LENTZ, Ronald Raymond, 1943A NUMERICAL STUDY OF ELECTROMAGNETIC SCATTERING FROM OCEAN-LIKE SURFACES.
The Ohio State University, Ph.D., 1971 Engineering, electrical

University Microfilms, A XEROX Company, Ann Arbor, Michigan

A NUMERICAL STUDY OF ELECTROMAGNETIC SCATTERING FROM OCEAN-LIKE SURFACES

A DISSERTATION

Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University

By

Ronald Raymond Lentz, B.E.E., M.Sc.

The Ohio State University 1971

Approved by

Willich. Peake
 Adviser
 Department of Electrical Engineering

PLEASE NOTE:

Some pages have light and indistinct print. Filmed as received.

UNIVERSITY MICROFILMS.

ACKNOWLEDGMENTS

The author wishes to express his sincere gratitude to all those persons at the ElectroScience Laboratory and Computer Center who aided in the completion of this study. Special acknowledgment is extended to my advisor, Dr. William Peake, for his guidance and help. Finally, Dr. J. H. Richmond deserves thanks for many interesting conversations about computer techniques.

The work reported in this dissertation was supported in part by Contract NAS1-9998 between the National Aeronautics and Space Administration and The Ohio State University Research Foundation.

VITA

November 18, 1943 Born - Columbus, Ohio
June 1966 B.E.E., The Ohio State UniversityColumbus, OhioGraduate Research Assistant, Antenna Laboratory,The Ohio State University, Columbus, Ohio
September 1966 -
September 1970.1970
National Science Foundation Traineeship,The Ohio State University, Columbus, Ohio
Graduate Research Associate,ElectroScience Laboratory,The Ohio State University, Columbus, Ohio

LIST OF ILLUSTRATIONS

Figure Page

1. The scattering surface 3
2. Ray tube geometry 6
3. Specular point geometry 8
4. Far field scattering geometry 11
5. Geometry for specular point location 13
6. Specular point shadowing 16
7. Specular points on a sinusoidal surface 19
8. Geometry for T.M. physical optics 22
9. Geometry for T.E. physical optics 24
10. Optically invisible surface currents 26
11. Shadowing at the right end point 27
12. Illustration of shadowed and illuminated zones 28
13. Geome'try for T.M. scattering 35
14. ${ }^{-}$Modification of true contour to a shortened contour 37
15. Approximation of the surface current 39
16. Breakdown of surface into segments of length $D C$ 42
17. Contour and tapering function used to test the shortened contour assumptions 49
18. Scattered field with and wi thout extended boundaries, T.M. case 50
19. Geometry for wedge test 51
Figure Page
20. Computed $\left|\mathrm{J}_{\mathrm{s}}\right|$ on a wedge, T.M. case 52
21. Wedge scattered fields, T.M. case 52
22. Three dimensional geometry for T.E. integral equation 53
23. Two dimensional geometry for T.E. integral equation 54
24. Open contour 55
25. Geometry for calculation of far field scattering, T.E. polarization 58
26. Scattered field with and without extended boundaries, T.E. Case 62
27. Computed $\left|J_{\mathrm{S}}\right|$ near corner of a 90° wedge, T.E. polarization 63
28. Hedge scattered fields, T.E. case 63
29. Scattering from $50 \cos (2 \pi x / 800)$ as calculated by I.E., P.O., and G.O.; T.M. polarization 66
30. Scattering from $50 \cos (2 \pi x / 800)$ as calculated by I.E., P.O., and G.O.; T.E. polarization 67
31. Limitation of scattering directions predicted by geometrical optics 68
32. - Scattered fields predicted by P.O., G.O., and I.E.methods for $H(x)=5 \sin (2 \pi x / 200)$, T.M. polarization70
33. Scattered fields predicted by P.O., G.O., and I.E. methods for $H(x)=5 \sin (2 \pi x / 200)$, T.E. polarization 71
34. Scattered fields predicted by P.O., G.O., and I.E. methods for $H(x)=15 \sin (2 \pi x / 200)$, T.M. polarization 72
35. \quad Scattered fields predicted by P.O., G.O., and I.E. methods for $H(x)=15 \sin (2 \pi x / 200)$, T.E. polarization 73
36. Scattered fields predicted by P.O., G.O., and I.E. methods for $H(x)=25 \sin (2 \pi x / 200)$, T.M. polarization 74

LIST OF ILLUSTRATIONS (Cont.)

Figure Page
37. Scattered fields predicted by P.O., G.O., and I.E. methods for $H(x)=25 \sin (2 \pi x / 200)$, T.E. polarization 75
38. Agreement of geometrical and physical optics when they are incorrect 77
39. Perturbation theory test 80
40. Sea surface height spectrum 81
41. Expected value of backscattered, $\left|E_{\mathbf{z}}^{\mathbf{s}}\right|^{2}$ from ensemble 82
42. Storing a symmetric matrix in a linear array 130

TABLE OF CONTENTS
Page
ACKNOWLEDGMENTS $1 i$
VITA iii
LIST OF ILLUSTRATIONS iv
Chapter
I. INTRODUCTION 1
II. THE GEOMETRICAL OPTICS METHOD 6
A. Geometrical Optics 6
B. Discussion of the Geometrical Optics Program 13
C. Using the Geometrical Optics Program 18
LII. THE PHYSICAL OPTICS METHOD 20
A. . The Physical Optics Approximation 20
B. Discussion of the Physical Optics Computer 26
C. Comments on the Use of the Physical Optics Programs 30
IV. THE INTEGRAL EQUATION METHOD 32
A. Moment Methods 32
B. Integral Equation for Transverse Magnetic Polarization 35
C. Discussion of the Computer Program for Transverse Magnetic Polarization 41
D. Tests of the Transverse Magnetic Integral Equation Programs 48
E. Integral Equation for Transverse Electric Polarization 53
F. Discussion of the Computer Program for the Trans verse Electric Polarization 59
G. Tests of the Transverse Electric Integral Equation Programs 61
V. APPLICATIONS 65

TABLE OF CONTENTS (Cont.)

Chapter Page
VI. SUMMARY AND CONCLUSIONS 83
Appendix
A. COMPUTER PROGRAMS 85
B. SOLUTION OF SYSTEMS OF SIMULTANEOUS LINEAR EQUATIONS. 125
REFERENCES 132

CHAPTER I

INTRODUCTION

The scattering of electromagnetic waves from the ocean surface has been of great interest for some time. In this work the scattering from one dimensional sea-like random surfaces is examined by a variety of computational methods, with a view to establishing what practical limitations must be satisfied on such surface parameters as radius of curvature, mean squared height, etc., in order that the statistical properties of the scattered radiation may be calculated with reasonable accuracy. The results of the computations are then used to discuss the applicability of the several theoretical models for sea-surface scattering (geometrical optics, physical optics, perturbation theory and the composite model) and the prospect for direct calculation of the scattered fields from the actual sea surface.

During the past few years, theoretical and experimental work here and abroad (Refs. [1]-[7]) has led to an understanding of the mechanisms responsible for scattering and emission of microwaves by the ocean. For off-normal backscatter, the "Bragg-scatter" from capillary and short wavelength components of the ocean surface, which can be calculated by perturbation theory, has explained the angular
and polarization dependence of the microwave radar return. When combined with the known height spectrum (Ref. [8]) of the ocean surface, it explains the weak dependence of backscatter on electromagnetic wavelength and wind velocity. Near the specular direction, i.e., near normal incidence for backscatter, the scattering is controlled by the slope distribution of the large scale structure of the surface. This part of the scattering is calculated by geometrical optics, and explains the dependence of the emissivity of the surface on wind velocity.

Nevertheless, the many assumptions required in finding the scattered fields by the perturbation or geometrical optics approximations, particularly assumptions about the Gaussian character of the surface height statistics, and the applicability of the theoretical approximations to the actual sea surface, have led to considerable discussion about the validity of the various theoretical solutions (Ref. [9]). Since straightforward verification by measurement is not practical, partly because of difficulty in the measurement process itself and partly because of the difficulty in specifying exactly what the surface was when the measurement was being made, it is desirable to have a direct method for calculating the scattering from a specific realization of the ocean surface. Direct calculations will allow a realistic assessment of the validity of the various theories, without any assumptions about the statistical properties of the surface. If a statistical average of the scattered fields over an ensemble of surface representations is required, it can be obtained (albeit at
some cost.) by a direct summation of the scattered fields from the individual surface representations.

The specific surfaces considered here are cylindrical perfectly conducting surfaces as shown in Fig. 1. The surface generators are

Fig. 1.--The scattering surface.
parallel to the z axis, and the surface elevation is specified by $y=H(X)$. The incident field is a plane wave whose direction of propagation lies in the x, y plane and makes an angle of THI with the positive x axis, while the observation direction makes an angle of THS with the positive x axis. Time dependence is assumed to be $e^{j \omega t}$ and has been suppressed throughout. All distances are measured in centimeters.

Three different methods for calculating the fields from such a surface are developed here. Although the details are discussed later it is desirable to outline each technique at this time.

The first approximate method is the geometrical optics technique (G.0.). For a given surface, and given scattering and incidence angles, the program locates the specular points on the surface (points where the local incidence angle equals the local scattering angle) and evaluates the radius of curvature at each specular point. The scattered far field is then found by summing the contribution from each of the specular points, including an extra 90° phase shift for the fields scattered from concave up portions of the surface. Shadowing of one section of the surface by another section may be taken into account.

The next approximation is the physical optics (P.O.) technique. For a given surface the scattered field is computed by integrating over the approximate surface current

$$
\begin{equation*}
\bar{J}_{s}=2 n \times H^{i} \tag{1}
\end{equation*}
$$

where \hat{n} is the outward normal to the surface and \dot{H}^{i} is the incident magnetic field. Shadowing is always taken into account, as this is implicit in the physical optics formulation.

The last method developed here is based on a point matching solution to the integral equation satisfied by the true surface current J_{s}." The scattered fields are then found by integrating over the surface currents. Test cases (e.g., the wedge problem) have shown this method to be by far the most accurate; hence it is used as a standard to which all others are compared. However, because of computer storage limitations, this program can not handle surfaces whose arclengths are greater than $\downarrow 60$ electrical
wavelengths, whereas the G.O. and P.O. programs can, in principle, handle surfaces of any length provided sufficient computer time is available.

In order to avoid edge effects, tapering of the incident field is necessary in the integral equation solutions. The same tapering has been applied in both the G.O. and P.O. solutions so that they can be directily compared to the exact fields. The tapering applied here is illustrated in Fig. 14 of Chapter IV.

In the succeeding chapters each of these methods will be described in detail. By comparing the results for a series of test surfaces, the limitations of each method are established.

CHAPTER II

THE GEOMETRICAL OPTICS METHOD

The first approach to examining the scattering from a one dimensional rough surface is the geometrical optics method. By this is meant that the scattered field is computed by finding the specular points on the surface, and associating with each such point a scattered field amplitude and phase which depend on the geometrical properties of the surface at the specular point. A. Geometrical Optics.

Conservation of energy flux along a ray path will provide us with the geometrical optics field strengths (Ref. [10]). Consider the two dimensional ray tube shown in Fig. 2. If u_{0} is the field strength at some reference point at a distance ρ from the caustic and u is the field strength at distance $\rho+\ell$ from the caustic, then the conservation of energy in the ray tube requires

Fig. 2.--Ray tube geometry.

$$
\begin{equation*}
u_{0}^{2} \rho d \theta=u^{2}(\rho+\ell) d \theta \tag{2}
\end{equation*}
$$

so that one may write
(3) $u(\ell)=u_{0} \sqrt{\frac{\rho}{\rho+\ell}} e^{-j k \ell}$.

The factor $e^{-j k \ell}$, with λ_{e} the electrical wavelength and (4) $k=2 \pi / \lambda_{e}$
accounts for the phase shift between ρ and $\rho+l$.. Equation (3) fails at ℓ equal to $-p$. This location (at the confluence of the rays) is termed a caustic. Kay and Keller (Ref. [11]) have demonstrated that at points beyond the caustic (ℓ less than .-p) Eq. (3) is still valid if a phase shift of $+90^{\circ}$ is introduced.

To use geonetrical optics it is necessary to find all points on the scattering body at which the law of reflection is satisfied locally for the particular set of THI and THS under consideration. Once these points are located Eq. (3) is used to calculate the scattered field. Figure 3 shows the geometry for the calculation of the scattered field from one such specular point. By the law of reflection, the local incidence and scattering angles are equal and are marked"ANG in the figure. The distances marked r_{c} and ρ are the radius of curvature and the distance from the specular point to the optical image of the source (i.e., the caustic distance) respectively. The distance ρ is given by a cylindrical mirror formula as

Fig. 3. --Specular point geometry.
(5)

$$
\frac{1}{\rho}=\frac{2}{\left|r_{c}\right| \cos (A N G)}+\frac{1}{l_{0}}
$$

In the cases considered here the distance to the line source, ℓ_{0}, will be assumed to be infinite, hence
(6)

$$
\rho=\frac{\left|r_{c}\right| \cos (A N G)}{2}
$$

If the specular point is taken as the reference position then Eq. (3) gives u_{s}, the scattered field at the observation position
(7)

$$
\begin{aligned}
u_{s} & =R u_{1} \sqrt{\frac{\rho}{\rho+\ell}} e^{-j k \ell} \\
& =R u_{i} \sqrt{\rho} e^{-j k \ell} / \sqrt{\ell} \text { for } \ell \gg \rho \text { (far field) }
\end{aligned}
$$

where u_{i} is the incident field evaluated at the specular point and R is a reflection coefficient. If the electric field is parallel to the surface generators (T.M. case) and u_{i} is taken as the incident electric field, then u_{s} is taken as the scattered electric field with $R=-1$. If the magnetic field is parallel to the surface generators (T.E. case) and u_{i} is taken as the incident magnetic field, then u_{s} is the scattered magnetic field and $R=+1$. For dielectric scatterers the corresponding Fresnel reflection coefficients are to be used for R. This makes the geometrical optics program the easiest - to convert from perfectly conducting bodies to penetrable bodies.

