater cycle times may be seen by comparing Figures 10

and 12. The heater cycle time appears to be around 12 minutes which

agrees well with the 13 minute cycle time predicted from Figure 3.4.10

of the Apollo Handbook.[l]

The effect of heater thermal mass is observed to cause pressure

excusions beyond the pressure limits and a rounding of the pressure

peaks. The developed shape of the pressure decay from the peak is due

to the decay of the local high temperature at the heater node followed

by the more gradual decay resulting from the general fluid expansion

caused by mass withdrawal. The highest temperature reached by the

fluid in the heater node was 2930 R.

In this problem, fluid convection was virtually non-existent. After

one hour of simulation, the only apparent migration of the fluid was

toward the outlet port which is located perpendicular to the acceleration

vector. Therefore, under 2x10- 8 G's these results indicate that conduction

is the primary heat transfer mechanism.

Acceleration Effects

The above Apollo 12 simulation was repeated but under an acceleration

of -2x10- 5 G's - two orders of magnitude higher - to illustrate the

effects of acceleration on convection velocities. Employing a scale

factor of 2400, the simulation was run to 11.5 minutes by which time a

maximum convection velocity of .35x10- 3 ft/sec had developed at the heater

node. Figure 13 shows a velocity vector plot of the convection pattern

developed by time. Density and temperature data indicate that the

heated fluid migrated a distance of about 1-1/2 cells or 1.8 inches

which corresponds to an average velocity of about .2x10- 3 ft/sec.

Scaling Verification

It was tacitly assumed in the discussion of scaling procedures that

all the transport process would in fact take place in scaled time. Also

assumed was that the pressure and temperature distributions would not be

altered by the scaling procedure.

The Apollo 12 convection problem just described was repeated using a

scale factor of 4800 instead of 2400. Comparisons of the data from the

two cases indicate that the temperature profiles and pressure rise

rates are preserved. At a scaled time of 5 minutes for both cases the

tank pressures agreed within 1 psi and the heater cell temperatures agree

within 10R after rising 530 R during heater operation. Scaled fluid
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velocities in the second case (scale factor = 4800) are just double the

scale velocities of the first case (scale factor = 2400) as required.

Upon descaling, the actual fluid velocities obtained from the two scaled

systems are the same, and the scaling procedure is verified.

Evidence supporting the scaling procedure also can be inferred

from the quality of the Apollo 12 simulations which were scaled between

3 and 4 orders of magnitude.

High Heat Leak and Boundary Roughness

The circular cross sectional geometry of the Apollo oxygen tank

was approximated in a step-wise fashion. A test case was performed to

investigate the affect of such a boundary on the flow pattern. In this

case, high heat leak of 2000 BTU/hr was imposed at the fluid boundary.

This rate corresponds to the limiting heat leak that would occur if the

annulus vacuum were lost.[3] An acceleration level of 10-5 G's was

imposed in the -y direction, and the scale factor of 4800 was used.

The velocity vector plots in Figure 14 show the natural convection

after 10, 20, and 32.5 minutes of simulation. The maximum velocity

indicated is 10-5 ft/sec. Figure 14c shows that local flow distortions

are introduced at the protruding corners. This surface roughness

probably makes this approach unsuitable for investigations involving

tank rotation.

SUMMARY

The conservation equations governing the motion of a compressible

viscous fluid were solved in two dimensions using an explicit finite-

difference technique. The difference equations were formulated in terms

of control-volume grid cells which simplified the imposition of heat

flux boundary conditions and assured computational observance of local

and global conservation principles. This system also permitted the

unified application of the difference equations to both interior and

boundary cells without resorting to exterior cells and reflection

principles. Real-fluid properties describing the thermodynamic behavior

of supercritical oxygen were used so that the pressure collapse phenomenon

could be observed in the Apollo oxygen Cryogenic Storage System operating

under low - G conditions.

The numerical procedure was applied to the simulation of thermal

stratification and fluid mixing in the Apollo oxygen storage tank.
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The convex tank geometry was approximated by removing the corner cells

of a rectangular cell grid. Wall boundary conditions were adjusted

at one cell face to emit a prescribed mass flowrate. Electrical heater

input was treated as local internal heat generation. The effects of

heater thermal mass and radiation to the tank were included. The effect

of tank stretch and line compression on dP/dt was modeled as an out-of-

plane fluid expansion. Scaling principles were invoked to achieve

acceptable computer execution times for reasonable flight durations.

A verification test case was performed involving heat transfer and

natural convection in a vertically-oriented rectangular volume. The

convection pattern and isotherms are in good agreement with another

numerical solution.

A simulation of stratification and mixing occurring around 7:30 GET

in the Apollo 12 mission was presented. Natural convection under 2 x 10-8

G's acceleration was shown to be negligible. The pressure collapse of

about 75 psi following a simulated vehicle maneuver is compared with

flight data with good results.

Modifications in the heater characterization along with tank stretch

effects were shown to significantly improve the simulation of heater

cycle operation. A number of additional cases were presented to show

the effects of higher acceleration on convection velocities to verify

the scaling techniques employed and to evaluate the effects of boundary

roughness on convection patterns.

The results obtained for these initial test cases indicate the

general capability of this analysis. Unfortunately, time limitations

prevented the refinement of certain empirical considerations which would

further improve the accuracy of the Apollo simulations.

Future Developments

It has been observed that the finite-difference solution of partial

differential equations is limited more by currently available theoreti-

cal understanding than by computer capability.L4] However present

computers, which perform all operations serially, are not particularly

well adapted to computing finite-difference solutions which proceed in

a series-parallel fashion. It seems reasonable that the multi-process-

ing capability of present machines will be extended to parallel process-

ing within the same computer program. Such is the thrust of the new

multi-computing system at the University of Illinois.[1 8] This system,

called ILLIAC IV, consists of 64 independent processors which operate in

unison. By using parallel processing, computer run time can be reduced

by a factor of 64. Thus it appears certain that next generation com-

puters of this type will significantly increase the capability of finite

difference solutions in multiple space dimensions.
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Symbol

Clag

Crad

C
str

C
vol

e

E

g

k

P

q

Q

Qleak

Qv

t,At

T

u

v

V

p

pe

pu

pv

Ax, Ay, L

T

Subscript

i

j

x

y

Superscript

n

NOMENCLATURE

Description

heater on/off ramps (O < C < 1)

heater radiation factor (O < C rad 1)

tank stretch factor ( = Vn- /Vn)

model/actual volume ratio (Apollo 12 = .075)

internal energy per unit mass

total energy per unit mass ( = e +(u 2 + 2 ) )

gravitational acceleration

thermal conductivity

pressure

heat flux

internal heat generation rate

boundary heat leak rate

internal heat generation rate per unit volume

time, time increment

temperature

velocity, x-component

velocity, y-component

tank volume

absolute viscosity

density

internal energy per unit volume

momentum, x-component

momentum, y-component

node dimensions

shear stress

x-direction index

y-direction index

x-component

y-component

time step index
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Figure 1 Oxygen Temperature - Energy Relation
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Figure 2 Grid System and Indexing Procedure
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* - location of cell properties

X - location of fluxes
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Figure 4 Natural Convection Conditions
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Figure 5 Natural Convection
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Figure 6 Comparison With Wilkes and Churchill
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Figure 7 Steady-State Temperature Profiles
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Figure 9 Apollo 12 Simulation Conditions
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Figure 11 Apollo 12 Pressure Collapse
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Figure 13 Apollo Convection at 2x10 G's
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Surface Effects Under High Boundary Heat
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