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A numerical study for linear isotropic Cosserat elasticity
with conformally invariant curvature
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3 Institut für Baustatik, Universität Karlsruhe (TH), Kaiserstr. 12, 76131 Karlsruhe, Germany
4 Lehrstuhl für Nichtlineare Analysis und Modellierung, Fachbereich Mathematik, Universität Duisburg-Essen,
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We investigate the numerical response of the linear Cosserat model with conformal curvature. In our simulations we
compare the standard Cosserat model with a novel conformal Cosserat model in torsion and highlight its intriguing features.
In all cases, free boundary conditions for the microrotations A are applied. The size-effect response is markedly changed
for the novel curvature expression. Our results suggest that the Cosserat couple modulus μc > 0 remains a true material
parameter independent of the sample size which is impossible for stronger, pointwise positive curvature expressions.

c© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

1 Introduction

The Cosserat continuum falls into the group of generalized continua which have the capacity to take into account size-
effects in a natural manner. The Cosserat model is one of the most prominent extended continuum models. It has emerged
from the work of the brothers François and Eugène Cosserat [1,2] at the turn of the last century. Their originally nonlinear,
geometrically exact development has been largely forgotten for decades only to be rediscovered in a restricted linearized
setting in the early sixties by Günther [3], Mindlin [4–9], and Eringen [10–13]. Since then, the original Cosserat concept
has been generalized in various directions, notably by Eringen and his coworkers who extended the Cosserat concept to
include also microinertia effects and to rename it subsequently into micropolar theory [14–16]1.

The Cosserat theory has been also applied to the human bone [19,20] in the biomechanics branch, foams [21–25] (Lakes’
benchmark papers) for the man-made materials or so-called synthetic materials, cellular solids [26], and composites [27] .
Some particular applications can be addressed to the metallic foams for energy saving purposes and Voronoi cells [28–30].
Forest et al. made benchmark contributions in the incremental analysis, finite deformation, strain gradient theory, and
homogenization aspects for the polycrystalline materials [31–39]. There are also some studies pertaining to the elasto-
plasticity of the Cosserat-based media, e.g. Ristinmaa et al. for the couple stress plasticity [40] and Neff based on an
original Cosserat concept (geometrically exact Cosserat non linear). The infinitesimal and finite elastic-plastic Cosserat
theory have been fully investigated [41,42]. It is helpful to mention that the most generalized case, i.e., micromorphic case
is also treated and some analytical and 2D numerical analyses are available in the open literature [43–45]. The Cosserat
model includes in a natural way size effects, i.e., small samples behave comparatively stiffer than large samples. In classical,
size-independent models this would lead to an apparent increase of elastic moduli for smaller samples of the same material.
Compared to classical linear elasticity the model features three additional, independent degrees of freedom, related to the
independent rotation of each particle. In the simplest linear isotropic case, one coupling constant, here called Cosserat
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some flaws and it should be carefully taken into account by the relevant Cosserat moduli or Cosserat material constants [18].
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couple modulus μc ≥ 0 and three internal length scale parameters α, β, γ need to be determined in addition to the two
classical Lamé-constants μ, λ 2 . See [43, 46–48] for an in-depth discussion of mathematical and modelling aspects of the
Cosserat model.3

In this work we will discuss the finite-element simulation of the linear Cosserat model with a hitherto not considered
set of parameter values, called the conformal Cosserat case. The finite element analysis of Cosserat materials has already
been studied in the literature. Early works on the finite element analysis based on the Cosserat theory are those done by
Baluch [49] and Nakamura [50] in which a simple three-node triangle element with three degrees of freedom at each node
is used for a two-dimensional problem. A higher-order triangle element again for a two-dimensional analysis based on
Cosserat elasticity has been recently proposed by Providas [51], and Trovalusci et al. [52] treats the 2D-nonlinear case. The
Cosserat theory has also been employed by Nadler and Rubin to formulate a three-dimensional finite element for dynamic
analysis in nonlinear elasticity [53]. In addition, higher-order elements for elastic analysis of shells have been proposed by
Jog [54]. Though several numerical studies have been conducted for Cosserat materials only few of them treat the full three-
dimensional case. The two-dimensional Cosserat setting automatically removes two material parameters and the altogether
required Cosserat material moduli reduce to only four (the two-dimensional problem is much simpler because of a fixed
axis of rotations). An example calculation of the linear isotropic Cosserat model for two-dimensional finite elements has
been performed by Li et al. [55]. There are also some studies in the literature for foams [40, 56–61]. Huang et al. [62],
Zastrau et al. [63, 64] have done very early attempts based on the Cosserat curvature parameter choice α = β = 0, γ > 0
and β = γ > 0, α ≥ 0, respectively (see Eq. (1.3) for its meaning). Zastrau thus arrives at the symmetry of the couple
stress tensor m, a choice which has also been advocated as early as [65, 66]. Recently, the symmetry of the couple stress
tensor has been motivated in [67] for the constraint couple stress model (the indeterminate couple stress model). In some
cases, the algorithms are already extended to micropolar elasto-plastic problems, see, e.g. [42, 68–70]. First steps in the
much more involved geometrically exact direction are taken in [71, 72].

While we have a geometrically exact 3D-code successfully running [71] we present here only the “linear” version for
mainly two reasons: first, other groups do not necessarily have access to a 3D-geometrically exact code, making comparison
impossible, and second, we investigate a novel situation, called the conformal curvature case, where already the linear
response shows interesting features. Moreover, we solely concentrate on fully three-dimensional finite element models.
Particularly, we focus on the torsion test with a cylindrical bar whose implementation helps us to take into account more
pronounced size effects comparing to the simple tension, compression or three points bending test. Based on the companion
paper [73] on the underlying theory of the conformal Cosserat model, we infer that the weakest mathematically possible
curvature energy assumption, still leading to a well-posed model, is a good choice. This is the conformal curvature case.
This not only reduces the needed Cosserat material moduli but also removes material moduli dependency problems which
usually takes place for the stronger curvature energy assumption (pointwise positive “classical” case). By taking advantage
of these theoretical findings we are motivated to put them into practice via our numerical experiments. As will be presented
in the next sections, these experiments confirm the analytical aspects [73] and provide a deep landscape on the Cosserat
modeling and simulation issues.

