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Abstract Computing the macroscopic material response

of a continuum body commonly involves the formula-

tion of a phenomenological constitutive model. However,

the response is mainly influenced by the heterogeneous

microstructure. Computational homogenisation can be used

to determine the constitutive behaviour on the macro-scale

by solving a boundary value problem at the micro-scale for

every so-called macroscopic material point within a nested

solution scheme. Hence, this procedure requires the repeated

solution of similar microscopic boundary value problems. To

reduce the computational cost, model order reduction tech-

niques can be applied. An important aspect thereby is the

robustness of the obtained reduced model. Within this study

reduced-order modelling (ROM) for the geometrically non-

linear case using hyperelastic materials is applied for the

boundary value problem on the micro-scale. This involves

the Proper Orthogonal Decomposition (POD) for the primary

unknown and hyper-reduction methods for the arising nonlin-

earity. Therein three methods for hyper-reduction, differing

in how the nonlinearity is approximated and the subsequent

projection, are compared in terms of accuracy and robustness.

Introducing interpolation or Gappy-POD based approxima-

tions may not preserve the symmetry of the system tangent,

rendering the widely used Galerkin projection sub-optimal.

Hence, a different projection related to a Gauss-Newton

scheme (Gauss-Newton with Approximated Tensors- GNAT)

is favoured to obtain an optimal projection and a robust

reduced model.

B Dominic Soldner

dominic.soldner@fau.de

1 Chair of Applied Mechanics, Friedrich-Alexander-Universität

Erlangen-Nürnberg, Egerlandstrasse 5, 91058 Erlangen,

Germany

Keywords Computational homogenisation ·

Hyper-reduction · Reduced-order modelling ·

Hyperelasticity

1 Introduction

Phenomenological constitutive models are frequently used

to compute the material response of a continuum body.

However, the main influence of the macroscopic response

is driven by the heterogeneous microstructure, whereas the

direct modelling of the underlying microstructure is usually

not feasible. A variety of analytical methods exists to account

for the microstructure, e. g. Eshelby [12] or Mori-Tanaka-

Method [27]. Since these methods are often limited, for

instance to the linear regime or by the shape of the inho-

mogeneities that can be modelled, a different approach is

necessary for the general nonlinear case and arbitrary shapes

of the inhomogeneities. One possibility is given by com-

putational homogenisation, which requires a nested solution

scheme involving the computation of a boundary value prob-

lem (BVP) at the microscopic level, using a representative

volume element (RVE) for every so-called material point.

Using the Finite Element Method to compute approximate

solutions to the governing equations on both scales is often

referred to as the FE2-method and does not rely on macro-

scopic constitutive models, but on the solution of underlying

BVPs and a consistent transition between the two scales [16].

This approach is usually accompanied by high computational

costs, due to the repeated solution of numerous BVPs at

the micro-scale in a possibly high dimensional space. One

approach to lower the computational cost is given by meth-

ods that rely on the fast Fourier transformation (FFT) [28,37].

These methods replace the assembly of the system tangent

and the subsequent solution of the linear system on e.g. the
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micro-scale by an algorithm that utilizes FFT. This lowers the

complexity of the solution process but does not necessarily

reduce storage requirements [14].

Within this work, projection-based ROM is considered,

which is characterised by taking advantage of the obser-

vation that the solutions of the aforementioned boundary

value problems often lie in a lower dimensional subspace

and different computational tasks in the offline and online

stages. During the offline stage all necessary computations

aiming to build a basis for the reduced-order model are car-

ried out. This basis is used in the online stage to compute

approximate solutions using a lower dimensional descrip-

tion. Several methods for model reduction exist, e.g. Proper

Generalized Decomposition [8,10], Reduced-Basis meth-

ods [3,30,31], or approaches using the Proper Orthogonal

Decomposition (POD). The latter has been widely used,

e.g. in homogenisation, fluid mechanics and many other

fields [6,17,18,23,26,41]. For a deeper discussion and a

broader overview the reader is referred to [2,33] and ref-

erences therein.

In the context of computational homogenisation the

Reduced Model Multiscale Method (R3M) has been pre-

sented in [41], applying POD-based model order reduction

to the BVP on the micro-scale for the case of hyperelas-

ticity, directly projecting the governing equations onto the

truncated POD basis. Due to the missing approximation of

the arising nonlinear terms the computational savings were

limited. In general, the approach of solely applying e.g.

Galerkin projection for nonlinear problems may even lead

to higher computational cost compared to the Finite Element

model.

A further contribution in the context of geometrically lin-

ear homogenisation is given by [18], in which the stress

field itself is approximated by a POD basis. Furthermore the

authors showed in which circumstances an ill-posed system

is obtained in the context of computational homogenisation

and possibilities to avoid this problem. A similarly approach,

i.e. not approximating the displacement field, is used in the

nonuniform transformation field analysis (NTFA) [24], based

on [11], and its extensions [14,15,25]. These methods apply

a decomposition of the internal variables using reduced bases

and derive suitable evolution equations for the reduced vari-

ables.