Up to this point the scattering surface has been assumed to be concave down at the specular point. If the body is concave up at the specular point then caustic position is above the surface instead of below, the scattered rays pass through the caustic on the way to the observation point if the observer is in the far field, and thus a phase shift of +90 degrees must be introduced. The distant scattered fields may then finally be written
(8) $E_{z}^{\mathbf{s}}(\ell)=-\left.E_{z}^{i}\right|_{\text {Specular }}$

$$
\sqrt{\frac{\left|r_{c}\right| \cos (A N G)}{2}} \frac{e^{-j k \ell}}{\sqrt{\ell}} \varepsilon
$$

for the T.M. case and

$$
\begin{equation*}
H_{z}^{s}(\ell)=\left.H_{z}^{1}\right|_{\substack{\text { Ppecular } \\ \text { Point }}} ^{\frac{\left|r_{c}\right| \cos (A N G)}{2}} \frac{e^{-j k \ell}}{\sqrt{\ell}} \varepsilon \tag{9}
\end{equation*}
$$

for the T.E. case, where ε is +1 if the surface is concave down at the specular point and $+j$ if the surface is concave up at the specular point.

On an actual surface there may be several specular points contributing to the total scattered field, so it is important to presserve the phase relationships among them. Phase reference is taken at the origin, and an incident wave of unit amplitude is assumed, ie.,

$$
\begin{array}{ll}
E_{Z}^{i}=e^{-j \bar{K}} \cdot \bar{R} & \text { (T.M. case) } \\
H_{Z}^{\mathbf{i}}=e^{-j \bar{k} \cdot \bar{R}} & \text { (T.E. case) }
\end{array}
$$

where

$$
\begin{equation*}
\bar{K} \cdot \bar{R}=\frac{2 \pi}{\lambda_{e}}(-x \cos (T H I)-H(x) \sin (T H I)) . \tag{12}
\end{equation*}
$$

With the aid of the geometry shown in Fig. 4, the scattered far field is found from Eqs. (8) and (9), with $\ell=\ell_{1}+\ell_{2}$, where

$$
\begin{equation*}
\Omega_{2}=-R \cdot \hat{U}_{S}=-x \cos (T H S)-H(x) \sin (T H S), \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
\hat{D}_{S}=\cos (T H S) \hat{x}+\sin (T H S) \hat{y} \tag{14}
\end{equation*}
$$

Fig. 4.--Far field scattering geometry.
is the unit vector in the scattering direction. Since $\ell_{1} \gg \ell_{2}$, Eq. (8) becomes, for the T.M. case
(15) $\quad E_{z}^{S}\left(\ell_{1}\right)=-\sqrt{\frac{\left|r_{c}\right| \cos (A N G)}{2}} \frac{e^{-j k \ell_{1}}}{\sqrt{\ell_{1}}} \varepsilon e^{j k Q(x)}$
where

$$
\begin{align*}
Q(x)= & x(\cos (T H I)+\cos (T H S))+H(x)(\sin (T H I) \tag{16}\\
& +\sin (T H S)) .
\end{align*}
$$

Similarly, for the T.E. case
(17) $\quad H_{z}^{S}\left(\ell_{1}\right)=\sqrt{\frac{\left|r_{c}\right| \cos (A N G)}{2}} \frac{e^{-j k \ell}}{\ell_{1}} e^{j k Q(x)}$

The total scattered field in the THS direction is the sum of the fields scattered by each of the specular points. The numerical values of the scattered fields as calculated by the programs of Appendix A, and plotted in the various figures of Chapter V are denoted by E_{Z}^{S} and H_{Z}^{S}, and have been normalized with respect to the actual fields $E_{z}^{S}\left(l_{1}\right), H_{z}^{S}\left(l_{1}\right)$ by
(18) $\left\{\begin{array}{l}E_{z}^{s} \\ H_{z}^{s}\end{array}\right\}=\sqrt{\ell_{1}} e^{j k \ell_{1}}\left\{\begin{array}{l}E_{z}^{s}\left(\ell_{1}\right) \\ H_{z}^{s}\left(\ell_{1}\right)\end{array}\right\}$

It is clear that Eqs. (15) and (17) fail if the radius of curvature is infinite at the specular point. This is because the source was assumed at infinity, i.e., $\ell_{0}+\infty$. If ℓ_{0} were to be held finite then from Eq. (5)
(19)

$$
\lim _{r_{c} \rightarrow \infty}=\ell_{0}
$$

and the singularity in Eqs. (15) and (17) would not occur. In addition to the singularities caused by an infinitely distant source, there are a number of other shortcomings of the G.O. approximation. Anong them are: a failure to account for wedge diffraction effects (radius of curvature goes to zero), a fallure to account for diffraction from shadow boundaries into shadowed regions (Ref. [12]), a fallure to properly predict the scattered fields if the surface
features subtend only a few Fresnel zones (Ref. [13]), and finally a failure to predict any scattered field if no specular point exists on the body.

Implicit in the geometrical optics technique is the concept of shadowing, that is, a specular point cannot contribute to the scattered field unless it can be seen by both the source and the observer. The program developed here can account for shadowing of this type.

B. Discussion of the Geometrical Optics Program

For geometrical. optics calculations the first order of business is the location of the specular points. Figure 5 shows the geometry.

Fig. 5.-Geometry for specular point location.

The surface height profile is described by $H(X)$ and the regions under investigation lies between XSTRT (X START) and XSTOP. THI and THS have already been defined; THN (THETA of the NORMAL) is the angle between the nomal (\hat{n}) to the surface and the positive x axis. Clearly

$$
\begin{equation*}
\operatorname{THN}(x)=\pi / 2+\operatorname{Tan}^{-1}(\mathrm{dH}(\mathrm{x}) / \mathrm{d} \mathrm{~d}) . \tag{20}
\end{equation*}
$$

The law of reflection gives $(x, H(X))$ as a specular point when
(21) $\quad \operatorname{THS}-\operatorname{THN}(X)=\operatorname{THN}(X)-\operatorname{THI}$
i.e.,
(22) $\quad(T H S+T H I) / 2=\operatorname{THN}(X)$.

The program calculates the function
(23) $\quad E(X)=(T H S+T H I) / 2-\left(\pi / 2+\operatorname{Tan}^{-1}(\mathrm{dH}(X) / d x)\right.$
for many points in the interval (XSTRT, XSTOP) and when this function changes sign a specular point has been located. The collection of points so located is stored in an array $\mathrm{XN}(\mathrm{J})$. To save running time two searches are made, first a coarse grain search and then, in the neighborhood of each specular point, a finer grain pass is made.

The search must satisfy two requirements. First, it must be fine enough to locate all specular points; this requires that the surface must be sampled often enough to get an adequate description of its structure. For example if the surface were described by a Fourier series then one would expect that sampling every twentieth of the minimum mechanical wavelength would be sufficient. secondly, the specular positions must be located to within a small fraction of an electrical wavelength so that the phase relationships among the various specular points are correctly maintained. In the light of
these considerations a first search might be made at a step size of (the minimum mechanical wavelength)/20. The fine grain search would then be made with a step size of say $\left(\lambda_{\mathrm{e}} / 20.0\right)$ or (1st step size/2.0) whichever is the smallest. In the program, the coarse step size is called DLTAX (DELTA X) and the fine step size is called DLTAXOO. The local angle of incidence for each specular point is stored in an array ANG(J). This angle is used in the computation of the scattered field and is shown in Fig. 5. Once a complete pass is made over the surface, the scattered fields are computed. It should be noted that whenever any one of THI, THS, $H(X)$ is changed, the complete pass must be made again.

The actual program, given in Appendix A, makes the scattered field computation for two cases:

1) all specular points contributing,
2) scattering from concave up specular points neglected when calculating the scattered field.

The second case, clearly incorrect, was an attempt to see how the computed fields would correspond to the results of certain statistical theories which neglect the concave up specular points. In the program the electric field calculated from the first case is called ESCNS (ELECTRIC FIELDS SCATTERED WITH NO SHADOWING) and from the second case ESCDNS (ELECTRIC FIELD SCATTERED FROM CONCAVE DOWN POINTS WITH NO SHADOWING).

Geometrical optics allows shadowing to be taken into account without much extra effort. The three types which may occur (specular point not illuminated by source, specular point not visible
to observer, both) are shown in Fig. 6. Each point in the array of specular points, $X N$, is examined for inbound shadowing in the following way. A line is passed through the specular point $X N_{j}$, $H\left(\mathrm{XN}_{j}\right)$ with slope $\tan (\mathrm{THI})$. The equation of the line is

$$
\begin{equation*}
Y I(X)=\operatorname{Tan}(T H I) X+\left(H\left(X N_{j}\right)-\operatorname{Tan}(T H I) X N_{j}\right) \tag{24}
\end{equation*}
$$

INBOUND SHADOWING ONLY

FIg. 6.--Specular point shadowing.

Then x is incremented in the proper direction until one of the following occurs. The first possibility is that at some point $x, Y I(x)$ becomes greater than the maximum value that $H(x)$ can attain for any value of x in the interval XSTRT, XSTOP. This value of $H(x)$ is called HMAX and must be supplied for each surface being considered. If the surface is a sum of sinusoids then HMAX is equal to the sum of the individual magnitudes. The second possibility is that at some point the value of x is incremented out of the interval (XSTRT, XSTOP) being considered. The third and final possibility is that at some point x the line $\mathrm{YI}(\mathrm{x})$ intersects the surface profile $H(x)$. When the first or second case occurs the specular point' is not shadowed. In the third case the specuiar point is inbound shadowed and for that particular $j, \operatorname{XN}(\mathrm{j})$ is set equal to a number much larger than XSTOP. This allows X_{j} to be skipped when the contribution from each of the specular points is being computed. A very similar test is applied for outbound shadowing.

When both the inbound and the outbound shadowing tests are completed the array of specular point positions contains values which are either in the range XSTRT $<X<X S T O P$ or $X N_{j} \gg$ XSTOP. The scattered field is calculated as in the case where shadowing is neglected except that when $X N_{j}>X S T O P$ the field from this specular point is not put into the sum. The scattered field with shadowing accounted for is called ESCHS (ELECTRIC FIELD SCATTERED WITH SHADOWING) and the scattered field calculated with only concave down non-shadowed specular points contributing is called ESCD.

C. Using the Geometrical Optics Program

While the storage requirement is minimal, the running time of this program depends largely on the step sizes which have to be used during the search for the specular points, and the number of scattering angles. This means that as the length of the surface increases, the time per pass required to find the specular points goes up and the number of passes over the surface also increases, since to see detail. in the scattered field pattem the scattering angle must be examined at a larger number of points (finer grain). The half-power beanwidth of a uniformly illuminated aperture of Width XSTOP-XSTRT,

$$
\begin{equation*}
\text { beamwidth } \cong \frac{0.88 \lambda_{e}}{\text { XSTOP - XSTRT }} \text { radians } \tag{25}
\end{equation*}
$$

affords a crude estimate of the fineness of the grain which must be taken. The increment in THS should be less than a fifth of this. The program has been checked for several cases, two of which will now be mentioned. The simplest check was the comparison with hand calculations for a surface described by

$$
\begin{equation*}
H(x)=50 \cos (2 \pi x / 800) \tag{26}
\end{equation*}
$$

With x in the range $(-200,200)$. This surface has only one specular point or none at all depending upon THI and THS. Another check was performed for a sinusoidal surface like the one shown in Fig. 7.

Fig. 7.--Specular points on a sinusoidal surface.

In this case the specular return comes from a collection of regularly spaced points which look like a pair of linear arrays of point sources. The program found the specular points and calculated the total scattered field correctly.

CHAPTER III

THE PHYSICAL OPTICS METHOD

The next complexity of approximation to the scattered fields to be considered here is given by the physical optics method. A. The Physical Optics Approximation

Physical optics (P.0.), (Ref. [14]), approximates the true surface currents on a perfectly conducting body by the currents

$$
J_{s}=\left\{\begin{array}{ll}
2 \hat{n} \times \bar{H}^{\prime} & \text { on the portions of the surface which are } \tag{27}\\
\text { illuminated }
\end{array} \quad \begin{array}{ll}
\text { on the portions of the surface which are } \\
\text { shadowed }
\end{array}\right.
$$

where \hat{n} is the outward normal to the surface and \bar{H}^{-1} is the incident magnetic field evaluated at the surface. These approximate currents are then used in the radiation integral to calculate the scattered fields. The P.O. surface current is exact if the scattering body is perfectly conducting half space and the incident field is a plane wave. As the surface curvature decreases the P.0. currents depart more and more from the true currents; as the curvature at some point on
do the scattered fields predicted by P.O. satisfy the reciprocity theorem except for backscattering. Nevertheless, the P.O. method has a significant advantage over 6.0 . in that the fields remain
bounded even if the radius of curvature of the surface becomes in-scattered finite. Hence the flat facets of a surface can be approximately handled.

Whether or not P.O. provides any more useful $\quad n$ than G.O. is a question of long standing, and the answer seems to depend upon the geometry of the scattering body (Ref. [15]). For the kind of surfaces considered here it will appear that P.O. gives a good approximation to the scattered fields over a significantly wider range of surface characteristics than G.O. It is important to note that in this work the far field radiation integral over the physical optics currents is evaluated numerically to give the scattered fields. Unlike a number of rough surface scattering theories (Ref. [16]), no stationary phase approximation to the far field radiation integral is used. It is well known (Ref. [17]) that when the stationary phase approximation must be made, one obtains the G.O. result and there is then no difference between the two approaches.