Our paper is now organized as follows. First, we recall the variational setting of the Cosserat model, we present the
weak form of the equations and give a classification for the Cosserat model introducing our novel conformal case. Then
we establish universal analytical solutions for linear elasticity and conformal Cosserat elasticity which are further on used
for the validation of our implementation. We present some details of our implementation and further validate it against
the classical analytical torsion solution and other limit cases: linear elasticity and constant infinitesimal mean rotation.
Having thus demonstrated the suitability of our method we turn to the detailed investigation of size-effects in torsion for
the different Cosserat curvature settings. The notation is the same as in the companion paper [73].

Let us begin by establishing the linear Cosserat model along with some of our notation. This section does not contain
new results.

2 To avoid any conflict among the available Cosserat moduli, we use the Neff’s formulations [46] which contain some corrections provided by
Cowin [17] and by Eringen himself [14–16]. Then, we can write the following relations:

�b
2 :=

γ

2(2μ∗ + κ)
and �t

2 :=
β + γ

2μ∗ + κ
, (1.1a)

N2 :=
μc

μ + μc
=

κ

2(μ∗ + κ)
, where 0 ≤ N2 ≤ 1 , (1.1b)

Ψ :=
β + γ

α + β + γ
, where 0 ≤ Ψ ≤ 3

2
, (1.1c)

where, κ and μ∗ are the Cosserat couple modulus and Pseudo-Lamé’s constant in accordance with the Eringen’s notation.
3 See also http://www.mathematik.tu-darmstadt.de/fbereiche/analysis/pde/staff/neff/patrizio/Cosserat.html
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1.1 The linear elastic Cosserat model in variational form

For the displacement u : Ω ⊂ R
3 �→ R

3 and the skew-symmetric infinitesimal microrotation A : Ω ⊂ R
3 �→ so(3) we

consider the two-field minimization problem

I(u, A) =
∫

Ω

Wmp(ε) + Wcurv(∇ axlA) − 〈f, u〉 − 〈M, φ〉dV

−
∫

∂Ω

〈fs, u〉 + 〈Ms, u〉dS �→ min . w.r.t. (u, A) , (1.2)

under the following constitutive requirements and boundary conditions

ε = ∇u − A, first Cosserat stretch tensor

u|Γ = ud , essential displacement boundary conditions

Wmp(ε) = μ ‖ sym ε‖2 + μc ‖ skew ε‖2 +
λ

2
tr [sym ε]2 , strain energy (1.3)

φ := axlA ∈ R
3, k = ∇φ , ‖ curlφ‖2

R3 = 4‖ axl skew∇φ‖2
R3 = 2‖ skew∇φ‖2

M3×3 ,

Wcurv(∇φ) =
γ + β

2
‖ dev sym∇φ‖2 +

γ − β

2
‖ skew∇φ‖2 +

3α + (β + γ)
6

tr [∇φ]2 .

Here, f are given volume forces while ud are Dirichlet boundary conditions4 for the displacement at Γ ⊂ ∂Ω where
Ω ⊂ R

3 denotes a bounded Lipschitz domain. Surface tractions, volume couples, and surface couples can be included in
the standard way. The strain energy Wmp and the curvature energy Wcurv are the most general isotropic quadratic forms
in the infinitesimal non-symmetric first Cosserat strain tensor ε = ∇u − A and the micropolar curvature tensor k =
∇ axlA = ∇φ (curvature-twist tensor). The parameters μ, λ[MPa] are the classical Lamé moduli and α, β, γ are further
micropolar moduli with dimension [Pa · m2] = [N] of a force. The additional parameter μc ≥ 0[MPa] in the strain energy
is the Cosserat couple modulus. For μc = 0 the two fields of displacement u and microrotations A ∈ so(3) decouple and
one is left formally with classical linear elasticity for the displacement u. Lakes has treated a related degenerate limit case
in [74].

1.2 The weak form of the equilibrium balance equations

Let us recall the kinematic relation

ε = ∇u − A with Aij = −εijkφk, (1.4)

along with the definition of the stress tensor σ and the couple stress tensor (moment stress tensor) m

σ =
∂Wmp(ε)

∂ε
, m =

∂Wcurv(∇φ)
∂∇φ

. (1.5)

The internal potential, Ψint, which is a functional of the non-symmetric infinitesimal Cosserat strain and curvature strain
can be written as:

Ψint(u, A) =
∫

Ω

Wmp(ε) + Wcurv(∇φ) dV. (1.6)

Let Ψext define the external virtual work as below:

Ψext(u, A) =
∫

Ω

〈f, u〉 + 〈M, φ〉 dV +
∫

∂Ω

〈fs, u〉 + 〈Ms, φ〉 dS , (1.7)

where f and M are the external body force and body moment. Moreover, fs and Ms are the stress vector and couple stress
vector, respectively. Taking variations of the energy in (1.6) w.r.t. both displacement u ∈ R

3 and infinitesimal microrotation
A ∈ so(3) we arrive at the weak form of equilibrium system (the Euler-Lagrange equations of (1.2))

δΨint − δΨext = 0 (1.8)

4 Note that it is always possible to prescribe essential boundary values for the microrotations A but we use Neumann conditions for microrotations
everywhere to the effect that m.�n = 0 on ∂Ω.
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with

δΨint =
∫

Ω

〈DεWmp(ε), δε〉 + 〈D∇φWcurv(∇φ),∇δφ〉 dV , (1.9)

where δε = δu − δA is understood. With substitution of (1.9) and (1.7) into (1.8), the following equation is easily derived:

∫
Ω

〈σ, δε〉 + 〈m,∇δφ〉 dV −
∫

Ω

〈f, δu〉 + 〈M, δφ〉 dV −
∫

∂Ω

〈fs, δu〉 + 〈Ms, δφ〉 dS = 0 . (1.10)

The virtual displacement δu is conjugate to the external force and the virtual rotation vector δφ to the external moment.
This weak form is the basis for our numerical simulations.