A popular approach in projection-based model reduc-

tion is the application of a Galerkin projection, as for e.g.

the R3M, to solve the arising overdetermined system for

the reduced coordinates. In the presence of nonlinearities

these problems are often handled using an interpolation tech-

nique [1,7] or Gappy-POD reconstruction [5,13], both

also often referred to as hyper-reduction techniques. Con-

vergence difficulties have been reported for certain ROM

configurations applying Galerkin projection coupled with

hyper-reduction, e.g. [5,9,22,34]. In [9] the condition

number of the reduced system tangent is suspected to lead

to said convergence problems. The authors therefore pro-

pose a gappy data reconstruction with Galerkin projection to

improve the condition number. While improving the robust-

ness the number of diverging ROMs has only been reduced.

In [5] an alternative to the Galerkin projection is proposed,

which is related to the Gauss-Newton algorithm (GNAT).

This projection lowers the constraints of the arising sys-

tem tangent matrix and renders a robust model reduction

technique.

The aim of this contribution is to apply projection-based

ROM techniques in the context of computational homogeni-

sation of hyperelastic materials including hyper-reduction

techniques, which requires a robust reduced model for the

present multi-query context. The focus thereby lies on the

problem on the micro-scale, i. e. the quantities computed on

the micro-scale which would be used on the macro-scale in a

fully coupled problem formulation. The main objective is to

compare three different model reduction approaches in terms

of accuracy, robustness and optimality.

The remainder of this contribution is organised as fol-

lows: Sect. 2 discusses the fundamentals of first-order

computational homogenisation and the governing equa-

tions. Section 3 describes the ROM techniques used within

this study, including considerations regarding optimality of

different projection techniques. Section 4 presents numer-

ical examples, followed by some concluding remarks in

Sect. 5.

2 Computational homogenisation in a nutshell

In solid mechanics, phenomenological constitutive models

are frequently used to describe the material response of a

body under a given load. However, the response is mainly

driven by the heterogeneous microstructure. One possible

approach to account for the heterogeneous material would be

to directly model the substructure, e. g. within a FE model,

which usually leads to computationally expensive models. A

different approach is given by computational homogenisa-

tion. In this context the material at the macroscopic level is

modelled without a prescribed constitutive model. Instead,

the constitutive response is computed for every so-called

material point at the micro-scale, taking into account the

heterogeneities through prescribed constitutive behaviour of

the constituents. To distinguish between the two scales, the

superscripts (•)M and (•)m are used to denote quantities on

the macro- and micro-scale respectively. Figure 1 illustrates

the general concept of this method.

On both scales the balance of linear momentum represents

the equation of interest, which reads on the micro-scale

DivPm = 0 in B
m
0 , (2.1)
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Fig. 1 General concept of first-order computational homogenisation

where Pm denotes the Piola stress on the micro-scale and

B
m
0 the domain of the RVE. The microscopic stresses are

computed using a hyperelastic constitutive model, i. e.

Pm =
∂Ψ m(Fm)

∂Fm
, (2.2)

with Fm representing the micro-scale deformation gradient

and Ψ m the strain energy density. The material response

on the macro-scale relies on quantities computed on the

micro-scale. In order to compute these quantities, certain

requirements have to be satisfied.

2.1 Hill-Mandel condition

A main ingredient of scale transition is the equality of the

virtual work on the macro- and micro-scale, known as Hill-

Mandel condition [19–21],

1

V0

∫

Bm
0

Pm : δFm dV = PM : δFM, (2.3)

where V0 denotes the volume of the RVE in the reference

configuration. Assuming a linear ansatz for the deformation

on the micro-scale,

xm = FM · Xm + ũ, (2.4)

with ũ denoting the fluctuation field and Xm, xm the coordi-

nates in the reference and spatial configuration respectively,

the deformation gradient is given by

Fm = ∇X xm = FM + ∇X ũ. (2.5)

Considering the variation of the deformation gradient

δFm = δFM + ∇Xδũ (2.6)

and inserting Eq. (2.6) into Eq. (2.3) leads to

0 =
1

V0

∫

Bm
0

Pm :
[

δFM + ∇Xδũ
]

dV − PM : δFM (2.7)

=

⎡

⎢
⎣

1

V0

∫

Bm
0

Pm dV − PM

⎤

⎥
⎦ : δFM

+

⎡

⎢
⎣

1

V0

∫

Bm
0

Pm : ∇Xδũ dV

⎤

⎥
⎦ .

It follows that the volume average of the microscopic Piola

stress has to equal its macro-scale counterpart, i. e.