The far-zone scattered fields will now be calculated using the physical optics currents. In the T.M. case, (see Fig. 8) the incident electric field is a z polarized plane wave of unit magnitude and the incident magnetic field is
(28) $\quad \vec{H}^{\prime}=e^{+j k(x \cos (T H I)+H(x) \sin (T H I))}[-\sin (T H I) \hat{x}+\cos (T H I) y] / n$ Where n is the Impedance of free space. Using Ref. [18] and the fact that the tangential electric field vanishes on the surface, the scattered electric field is given by

Fig. 8.--Geometry for T.M. physical optics.

$$
\begin{equation*}
E^{s}\left(\bar{r}_{0}\right)=-\frac{j \omega \mu_{0}}{2 \pi} \int_{c} \int_{i 11}^{\infty}\left(\hat{n} \times \vec{H}^{-\infty}\right) \frac{e^{-j k\left|\bar{r}-\bar{r}_{0}\right|}}{\left|\bar{r}-\bar{r}_{0}\right|} d z d c \tag{29}
\end{equation*}
$$

where \bar{r}_{0} is the position vector to the observation point, \bar{r} is the position vector of a point on the surface and \hat{n} is the unit outward nommal to the surface. The notation $c_{i l 1}$ indicates that the integration is to be carried out only over those portions of the contour which are optically illuminated.
Since H^{\prime} and \hat{n} are independent of z one can show, ty using an appropriate integral representation for the Hankel function (Ref. [19]), that the scattered field is

$$
\begin{equation*}
E^{S}\left(\bar{\rho}_{0}\right)=-\frac{k \eta}{4} \int_{c_{i} \mid 1}\left(2 \hat{n} \times \bar{H}^{i}\right) H_{0}^{(2)}\left(k\left|\bar{\rho}-\bar{\rho}_{0}\right|\right) d c \tag{30}
\end{equation*}
$$

where all variables are confined to the x, y plane
(31) $\quad \bar{\rho}_{0}=x_{0} \hat{x}+y_{0} \hat{y}$
(32) $\bar{\rho}=x \hat{x}+y \hat{y}$
and $H_{0}^{(2)}(x)$ is the Hankel function of the second kind and zero order. Using the large argument approximation for $H_{0}^{(2)}(x)$, the far field scattered electric field becomes

$$
\begin{gather*}
E_{2}^{s}\left(\bar{\rho}_{0}\right)=-\left(\frac{2}{\pi k}\right)^{1 / 2} \frac{k}{2} e^{j \frac{\pi}{4}} \frac{e^{-j k\left|\rho_{0}\right|}}{\sqrt{\left|\bar{\rho}_{0}\right|}} \int_{c_{i 11}} \sin (\text { THI-tan}-1(\hat{H})) \tag{33}\\
e^{j k Q(x)} \sqrt{1+(\dot{H})^{2}} d x
\end{gather*}
$$

where $H(x)$ describes the surface height profile,
(34) $\quad \dot{H}=\frac{d H}{d x}$.
and $Q(x)$ is given by Eq. (16). As before, the factor

$$
e^{-j k\left|\bar{\rho}_{0}\right|} / \sqrt{\left|\bar{\rho}_{0}\right|}
$$

has been suppressed in both the computed and reported values of the scattered electric field, so that the actual field $E_{z}^{s}\left(\rho_{0}\right)$ is related to the print out value E_{z}^{s} by
(35) $\quad E_{z}^{s}=E_{z}^{s}\left(\bar{\rho}_{0}\right) \sqrt{\left|\bar{\rho}_{0}\right|} e^{+j k\left|\rho_{0}\right|}$.

When the incident magnetic field is \hat{z} directed (transverse electric case) it is convenient to work with the scattered magnetic field. The latter is found from Ref. [20]

$$
\begin{equation*}
4 \pi \vec{H}\left(\bar{r}_{0}\right)=2 \int_{c_{i}+1} \int_{-\infty}^{\infty}\left(\hat{n} \times \bar{H}^{i}\right) \times \bar{\nabla} \frac{e^{-j k\left|\bar{r}-\bar{r}_{0}\right|}}{\left|\bar{r}-\bar{r}_{0}\right|} d z d c \tag{36}
\end{equation*}
$$

where \bar{H}^{i} is the incident magnetic field (see Fig. 9). The two dimensional far field scattering becomes from Eq. (36)

Fig. 9.-Geometry for T.E. physical optics.

$$
\begin{gather*}
H_{2}^{s}\left(\rho_{0}\right)=\frac{e^{-j k\left|\rho_{0}\right|}}{\sqrt{\left|\rho_{0}\right|}} \frac{e^{j \frac{\pi}{4}}}{\sqrt{\lambda_{e}}} \int_{c_{i 11}} \sin (\tan (\hat{H})-T H S) e^{j k Q(x)} \tag{37}\\
\sqrt{1+\dot{H}^{2}} d x .
\end{gather*}
$$

Again, the factor

$$
\frac{e^{-j k\left|\bar{\rho}_{0}\right|}}{\sqrt{\left|\bar{\rho}_{0}\right|}}
$$

is suppressed in the programs of Appendix A, so that the plotted or tabulated field strengths, H_{z}^{S}, are related to the true fields, $H_{z}^{S}\left(\bar{\rho}_{0}\right)$ by

$$
\begin{equation*}
H_{z}^{s}=H_{z}^{s}\left(\overline{\rho_{0}}\right) \sqrt{\left|\bar{\rho}_{0}\right|} e^{j k\left|\bar{\rho}_{0}\right|} \tag{38}
\end{equation*}
$$

There are two further considerations that may be discussed at this time. For bistatic scattering it may happen that not all of the currents set up on the surface by the incident field are optically visible to the observer (see Fig. 10). In the physical optics programs developed here no account was taken of this possibility. Obviously such considerations do not arise for backscattering.

So far, in this chapter a perfectly conducting surface has been assumed. Physical optics can be generalized to treat dielectric surfaces by using a pair of equi valent electric and magnetic surface

Eig. 10.--Optically invisible surface currents.
currents obtained from the fields of a plane wave incident on a dielectric half space (Ref. [21]). Since two integrations would be required to compute the scattered fields, it would seem that the rumning time should nearly double, but very little extra storage space would be required.

B. Discussion of the Physical Optics Computer Programs

For either polarization the physical optics program is divided into two parts. The first, and by far the most difficult, finds the shadow boundaries on the surface, since the integrations are to be performed only over the illuminated section of the contour. The second part performs the necessary integration to calculate the scattered far fields.

The program opens by considering the function $H(X)$ which describes the surface between the defined endpoints ALEP (Left End Point) and REP (Right End Point). The search for shadow boundaries begins at REP by determining whether or not the right endpoint casts a shadow on the surface and proceeds from right to left (see Fig. 11).

END PCINT CASTS SHADOW ONTO THE SURFACE i.e. TAN ${ }^{-1}\left(\left.\frac{d H}{d x}\right|_{\text {REF }}\right)>$ THI

END POINT DOES NOT CAST A SHADOW ONTO THE SURFACE l.e. $\operatorname{TAN}^{-1}\left(\left.\frac{d H}{d x}\right|_{\text {RIF }}\right)<T H I$

Fig. 11.--Shadowing at the right end point.

If THI (the incidence angle required to be less than 90°) is greater than 80° it is assumed that no shadowing occurs. The starting point of the illuminated zone (either REP or A of Fig. 11) is stored in the first position of an array called SX (Shadow boundaries \underline{x} coordinate). The value of x is decremented until either a point on the surface is reached where the tangent-slope condition
(39) $\frac{d H}{d x}=\tan (T H I)$
is satisfled, at which point a shadow zone begins, or x becomes less than ALEP, in which case the second entry in SX is ALEP. On the other hand if Eq. (39) is satisfied for some x between $S X_{1}$ and ALEP then this value of x is stored in $S X_{2}$, a line with slope $\tan (T H I)$
is passed thru the point, and its intersection (if any) with $H(x)$ is found. If there are no such intersections, then all of the surface to the left of the point is shadowed. If an intersection does exist then the search for a point where the tangent-slope condition is satisfied begins again. This process continues until x is decremented past ALEP. The array $S X$ thus stores the positions of points with an illuminated zone on their left in oddly subscripted locations and the points with an illuminated zone on their right in evenly subscripted locations (see Fig. 12). The size of the decrement used to locate the boundaries should be small enough to catch the surface features, and to locate the ends of the shadow zones within a fraction of a wavelength.

Fig. 12.--I11ustration of shadowed and 111 uminated zones.
The integration over the flluminated sections of the surface to find the scattered fields is performed in a subroutine called BINT (XX,YY) (Bistatic radiation Integral) the arguments of which are the initial and final coordinates of one of the flluminated zones in
sx(J). The integration is repeated for each zone until all illuminated zones have been considered. The total scattered field (called S) for a particular THI and TNS is the sum of the zone fields. Except for normalization, the programs for the two polarizations differ only in the subroutine called FTBI (X) (Function Io Be Integrated); the factor $\sin \left(\right.$ THI $-\tan ^{-1}$ (H)) for the T.M. polarization is replaced in the T.E. case by $\sin \left(T H S-\tan ^{-1}(\hat{H})\right)$. The actual integration over the physical optics surface currents is performed by a five point Gaussian integration. In choosing the interval on the x axis over which the five point Gaussian integration is to be applied, two conditions must be met. The first is that the number of sample points along the contour must exceed five per wavelength. Presuming surface slopes of less than 60°, this means that ten sample points should be taken per electrical wavelength on the x axis. The second condition is that, if the surface were to be represented by a Fourier series, there should be 8-10 sample points per minimum mechanical wavelength along the x axis. Presuming, for example, that the first of the above conditions is the most stringent, each section of illuminated surface (i,e, between $x=s X_{j+1}$ and $x=s X_{j}, j$ odd) would be divided into half electrical wavelength Intervals plus a fractional Interval, and five point Gaussian integration would be applied to each of the half electrical wavelength intervals, and to the last, fractional, interval.

C. Comments on the Use of the Physical Optics Programs

As in the case of 6.0 ., the storage requirements are minimal, While running time depends upon the length of the surface and number of in eidence and scattering angles which are investigated. For each THI the search for illumination boundaries is performed only once, but the integration must be repeated for each scattering angle consideraed. For many of the scattered field computations considered here the arangle of incidence was held fixed and the scattering angle was varie d between 0 and 180°. For such cases the time required to find the -11 uminated zones on the surface is small compared to the time requi red to do the integrations for the scattered field. As the surface length is increased the time required goes up rapi Clly since the integration for each scattering angle takes longer and THS must be incremented with a finer grain to get an accurate repreduction of the structure in the scattered field pattern. The size of the increment for THS has already been discussed in connection with the geometrical optics program. For example, the time required to run a surface 16 electrical wavelengths long, with THS incremented by 0.5° from 0 to 180°, was 1.8 min . By comparison, 21 min . Were required for a surface 100 electrical wavelengths long with increments in THS of 0.25° from 30° to 170°, i.e., 560 values of THS. The value of the increment in the last case appears to have been just adequate to see the detall in the pattern.

Among the checks of the P.O. program is a computation for a flat stry p with no tapering of the illumination, for which a closed form
physical optics result is easily obtained. The agreement was excellent for both polarizations. In Chapter V, P.O. will be compared with the other two methods of computing the scattered fields. Special attention will be given to the range of surface parameters over which the P.O. approximation is valid.

CHAPTER IV

THE INTEGRAL EQUATION METHOD

In this chapter the third and most accurate method for calculating the scattering will be examined. Here the scattered field is obtained from the exact surface current, which is found from a moment method solution of an integral equation. There are no restrictions on the curvature or form of the surface, but because of machine storage limitations only surfaces of rather short length ($30 \lambda_{e}$ to $60 \lambda_{e}$) can be handled.
A. Moment Methods

This section contains a brief introduction to the method of moments. For more information and other applications of this method refer to Ref. [22], on which the following is based.

The objective of the moment method is to determine, numerically, the function F which is a solution of the inhomogenous operator equation

$$
\begin{equation*}
C(F)=G \tag{40}
\end{equation*}
$$

Where $C()$ is a given linear operator and G is a given function. Suppose that F can be expanded in a set of basis functions b_{n}

$$
\begin{equation*}
F=\sum_{n=1}^{N} F_{n} b_{n} \tag{41}
\end{equation*}
$$

where F_{n} is the n-th unknown coefficient of the expansion of F in that basis. Note that if a computer is to be used, N will have to be finite. Using the linearity property of C

$$
\begin{equation*}
c(F)=c\left(\sum_{n=1}^{N} F_{n} b_{n}\right)=\sum_{n=1}^{N} F_{n} c\left(b_{n}\right)=G . \tag{42}
\end{equation*}
$$

To convert the operator equation to a set of simultaneous equations an inner product, a scalar, <h,g> is defined for functions h, g and s such that
(43) $\langle h, g\rangle=\langle g, h\rangle$
(44) $\langle\alpha h+\beta g, s\rangle=\alpha\langle h, s\rangle+\beta\langle g, s\rangle$

$$
\begin{equation*}
\left\langle h, h^{*}\right\rangle=0, \text { if } h . \equiv 0 . \tag{45}
\end{equation*}
$$

Let $\left\{W_{j}\right\}$ be a set of weighting functions and take the inner product of both sides of Eq. (42) with W_{m}. Using the properties of the inner product, the original operator equation is converted to
(46)

$$
\sum_{n=1}^{N}\left\langle w_{m}, c\left(b_{n}\right)\right\rangle F_{n}=\left\langle w_{m}, G\right\rangle
$$

Which is exactly the familiar matrix equation

$$
\begin{equation*}
\sum_{n=1}^{N} c_{m n} f_{n}=G_{m} \tag{47}
\end{equation*}
$$

where

$$
\begin{equation*}
c_{m n}=\left\langle W_{m}, c\left(b_{n}\right)\right\rangle \tag{48}
\end{equation*}
$$

and

$$
\begin{equation*}
G_{m}=\left\langle W_{m}, G\right\rangle \tag{49}
\end{equation*}
$$

The solution, F_{i}, to this system of equations can be found by any one of several methods, two of which are discussed in Appendix B. The solution may be exact or approximate depending upon $N_{2} b_{n}$, and W_{n}.