1.3 The strong form of the linear elastic Cosserat balance equations

Going one step further, we collect also the balance equations in strong form for our subsequent classification of the Cosserat
model. Sorting (1.10) w.r.t. δu and δφ and using integration by parts we obtain

Div σ = f , balance of linear momentum

−Div m = 4 μc · axl skew ε , balance of angular momentum (1.11)

σ = 2μ · sym ε + 2μc · skew ε + λ · tr [ε] · 11 = (μ + μc) · ε + (μ − μc) · εT + λ · tr [ε] · 11
= 2μ · dev sym ε + 2μc · skew ε + K · tr [ε] · 11 ,

m = (γ + β) dev sym∇φ + (γ − β) skew∇φ +
3α + (γ + β)

2
tr [∇φ] 11 ,

φ = axlA , u|Γ = ud , m.�n|∂Ω = 0 .

We run this Cosserat model with three different sets of variables for the curvature energy which in each step relaxes the
curvature energy.

1: pointwise positive case: (μL2
c/2)‖∇φ‖2. This corresponds to α = 0, β = 0, γ = μ L2

c .
2: symmetric case: (μL2

c/2)‖ sym∇φ‖2. This corresponds to α = 0, β = γ, and γ = (μ L2
c/2).

3: conformal case: (μL2
c/2)‖ dev sym∇φ‖2 = (μL2

c/2)(‖ sym∇φ‖2 − (1/3)tr [∇φ]2). This corresponds to β = γ
and γ = (μ L2

c/2) and α = −(1/3)μ L2
c.

Note that all three cases are mathematically well-posed [46, 48]. The pointwise positive case1 is usually considered. Case2
leads to a symmetric couple-stress tensor which in turn has been considered by [63, 65, 66] and case3 is the main object of
our investigation. It is necessary to indicate that the Cosserat models are also motivated with a beam model [75] or so-called
grid framework model [76–78].

2 Conformal transformations – universal solutions

Next we consider certain types of universal solutions, first for classical linear elasticity.

2.1 Classical Cauchy linear elasticity and conformal invariance

The stress-strain relation in isotropic linear elasticity can always be written as

σ = 2μ · dev sym∇u + K · tr [∇u] · 11 , (2.1)

where K is the bulk modulus. Inserting for u an infinitesimal conformal map uC : R
3 �→ R

3 which is defined by [73]:

uC(x) =
1
2

(
2〈axl(Ŵ ), x〉x − axl(Ŵ ) ‖x‖2

)
+ [p̂ 11 + Â].x + b̂ ,

∇uC(x) = anti(Ŵ .x) + 〈axl(Ŵ ), x〉 11 + (p̂ 11 + Â) , (2.2)
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where Ŵ , Â ∈ so(3), b̂ ∈ R
3, and p̂ ∈ R are arbitrary constants, we have for the Cauchy stress

σ(∇uC) = 2μ · 0 + K tr [∇uC ] 11 = K tr
[
p̂ + 〈axl(Ŵ ), x〉 11

]
11 = 3 K

(
p̂ + 〈axl(Ŵ ), x〉

)
11.

Thus Div σ(∇uC) = 3 K axl(Ŵ ), for p̂ is constant and Div[〈k̂, x〉11] = k̂. Since the linear boundary value problem

Div σ(∇u) = 3 K axl(Ŵ ) , u|Γ(x) = uC(x) , (2.3)

for a given constant Ŵ ∈ so(3) admits a unique solution, this solution is already given by u(x) = uC(x). We have therefore
obtained an inhomogeneous, three-dimensional analytical solution for the boundary value problem of linear elasticity with
constant body forces f̂ = 3 K axl(Ŵ ). This solution can be profitably used to check any numerical algorithm for linear
Cauchy elasticity. In our case we have considered one unit cube to check the numerical exactness obtained by us.

Remark 2.1 (Application to infinitesimal elasto-plasticity). The proposed analytical solution is on the one hand quite
inhomogeneous, on the other hand it holds that dev σ ≡ 0. Therefore, classical numerical approaches for plasticity with
von Mises flow laws should not give any plastic response since the yield stress is never reached. This can serve as a
nontrivial numerical test for any algorithm for plasticity, especially, if the shear modulus μ(x) is assumed to have large
spatial jumps [42, 79].

2.2 Linear Cosserat elasticity and conformal invariance

An extraordinary feature of this type of conformal solution in linear elasticity is that it is a universal solution for the
Cosserat model and the indeterminate couple stress model as well, if the conformal curvature expression (case3) is used.
The solution is invariant of the Cosserat coupling modulus μc and the internal length scale Lc.5 To understand this claim
let us consider the boundary value problem of linear Cosserat elasticity in strong form with conformal curvature (case3):

Div σ(∇u, A) = f̂ , −Div m = 4μc · axl(skew∇u − A) , (2.4)

σ = 2μ · dev sym∇u + 2μc · skew(∇u − A) + K · tr [∇u] · 11 ,

m = μ L2
c · dev sym∇ axl(A) , u|∂Ω = uC ,

where f̂ and uC are taken from (2.1). We proceed to show that the solution of this boundary value problem is uniquely
given by

u(x) = uC(x) , A(x) = anti
(

1
2

curlu(x)
)

, (2.5)

independent of μ(x), μc(x), and Lc(x). To see this, consider

skew(∇u − A) = anti(axl(skew∇u − A)) = anti
(

1
2

curlu − axl(A)
)

. (2.6)

Choosing A(x) = anti((1/2) curlu(x)) simplifies the equations to

Divσ(∇u, A) = f̂ , −Div m = 0 , (2.7)

σ = 2μ · dev sym∇u + K · tr [∇u] · 11 , m = μ L2
c dev sym∇

(
1
2

curlu(x)
)

.