1

V0

∫

Bm
0

Pm dV = PM, (2.8)

for the first term to vanish. Furthermore, the second term,

containing the fluctuations, has to vanish in order to com-

ply with the Hill-Mandel condition. Reformulating this term

as a boundary integral renders admissible boundary condi-

tions. Within this work the fluctuations are set to vanish on the

Dirichlet boundary, which yields linear displacement bound-

ary conditions:

um =
[

FM − 1
]

· Xm on ∂B
m
0 (2.9)

It should be noted that alternatively periodic boundary con-

ditions could be applied.

2.2 Computation of the tangent

To provide information about the behaviour at a material

point due to an increased load, the macroscopic tangent mod-

ulus has to be computed. In the present work the approach

in [39] is used. Therein, a series of numerical test cases is

performed in order to compute the fourth order Lagrangian

elasticity tensor

L
M =

∂PM

∂FM
. (2.10)

This leads, depending on the dimension d of the problem, to

a total of d2 linear perturbation test cases at the converged

equilibrium state with the perturbations of the macroscopic

deformation gradient

δi J FM = h ei ⊗ EJ with 0 < h ≪ 1, (2.11)
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with ei and EJ denoting the basis vectors in the spatial and

the reference configuration respectively. Hence, the compu-

tations

[

L
M

]

kLi J
=

[

δi J PM
]

kL

h
(2.12)

are necessary to compute the constitutive constants.

2.3 Weak form and spatial discretisation

Within the scope of this contribution, an approximate solu-

tion to the micro-scale problem is computed using the FEM,

which requires the weak formulation

∫

Bm
0

∇Xδum : Pm dV = 0, ∀δum (2.13)

with um =
[

FM − 1
]

· Xm on ∂B
m
0 .

The discretisation of the above equations is carried out using

the Bubnov-Galerkin Finite Element Method in a standard

manner, i. e.

um,el =

nen∑

i=1

Ni ui , δum,el =

nen∑

i=1

Niδui , (2.14)

where the displacement field and the test function are approx-

imated as a sum of shape functions (Lagrange polynomials)

and nodal values, with nen denoting the number of element

nodes. Using the definitions given in Eq. (2.14), the discreti-

sation of Eq. (2.13) takes the form

∫

Bm
0

∇Xδum : Pm dV ≈

nel

A
e=1

∫

Bm
0

,e

nen∑

i=1

[

δum
i ⊗ ∇X Ni

]

: Pm dVe = 0, (2.15)

with the operator
nel

A
e=1

representing the assembly of the ele-

ment contributions. Since Eq. (2.15) has to hold for arbitrary

δum
i , it follows that

nel

A
e=1

∫

Bm
0

,e

nen∑

i=1

∇X Ni · Pm dVe = 0, (2.16)

which may be written as a vector-valued equation

fm(um) = 0. (2.17)

Hence, fm represents a nonlinear function of the unknown

nodal displacement values. In order to find an approximate

solution an iterative Newton-Raphson scheme is used. This

requires the linearisation of the nonlinear function

Δfm = Km · Δum, (2.18)

which yields the tangent stiffness matrix

Km
I J =

nel

A
e=1

[
∫

Bm
0

,e

[

∇X Ni ·
∂Pm

∂Fm
· ∇X N j

]

dVe

]

. (2.19)

Starting at an initial guess of the solution um,k , an iterative

update of the displacement is computed via

Δum,k = −
[

Km,k
]−1

· fm,k, (2.20)

leading to

um,k+1 = um,k + Δum,k . (2.21)

This iterative procedure is repeated until a prescribed con-

vergence criterion is satisfied. Since the focus lies on the

micro-scale problem, the superscripts (•)m will be omitted

in the following in order to improve readability and only be

used if it is required in the context. Furthermore, Eq. (2.17)

will be solved for the unknown fluctuation field ũ instead for

the micro displacement field u.

3 Reduced-order modelling

As presented in the previous section, one possibility to

compute approximate solutions to the microscopic problem

defined by Eq. (2.1) involves the use of the Finite Element

Method. Depending on the discretisation of the considered

domain this may lead to large-scale systems. Especially

in a multi-query context, as is the case in computational

homogenisation, this leads to high computational costs. The

solutions of such systems often lie in an affine subspace

of lower dimension and therefore techniques to reduce the

dimensionality of such problems are desired. Within the

scope of this study a POD-based ROM approach is applied,

including various hyper-reduction techniques.

3.1 Proper Orthogonal Decomposition

Consider discrete values a(•) j , e.g. displacement fluctuation

values of the BVP of the micro-scale problem, solved using

the Finite Element Method. These so-called snapshots are

arranged into a matrix A

A(ũ) =
[

a(ũ)1
, ..., a(ũ)ns

]

∈ R
n×ns , (3.1)
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with rank d ≤ min(n, ns), n denoting the number of degrees

of freedom of the FEM model and ns the number of snap-

shots. These solutions span a certain space denoted by V .