For the integral equations to be solved here, the current is expanded in a basis of non-overlapping pulses of unit amplitude, while the weighting functions are chosen to be delta functions whose singularities occur at the centers of the pulses. The inner product is chosen to be

$$
\begin{equation*}
\langle g, h\rangle=\int_{c} g h d c \tag{50}
\end{equation*}
$$

where c is the contour of the scattering surface. This choice of basis and weight functions amounts to enforcing the integral equation at the centerpoints of the pulses, and is usually called "pointmatching.". For the operator equations considered in this work the system of simultaneous equations which result from point matching are well conditioned, 1.e., suitable for computer solution (see Ref. [23]).

B. Integral Equation for Transverse Magnetic Palarization

In order to apply the point matching technique to the rough surface scattering problem, it is first necessary to find an appropriate linear operator. For this purpose the integral equation relating the unknown surface current to the known incident field has been chosen.

The incident electric field is \hat{z} directed, the incident magnetic field is transverse (T.M. polarization) to the generators of the surface with contour c as shown in Fig. 13. If the total electric

Fig. 13.--Geometry for T.M. scattering.
field is written as the sum of the incident field \vec{E}^{1} and the scattered field E^{S}, the boundary condition

$$
\begin{equation*}
E^{-1}+E^{s}=0 \tag{51}
\end{equation*}
$$

must be satisfied on c. The scattered field is given in terms of the \hat{z} directed surface currents, $J_{2}(\bar{\rho})$, by (see Ref. [24])

$$
\begin{equation*}
E_{Z}^{s}(\rho)=-\frac{k n}{4} \int_{c} J_{z}(\bar{\rho}) H_{0}^{(2)}\left(k\left|\overline{\rho-\rho} \bar{\rho}^{\prime}\right|\right) d \ell^{\prime} \tag{52}
\end{equation*}
$$

for the two dimensional case, where $H_{0}^{(2)}$ is the Hankel function of the second kind and order zero, n is the impedance of free space and k is the wave number, $2 \pi / \lambda_{e}$. Combining this with the boundary condition (Eq. (51)) gives the integral equation for the unknown surface current

$$
\begin{equation*}
E_{z}^{1}(\bar{\rho})=\frac{k n}{4} \int_{C} J_{z}\left(\bar{\rho}^{\prime}\right) H_{0}^{(2)}(k|\bar{\rho}-\bar{\rho}|) d l^{\prime} \tag{53}
\end{equation*}
$$

Where $\bar{\rho}, \bar{\rho}$ are now both confined to the contour c. Equation (53) can now be identified with Eq. (42) as follows:

$$
\begin{aligned}
& E_{z}^{1}(\rho) \text { corresponds to } G, \\
& J_{z}(\bar{\rho}) \text { corresponds to } F
\end{aligned}
$$

and the operator

$$
-\frac{k n}{4} \int_{c}() H_{0}^{(2)}\left(k \mid l_{\rho-\rho}-1\right) d \ell^{\prime} \text { corresponds to } c() \text {. }
$$

As it stands the integral equation requires the consideration of the current on the entire boundary c; if the entire contour of a two dimensional earth were to be included, the storage requi rements for a moment method solution would be astronomical. It seems reasonable to assume that for standard radar wavelengths and with directive antennas, the surface current is appreciable over only a very small
portion of this contour. Thus it will be presumed that the surface current outside a certain illuminated region, which extends from -EP (End Point) to $+E P$, can be neglected (see Fig. 14). To simulate the

Fig. 14.--Modification of true contour to a shortened contour.
illumination of the surface by a directive antenna, tapering of the incident field strength is introduced via the function, $t(x)$, in the following way. The amplitude of the incident field is taken as unity to within two electrical wavelengths from each end point. Between one and two electrical wavelengths from each end the field is sinusoldally tapered to zero. Over the last wavelength the
incident field is taken to be zero. The incident field with tapering included, $E_{z}^{i}(\rho)$, is thus

$$
\begin{equation*}
E_{z}^{i}(\rho)=t(x) e^{-j k \cdot-\bar{\rho}}=t(x) e^{+j \frac{2 \pi}{\lambda}(\cos (T H I) x+\sin (T H I) H(x))} \tag{54}
\end{equation*}
$$

The validity of this tapering approximation has been checked by lengthening the dead zone at each end of the region under consideration and noting the change in the surface currents and scattered fields. The results of this test are presented in Section D of this chapter and do indeed justify the assumption of negligible currents beyond the illuminated region.

Although tapering of the incident field is not needed in the P.O. or G.O. formulations, it has usually been included in the calculations so that the results of all the techniques can be fairly compared. The only cases in which tapering is not used are special tests of the individual methods.

The integral equation becomes

$$
\begin{equation*}
E_{z}^{1}(\rho)=\frac{k n}{4} \int_{-E P}^{E p} J_{z}\left(\rho^{\prime}\right) H_{0}^{(2)}\left(k\left|\bar{p}-\bar{p}^{\prime}\right|\right) d \varepsilon^{\prime} \tag{55}
\end{equation*}
$$

with $\bar{\rho}, \bar{\rho}$, both confined to the section of the contour for which $-E P \leq x \leq E P$.

The method of moments can now be applied. The surface is divided into segments of equal arclength $D C$, and the current, J_{2}, ts expanded in a basis of non-overlapping pulse functions as

$$
\begin{equation*}
J_{z}\left(\bar{\rho}^{\prime}\right)=\sum_{n=1}^{N} F_{n} P_{z}\left(\bar{\rho}^{\prime}-\bar{\rho}_{n}\right) \tag{56}
\end{equation*}
$$

where $\bar{\rho}_{n}$ is the position vector of the midpoint of the n-th segment of the surface, F_{n} is a complex number representing the magnitude and phase of the current over the n-th segment of the contour, and the n-th basis function $P_{y_{5}}\left(\bar{\rho}^{\prime}-\bar{\rho}_{n}\right)$ is a pulse of unit amplitude and width $D C$ along the contour c. Thus the actual surface current is to be approximated as shown in Fig. 15. For a reasonable representation of the surface current, the pulse width, $D C$, must be a fraction

Fig. 15.--Approximation of the surface current.
of an electrical wavelength; $\lambda_{e} / 10$ has been found to be satisfactory. The shape of the surface must also be considered in choosing DC, since the surface must be accurately modeled by strips of width $D C$. Hence, if λ_{m} is the shortest mechanical wavelength in the Fourier spectrum of the surface, then $D C$ should also satisfy $D C \leq \lambda_{m} 10$. Of course the more restrictive of the two conditions should be met.

Applying the method of Section A of this chapter to Eq. (55)
(57) $\quad E_{z}^{1}(\rho)=\frac{k n}{4} \int_{-E P}^{E P} \sum_{n=1}^{N} F_{n} P_{z E}\left(\rho^{\prime}-\rho_{n}\right) H_{0}^{(2)}\left(k\left|\overline{\rho-\rho^{\prime}}\right|\right) d \ell^{\prime}$

$$
\begin{aligned}
& =\frac{k_{n}}{4} \sum_{n=1}^{N} F_{n} \int_{-E p}^{E P} P_{\frac{p a}{2}}(\bar{\rho}-\bar{\rho}) H_{0}^{(2)}(k|\bar{\rho}-\bar{\rho}|) d \ell^{\prime} \\
& =\frac{k n}{4} \sum_{n=1}^{N} F_{n} \int_{b C_{n}} H_{o}^{(2)}\left(k\left|\bar{\rho}-\bar{\rho}^{\prime}\right|\right) d \ell^{\prime}
\end{aligned}
$$

where $\int_{b C_{n}}$ means "integrate over the n-th segment of the contour".
Taking the inner product of Eq. (57) with the weighting functions,
(58) $\left.<\delta\left(\overline{\rho-\rho_{m}}\right), E_{z}^{1}(\bar{\rho})\right\rangle=\frac{k_{n}}{4} \sum_{n=1}^{N} F_{n}\left\langle\delta\left(\bar{\rho}-\bar{\rho}_{m}\right), \int_{D c_{n}^{0}} H^{(2)}\left(k\left|\rho-\rho-\rho^{\prime}\right|\right) d \varepsilon^{\prime}\right\rangle$

50

$$
\begin{equation*}
E^{1}\left(\rho_{m}\right)=\frac{k_{n}}{4} \sum_{n=1}^{N} \cdot F_{n} \int_{b c_{n}} H_{0}^{(2)}\left(k\left|\rho_{m}-\rho^{\prime}\right|\right) d \ell^{\prime} \tag{59}
\end{equation*}
$$

which is the same as the NXN matrix form

$$
\begin{equation*}
[C][F]=[E] \tag{60}
\end{equation*}
$$

where
(61)

$$
c_{m n}=\frac{k_{n}}{4} \int_{C_{n}} H_{0}^{(2)}\left(k\left|\rho_{m}-\bar{\rho}^{\prime}\right|\right) d \ell^{\prime} .
$$

$$
\begin{equation*}
E_{m}=E_{z}^{i}\left(\bar{\rho}_{m}\right) \tag{62}
\end{equation*}
$$

and F_{n} is the unknown amplitude and phase of the current in the n-th contour segment. Once Eq. (60) is solved, the surface current is known.

The far field scattering from the surface is found from the surface currents and Eq. (52) to be

$$
\begin{align*}
E_{z}^{S}(\rho) & =\frac{k n}{4} \sqrt{\frac{2}{\pi k}} e^{k \frac{5 \pi}{4}} \frac{e^{-j k|\bar{\rho}|}}{\sqrt{|\bar{\rho}|}} \int_{-E p}^{E p} J_{z}\left(\bar{\rho}^{\prime}\right) e^{j k\left(\bar{\rho}^{\prime} \cdot \hat{\rho}\right)} d \ell^{\prime} \tag{63}\\
& \approx \frac{k n}{4} \sqrt{\frac{2}{\pi k}} e^{j \frac{5 \pi}{4}} \frac{e^{-j k|\bar{\rho}|}}{\sqrt{|\bar{\rho}|}} \int_{-E p}^{E p} \sum_{n=1}^{N} F_{n} P_{\frac{c c}{}\left(\bar{\rho}^{\prime}-\bar{\rho}_{n}\right)} e^{j k\left(\bar{\rho}^{\prime} \cdot \hat{\rho}\right)} d \ell^{\prime} \\
& \cong \frac{k n}{4} \sqrt{\frac{2}{\pi k}} e^{j \frac{5 \pi}{4}} \frac{e^{-j k|\bar{\rho}|}}{\sqrt{|\bar{\rho}|}} D C \sum_{n=1}^{N} F_{n} e^{j k\left(\bar{\rho}^{\prime} \cdot \hat{\rho}\right)} .
\end{align*}
$$

The output of the computer programs is a normalized scattered field, E_{Z}^{5}, which is related to the true scattered field, Eq. (63), by

$$
\begin{equation*}
E_{z}^{s}=E_{z}^{s}(\bar{\rho}) \sqrt{|\bar{\rho}|} e^{j k|\bar{\rho}|} \tag{64}
\end{equation*}
$$

C. Discussion of the Computer Program for Transverse Magnetic Polarization
Several different programs were written using the above formulation of the problem. In the first part of this section the common
features of the programs will be discussed and later their differences and relative merits.

A11 of the T.M.I.E. (transverse magnetic integral equation) programs require that the surface have its arclength subdivided into segments of width $D C$, and have the endpoints and midpoints of these segments stored. The surface breakdown is shown in Fig. 16. The

Fig. 16.--Breakdown of surface into segments of length DC.
j-th segment lies between x_{i} and x_{j+7}, while the j-th midpoint $\left(X M_{j}\right)$ is such that $X_{j}<X M_{j}<X_{j+1}$. The surface is segmented by using the arclength formula and rectangular rule integration. After the surface subdivision is completed the programs differ somewhat depending on how the matrix elements are calculated.

Once the matrix elements have been calculated the first part of a two part solution of the system of equations begins. In a11 of the solution methods used the matrix is factored into an upper
and a lower triangular matrix, see Appendix B. The matrix elements depend only upon the surface profile $H(x)$, and are independent of the incident field, THI or THS so that the factorization need be done only once for a given profile. In the second part of the solution the array [F] is loaded with the tapered incident electric field at each of the $X M_{j}$; the back substitutions (described in Appendix B) are then carried out to find the current coefficients, F_{n}. The scattered fields are then calculated from Eqs. (63) and (64).

The differences in the several programs for the T.M.I.E. lie mainly in the calculation of the matrix elements (Eq. (61)). The simplest way to evaluate Eq. (61) for mfn is to presume that $H_{0}^{(2)}\left(k\left|\rho_{m}^{--} \rho^{\prime}\right|\right)$ is constant over the n-th interval; then

$$
\begin{equation*}
C_{m n} \approx \frac{k n}{4} H_{0}^{(2)}\left(k\left|\rho_{m}-\rho_{n}\right|\right) D C \tag{65}
\end{equation*}
$$

If $m=n$, a small argument approximation to $H_{0}^{(2)}(x)$ is made and integrated analytically, giving

$$
\begin{equation*}
C_{m m} \approx \frac{k n}{4} D C H_{0}^{(2)}\left(\frac{k D C}{2}\right) \tag{66}
\end{equation*}
$$

Where e is the base of the natural logarithm. In practice the matrix elements are simply the Hankel function and the $\frac{\mathrm{kn}}{4}$. DC is accounted for when the fields are printed out. This approximation results in a symmetric matrix which, if efficiently stored, requires
only $N(N+1) / 2$ storage locations. The length of surface which can be treated is increased by a factor of $\sqrt{2}$ over that which can be treated by methods requiring the storage of the full matrix. Appendix B gives the details of the storage and solution methods.

In another program, 5 point Gaussian integration, Ref. [25], is used to evaluate the $C_{m n}$ for $m f n$, and when $m=n$ Eq. (66) is used. The matrix is no longer symmetric so all N^{2} terms must be stored.