Since u = uC and uC is conformal, it follows [73] that the couple stress tensor m vanishes, thus the equation and Neumann
conditions for microrotations are trivially satisfied. The remaining equation for the force stresses σ is satisfied because of
(2.3). Since we have used A(x) = anti((1/2) curlu(x)), the obtained solution is also a solution for the indeterminate
couple stress problem (which corresponds formally to setting μc = ∞).

Based on the above-mentioned constitutive equations for the stress, couple stress, and the applied conformal boundary
condition on the unit cube, the numerical exactness of our algorithm for Cosserat elasticity has been also checked.

In Fig. 1, the infinitesimal conformal map uC is taken as boundary condition and the deformed cube, computed for the
conformal Cosserat model is shown, depicting the inhomogeneity of the conformal solutions. Note that it is not necessary
to apply the displacement-boundary condition uC everywhere at ∂Ω in order to obtain uC as solution of the boundary value
problem.

5 Here, even a strong variation in shear modulus μ(x) would be allowed (as well as a strong variation in the couple modulus μc(x) and internal
length scale Lc(x). Only the bulk modulus K must be constant.
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Fig. 1 Deformed and undeformed shape of the unit cube under in-
finitesimal conformal transformation uC as boundary condition us-
ing the linear elastic Cosserat method and case3 assumption with
Ŵ12 = Ŵ13 = Ŵ23 = 3 , p̂ = −4, Â12 = Â13 = Â23 = 4,
and b̂ = 0, DOFs= 4300, quadratic elements.

Fig. 2 The geometry and data of the torsion problem.

3 Configuration of a test case

3.1 Preliminaries and assumptions

The finite element method has been chosen as a relevant numerical method for the linear elastic Cosserat model. We
use isoparametric Lagrange shape functions in our study. Moreover, we use quadratic Lagrange shape function for
the displacements u and linear Lagrange shape functions for the entries of the microrotation A ∈ so(3). According to
the discussed balance equations, there are six available state variables (three for the displacement vector u and three for
the microrotation vector axl(A)) whose computations need to be done via the coupled linear partial differential system
of equations using the momentum and angular momentum balance equations based upon the weak form. We consider a
cylindrical bar (diameter = 2 mm, height = 10 mm) submitted to the torsion angle ϑ at the end and choose the e3-axis to
coincide with the axis in Fig. 2, where the assumed classical, size-independent parameters E, ν can be found.

Remark 3.1 (Ansatz functions). In all test cases we use quadratic ansatz functions for displacements u and linear ansatz
function for microrotations A. We expect a significant improvement of the accuracy of the numerical solution provided we
use quadratic ansatz functions for the displacement and linear ansatz functions for the microrotations A since in the coupling
term we have μc ‖ skew∇u − A‖2 whose summands thus have both the same order of approximation.

All our computations have been prepared by means of a user-written code within the general purpose FEM software
COMSOL (formerly FEMLAB) [80]. We have used a parallelized direct solver making it possible to reduce the computation
runtime and to enable us to utilize the full capacity of the available hardware; here an Intel-System with 32 GB memory and
8 core 3.2 GHz processor has been used. A computation with 1.029 Mi DOFs would last 25 minutes. As will be seen later,
our numerical results clearly show the qualitatively new behavior of the linear Cosserat model for our relaxed conformal
curvature energy expression, case3. In contrast to the pointwise positive definite curvature energy (case1) and the symmetric
case2 our relaxed energy provides a completely different spectrum of size-dependent behavior. This is what we expected
on theoretical reasons [73] but which is also neatly covered by our numerical experiments.

In order to validate our simulations, we run first the linear elastic Cauchy response, which is included in the Cosserat
model by setting μc > 0 and Lc = 0. Then we slightly increase Lc > 0 to still observe comparable qualitative response.
We have compared the results for the torque computation also with the results of Münch [71]. Since [71] is set up entirely
in terms of geometrically exact expressions, we use, for comparison purposes only a nonlinear evaluation formula for the
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Fig. 3 Mesh density illustration and mesh statistics for considered circular bar
(Fig. 6).

Fig. 4 Boundary conditions for the circular bar, clamped at the bottom
and rotated at the top of cylinder by an exact rotation with angle ϑ.

stresses and an adapted application of boundary conditions in order to get as close as possible from our linear model to the
geometrically exact development. This procedure is detailed in the appendix.

The torsion problem which we are going to consider gives rise to an inhomogeneous deformation field which makes it
a fundamental test for each Cosserat model, small strain or finite strain. This holds since the Cosserat curvature expression
is invariably activated. Despite the fact that we deal with a linear Cosserat model we apply an exact rotation at the upper
face (at height L) of the sample with angle ϑ given by

⎛
⎜⎜⎝

cosϑ sin ϑ 0

− sinϑ cosϑ 0

0 0 1

⎞
⎟⎟⎠ = 11 +

⎛
⎜⎜⎝

0 ϑ 0

−ϑ 0 0

0 0 0

⎞
⎟⎟⎠ + . . . . (3.1)

3.2 Analytical torsion solution for circular cross-section without warping
and linear boundary condition

If in the torsion problem the sample has circular cross-section with diameter D = 2 r and height L, then an analytical
solution for the classical linear Cauchy-elastic problem is available which connects the rotation at the upper face with the
applied angle. In this special case, the cross-sections remain plane (no warping) and each cross section is rotated along the
torsion axis. Since we deal with a linear problem, the rotation angle in height z along the torsion axis is proportional to z.
In terms of the deformation we have the Dirichlet boundary condition at the upper face