The snapshot POD [36] is then used to filter out the dominant

characteristics, allowing the computation of an orthonormal

basis, that best suites a rank l ≪ d approximation of the

snapshots in a least-squares sense. This task can be formu-

lated as a constraint optimization problem. It can be shown

that the solution of this optimization problem is given by the

first l left singular vectors U (:, 1 : l) of A(ũ) = U · Σ · VT

called the POD basis of rank l [2,40]. The basis vectors

optimally represent the snapshots in a least-squares sense

for the given rank l approximation. For the choice of a

suitable l, it is useful to consider a truncation criterion ε

in order to select the first l POD modes. For a system of

rank d the criterion may be defined in terms of the singular

values σi as

l∑

i=1

σ 2
i

d∑

i=1

σ 2
i

≥ 1 − ε, (3.2)

which gives information about the ability of the truncated

basis to reproduce the snapshots. In the following, POD

bases will be abbreviated by Ur
(•)

, e.g. Ur
(ũ)

∈ R
n×l for an l-

dimensional POD basis of the displacement fluctuation field

ũ. In case of large snapshot sets, a nested POD as given

in [4,32] may be used, which in essence partitions the snap-

shots into smaller sets, computes a lower rank approximation

of each set and eventually computes a POD of the low rank

approximations of the snapshot sets.

3.2 Projection approaches

Introducing the dimensionality reduction for the primary

unknown via the POD renders an overdetermined system

of equations and therefore suitable projection techniques are

required. The widely used Galerkin projection and an alter-

native Petrov-Galerkin projection are briefly reviewed in this

section. For a more detailed discussion the reader is referred

to [5,35].

3.2.1 Galerkin projection

Employing the Galerkin projection the fluctuation field ũ

and the test function are approximated using the POD basis

vectors, i. e.

ũ = Ur
(ũ)

︸︷︷︸

n×l

· û
︸︷︷︸

l×1

and δu = Ur
(ũ)

︸︷︷︸

n×l

· δû
︸︷︷︸

l×1

, (3.3)

with the generalised coordinates û for the reduced model.

Inserting the definitions from Eq. (3.3) into Eq. (2.17) renders

the reduced nonlinear term

f̂ = Ur
(ũ)

T

︸ ︷︷ ︸

l×n

· f
(

Ur
(ũ) · û

)

︸ ︷︷ ︸

n×1

(3.4)

and the corresponding reduced tangent stiffness matrix

K̂ = Ur
(ũ)

T

︸ ︷︷ ︸

l×n

· K
(

Ur
(ũ) · û

)

︸ ︷︷ ︸

n×n

· Ur
(ũ)

︸︷︷︸

n×l

. (3.5)

Recalling the dimension of the POD basis matrix Ur
(ũ)

∈

R
n×l , with n equal to the number of degrees of freedom and

l the number of selected modes according to a chosen error

criterion, the obvious benefit of this procedure is that now a

system of equations for only l unknowns has to be solved.

This decreases the computational cost especially for l ≪ n.

Using the iterative Newton-Raphson scheme

Δû = −
[

K̂k
]−1

· f̂ (3.6)

leads to the updated approximate solution

ûk+1 = ûk + Δû. (3.7)

As shown in [5,35] this projection, which produces Eq. (3.6),

is optimal in the sense that it minimizes the error between

the solutions of the reduced and the full order model in the

K-norm:

Δû = arg min
w∈Rl

∥
∥
∥Ur

(ũ) · w −
[

−K−1 · f
]∥
∥
∥

K
(3.8)

Thereby the tangent stiffness matrix has to be symmetric pos-

itive definite. It will be shown in Sect. 3.3 that neither of the

hyper-reduction techniques discussed in this work guaran-

tees the symmetry of the unreduced tangent stiffness matrix

given in Eq. (3.20). Hence, the Galerkin projection combined

with the hyper-reduction approaches as discussed within the

work is not optimal in the sense of Eq. (3.8).

3.2.2 Petrov-Galerkin projection

As shown in Eq. (3.4) and Eq. (3.5) the Galerkin projection

multiplies Ur
(ũ)

T from the left. An alternative approach is

given by selecting
[

K · Ur
(ũ)

]T

to be multiplied from the left,

which results in

f̂ = Ur
(ũ)

T
KT

︸ ︷︷ ︸

l×n

· f
︸︷︷︸

n×1

(3.9)
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and

K̂ = Ur
(ũ)

T
KT

︸ ︷︷ ︸

l×n

· K
(

Ur
(ũ) · û

)

︸ ︷︷ ︸

n×n

· Ur
(ũ)

︸︷︷︸

n×l

. (3.10)

This approach renders

Δû = arg min
w∈Rl

∥
∥
∥Ur

(ũ) · w −
[

−K−1 · f
]∥
∥
∥

KTK
(3.11)

and corresponds to the least-square problem

Δû = arg min
w∈Rl

∥
∥
∥K · Ur

(ũ) · w + f

∥
∥
∥

2
, (3.12)

requiring the tangent stiffness matrix solely to be regular [5,

35].