A third program was written which takes advantage of the fact that the currents are continuous on the surface except at sharp edges (Ref. [26]). Since the column vector [F] of Eq. (60) represents the current, continuity requires that adjacent entries be similar. Hence it is possible to interpolate. The currents at the even numbered stations may be approximated in terms of the adjacent currents by

$$
\begin{equation*}
F_{2 n}=\left(F_{2 n-1}+F_{2 n+1}\right) / 2 \tag{67}
\end{equation*}
$$

For simplicity, the original matrix will be assumed to be of odd ${ }^{\circ}{ }^{\text {or }}$ order

$$
\begin{equation*}
N=2 k k+1 . \tag{68}
\end{equation*}
$$

If, for example, $N=7$ then, using Eq. (67) in Eq. (60), one obtains the reduced system
(69)

$$
\begin{aligned}
& E_{1}=C_{11} F_{1}+\frac{C_{12}}{2}\left(F_{1}+F_{3}\right)+C_{13} F_{3}+\frac{C_{14}}{2}\left(F_{3}+F_{5}\right)+C_{15} F_{5}+\frac{C_{16}}{2}\left(F_{5}+F_{7}\right)+C_{17} F_{7} \\
& E_{3}=C_{31} F_{1}+\frac{C_{32}}{2}\left(F_{1}+F_{3}\right)+C_{33} F_{3}+\frac{C_{34}}{2}\left(F_{3}+F_{5}\right)+C_{35} F_{5}+\frac{C_{36}}{2}\left(F_{5}+F_{7}\right)+C_{37} F_{7} \\
& E_{5}=C_{51} F_{1}+\frac{C_{52}}{2}\left(F_{1}+F_{3}\right)+C_{53} F_{3}+\frac{C_{54}}{2}\left(F_{3}+F_{5}\right)+C_{55} F_{5}+\frac{C_{56}}{2}\left(F_{5}+F_{7}\right)+C_{57} F_{7} \\
& E_{7}=C_{71} F_{1}+\frac{C_{72}}{2}\left(F_{1}+F_{3}\right)+C_{73} F_{3}+\frac{C_{74}}{2}\left(F_{3}+F_{5}\right)+C_{75} F_{5}+\frac{C_{76}}{2}\left(F_{5}+F_{7}\right)+C_{77} F_{7}
\end{aligned}
$$

where only odd rows have been retained, $i, e,, F_{2}, F_{4}, F_{6}$ are considered known. Collecting terms,
(70) $E_{k}=\left(C_{k 1}+\frac{C_{k 2}}{2}\right) F_{1}+\left(\frac{C_{k 2}}{2}+C_{k 3}+\frac{C_{k 4}}{2}\right) F_{3}+\left(\frac{C_{k 4}}{2}+C_{k 5}+\frac{C_{k 6}}{2}\right) F_{5}$

$$
\begin{aligned}
& +\left(\frac{C_{k 6}}{2}+C_{k 7}\right) F_{7} \\
& \text { for } k=1,3,5,7,
\end{aligned}
$$

and the number of unknowns has been reduced to kk. Since matrix manipulations are made using regular subscripts in the machine, it is very desirable to relabel the coefficients in the reduced system as follows
(71) $\quad C_{m}^{\prime}=\frac{C_{(2 m-1)},(2 j-2)}{2}+C_{(2 m-1),(21-1)}+\frac{C_{(2 m-1),(21)}}{2}$
for the "interior" columns where $m=1,2,3, \cdots, k k$ and $1=2,3, \cdots, k k-1$. The first and last columns of the reduced matrix are
(72) $\quad C_{m 2}^{1}=C_{(2 m-1), 1}+\frac{C_{(2 m-1), 2}^{2}}{m=1,2,3, \cdot, \cdot, k k}$

$$
\begin{equation*}
C_{m, k k}=\frac{C_{(2 m-1)}(2 k k-2)}{2}+C_{(2 m-1),(2 k k-1)} . \tag{73}
\end{equation*}
$$

The $C_{i j}$ are the elements of the original NXN matrix while $C_{i j}^{1}$ are elements of the kkXkk reduced matrix. In the computer program the $C_{i j}$ are called $\mathrm{C}_{\mathbf{i j}}$ while the original matrix elements $\mathrm{C}_{\mathbf{i j}}$ are labeled C_{ij}. When using the interpolation technique the surface is subdivided as usual except that, if an even number of segments is produced, then the last segment is dropped to make N odd. The system of equations is now
$[C][F P]=[E]$

Where $[E]$ is filled with the incident electric field at the midpoints of the segnents with odd subscripts and the matrix [C] is loaded according to Eqs. (71), (72) and (73). After the solution has been found the column vector $\operatorname{FP}(\mathrm{J})$ contains the currents on the segments with odd subscripts. The complete set of surface currents [F] is obtained by interpolation with

$$
\begin{align*}
& F_{2 j-1}=F P_{j} \quad \text { for } j=1,2, \cdots, k k \tag{75}\\
& F_{2 j}=\left(F P_{j}+F P_{j+1}\right) / 2 \text { for } j=1,2, \cdots, k k-1 .
\end{align*}
$$

Once the column vector [F] has been filled in, the calculation of the scattered field proceeds as in Eqs. (63) and (64). The interpolation technique has been applied to the program which uses Gaussian integration to calculate the matrix elements.

The big advantage of interpolation is the dramatic increase in the size of the surface which can be handled for a given storage capacity. If the machine can handle an arclength of L using the non-symmetric, non-interpolation program then the symmetric matrix program can handle an arclength of $\sqrt{2} L$ while the interpolation technique will do an arciength of 2 L with the same amount of storage. The interpolation program still requires that all of the original matrix elements be evaluated to fill in the reduced matrix (Eqs. (71), (72) and (73).).

The integral equation programs require large amounts of storage and fairly long running times compared to either the G.O. or P.O. programs. The IBM $360-75$ used here can hold a 275×275 complex matrix in high speed storage so that surfaces of length $27 . \lambda_{e}$, or $54 \lambda_{e}$ if interpolation is used, can be handled with $D C=\lambda_{e} / 10$. As for the running time, consider the $16 \lambda_{e}$ long surface mentioned in Chapter III Section C, which took 1.8 minutes using the P.O. program. The scattering from the same surface was computed by the three T.M. integral equation methods. The symmetric formulation required 2.8 minutes and storage for 14,000 complex numbers. The program which uses Gaussian integration to evaluate the matrix coefficients required 5.0 minutes and twice as much storage, while the interpolation program required 3.3 minutes and storage for 7,000 complex numbers. Where speed is important the use of the symmetric I.E. program is indicated, while long surfaces are best handled by the two point interpolation program.

D. Tests of the Transverse Magnetic Integral Equation Programs

The shortened contour assumption is one of the most crucial in the construction of the integral equation programs (Fig. 14). The obvious way to test it is to extend the non-illuminated portion of the surface, which amounts to lengthening the contour without changing the non-zero portion of the illumination (see Fig. 17). If the approximation is indeed valid, then the current in the non-illuminated sections should fall off rapidly and the scattered fields should be the same in both cases. The assumption was tested on a sinusoidal surface, using the program with Gaussian integration. When regular tapering was used, the current at the outer ends of the dead zones was down by a factor of 30 from that in the central part of the contour. When the extended taper was used, the current at the new outer ends was down by a factor of 100. The scattered fields for the two cases are displayed in Fig. 18 and show clearly that the differences are insignificant. Thus it may be concluded that tapering of the incident field does permit the replacement of the true contour by the shortened contour.

The wedge, Fig. 19, for which asymptotic solutions are available, provides a. test case for the integral equation programs. The angle of incidence, THI, was chosen to be 90°. In order to emphasize the corner contribution, a Gaussian tapering of the incident field was used, i.e..
(76) $\quad t(x)=e^{-\left(x / 2 \lambda_{e}\right)^{2}}$

Fig.17.- Contour and tapering function used to test the shortened contour assumption.

Fig. 18.--Scattered fields with and without extended boundaries, T.M. case.

Fig. 19.--Geometry for wedge test.

The surface current, Fig. 20, shows the expected singularity at the comer. The computed scattered field is plotted in Fig. 21 along with the scattered field calculated independently using the geometrical theory of diffraction, Ref. [27]. Again, the agreement is seen to be excellent. All three T.M. integral equation programs produced essentially identical scattered fields. In a test of the self consistency of the three programs the scattering from the surface $H(X)=5 \sin \frac{2 \pi}{200} x$ was computed. The differences in the scattered fields are very minor and would not be perceptible on the scale of, e.g., Fig. 18.

In the light of the above tests, there seems to be no reason to prefer one T.M. Integral equation program over the other two if numerical accuracy is the only criterion. If the running time or storage requirements must be considered then the preferred formulation can be determined by the comments at the end of Section C of this Chapter.

E. Integral Equation for Transverse

Electric Polarization

For the T.E. polarization, the incident magnetic field \vec{H}^{1} is \hat{z} directed and it will be convenient to work with the integral equation for the magnetic field given (Ref. [28]) by

$$
\begin{equation*}
J_{s}(\bar{r})=2 \hat{n} \times \bar{H}^{-1}(\bar{r})+\frac{1}{2 \pi} \hat{n}(\bar{r}) \times \int_{s} J_{s}\left(\bar{r}^{\prime}\right) \times \bar{\nabla}, \frac{e^{-j k\left|\bar{r}^{\prime}-\bar{r}^{\prime}\right|}}{\left|\vec{r}-\bar{r}^{\prime}\right|} d s \tag{77}
\end{equation*}
$$

Where $\bar{r}, \overline{r^{\prime}}$ are both position vectors of points on the surface, $\bar{H}^{i}(\bar{r})$ is the incident magnetic field, $\bar{J}_{s}(\bar{r})$ is the surface current, \hat{n} is the outward nomal to the surface and $\{$ indicates that the region about $\overline{\mathbf{r}}^{\prime}=\overline{\mathbf{r}}$ is to be deleted from the integration. See Fig. 22.

Fig. 22.--Three dimensional geometry for T.E. integral equation.

The two dimensional integral equation can be obtained by considering an infinitely long cylinder as shown in Fig. 23. When the incidence direction lies in the x, y plane the fields and surface current have no z dependence so that Eq. (77) can be reduced to

Fig. 23. --Two dimensional geometry for T.E. integral equation.

$$
\begin{array}{r}
J_{s}(\bar{\rho} \cdot)=2 \hat{n}(\bar{\rho}) \times \bar{H}^{1}(\bar{\rho})+\frac{k}{2 j} n(\bar{\rho}) \times \int_{c} J_{s}(\bar{\rho}) \times\left(\hat{\rho-\rho^{\prime}}\right) \tag{78}\\
H_{1}^{(2)}(k|\bar{\rho}-\bar{\rho}|) d c^{\prime}
\end{array}
$$

Where $\left(\hat{\rho-\rho^{\prime}}\right)$ is the unit vector in the $\overline{\rho-}-\bar{\rho}^{\prime}$ direction and $H_{1}^{(2)}(x)$ is the Hankel function of the second kind and order 1.

Just as in the T.M. case, tapering is introduced to account for the directional properties of radar antennas, and to limit the size of the system of 1 inear equations which will result from Eq. (78). One may now assume that the surface currents are zero except near the 111 uminated region and the closed contour can then
be replaced by the open contour of Fig. 24. For this polarization the current flows transverse to \hat{z} along the surface so

Fig. 24.--Open contour.
(79)

$$
\bar{J}_{s}\left(\bar{\rho}^{\prime}\right)=\left(\hat{z} \times \hat{n}\left(\bar{\rho}^{\prime}\right)\right) J_{s}\left(\overline{\rho^{\prime}}\right)=\hat{T}\left(\bar{\rho}^{\prime}\right) J_{s}\left(\bar{\rho}^{\prime}\right)
$$

Where $\hat{T}\left(\bar{p}^{\prime}\right)$ and $\hat{n}(\bar{\rho}!)$ are the unit tangent vector and the unit normal vector to the surface, as shown in Fig. 24. $\hat{\mathrm{T}}\left(\bar{\rho}^{-}\right)$is given in terms of the profile, $H(x)$, by
(80)

$$
\hat{T}\left(\bar{\rho}^{\prime}\right)=-\frac{\left[\hat{x}+\hat{H}\left(x^{\prime}\right) \hat{y}\right]}{\sqrt{1+\left(\hat{H}\left(x^{\prime}\right)\right)^{2}}}
$$

Where i has the meaning assigned by Eq. (34). Using
(81) $d C^{\prime}=\left(1+\left(\dot{H}\left(x^{\prime}\right)\right)^{2}\right)^{1 / 2} d x^{1}$
and Eqs. (78) and (79) with the tapered incident field

$$
\begin{equation*}
H_{z}^{1}(\rho)=t(x) e^{-j \bar{k}_{i} \cdot \bar{\rho}} \tag{82}
\end{equation*}
$$

the integral equation becomes

$$
\begin{align*}
&-t(x) e^{j K_{i} \cdot \bar{\rho}}=\frac{J_{S}(\bar{\rho})}{2}+\frac{j k}{4} \int_{-E P}^{E P} \frac{J_{s}(\bar{\rho}) H_{1}^{(2)}\left(k\left|\bar{\rho}-\overline{\rho^{\prime}}\right|\right)}{\sqrt{\left(x-x^{\prime}\right)^{2}+\left(H(x)-H\left(x^{\prime}\right)\right)^{2}}} \tag{83}\\
& \cdot\left[\left(H(x)-H\left(x^{\prime}\right)\right)-H(x)\left(x-x^{\prime}\right)\right] d x^{\prime}
\end{align*}
$$

where the integration over x^{\prime} excludes a small region in the contour about the point described by $\bar{\rho}$.