ϕL(x, y, L) =

⎛
⎜⎜⎝

x

y

L

⎞
⎟⎟⎠ +

⎛
⎜⎜⎝

0 ϑ 0

−ϑ 0 0

0 0 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

x

y

L

⎞
⎟⎟⎠ , Dirichlet boundary condition at upper face ,

ϕ(x, y, z) =

⎛
⎜⎜⎝

x

y

z

⎞
⎟⎟⎠ +

⎛
⎜⎜⎝

ϑ
L y z

− ϑ
L x z

0

⎞
⎟⎟⎠ , deformation solution . (3.2)
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It is simple to see that the Dirichlet boundary conditions ϕ(x, y, 0) = (x, y, 0) (fixed at the bottom) and ϕ(x, y, L) =
ϕL(x, y, L) (infinitesimally rotated at upper face) are satisfied. Moreover, ϕ satisfies the linear elasticity equations. There-
fore we get for the displacement

u(x, y, z) =

⎛
⎜⎜⎝

ϑ
L y z

− ϑ
L x z

0

⎞
⎟⎟⎠ , ∇u =

⎛
⎜⎜⎝

0 ϑ
L z ϑ

L y

− ϑ
L z 0 − ϑ

L x

0 0 0

⎞
⎟⎟⎠ , skew∇u =

⎛
⎜⎜⎝

0 ϑ
L z ϑ

2 L y

− ϑ
L z 0 − ϑ

2 L x

− ϑ
2 L y ϑ

2 L x 0

⎞
⎟⎟⎠ ,

sym∇u =

⎛
⎜⎜⎝

0 0 ϑ
2 L y

0 0 − ϑ
2 L x

ϑ
2 L y − ϑ

2 L x 0

⎞
⎟⎟⎠ . (3.3)

For very small angles ϑ we may compare this (completely linear)6 solution against our FEM solution which has been
calculated on the basis of (3.1).

The finite element analyses are performed for two different DOFs, i.e., 50000 DOFs and 200000 DOFs. Using displace-
ment Dirichlet boundary conditions at the upper face of the cylindrical bar allows us to apply the geometrically exact
angles even for large rotation angles. The relative error obtained via FEM are very small and show that the numerical and
analytical results for small rotation angles match perfectly. Note again that microrotations remain free at the boundary.

For given applied rotation angle ϑ at the upper face we have

MT =
GIT

L
ϑ , IT =

π

2
r4 =

π D4

32
, G = μ =

E

2 (1 + ν)
. (3.4)

Here, MT is the applied torque, IT is the torsion coefficient (here the polar moment of inertia) and G = μ (N/mm2) is the
shear modulus. The torque about the e3-axis at the upper surface ∂Ω+ is given by the following classical formula

M lin
T =

∫
∂Ω+

(xσlin
32 − y σlin

31 ) dx dy = μ
ϑ

L

∫
∂Ω+

(x2 + y2) dx dy = μ
ϑ

L
IT , (3.5)

where we have used σlin according to (3.3). Note that in the micropolar model the total torque at the upper surface consists
of this part and an integrated contribution coming from m33. However, we have applied Neumann boundary conditions for
the microrotation which implies m33 = 0.

Further, the applied torque based on the obtained exact Cauchy stresses (6.6) will be defined as follows

M exact
T =

∫
∂Ω+

(xσexact
32 − y σexact

31 ) dx dy . (3.6)

In the present paper, we obtain the torque value by integration on the upper surface of the cylindrical bar using (3.6) for
the applied angles (0 ≤ ϑ ≤ (20π/180 rad). The torque-torsion angle curve is plotted in Fig. 5. As illustrated in Fig. 5, the
analytical solution differs from the calculated solution for larger torsion angles.

4 Checking two limit cases

We check next various other limiting cases, where the analytical solution can be read off at once.

4.1 Limit case: Cauchy elasticity in linear Cosserat elasticity

It is easy to see that one obtains the linear elasticity displacement solution for μc = 0 and Lc > 0 in case1 since the
system of equations decouples. For large Lc the microrotations approach a constant value over the entire body if there are
no boundary conditions imposed on the microrotations. The system reads

σ = 2μ · sym ε + λ · tr [ε] · 11 , m = γ∇φ = μ L2
c∇φ , (4.1)

Div σ = 0 , Div m = 0 . (4.2)

6 In the linear analytical solution the boundary condition is applied linearly in ϑ. All our simulations are based, however, on prescribing exact rotations
at the upper face. There, both cos ϑ and sinϑ are used.
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ϑ ≤ 13◦. Calculation based on Cosserat kinematics.

A second alternative is to take μc = μ and Lc = 0 which, in fact, also represents the linear elasticity solution. Since
curvature is absent, the balance of angular momentum equation reduces to the pointwise equation skew∇u = A. Thus the
skew-symmetric parts in the balance of force equation cancel and the displacement u is again the Cauchy displacement. In
this work, we evaluate these two limit cases by considering Lc = 1×106 mm and μc = 0 for the first case to be sufficiently
large in Linear Cosserat (case1) by FEM analysis and it is presented in Fig. 6 against the obtained Cauchy solution of the
applied identical torsion with the same number of DOFs (DOFs=198618), which nearly presents only 0.14 percent of error.
Our numerical results show that our implementation of the Cosserat model perfectly reproduces the linear elastic solution
as limit cases of Cosserat elasticity.