While reducing the number of unknowns, the nonlinear

terms still have to be evaluated at the full scale and projected

onto the subspace at every iteration step, which clearly limits

the computational savings. Hence, further reduction tech-

niques have to be applied in order to significantly reduce the

computational cost.

3.3 Hyper-reduction

As previously highlighted, the direct projection approach still

depends on the full scale dimension n, due to the evaluation of

the nonlinear terms. There exists a variety of approximation

techniques for nonlinearities such as Empirical Interpolation

Method (EIM) [1], its extension Discrete Empirical Inter-

polation Method (DEIM) [7] or the Gappy-POD [5,13],

amongst others. It should be noted that, as shown in [18],

employing hyper-reduction may lead to ill-posed systems,

since the internal force vector, which is approximated using

hyper-reduction, is zero at a converged state. Within our stud-

ies the bases for the subsequent hyper-reduction techniques

are computed using snapshots of the internal force vector

during the iterative solution process (the vector is non-zero).

Hence, using a non-truncated basis for the approximated non-

linearity, one obtains the same internal force vector as that of

the full order model, which justifies this approach. Within the

present study the DEIM and the Gappy-POD in combination

with the discussed projection approaches are compared and

will therefore be shortly discussed.

3.3.1 Discrete empirical interpolation method

In essence, this method approximates a nonlinear function as

f (ũ (μ)) ≈ Ur
(f) · c (ũ (μ)) , (3.13)

where the parameter μ is introduced to denote the depen-

dence of the fluctuation field on the macroscopic deformation

gradient FM, used to compute the macroscopic displacement

field. The parameter stems from a suitable parameter space

μ ∈ D ⊂ R
d , e. g. μ =

[

FM
11, FM

12, FM
21, FM

22

]

∈ D ⊂ R
4,

for the two dimensional case. The direct projection approach

requires the collection of snapshots a(ũ)i
of the Finite Ele-

ment approximated fluctuation field arranged into A(ũ) in

order to compute the POD basis. Using DEIM, snapshots of

the corresponding nonlinear function a(f)i , see Eq. (2.17),

are collected during the iterative solution procedure in the

offline phase and assembled into A(f),

A(f) =
[

a(f)1, ..., a(f)ns

]

, (3.14)

where ns equals the number of considered snapshots. Per-

forming the POD of A(f) renders the matrix Ur
(f) ∈ R

n×k ,

representing a k-dimensional orthonormal basis, i.e. k modes

are considered, for the space spanned by the snapshots of the

nonlinear term. The coefficients of c in Eq. (3.13) are com-

puted using k rows of f (ũ (μ))

P
T · f =

[

P
T · Ur

(f)

]

· c (3.15)

where P denotes an extraction operator. This may be con-

sidered as a matrix composed of k vectors

P =
[

iρ1, ..., iρk

]

∈ R
n×k, (3.16)

where iρi
= [0, ..., 0, 1, 0, ..., 0]T denotes a vector in which

the position of the only nonzero entry corresponds to the

index ρi [7]. Since the matrix
[

PT · Ur
(f)

]

is always regu-

lar [7] the coefficients of c can be uniquely determined. This

leads together with Eq. (3.15) to the DEIM approximation

f ≈ Ur
(f) · c = Ur

(f) ·
[

P
T · Ur

(f)

]−1

︸ ︷︷ ︸

n×k

· PT · f
︸ ︷︷ ︸

k×1

. (3.17)

The nonlinear term f now only needs to be evaluated at k

entries specified by P . The corresponding DEIM indices

ρ are determined using algorithm 1, proposed in [7], which

computes the indices ρ based on the basis Ur
(f). The reduced

nonlinear term reads after Galerkin projection

f̂ = Ur
(ũ)

T
· Ur

(f) ·
[

P
T · Ur

(f)

]−1

︸ ︷︷ ︸

l×k

· PT · f
︸ ︷︷ ︸

k×1

, (3.18)

where the first term, of dimension l × k, represents a con-

stant quantity and is thus computed during the offline phase.

Online only k components, corresponding to the k DEIM

indices, need to be computed. The tangent is obtained as the

derivative of Eq. (3.18),
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K̂ = Ur
(ũ)

T
· Ur

(f) ·
[

P
T · Ur

(f)

]−1

︸ ︷︷ ︸

l×k

· PT · K · Ur
(ũ)

︸ ︷︷ ︸

k×l

.