The method of moments is applied to Eqs. (83) just as in the T.M. case. the current is expanded in a basis of non-overlapping pulse functions of width $D C$, delta functions are used as weighting functions and the scalar product is the same as in the T.M. case. The current is thus represented by
(84) $\quad J_{s}\left(\rho^{\prime}\right)=\sum_{n=1}^{N} F_{n} P_{\text {eg }}\left(\bar{\rho}^{-}-\rho_{n}\right)$
where, $\bar{\rho}, \bar{\rho}_{n}$ lie on the contour c and $\bar{\rho}_{n}$ is the position vector of the midpoint of the n-th segment, the F_{n} 's are the unknown expansion coefficients and the pulse functions $P_{\frac{1}{2}}\left(\bar{\rho}^{\prime}-\bar{\rho}_{n}\right)$ have been described in connection with the T.M. case. Placing this current in Eq. (83), taking the scalar product of both sides with the weighting functions and using the non-overlapping property of the basis functions results in
(85) $\quad-t\left(x_{m}\right) e^{-\mathrm{dk}_{1} \cdot \bar{\rho}_{m}}=\frac{F_{m}}{2}+$

$$
\begin{aligned}
& \frac{j k}{4} \sum_{n=1}^{N} F_{n} \int_{-E P}^{E P} P_{g 4}\left(p^{\prime}-p_{n}\right) H H_{1}^{(2)}\left(k\left|\rho_{m}-\rho^{\prime}\right|\right) \\
& \frac{\left[\left(H\left(x_{m}\right)-H\left(x^{\prime}\right)\right)-H\left(x_{m}\right)\left(x_{m}-x^{\prime}\right)\right]}{\sqrt{\left(x_{m}-x^{\prime}\right)^{2}+\left(H\left(x_{m}\right)-H\left(x^{\prime}\right)\right)^{2}}} d x^{\prime} .
\end{aligned}
$$

Since it is necessary to avoid $\bar{\rho}^{\prime}=\vec{\rho}_{\mathrm{m}}$ in the integration of Eq. (85), the summation will be forced to skip $n=m$ giving as a system of equations
(86) $\quad-t\left(x_{m}\right) e^{-j \bar{k}_{i} \cdot \bar{\rho}_{m}}=\sum_{n=1}^{N} C_{m n} F_{n}$
where
(87) $C_{m}=\left\{\begin{array}{l}\frac{1}{2} \text { if } m=n \\ \left.\frac{k_{k}}{x_{n+1}} \int_{x_{n}} H_{1}^{(2)}(k]_{\rho_{m}}-\rho^{-} 1\right) \frac{\left[\left(H\left(x_{m}\right)-H\left(x^{\prime}\right)\right)-H\left(x_{m}\right)\left(x_{m}-x^{\prime}\right)\right]}{\sqrt{\left(x_{m}-x^{\prime}\right)^{2}+\left(H\left(x_{m}\right)-H\left(x^{\prime}\right)\right)^{2}}} d x^{\prime}\end{array}\right.$
if $m \neq n$
and x_{n+1}, x_{n} are the upper and lower x coordinates of the endpoints of the n-th surface segnent respectively.

Once Eq. (86) is solved for the coefficients of the surface current, F_{m}, the scattered field may be found from Ref. [29]

Specializing this to the far field scattering from an infinite cylinder and using the fact that $\bar{J}_{s}(\bar{r}!)$ is independent of z and non zero only over a portion of the cylinder (see Fig. 25).

Fig. 25.--Gometry for calculation of far field scattering, T.E. case.

$$
\begin{align*}
& H_{2}^{S}(\rho)=\frac{e^{-j k \mid} \mid}{\sqrt{|\rho|}} \frac{j}{2} e^{j \frac{3 \pi}{4}} \int_{-E P}^{E p} J_{s}\left(\bar{\rho}^{\prime}\right) \frac{\left[\sin (T H S)-H\left(x^{\prime}\right) \cos (T H S]\right.}{\sqrt{1+\left(H\left(x^{\prime}\right)\right)^{2}}} \tag{89}\\
& e^{j k\left(x^{\prime} \cos (T H S)+H\left(x^{\prime}\right) \sin (T H S)\right)} d c^{\prime}
\end{align*}
$$

Substituting Eq. (84) whose coefficients are now known into Eq. (89) and assuming that the integrand is nearly constant over a surface segment of length $D C$,

$$
\begin{align*}
H_{z}^{s}(\bar{\rho})= & \frac{e^{-j \frac{3 \pi}{4}}}{2 \sqrt{\lambda}} \text { DC } \frac{e^{-j k|\bar{\rho}|}}{\sqrt{|\bar{\rho}|}} \sum_{n=1}^{N} F_{n} \cos \left(T H S-T H N\left(X M_{n}\right)\right) \tag{90}\\
& \therefore \quad \therefore \quad \\
& \quad e^{j k\left(X M_{n} \cos (T H S)+H\left(X M_{n}\right) \sin (T H S)\right)}
\end{align*}
$$

where $\operatorname{THN}(x)$ (THETA NORMAL) is given by

$$
\begin{equation*}
\operatorname{THN}(x)=(\pi / 2)+\tan ^{-1}(H(x)) \tag{9}
\end{equation*}
$$

as shown in Fig. 25. The computed and plotted value of the scattered field, H_{z}^{S}, is given by

$$
\begin{equation*}
H_{z}^{s}=H_{z}^{s}(\bar{\rho}) \sqrt{|\bar{\rho}| e}^{+j k|\bar{\rho}|} \tag{92}
\end{equation*}
$$

F. Discussion of the Computer Program for the

 Transverse Electric PolarizationThe programs for the T.E. polarization are very simflar to those for the T.M. polarization. As in the T.M. case the contour is broken up into segments of equal length $D C$. The same notation is used for the endpoints (x) and midpoints (XM) of the segments (Fig, 16). The T.E. and T.M. programs differ mainly in the values of the elements of the matrix [C], and in the driving side of the system of equations.

Also, for the integral equation used, the matrix is non-synmetric no matter how the coefficients are evaluated. Once again the system of equations, (Eq. (86)), is solved in such a way that different scattering and incidence angles do not require a completely new solution. Only the back substitution portion need be repeated (see Appendix B).

Several different programs have been written for the T.E. case, the major difference between them being the method used to evaluate the coefficients (Eq. (87)). The simplest way is to assume that the integrand is constant over the strip width so that

$$
c_{m n}=\left\{\begin{array}{l}
\frac{1}{2} \text { if } m=n \tag{93}\\
\frac{j k}{4}(D C) \frac{H_{1}^{(2)}\left(k\left|\bar{\rho}_{m}-\bar{\rho}_{n}\right|\right)}{\left|\bar{\rho}_{m}-\bar{\rho}_{n}\right|}\left[\left(H\left(X M_{m}\right)-H\left(X M_{n}\right)\right)-H\left(X M_{m}\right)\right. \\
\left.\quad\left(X M_{m}-X M_{n}\right)\right] \text { if } m \neq n .
\end{array}\right.
$$

In practice, only the five point Gaussian integration was used to evaluate the off diagonal elements of [C], since it did not require much more running time than the simpler method. However, the interpolation technique retains all of its advantages and goes exactiy as in the T.M. case with the $C_{i j}^{1}$ given by Eqs. (71), (72), and (73). Thus surface lengths of $27 \lambda_{e}$ (or $54 \lambda_{e}$ with interpolation) can be handled. As an example of the running times required, consider again the surface of length $16 \lambda_{e}$ mentioned in Chapter 3 Section C. The T.E. physical optics program required 1.8 minutes while an equivalent run using the T.E. integral equation program required 5.0 minutes.

The interpolation program for this polarization took 3.5 minutes. Thus the interpolation program is superior to the non-interpolation program both with respect to storage requirement and rumning time. G. Tests of the Transverse Electric Integral

Equation Programes

The shortened contour assumption plays the same role and is tested in the same way in the T.E. integral equation programs as in the T.M. case. The contour is extended as shown in Fig. 17. When the regular tapering was used, the current at the outer ends of the dead zones was down by a factor of 70 from that in the central portion of the contour. When the extended surface was considered the current at the new outer ends was down by slightly more. The nearly identical scattered fields for the two cases are shown in Fig. 26.

The wedge provides a test case for which an independent result is avaliable. The test geometry is as shown in Fig. 19 except that here the incident magnetic field is paraliel to the comer of the wedge. Gaussian tapering of the incident field, Eq. (76), is used. In contrast to the current singularity in the T.M. case, the surface current in the T.E. case, FIg. 27, shows the expected $r^{2 / 3}$ behavior at the corner. The excellent agreement between the scattered fields calculated by the integral equation method and the fields obtained from the geometrical theory of diffraction, Ref. [30], is illustrated In Fig. 28. Both the non-interpolation and the interpolation T.E. integral equation programs gave the same result in this test.

Fig. 26.--Scattered field with and without extended boundaries, T.E. case.

Fig. 27.--Computed $\left|J_{\mathbf{s}}\right|$ near corner of wedge, T.E. case.

F19. 28.--Wedge scattered fields, T.E. case.'

The consistency of the two T.E. integral equation programs was checked on a surface with a height profile $H(x)=5 \sin (2 \pi x / 200)$. The results were nearly identical.

The above tests indicate that so far as numerical accuracy is concerned the non-interpolation and interpolation T.E. integral equation programs do not differ. The interpolation program is preferred however because of the savings in storage.

CHAPTER V

APPLICATIONS

In this chapter the previousiy developed computer programs will be used to check the applicability of the geometrical optics, physical optics and perturbation approximations to the calculation of the scattering from non-uniform surfaces. The integral equation programs, which are believed to be exact, are used as standards.

The first surface to be considered has been especially chosen so that it fulfills the requirements necessary in order that physical and geometrical optics both give a valid approximation to the true scattered fields. The surface, a single half-cycle of a sine wave, has a profile $H(X)=50 \cos (2 \pi X / 800)$ with X between 200.0 cm and -200.0 cm , and clearly has but one specular point for scattering in the forward direction. The incident field is tapered, and has an electrical wavelength of 25 cm . Unless otherwise noted, these conventions have been used throughout. The criteria for the successful application of G.O. and P.O. are met by this profile since the minimum radius of curvature is $12: 8 \lambda_{e}$ and, having a maximum height of two λ_{e}, there are several Fresnel zones on the surface. The scattered fields predicted by the G.O., P.O. and I.E. programs are shown In Figs. 29 and 30 for the T.M. and T.E. polarizations respectively.

Fig. 29.--Scattering from $50 \cos (2 \pi \times / 800)$ as calculated by I.E., P.O., and G.0.; T.M. potarization.

Fig. 30.-Scattering from $50 \cos 2 \pi x / 800$ as calculated
by I.E., P.O., and G.O.; T.E. polarization.

It is apparent that all methods give nearly the same result for THS between 87° and 155°. No scattered fields are predicted by G.O. for THS outside the range 78° and 163° since the normals to the surface have a limited range of directions as illustrated in Fig. 31. The

Fig. 31.--Limitation of scattering directions predicted by geometrical optics.
rise in the value of scattered field predicted by G.0. near 78° and 163° is due to the movement of the specular point into a region of the surface of increasing radius of curvature. However, as the . specular point gets within two wavelengths of either endpoint the tapering of the incident field suppresses the expected singularity in the scattered field.

It should also be noted that for the P.O. results, the T.M. fields differ slightly from the correct fields for THS near grazing.

For either polarization the ripple observed in the scattered field and correctly predicted by P.O. is probably a consequence of the finite length of the surface. G.0., being a purely local theory, will not predict effects of this nature.

As a further check of the programs, the above profile was multiplied by minus one, i.e., instead of being concave down the surface was concave up. The amplitudes of the scattered fields remained unchanged but they all showed a phase shift of 90° due to what in G.O. theory is termed the caustic correction factor.

In order to establish more quantitatively the limitations on the G.0. and P.O. approximations, the scattered fields have been computed for a set of surfaces with height profile.

$$
\begin{equation*}
H(X)=A \sin (2 \pi x / 200) \quad-200 \mathrm{~cm} . \leq x \leq 200 \mathrm{~cm} ., \tag{94}
\end{equation*}
$$

i.e., the surfaces are two complete mechanical wavelengths long. With THI fixed at 60°, the amplitude, A, was varied over a range of 5.0 cm . to 50.0 cm . so that the minimum radius of curvature, r_{cm}, varied from $8.0 \lambda_{e}$ to $0.8 \lambda_{e}$. The important features of the scattered fields over this range of $r_{c m}$ for each polarization are shown in Figs. 32-37 in order of decreasing $r_{c m}$. Some general trends are worthy of mention.

In the first place, as $r_{c \pi} / \lambda_{e}$ decreases from 8 to 0.8 , the agreement between the P.O. results and the exact fields goes from excellent to poor. It would appear that as long as the surface always has $r_{c m} / \lambda_{\mathrm{e}}$ greater than, say, 2.5 , the P.0. approximation will

H1g. 32.- scattered fields predicted by P. O., G.0:, and I.E: methods for $H(x)=5 \sin (2 \pi x / 200), T \cdot M$. polarization

F18. 33.- Scattered fields predicted by P.0., G.O., and I.E. methods for $H(x)=5 \sin (2 \pi x / 200)$, T.E. polarization

F18. 34.- Scattered fields predicted by P.0., G.O., and I.E methods for $H(x)=75 \sin (2 \pi x / 200) ; T$.M. polarization

Fig. 35.-Scattered fields predicted by P.O., G.O., and I.E. Fig. \quad methods for $H(x)=15 \sin (2 \pi x / 200)$, T.E. polarization

Fig. 36.-scattered fields predicted by P.O., G.O., and I.E. methods for $H(x)=25 \sin (2 \pi x / 200)$, T.M. polarization

Fig. 37.-Scattered fields predicted by P.O., G.O., and I.E. methods for $H(x)=25 \sin (2 \pi x / 200)$, T.E. polarization
give reliable values for the scattered field. Even for values of $r_{c m} / \lambda_{e} \simeq 1, P .0$. may still be considered usable, that is, it will reproduce the general structure of the scattered fields al though with significantly lower accuracy. This limitation on the radius of curvature necessary for the successful application of the P.O. approximation is in agreement with the results of Ref. [31] in which the current on a sinusoidal surface of infinite extent is found. Except for scattering and incidence angles for which no specular points occur or for which a specular point coincides with a point of infinite radius of curvature, the G.O. and P.O. approximations give scattered fields very similar to each other even when they are not correct, e.g., Fig. 38. It is interesting to note that where the I.E. and P.O. (and hence the G.O.) fields agree the T.E. and T.M. fields are nearly identical but as the radius of curvature decreases the exact fields, T.E. and T.M., not only differ from the respective P.O. fields but from each other. This behavior is not entirely unexpected since for bodies with large radius of curvature in terms of wavelength the polarization Independent G.O. is known to be a good approximation. As the radius of curvature goes to zero, e.g. a wedge, G.O. and P.O. both fail and the scattering is polarization dependent (see the wedge tests in Chapter IV).