4.2 Limit case: Constant infinitesimal mean rotation

Another (more difficult) limit case is μc > 0 and Lc = ∞ with pointwise positive curvature, case1 in our curvature classi-
fication.7 From the variational statement of the problem it is clear that the microrotation A must be a constant Â ∈ so(3)
since the energy remains bounded. Minimizing the remaining energy therefore with respect to constant microrotations Â

7 In principle the same calculations can be done for conformal curvature. In this case we would be led to consider a ten-dimensional minimization
problem for the parameters of the conformal map.
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leads to the problem∫
Ω

μ ‖ sym∇u‖2 + μc ‖ skew∇u − Â‖2 +
λ

2
tr [∇u]2 dV �→ min . (u, Â) . (4.3)

Thus the equilibrium equation for the constant Â ∈ so(3) reads∫
Ω

2μc 〈skew∇u(x) − Â, δÂ〉dV = 0 ∀ δÂ ∈ so(3) ⇒

〈
∫

Ω

[skew∇u(x) − Â] dV, δÂ〉 = 0 ∀ δÂ ∈ so(3) ⇒ (4.4)

∫
Ω

skew∇u(x) dV =
∫

Ω

ÂdV = |Ω| Â .

Therefore, the constant microrotation must have the value

Â =
1
|Ω|

∫
Ω

skew∇u dV = skew
[

1
|Ω|

∫
Ω

∇u dV
]

= skew
[

1
|Ω|

∫
∂Ω

u ⊗ �n dS
]

. (4.5)

Thus the weak problem for the displacement reads then

0 = Div σ = Div
[
2μ sym∇u + 2μc skew(∇u − Â) + λ tr [∇u] 11

]

= Div [2μ sym∇u + 2μc skew(∇u) + λ tr [∇u] 11] , (4.6)

since Â is constant. Hence, once this equation is solved for the torsion-geometry, the stresses σ follow as

σ = 2μ sym∇u + 2μc skew(∇u − Â) + λ tr [∇u]11 . (4.7)

Note that such a formulation is still infinitesimally frame-indifferent because the constant mean rotation filters out the
infinitesimal rigid rotation. See Fig. 7 for a comparison between this solution and the Cosserat solution for large Lc.

5 Parameter study of linear Cosserat elasticity

We are now discussing the simulated response for the linear Cosserat elasticity model. The geometry and the boundary
conditions remain the same as previously illustrated in Fig. 2. The mesh density and mesh statistics are displayed in Fig. 3.
We use the exact rotation Dirichlet boundary conditions or so called essential boundary condition as given by (cf. Fig. 4):

u1 = 0 , u2 = 0 , u3 = 0 , at the bottom (5.1)

u1 = x cosϑ + y sin ϑ − x , u2 = −x sin ϑ + y cosϑ − y , u3 = 0 , at the top .
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Table 1 Material properties for Cosserat circular bar.

Cases case1 case2 case3

Young’s Modulus [N/mm2] 1 × 106 1 × 106 1 × 106

Poisson’s ratio [−] 0.3 0.3 0.3

μ = μc [N/mm2] ds E
2(1+ν) ds E

2(1+ν) ds E
2(1+ν)

λ [N/mm2] ds νE
(1+ν)(1−2ν) ds νE

(1+ν)(1−2ν) ds νE
(1+ν)(1−2ν)

α [N] 0 0 − ds μ L2
c

3

β [N] 0 ds μ L2
c

2 ds μ L2
c

2

γ [N] μ L2
c ds μ L2

c

2 ds μ L2
c

2

Lc [mm] 0 ≤ Lc ≤ 10 × 106 0 ≤ Lc ≤ 10 × 106 0 ≤ Lc ≤ 10 × 106

Square coupling number, N2 [−] ds 1
2 ds 1

2 ds 1
2

Polar ratio, Ψ [−] 1 1 ds 3
2

Remember that microrotations A ∈ so(3) are not constraint at the boundary, implying the free Neumann condition
m.�n|∂Ω = 0. The material parameters for our computations8 are given in Table 1. The internal length scale parameter
Lc will vary from very small values (nearly zero) to very high values (10× 106 mm). Since the coupling between microro-
tations and displacements involves the term ‖ curlu − 2 axl(A)‖2, quadratic elements for u and linear interpolation for A
have been used in our FEM approach. All computations have been carried out with 198618 DOFs (Fig. 3). The results are
presented in Figs. 8–10.

5.1 Pointwise positive case1

We recall here the applied material parameters in curvature energy for this cases: (μL2
c/2)‖∇φ‖2. This corresponds to

α = 0, β = 0, γ = μ L2
c and the corresponding coupled system of equations is

Div σ = 0 , σ = 2μ sym(∇u − A) + 2μc skew(∇u − A) + λtr [ε] · 11 , (5.2)

Div m + 4μc · axl skew ε = 0 , m = μL2
c∇φ . (5.3)

We apply the exact angle ϑ on the top from 0 to 13π
180 (rad) for each value of Lc which is varied from zero to 10 × 106 mm.

The numerical solution for linear Cosserat elasticity with pointwise positive curvature exhibits more stiffness for higher
values of Lc in an asymptotic manner (Fig. 8). We observe a bound on the stiffness (the tangent in the plot) for Lc values
greater than 100 mm (Fig. 8). Case1 reveals significantly more stiffening effects than the other cases (Fig. 9 and Fig. 10).

5.2 Symmetric case2

The curvature form in Cosserat linear elasticity in this cases is : μL2
c

2 ‖ sym∇φ‖2 and the moment stress tensor m is also

symmetric. The corresponding material parameters are α = 0, β = γ = μ L2
c

2 and the coupled system of equations is

Div σ = 0 , σ = 2μ · sym(∇u − A) + 2μc · skew(∇u − A) + λtr [ε] · 11 , (5.4)

Div m + 4μc · axl skew ε = 0 , m = μ L2
c · sym∇φ . (5.5)

The numerical solution for the linear Cosserat elasticity with symmetric positive curvature exhibits more stiffness for higher
values of Lc by an asymptotic manner (Fig. 9) as seen before. We observe a bound on the stiffness for Lc values greater
than 100 mm (Fig. 9).