(3.19)

The part of (3.19) which represents the tangent approxima-

tion,

K̃ = Ur
(f) ·

[

P
T · Ur

(f)

]−1

︸ ︷︷ ︸

n×k

· PT · K
︸ ︷︷ ︸

k×n

, (3.20)

may not be symmetric as pointed out by [5,34]. Hence,

applying a Galerkin projection is not optimal in the sense of

Eq. (3.8). The same holds for the Gappy-POD in combination

with a Galerkin projection. Consider therefore the following

short example with the quantities

K =

⎡

⎢
⎢
⎣

1 0 0 0

0 2 −1 0

0 −1 2 0

0 0 0 1

⎤

⎥
⎥
⎦

, Ur
(f) =

⎡

⎢
⎢
⎣

0 0

−0.7071 0

0.7071 0

0 1

⎤

⎥
⎥
⎦

and the sampling matrix

P =

⎡

⎢
⎢
⎣

0 0

1 0

0 0

0 1

⎤

⎥
⎥
⎦

.

Using these matrices to evaluate Eq. (3.20) produces

K̃ =

⎡

⎢
⎢
⎣

0 0 0 0

0 2 −1 0

0 −2 1 0

0 0 0 1

⎤

⎥
⎥
⎦

, (3.21)

which is not symmetric. This small example shows that it

can not be guaranteed that the tangent approximation in

Eq. (3.20) preserves symmetry.

3.3.2 Gappy-POD

Contrary to the interpolation in Eq. (3.17) the Gappy-POD

[5,9,13] uses regression to approximate the nonlinear func-

tion. The approximation of the nonlinear term results in

f ≈ Ur
(f) · c = Ur

(f) ·
[

P
T · Ur

(f)

]†

︸ ︷︷ ︸

n×ks

· PT · f
︸ ︷︷ ︸

ks×1

. (3.22)

Algorithm 1 Compute the DEIM indices ρi

Input: POD basis Ur
(f)

Output: ρ = [ρi , ..., ρk ] containing the k DEIM indices

u(f) j = Ur
(f) (:, j)

set ρ1 such that |u(f)1 (ρ1) | = ‖u(f)1‖∞

U (:, 1) = u(f)1, P (:, 1) = iρ1

for j=2; j <= k; j++ do

c =
(

P
T · U

)−1
· P

T · u(f) j

r = u(f) j − (U · c)

set ρ j such that |r
(

ρ j

)

| = ‖r‖∞

Update U, P:

U (:, j) = u(f) j , P (:, j) = iρ j

end for

Here, ks indicates the number of sampling points with ks ≥

k, i.e. more sampling points than modes (keeping in mind

that Ur
(f) ∈ R

n×k) and † denotes the pseudo-inverse. The

tangent is computed analogously to Eq. (3.19). Similar to [5,

9], algorithm 2 represents the point selection algorithm used

in this work.

Algorithm 2 Compute the indices ρi for Gappy-POD

Input: POD basis Ur
(f) ∈ R

n×ks

Output: ρ =
[

ρi , ..., ρks

]

containing the ks sampling indices

set ρ1 such that |Ur
(f) (ρ1, 1) | = ‖Ur

(f) (:, 1) ‖∞

P (:, 1) = iρ1 , Q = Ur
(f) (:, 1)

for j=2; j <= ks ; j++ do

V = P
T · Q

W = VTV

z = Ur
(f)(:, j) // closest truncated basis vectors if j > k

c = W−1 · VT · P
T · z

r = z − (Q · c)

set ρ j such that |r
(

ρ j

)

| = ‖r‖∞

Update P, Q:

b := min( j, k) // max dimension of Q = k

P (:, j) = iρ j
, Q = Ur

(f) (:, 1 : b)

end for

3.3.3 Gauss-Newton with approximated tensors (GNAT)

Instead of combining Galerkin projection and Gappy-POD,

the GNAT solves the least-square problem in Eq. (3.12) using

a Gappy-POD approximation of the nonlinear terms, which

reads

Δû = arg min
w∈Rl

∥
∥
∥Y · P

T · K · Ur
(ũ) · w + X · P

T · f

∥
∥
∥

2

(3.23)
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with the matrices

X = Ur
(K)

T
· Ur

(f) ·
[

P
T · Ur

(f)

]†
∈ R

k×ks

Y =
[

P
T · Ur

(K)

]†
∈ R

k×ks ,

using Ur
(K)

T · Ur
(K)

= I ∈ R
k×k , while being independent of

the dimension of the FEM model n. Here, the quantity Ur
(K)

is

introduced to account for the possibility of different snapshot

selection strategies for the gappy approximation of the resid-

ual and the system tangent as presented in [5,6]. Within the

scope of the present work snapshots of the residual obtained

from the Finite Element model (including the iterative states

during the Newton-Raphson solution procedure) are used.

These serve as the input to build the reduced basis for both

the residual and the tangent, i.e. Ur
(K)

= Ur
(f).

4 Numerical examples

For the subsequent numerical examples a representative vol-

ume element of a Neo-Hookean hyperelastic material is used

as depicted in Fig. 2. The matrix material and the inclusions

differ in terms of the shear modulus , i.e. μm = 3.4 × 107

and μi = 2.0 × 108, while the Poisson’s ratio is set to be

ν = 0.23. The subscripts {•}m and {•}i denote the matrix and

the inclusion respectively. The Finite Element discretisation

renders of a total of 2.312 unknowns and the computations

are carried out using a plane strain configuration.