The failure of G.O. when no specular point occurs on the surface or when a specular point coincides with a point of infinite radius of curvature makes it far less attracti ve than P.O., especially when numerical methods are involved. For example, when $A=5$, (see Fig. 32)

G.0. predicts no scattered field outside the range $102^{\circ}<$ THS $<138^{\circ}$, and gives fields which are singular at either end of the range. On the other hand, the P.O. approximation correctly predicts the scattered fields for a far wider range of THS, including backscatter, and the fields are always bounded.

It is also of interest to note that what might be called the "fine structure" of the scattering, particularly for THS $<80^{\circ}$, (see Fig. 32) is not due entirely to the finite length of the illuminated region as in Figs, 29 and 30 but is strongly controlled by the height profile.

Another approximate theory whose validity can be checked by the numerical methods developed here is the perturbation theory for the scattering from "slightly rough" surfaces as formulated in Refs. [32] and [33]. Perturbation theory predicts that if the amplitude of the surface profile is much less than the electrical wavelength of the incident fields, then the amplitude of the scattered field due to the perturbation of the surface is proportional to the surface height amplitude. This was checked by calculating, using the T.M. integral equation program, the scattering from a surface profile described by

$$
\begin{equation*}
H(x)=c(\sin (2 \pi x / 50)+1 / 2 \sin (2 \pi x / 19.71)) \tag{95}
\end{equation*}
$$

for various values of c. The field scattered by slightly rough surfaces is dominated by the scattered field from the unperturbed surface ($c=0$) which is quite complex for the finite strips considered
here. Thus the behavior of the perturbed fields can best be fllustrated by considering the difference between the actual field and the flat plate field. The perturbation in the scattered field, E_{p}, due to the perturbation in the height profile of the originally flat strip is then given by

$$
\begin{equation*}
E_{p}=E_{z}^{s}-E_{z 0}^{s} \tag{96}
\end{equation*}
$$

Where E_{z}^{S} is the total scattered field as predicted by the computer program, and $E_{z 0}^{s}$ is the field scattered when c is zero (i.e., a flat strip). In order to test the prediction that $\left|E_{p}\right| \alpha c$, a low value of c ($c=0.01 \mathrm{~cm}$.), was chosen as a reference surface amplitude with reference scattered field $\left|E_{p 1}\right|$, so that for a fixed scattering angle

$$
\begin{equation*}
\frac{\left|E_{p}\right|}{\left|E_{p}\right|}=\frac{c}{c_{1}} \tag{97}
\end{equation*}
$$

expresses the perturbation theory result. The exact fields are compared with perturbation theory in Fig. 39 for several values of c. The theory appears to fail at about $c / c_{1}=200$ which corresponds to a root mean square surface amplitude of approximately $\lambda_{\mathrm{e}} / 10$.

In addition to permitting the examination of the applicability of various electromagnetic approximations to the ocean surface scattering problem, the programs permit direct calculation of the scattered fields from any appropriate surface. One such application is to the calculation of the expected value of the backscattered power from an ensemble of ocean-like surfaces. Such an ensemble may be constructed from the known height spectrum, Ref. [34]. For a sea surface, the

F19. 39.--Perturbation theory test.
height spectrum, Fig. 40 , decays as k_{m}^{-4} where k_{m} is the mechanical

Fig. 40.--Sea surface height spectrum.
Wavenumber. A particular member of the ensemble is chosen to be a finite sum of sinusoids with random phases whose amplitudes vary as k_{m}^{-2}. The k_{m} 's are not harmonically related so that the surface, like the ocean, will be aperiodic. A surface of this type given by

$$
\begin{align*}
H(x)= & 2.5(0.4 \sin (2 \pi x / 200.0+0.78) \tag{98}\\
& +0.8(10.0 / 20.0)^{2} \sin (2 \pi x / 10.954+1.6) \\
& +0.8(6.66 / 20.0)^{2} \sin (2 \pi x / 6.28318+2.4) \\
& \left.+0.8(5.0 / 20.0)^{2} \sin (2 \pi x / 4.795+0.4)\right)
\end{align*}
$$

can be used to generate an ensemble whose elements are different sections of this surface.

Physical optics was used to calculate the expected value of the backscattered power and field strength from a 75 menber ensemble made from the surface described by Eq. (98). Each member of the ensemble was 75 electrical wavelengths long. On a CDC 6600 computer,
the time required for the run was about 40 minutes. The expected values $\left.\left.\langle | E_{z}^{s}\right|^{2}\right\rangle$ are shown in Fig. 41; the expected value of E_{z}^{s} was found to be extremely small compared to the root mean square field.

Fig. 41.--Expected value of backscattered $\left|E \frac{2}{2}\right|^{2}$ from ensemble.

Notice that no special form of the slope distribution or other statistical properties of the surface have to be assumed. It is also possible to use a point by point, i.e. discrete, representation of the surface, such as might be generated by the prescribed statistical properties of the surface.

CHAPTER VI

SUMMARY AND CONCLUSIONS

In this work the scattering properties of cylindrical rough surfaces have been investigated by several numerical techniques in order to test the validity of previous theoretical work. The results, using as checks the integral equation solutions, show that geometrical optics is not usable for surfaces with radius of curvature smaller than 2.5. λ_{e} and may give poor results even when this condition is satisfied should the scattering geometry be such that no specular point exists or a specular point coincides with a point of infinite radius of curvature. With the exception of these two cases, geometrical optics and physical optics give nearly the same scattered fields.

It was found that the numerical evaluation of the scattered fields from the physical optics currents gives good results for almost any geometry (except perhaps deeply shadowed configurations) as long as the radius of curvature condition, $r_{\mathrm{cm}}>2.5 \lambda_{\mathrm{e}}$, is satisfied. Physical optics, al though not always so accurate, has an advantage over the integral equation formulation in that the length of surface which can be treated is not 11 mited by machine storage. capacity.

The integral equation program has been used to check the perturbation theory prediction that the amplitude of the scattered field increases in proportion to the increase in the amplitude of the surface height profile. The numerical results confirm in a quantitative way the fact that the theory fails when the root mean square height is about one tenth of an electrical wavelength.

The physical optics program, because of its ability to handle long surfaces and its superiority to geometrical optics, has been applied to the direct calculation of the expected value of the scattered power from an ensemble of ocean-like surfaces which were constructed from a height spectrum similar to that of the sea. The computer time required, while lengthy, was not found to be prohibitive.

The extension of the programs to very long surfaces or to noncylindrical surfaces appears feasible only for the G.0. and P.O. methods; the storage requirements for an I.E. solution in either case would be prohibitive. P.O. would probably be the easiest to modify to non-cylindrical surfaces, especially if shadowing were neglected. Since location of the specular points becomes much more complicated in the non-cylindrical case, the G.O. method would be more difficult to implement.

APPENDIX A

COMPUTER PROGRAMS

A listing of all the programs discussed in the text is presented here. To facilitate understanding of the programs, the symbols used in the programs have been used in the text whenever possible.

All programs require the plot subroutine listed at the end. The function subprograms AHAN2O(x) and AHAN21 (x) are required in the T.M. and T.E. integral equation programs respectively.

THIS PROGRAM IS FOR BISTATJC BACKSCATTERING
ESCNS IS THE RETURNED E FIELD WITH SHADOKING NOT ACCOUNTED FDR ESCHS IS E SCATTEREU WITH SHADOWING ACCOUNTED FUR

GEOKETRICAL OPTICS FOR THE OCEAN SURFACE
SPECULAR POINT SEARCH $1 S$ DONE ITH TWO STEPS
U1 IS MECHANICAL WAVELENGTH DEPENDENT, \#2 ISREFINNED MECHANICAL OR ELECTRICAL WHICHEVER IS MDRE STRINGENT
ULTAX IS THE SEARCH SIZE\#1;DLTAXOO IS SEARCH SILEM2
DELSHA IS SHADUH TEST•STEP SILE
THIS PROGRAN CAN HANDLE 200 SPECULAR POINTS /PASS IE. ONE THIGITHS DIMENSICN XN(200), ANGLE(200)
OIMENS ION ACDNS (720), AWS(720), AhCS(720),ASNS(7201, AOS(720)
DIMENSION ECDNS(720), EWS(720), EWCS(720),Y(10), ESNS 720$)$
REAL Plipl2
REAL. MTHO
COMPLEX ESCNS, ESCHS, ENS
COMMON CA,CB,CKA,CKB; PHA; PHB; CC, CKC; PHC
COMPLEX ESCONS,ESCD
NAMELIST/CAT/CA,CB,CKA,CKB, PHA, PHB, CC, CKC,P HC, WAVE, THIO
NAMELIST/CUT/ESNS, ASNS, ECDNS, ACDNS, EWS, AWS, EWCS, ANCS, AOS
C THE FUNCTION WHICH DESCRIDES THE SURFACE IS
C $\quad H(X)=C A * S I N((C K A * X)+P H A)+C B * S I N((C K B * X)+P H B)+C C * S I N((C K C * X)+P H C)$
CA=10.0
CKA $=6.28318 / 200.0$
PHA=0.0
$C B=0.0$
CKB=0.0
PHIF=0.0
$C C=0.0$
CKC $=0.0$
$P H C=0.0$
HMAX=ABS (CA) + ABS (CB) + ABS (CC)
$\quad 1=3.14159$
P12F1.5707963
TPI=6.283185
WHMIN IS THE MINIMUM MECHANICAL WAVELENGTH
WMMIN=TPI/AMAXI (CKA,CKB,CKC)
OLX $=0.01000$
TWDLX $=20.0$ कDLX
C NANI IS THE NUMBER OF ANGLES TO BE INVESTIGATED
NANI $=360$
XSTRT $=-200,0$
XSTOP $=-X S T R T$
'C THS IS THE ANGLE between the pos, x axis and tre scattering direc.
C
THI IS THE ANCLE BETHEEN THE PDS X AXIS ANU THEINC DIRECTION
THI $=60.0$ © $3.1415927 / 180.0$
C WAVE IS THE ELECTKICAL WAVELENGTH
WAVE $=25.0$
OLTAX $=N M M I N / 10.0$
DL TXOO=AMIN1(\{DLTAX/5,0) , (WAVE/20.0))
DELSHA=HMMIN/10.0
XSKIP $=\times 5$ TOP $+(10$ ** 91
TANTHIETAN THII
THID=THI*180.0/3.14159
CSIHI=COS(THI)
SNTHIESIN(THI)
NAMEL IST/TOM/ DLTAX, DLTXOO, DELSHA
WRITE 6, TOM)
DO 93 IREFI, NANI
ASNS ITKEI=0.0
$A C D N S I I R E I=0.0$
AHS (IREI $=0.0$
AHCS (IRE) $=0.0$
ESNS (IRE) $=0.0$
ECDNS IIRE $1=0.0$

```
    EMSIIREI=0.0
    EWCS{IREI=0.0
    93 CONTINIE
    DO 17 \J=L,NANI
    THS=FLOAT(IJ)*U.8726646 E-02
    THSD=THS*57.29578
    AOS(1J)=THSO
    HRITE(6,356) THID,THSO
356 FORMATI11H JNC ANGLEE,EL5.8,13H SCATT ANGLE=,E15.8)
    SUCOS=C.STHI +COS(THS)
    SUSIN=SNTHI+SIN(THS)
    N=0
    FIRST FIND POSITIONNS CF SPECULAR RETURN AND STORE THEM
C THE FIRST POSITION CAN NOT BE A SPECULAK POINT
    XP=XSTRT
    SUMD2=(THI+THS)/2.O
    E=SUMD2-{TH(XP)+PI2)
102 XP=XP+DLTAX
    EO=E
    E=SUMD2-(TH(XP)+PI2)
    IF{E.EQ.O.O) GO to 100
    IF{(IEO.GT.0.O).AND.(E.LT.O.O)I.OR.((EO.LT.0.0).AND.IE.GT.0.01))
    2 60 10 100
    GO TO 101
    100 .N=N+1
    XN(N)=XP
    ANGLE(N)ETHS-(TH(XP) +P12.1
    101 IF (XP.LE. XSTOP) GO TO }10
    IFIN.EQ.O) GO.TO }37
C THIS IS TO REFINE THE POSITION UF THE SPECULAR POINT
    DO 25 K=1,N
    XSO=XN(K) -DLTAX
    ExSUMDZ-1TH(XSOI&PIZ)
    222 XSO=XSO+DLTXOO
    FO=F
    E=SUMD2-(TH{XSO) +P12)
    IF(E.EQ.0.O) GO YO 252
```



```
    260 T0 252
    60 10 253
    252 XN(K)=XSO
    ANGLE(K)=THS-{TH(XSO) +PI2)
    253 CONTINUE
        IF \XSG.LT.XN(K)I GO TO 222
    25 CONTI{UE
        ESCNStEMPLX(0,0,0,0)
        ESCDNS=CMPLX(0.0.0.0)
        DO 10 K=1,N
        PHASE={TP // WAVE)*((SUCDS*XN{K)) + (SUSIN.*H(XN(K)I))
        RC=RS(XN(K))*COS (AFIGLE(K))
        IF(RC.LT.O.0) PHASE=PHASE+(PI/2.0)
        ENSE-({SORT (ABS (RC/2.C)I)\CEXP{CMPLX(0.D.PHASE)))
C. TAPPERING INCLUDED
        XGEXN(K)
        IF(XG,GT. XXSTOP-HAVE)) ENS=CMPLX(C.O,C.0)
```



```
        IFI(XS.GT.IXSTOP-{2.C*HAVEII),AND.(XG.LE.IXSTOP-WAVE)I)
    2ENS=ENS (0.5-10.5*SINI13.14159/WAVE|*|XG-{XSTOP-(L.5*WAVE|)||II
        IF|\X3.GE;IXSTRT + WAVE)I.AND.{XG.LE.IXS.TRT+(2.0*WAVE)||!
        2ENS#ENS*{0.5+(0.5%SIN(13.14159/WAVE)*|XG-(XSTRT+(L.5*WAVE|))|)}
        ESCNS=ESCNS +ENS
        IF(RS(XN(K)),LE.O:O) 60 T0.10
        ESCDNS#ESCDNStENS
    10 CONTIAUE
        ACD=CABSI ESCONSI
        IF(ACD.LT.1.0 E-05) G0 TO 59
        ANACO=57.29578&ATAN2 (AIMAG(ESCONSI,REAL(ESCONS)I
    59 CONTINUE
    BFIACD.LT: 1.0 E-05 ) ANACD=0.0
```

```
    ESMAG#CABS{ESCNSI
    ESANG=ATANZ {AIMAG(ESCNSI % REAL (ESCNSI)*180.0/3.1415927
    HRITE(6,726) ESMAG,ESANG
    726 FURMAT(" ", MAG. OF SCATT. E FIELD=!,E15.0,'PHASOR ANGLE=',EIS.B,
        23X, 'WITHOUT SHAOOWING' I
        HRITE (6,121) ACD,ANACL
    121 FORMATI' *SCATT. FIELD NO SHADOW CONCAVE OOWN TIPS ONLY=',EL5,8;
        2'PHIASOR ANGLEE',E15.81
            ESNS(Id)= ESHAG
            ECDNS(!JI=ACD
            ASNS\ [J)=ESANG
            ACDNS |IJ|=ANACC
    C. NOW FIND THE SHAOOWING EFFECT
C \thereforeINBUUND SHADOWING
            IF (ABS(THI-PI2).LT.0.O5) 60 TO 500
            00 327.K=1,N
            日l=H(XN(K))-{TANTHI *XN(K):
            STEPI=DELSHA
            IF (TANTHI.LT.0.OI STEPI=-DELSHA
            XI=XN(K)+STEPI
            G0 10 471
    47C XI=XI+STEPI
    471 YIE|\ANTHI*XI|+BI
            IF (YI.FE.H(XI).I XN(K)=XSKIP
            IF(ABS(KN(K)H.GT.XSTOP) GO TO 499
            IF(ABS(XI).GT.XSTOP) GO TO 499
            IF(Yt.LE.HMAX) GO TO 470
    499 COMTINUE
    327 CINTINUE
    5 0 0 ~ C O N T I N U E ~
C OUT BOUND SHAUOWING
            IF(ABSITHS-P121.LT.0.05) G0 TO 639
            TAN THSETAN(THS)
            DO. }633\textrm{KK}=1%\textrm{N
            IF (XN(KK).GT.XSTOP) GOTO 633
C THE ABOVE CARU MARES SURE THAT TIME IS NOT SPENT ON A PT, ALREADY
C KNOWN TO BE SHADGNED
            BOםH(XN(KK))=(TANTHS#XN(KK)I
            STEPG=DELSHA
            IFITANTHS.LT.O.OI STEPO=-OELSHA
            KOmXN(KK) +STEPG
            GO TO 671
            670. XO=XO+STEPO
                    671 YD=(TANTHS*XG) &80
            IF(YO.LE.H(XO): XN(KK) =XSKIP
            IF(ABSIXN(KKI),GT.XSTOP) GO TO }69
            IF.(ABS(XO).GE,XSTOP) GO T0 699
            IF (YU.LE.HMAXI GO TO }67
    699 CONTINUE
    633 CONTI NUE
639 CONTINUE
    END OF. SHADONTNG EFFECT
    INININ=O
    ESCHS =CMPLX(0.0.0.0)
```