8 It is well worth mentioning that the modulus of elasticity in Table 1 deals with diamond. Diamond is a most unlikely choice as a Cosserat material.
In the present paper, we have chosen this value only for the numerical experiments.
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Fig. 8 (online colour at: www.zamm-journal.org) Results for fixed μ = μc and variation of Lc[mm] for pointwise positive curvature
(D = 2 mm, L = 10 mm).
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Fig. 9 (online colour at: www.zamm-journal.org) Results for fixed μ = μc and variation of Lc[mm] for symmetric curvature
(D = 2 mm, L = 10 mm).
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Fig. 10 (online colour at: www.zamm-journal.org) First results for fixed μ = μc and variation of Lc[mm] for conformal curvature.

5.3 Conformal case3

We recall here the relaxed curvature energy in this cases: (μL2
c/2)‖ dev sym∇φ‖2. This leads to α = (−1/3)μ L2

c, β =
γ, γ = μ L2

c as parameters. The moment stress tensor m is symmetric and trace-free and the corresponding coupled system
of equations reads

Divσ = 0 , σ = 2μ · sym(∇u − A) + 2μc · skew(∇u − A) + λtr [ε] · 11 , (5.6)

Div m + 4 μc · axl skew ε = 0 , m = μL2
c

(
sym∇φ − 1

3
tr [∇φ] · 11

)
. (5.7)

The numerical solution for the linear Cosserat elasticity with conformal positive curvature displays again more stiffness for
higher values of Lc (Fig. 10) and we observe a bound on the stiffness for Lc values now greater than 1000 mm (Fig. 10).

5.4 Torque – Log diagram

According to the last results it is possible to plot the torque magnitude at the top of the cylindrical bar versus “Log(Lc)” in a
semi-logarithmic diagram (Fig. 11) for a given torsion angle ϑ. In Fig. 11, we chose ϑ equal to 13◦ (ϑ = 13π/180 rad) and
we plot the Torque-Log(Lc) diagram for all cases (case1, case2, and case3). Evidently, we find the upper and lower bound
for the stiffness MT . In the diagram we distinguish three specific zones: Zone I tends toward linear Cauchy elasticity with
no size effects present, Zone II is an intermediate zone in which the size effects appear and we can clearly distinguish the
Cosserat effects for our numerical models, Zone III describes a situation where the microrotation is nearly constant with
the limit behavior discussed explicitly in Sect. 4.2. The most interesting zone is the intermediate Zone II. We see that the
pattern given for case1 and case2 has been disturbed beyond Zone I in case3 and only later it gets the expected pattern
(Fig. 12). This distinguishing phenomenon for case3 means less stiffening effects and a more pronounced size effect (the
spread between linear elasticity and constant mean rotation, i.e. where size-dependent response occurs, it covers orders of
magnitude for larger Lc-values).

The case1 and case2 show practically the same behavior in this Torque-Log(Lc) diagram, whereas case3 behaves in a
completely different manner! This is due to the fact that we have the third constitutive parameter (α = −(μL2

c/3) < 0)
for the couple stress-curvature tensor constitutive law. The Torque-Log diagram Fig. 11 indicates a completely different
size-effect response for the conformal case. It can be seen that in the conformal case a much larger Lc-value can be taken to
produce the same amount of torque at equal applied rotation angle ϑ. Thus, in an inverse calculation for the determination
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of the characteristic size (related to Lc), we may obtain these larger Lc-values. Note that a typical problem in the parameter-
fitting of Cosserat models based on case1 or case2 is that the fitted Lc-values would be orders of magnitude smaller than
anything which could physically serve as setting a characteristic size. This can be circumvented in the conformal case.

From our numerical experiments we observe that case2 and case3 are numerically more stable than case1 in the sense
that better convergence rates have always been observed with a consistent runtime reduction. Surprisingly, for case1, at the
beginning of Zone II, we have observed some numerical instabilities (in the range 0.5 mm ≤ Lc ≤ 0.75 mm).

The aforementioned semi-logarithmic diagram rises some questions about the nature of Lc and its role in the size
effects phenomenon for the Cosserat media. Furthermore, the characteristic length much greater than cylinder size can be
considered hardly physical and has never been experimentally realized [21]. Indeed, Lc can be implicitly interpreted as a
phenomenological parameter which was originally proposed by Toupin in the early sixties [81]. According to the Toupin’s
study, Lc was nothing else than square root of γ over μ and it was developed in several directions for different applications
by Gauthier [82–84] 9, Forest et al. [32, 34], and Alsaleh et al. [85–87]. In fact, the stiffness over curvature stiffness ratio
determines whether one material has size effect behavior or not and Lc can be deemed as a parameter which handles it.
Hence, very small Lc values treat classical Cauchy’s media (the specimen geometry is several times bigger than so-called
microstructure) and very high Lc values means that the specimen geometry is several times smaller than the microstructure.

9 The Gauthier’s analytical solution for the pure torsion test establish a benchmark tool for determining the Cosserat moduli. As for the comparison
with Gauthier’s exact solution, if the rod is sufficiently long, differences in the details of the end condition will fade out according to the Saint-
Vennat’s principle. It is of great importance to remind that the Dirichlet boundary conditions or so called essential boundary conditions drastically
change the analytical solution form. This fact can be clearly observed in the analytical solution of the long torsion test. In the other cases, the finite
element analyses provide more beneficial outcomes.
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The middle zone (Zone II) represents a state in which the specimen geometry and so-called microstructure are in the same
order of magnitude.

The main objective is to converge two different points of view. In the Lakes paper [21], the specimen geometry is
experimentally reduced to obtain the size effects and two length scales have been extracted, whereas, herein, we did not
change the specimen geometry in our numerical studies and we have changed the length scale Lc values for finding out the
size effects (case1, 2, and 3).