As mentioned in Sect. 3 a snapshot POD is used to construct

a reduced basis for the unknown fluctuation field. Hence, a

training set Dtrain is necessary for which the full order model

has to be computed. For the subsequent examples the training

set was specified to be

Fig. 2 Finite Element model of fiber reinforced material

Fig. 3 Examples for POD modes: a and b show the 1st and 19th mode

of Ur
(ũ)

respectively; c and d show the 5th and 22th mode of Ur
(f) respec-

tively

Dtrain = 1 + ΔFM

with
[

ΔFM
]

i j
∈ {−0.2,−0.12,−0.04,

0.04, 0.12, 0.2} (4.1)

Based on this training set a few POD basis modes for the

fluctuation field and the nonlinear function are depicted in

Fig. 3. One may observe the influence of taking snapshots of

f during the iterative Newton-Raphson procedure where the

internal force vector is non-zero.

4.1 Robustness considerations

In this section the aforementioned different model reduction

approaches, i.e. DEIM, Gappy-POD and GNAT are tested

for various dimensionalities of Ur
(ũ)

and Ur
(f) using the test

set

Dtest = 1 + ΔFM

with
[

ΔFM
]

i j
∈ {−0.1986, 0.1886,−0.1321,

0.1461,−0.0521, 0.0921}, (4.2)

which is different to the set Dtrain. Therefore each configura-

tion is tested against 1296 testcases. In case that any of said

test cases does not converge using the reduced model the

configuration is highlighted with an “x” in the subsequent

result plots. Otherwise the color indicates the relative error

of the fluctuation field in the L2 norm
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Fig. 4 Using DEIM to compute Dtest for various dimensions of the

reduced bases. A “x” denotes the case were at least one test case within

Dtest did not converge

ǫrel
ũ =

‖ũFEM − ũROM‖2

‖ũFEM‖2
,

averaged over the 1296 testcases. Furthermore the following

measures are introduced:

ǫrel
PM =

∥
∥PM

FEM−PM
ROM

∥
∥

F
∥
∥PM

FEM

∥
∥

F

, ǫrel
LM =

∥
∥L

M
FEM−L

M
ROM

∥
∥

F
∥
∥L

M
FEM

∥
∥

F

Figure 4 shows the results for the DEIM approach as

described in Sect. 3.

One may observe that for various configurations the method

rendered scenarios where at least one test case did not con-

verge. In the multi-query context this clearly is an undesirable

result as the model should return the quantities of interest

for arbitrary input parameters. Considering the errors, they

behave as expected and decrease for an increasing number

of basis vector Ur
(ũ)

. The influence of the dimension of Ur
(f)

appears to be rather small after a certain threshold, see also

Figs. 8 and 9.

In [9] it has been shown that using a Gappy-POD instead

of pure interpolation benefits the condition number of the

reduced tangent and should lead to a more robust model.

This has also been observed within this work as shown in

Fig. 5. While rendering a more robust model with respect to

changes of the input parameters, as well as more accurate

results, there were still configurations that lead to diverging

test cases.

This might be due to a possible loss of symmetry through

the application of a hyper-reduction method and the sub-

sequent non-optimal Galerkin projection. To illustrate the

asymmetry of K̃ a comparison of the sparsity patterns for the

given example from Fig. 2 is shown in Fig. 6.

Fig. 5 Using Gappy-POD with Galerkin projection to compute Dtest

for various dimensions of the reduced bases with ks/k = 2. A “x”

denotes the case were at least one test case within Dtest did not converge

Fig. 6 Sparsity Pattern of K and K̃ (with k = 10 and rank
(

K̃
)

= 10)

Fig. 7 Using GNAT to compute Dtest for various dimensions of the

reduced bases with ks/k = 2. A “x” denotes the case were at least one

test case within Dtest did not converge

Employing therefore the GNAT, suited for non-symmetric

tangent matrices, lead to the most robust model within the

scope of this study as shown in Fig. 7.
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Fig. 8 The relative error of the averaged Piola stress tensor computed

by the FEM and the reduced model for an increasing number of l modes

of Ur
(ũ)

. A missing marker denotes a ROM with at least one diverged

test case of Dtest (see Figs. 4–7)

Fig. 9 The relative error of the macroscopic tangent computed by the

FEM and the reduced model for an increasing number of l modes of

Ur
(ũ)

. A missing marker denotes a ROM with at least one diverged test

case of Dtest (see Figs. 4–7)

One can observe that no configuration lead to a diverging

test case and the method appears to be very robust. Further-

more, equivalently for DEIM and Gappy-POD, increasing

the dimension of Ur
(ũ)

decreases the error, while a change

of the dimensionality of Ur
(f) has only minor effect on the

accuracy above a certain threshold. This gets confirmed con-

sidering Figs. 8 and 9 which depict the errors for the averaged

stresses and the macroscopic tangent.

Fig. 10 The reduced residual (r̂ = −X · P
T · f) from GNAT versus

the relative error of the fluctuation field ǫrel
ũ

with ks/k = 2; for every l

the error is averaged over all test cases within Dtest

Employing Gappy-POD with Galerkin projection ren-

dered the most accurate results while the GNAT rendered

the most robust model and showed no convergence difficul-

ties. Though the Gappy-POD is more robust compared to

the DEIM, there is no guarantee that a different Dtest would

yield the same behaviour. It should be noted that the reduced

model has been used for the perturbation procedure from

Sect. 2.2 to obtain the macroscopic tangent components while

the stresses were averaged over the full domain using the

solution of the reduced model Ur
(ũ)

· û.

A further benefit of GNAT is that it minimizes the global

full order residual. Therefore using the reduced residual

r̂ = −X · PT · f from Eq. (3.23) may serve as an error

indicator, considering the relation to the relative error as

depicted in Fig. 10. The reduced residual as well as the rel-

ative error decrease with an increasing size of the reduced

basis and match quite well up to a certain offset. This

may be beneficial considering greedy selection algorithms

to build the ROM, which rely on the ability to estimate or

at least indicate the error of the reduced model approxima-

tion.

The relation between the errors ǫrel
ũ

and the residual is

further investigated for a given ROM and all test cases of

the parameter set Dtest in Fig. 11. Based on the previous

results the ROM dimensions are set to l = 45, k = 90

and ks/k = 2 using GNAT. It can be seen that the relative

error has minor fluctuations but does not show consider-

able deviations from its mean. The same holds for the norm

of the reduced residual from the GNAT model. Hence, the

norm of the reduced residual appears to be a computational

cheap and reliable error indicator which could be used in

future studies in conjunction with an adaptive sampling algo-

rithm, e.g. [32], instead of using Dtrain to build the reduced

model.
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Fig. 11 The norm of the reduced residual compared to the relative

error of the fluctuation field for all test cases within Dtest using GNAT

with l = 45, k = 90 and ks/k = 2

4.2 Local fields

Besides acting as a simple input-output model it is possible

in computational homogenisation to investigate local fields.

Considering a test case with

FM =

(

−1.1986 −0.1986

−0.1986 −1.1986

)

(4.3)

the Piola stress components computed by the FEM and the

reduced model are compared in Fig. 12 for the GNAT with

l = 45, k = 90 and ks/k = 2. Hence, instead of solving

for 2.312 unknowns only 45 unknowns have to be deter-

mined reducing the computational cost considerably. It can

be seen that the xx-component of Pm computed by the FEM

model in Fig. 12a and the GNAT in Fig. 12b match quite well

which is supported considering the relative errors in percent

(a) (b)

Fig. 12 In a and b the xx-components of the Piola stress tensor (com-

puted using the full order model and the ROM) are shown

(a) (b)

(c) (d)

Fig. 13 Figures a–d show the relative error of the individual stress

components in percent

of the individual components of the stress tensor given in

Fig. 13a–d. For the current ROM configuration the errors

appear to be acceptable small and correlate with the obser-

vations in all the error plots throughout this section.

5 Conclusion

Within the scope of the present work reduced-order mod-

elling techniques based on the Proper Orthogonal Decompo-

sition and so-called hyper-reduction techniques have been

applied in the context of computational homogenisation

of hyperelastic materials. The focus has thereby been the

accuracy and robustness of the reduced model, compar-

ing different hyper-reduction and projection approaches. It

has been shown that introducing an additional approxima-

tion of the nonlinear terms via an empirical interpolation

or Gappy-POD may not preserve the symmetry of the sys-

tem tangent. This leads to a non-optimal Galerkin projection.

As shown in the numerical examples this can cause conver-

gence problems. This is clearly an undesirable property in the

multi-query context as given in computational homogenisa-

tion. The Gauss-Newton like approach (GNAT), relying on

a Petrov-Galerkin projection suited for non-symmetric tan-
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gent matrices, rendered the most robust model and showed no

convergence problems while minimizing the global residual.

Future studies should aim towards more effective methods

to obtain error estimates for the outputs of interest and aver-

aging procedures. Furthermore, alternative approximations

of the system tangent, e.g. [5,29,38], could be investigated.

Yet some of these methods require additional high dimen-

sional snapshots of the sparse system tangent which becomes

computational infeasible rapidly. For instance considering

only the non-zero elements of the tangent from the presented

examples in Sect. 4 renders an additional snapshot of the size

40.836 for the 2.312 unknowns in every iteration step.

Regarding the snapshot selection adaptive strategies,

e.g. [32], could be employed to adaptively select the posi-

tions in parameter space for which the full model should be

evaluated in order to build the ROM.
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