As indicated before, the numerical simulation of Cosserat solids traditionally uses case 1 (α = β = 0 and γ = μL2
c)

[16,42,43,88] and particular case of case1 or so called deviatoric case1 (α = β = 0 and γ = (μL2
c/2)) [73,89]. Case2 has

been also applied to the Cosserat solids ( [34, 63, 64, 90]). In the previous work [73] and the present paper, we have evoked
three possible choices for the form of curvature energy. Each considered form of energy has been investigated based upon
the mathematical aspects [48, 73]. Therefore, we have found out these choices as the possible forms of energy. However,
we are not after a physical meaningful simulation of a real Cosserat material in the present paper, but we want to explore
the possible parameter ranges.

6 Discussion

The reduction in Cosserat parameters from six to four in the 3D-case which is embodied in the conformal case3 can also
be motivated from the physical principle of bounded stiffness for very small samples and the use of the analytical solution
formulas for these cases, see the detailed discussion in [48,73]. It remains to be investigated whether conformal invariance
is, in fact, a more primitive physical concept, perhaps to be motivated by novel invariance principles, with consequences
for the Cosserat model. Here, we have shown that the novel conformal model allows for a numerical treatment and is
therefore ready to use in practical applications. By comparing it with the more standard Cosserat approach (case1) we have
demonstrated that the novel conformal model (case3) still shows a size-effect, which is, however, completely different than
the traditional one with pointwise positive curvature (case1) or symmetric curvature (case2) of our classification. It allows
for dramatically increased values of the internal length scale Lc still giving us a size effect in torsion and not constraining
the microrotation to be constant over the sample for larger Lc-values.

We think that the conformal curvature expression offers therefore a fresh departure for the experimental determination of
the remaining two Cosserat constants: one coupling constant μc and only one internal length scale Lc. We hope that other
groups will take up this route as well and provide physically consistent parameter values for the linear Cosserat model for
specific materials.
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Appendix: Geometrically exact application of torsion angle

For comparison purposes with our own nonlinear calculations [71], we propose a nonstandard representation of the stresses
which will be as far as possible be consistent with geometrically exact strain measures, only the first Piola-Kirchhoff stresses
S1 will derive from a quadratic potential W (F ), thus ultimately destroying geometrical exactness.

Let us summarize the necessary relations. The first Piola-Kirchhoff stresses in nonlinear elasticity are given by

S1(F ) = DF W (F ) = det[F ] σexact F−T , (6.1)

where F = ∇ϕ = 11 + ∇u is the deformation gradient and ∇u the displacement gradient and the exact Cauchy stress
σexact follows as usual from (6.1)

σexact(F ) =
1

det[F ]
S1(F )FT . (6.2)

The same definitions apply, with appropriate changes, also to the Cosserat model. Thus we have two possibilities to calculate
the stresses either according to the linear Cosserat model or by linear Cauchy elasticity.

Recalling the energy contributions (Wmp for Cosserat linear elasticity and Wlin for classical linear elasticity) giving rise
to the classical stresses, we have

Wmp(ε) = μ‖ sym ε‖2 + μc‖ skew ε‖2 +
λ

2
tr [ε]2 , Wlin(ε) = μ ‖ε‖2 +

λ

2
tr [ε]2 , (6.3)
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where the applied kinematic relation for each case is:

ε = ∇u − A = F − 11 − A , ε = sym∇u = sym(F − 11) . (6.4)

This leads to the respective first Piola-Kirchhoff stresses Smp
1 for Cosserat linear elasticity and Slin

1 for classical linear
elasticity, i.e.,

Smp
1 (F, A) =DF Wmp(F, A) = 2μ (symF − 11 − A) + 2μc skew(F − 11 − A)

+ λ tr
[
sym F − 11 − A

]
11 ,

Slin
1 (F ) = DF Wlin(F ) = 2μ (symF − 11) + λ tr [sym F − 11] 11 . (6.5)

Inserting Slin
1 (F ) into the Cauchy stress formula (6.2) we obtain the Cauchy stresses in the actual configuration from

σexact(F ) =
1

det[F ]
Slin

1 (F )FT =
1

det[F ]
(2μ (symF − 11) + λ tr [sym F − 11] 11 ) FT (6.6)

=
1

det[11 + ∇u]
(2μ (ε + λ tr [ε] 11 ) (11 + ∇u)T =

1
det[11 + ∇u]

σlin(ε) (11 + ∇u)T ,

and similarly for Smp
1 . This formula for σexact will be used in the evaluation of the torque in (3.6).
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(Gauthier-Villars, Paris, 1909), pp. 557–629.

[3] W. Günther, Zur Statik und Kinematik des Cosseratschen Kontinuums, Abh. Braunschweig Wiss. Ges. 10, 195–213 (1958).
[4] R. Mindlin and H. Tiersten, Effects of couple stresses in linear elasticity, Arch. Rat. Mech. Anal. 11, 415–447 (1962).
[5] R. Mindlin, Influence of couple-stresses on stress concentrations, Experimental Mechanics 3(1), 1–7 (1963).
[6] R. Mindlin, Micro-structure in linear elasticity, Arch. Rat. Mech. Anal. 16, 51–77 (1964).
[7] R. Mindlin, Second gradient of strain and surface tension in linear elasticity, Int. J. Solids Struct. 1, 417–438 (1965).
[8] R. Mindlin and N. Eshel, On first strain-gradient theories in linear elasticity, Int. J. Solids Struct. 4, 109–124 (1968).
[9] R. Mindlin, Theories of elastic continua and crystal lattice theories, in: Mechanics of Generalized Continua. Proceedings of

the IUTAM-Symposium on the generalized Cosserat continuum and the continuum theory of dislocations with applications in
Freudenstadt, 1967, edited by E. Kröner (Springer, 1968), pp. 312–320.
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