 ESCD=CMPLX(0,0,0,0)
 DU 19 K=1,N
 C NEXT CARD SKIPS THE SHADOWED SPECULAR POINTS
IF (XN(K).GT.XSTDP I GO TU 19
INININEK
PHASE=(TPI/hAVE)*((SUCOS*XN(K)|+(SUSIN*H(XN(K) II)
RC=RS(XN(K)*COS (ANGLE(K))
IFIRC.LT.0.0) PHASE=PHIASE+(PI/2.0)
ENS=-{{SQRT(ABS(RC/2.0))]*CEXP(CMPLX(0.0,PHASE|))
C TAPPERING INCLUDED
XG=XN(K)
IF(XG.G7.(XSTOP-WAVE)) ENS=CMPLX(O.1).0.0)
IF(XG.LT, (XSTRT +WAVE)) ENS=CMPLX(C.0,0.(i)
IF(TXG.GT.IXSTOP-(2.5\#WAVEI)I.AND.(XG.LE.IXSTOP-WAVEIII
2ENS={NS*(0.5-10.5*SIN(\3.14159/WAVE)\&(XG-(XSTUP-(1.5*WAVE))||)
IFI{XG.GE.(XSTRT + HAVE|),AND.{XG.LE.{XSTRT+(2.D*WAVEJ)|)
2ENSEENS*{C.5+10.5*SIN((3.14159/WAVE)*(XG-(XSTRT+(1.5*WAVE)|||)
ESCWS=ESCWS+ENS
IFIRS(XNIKI).LE.0.0 1. GC TO 19
ESCOAESCU4ENS
CONTINUE
IF! (NININ.EQ.O) WRITE{6,3149)
IFIINININ.EQ.OI GO TO 23
ABESCD=CADS(ESCD)
IF(ABESCD.LT. 2.0 E-05) GO TO 50
ANESCD=57.29578*ATAN2(A1MAG(ESCD),REAL(ESCD))
58 CONTINUE
IFIABESCD .LT. 1.OE-05) ANESCD=0.0
ESMAGS=CABS{ESCHS}
ESANGS=ATAN2(AIMAG{ESCWS|,REAL (ESCWS)|\#180.0/3.1415927
3149 FORMAT(" ",'NO SCATTERED E FIELO HITIA SHADUWING')
IF(INININ.NE.O) WKITE(6,776) ESMAGSIESSANGS
776 FORMATI' ",MAG OF SCATT. E FIELD WITH SHADUWING=',EL5.B;'PHASUR
2ANGLE=`,E15.8) IF(IMININ.NE,O) WRITE(6,2L18) ABESCD,ANESCD 2118 FORMATG: "'SCAT FIELD WITH SHAD. CCNCAVE OOWN GNLY=*,E15.B;" 2' PIIASDR ANGLE=",E15,8) EWSIJJ=ESMAGS EWCS(1J)=ABESCD AWS(IJ)=ESANGS ANCS(IJ)=ANESCD 60 T0 23 372 WHITE (6,3152) THID,THSD 3152 FORMAT(" ND SPECULAR POINTS FOR THIDE!,EL5.8;' AND THSD=`,EI5.8)
23 WRITE(6,779)
WRITE(6,779)
779 FQRMATIIH I
17. CONTINUE
C FOR THE PLOTS
DO.536 IKO=1 \&NAN!
IND=IKO-1
THSD=AOS(1KO)
Y(I)=ESNS(IKO)
536 CALL PLOTITHSO,Y,1,IND,50.0,0,01
DO }537\mathrm{ IKO=1,NANI
IND=1KO-1
THSD=AOS(IKO)
Y(I)=EWSIIKOI.
537. CALL PLCT (THSO,Y,I;IND,50.0,0.0)
DO 533 IKO=1 NNANI
IND=1KD-1
THSO=AUS (IKOI
Y(1)=ECDNSTIKOI
538.CALLPLOT\THSO,Y,1,IND,50.0,0.0I)
DO. 539 I KO=1 NNANI
INO=IKO-I
THSD=ADS (tKO)
Y(IIzENCS(IKO)

```

539 CALL PLOTITHSD, Y, 1, IND, 50. U, 0. 01
00936 KKRLEI, NANI
ANGOS: FFLOMT(KKRL)/2.0
IFIESNSIKKRLI.LE. 0.00011 GO 10936
OBNS 20.0 * *ALOG10 (ESNS (KKRL) )
WRITE 6,937 ) DONS,ANGOS

936 CONTINUE
00736 KKRL=I, NANI
ANGOS=FLOAT (KKRL:/2.0
IFt TENS (KKRLI-LE. 0.00011 GO TO 736
OBS=20.0*ALOCLO(EWS (KKRL))
WRITE\&6,737) CBS, ANGOS
737 FORMAT( UBS二', E15.8:" ANGOS:",E15.81
736 CONTINUE
STQP
END

FUNCTION RS(X)
COMMON CA,CB, CKA,CKB, PHA, PHB,CC, CKC, PHC
\(c\) TUIS GIVES THE RADIUS OF CURVATURE AT \(X\)
HP=(CA*CKA*COS( \((C K A * X)+P H A))+(C B 4 C K \sharp * C Q S((C K B * X)+P H B \|\)

HPP=-( \((C A * C K A * C K A * S I N((C K A * X)+P H A))+(C B * C K B * C K B * S I N((C K B * X)+P H B))\) \(2+(C C * C K C \# C K C * S I N((C K C * X)+P H C 11)\).

RETURN
END
FUNCT JON TH (X)
COMMDN CA,CB, CKA, СКB, PHA, PHIB, CC, CKC, PHC
TH=ATAN2( (CA*CKA*COS ( \((C K A * X)+P H A))+\{C B * C K B * C O S((C K B * X)+P H B)\}\)
\(2+(C C * C K C * C O S(|C K C \neq X|+P H C \mid) ; 1.0)\)
C THIS FUNCTION GIVES THE ANGLE BET. THE TANGENT TO H(X) AND THE
C HORIZONTAL
RETURN
END

FUNCTION H(X)
COMMON CA, CB, CKA , \(\mathrm{CKB}, \mathrm{PH}, \mathrm{PHB}, \mathrm{CC}, \mathrm{CKC}, \mathrm{PHC}\)
\(H=(C A * S I N((C K A * X)+P H A) \mid+(C B * S I N((C K B * X)+P H B))+C C \neq S I N((C K C \neq X)+P H C)\)
RETURN
END
```

 DIMENS ION Y(10),ESSS(360)
 OC
 THIS PRDGRAM USES PHYSICAL OPTICS TO CALCULATE THE BACKSCATTERING
 from a SEA SURFACE bY dIVIOING SURFACE INTO LIT AND UNLIT REGIONS
 IN THE LIT REGIONS THE SURFACE CURRENT IN 2NXH
 galssian integration used
 for this program to give.useful results the surface must have
 RadII of CuRVATURE NO LESS than 2*WE
 NSP IS THE NUMBER OF SHADON POINTS
 SURFACE IS DESCRIBED BY ADNE*SIN(CCNE#X+PONE) +ATWO#SINICTHD*X
 4PTHOI+ATRE*SIN(CTRE$X+PTRE)
 SURFACE UNDER CONSIDERATION LIES bETHEEN ALEP AND REP
 SN is the step size taken to determine shmooning
 IT muST bE SNALLER THAN ANY SURFACE FEATURES AND MUST ALSO
 allch the locationdf the end poin'ts of integration hithin
 A SMALL FRACTION OF A WAVELENGTH
 NANI IS THE NUMBER OF ANGLES (SCatTERING) TO BE EXAMINED
 MAKE DIMENSICNS OF ESSS , SCANG,EFPA SMALL AS POSSIBLE TO avOIO
 lage of cards returneo
    ```

```

 NAMELIST/RON/AB,ANG,DTHS
 DIMENSION SC ANG(3601, EFPAI 360)
 c COMPLEX 5,BINT
 C SCATTER SHADOWING HAS NOT BEEN ACCCUNTED FOR
 COMMON /DOG/AONE,CONE,PONE,ATHO, CTMO,PTWO,ATRE,CTRE;PTRE
 - COMMON /HOG/ G,THI,THS,HE
 COMMON/PIG/ SECTOR,DX,REP;SECDLO
 COMMON/GSNN/GWL,GW2,GW3,GW4,GW5,SU1,GU2,GU3,GU4,GU5
 WE=25.0
 c. HE IS THE ELECTRICAL HAVELENGTH
 G=2.0*3.1415927/WE
 SRTHEmSQRT(HE)
 CX=HE/15,0
 ADNE =50.0
 CONE=2.0*3.1415927/800.0
 PONE=3.14159/2.0
 ATKO=C.O
 CThO=0.0
 PTMO=0.0
 ATRE=0.0
 CTRE=0.0
 PTRE=0.0
 MANI=360
 SECTOR=WE/2.O
 SECOIO=SEC TOR/10.0
 C CONSTANTS FOR GAUSSIAN INTEGRATION
 GW1=0.2369268
 GW2=0.47862867.
 6N3=0.568889
 CH4=6W2
 GH5=GWI
 CU1=-C.9061798
 GU2=-0.53846931
 GU3=0.0
 GU4--GU2
 GU5=-GU1
 C THE ANGLE OF INCIDENCE SHOULD NOT BE GREATER THAN 90 DEG
THI=60.0*3.1415927/1 B0.0
IF THE INCIDENCE ANGLE IS WITHIN THN OEGREES OF 90 NO SHADOWING
C. IF THE INCIDENCE A
IF(ABS(THI-1.5707).LT.0.175) G0 10 563
TANTHI=TANITHII
OTHI =180.0*THI/3.1415'027
WRITE(6,1071) DTHI
1071 FO,MMAT: 1, ANG OF INC, FROM POS X AXIS =1,,E15.01

```
```

 REP=200.0
 ALEP=-REP
 SN*WE/10.0
 NSP=1
 DIMENSION SX(10001
 IF(DH(REPI:GT.TANTHI) GO TO 106
 SX(NSPI=REP
 60 TO 105
 106 SLOPE=TANTHI
 B=H(REP)-{SLCPE*REP)
 XPREP
 109 X X X-SN
 IF({SLOPE*X)+B.GT.H(X)] GOTO 109
 IP(X.LE.ALEP) GO TO 1000
 SX(NSP)=X-($N/2.0)
 105 CONTINUE
 C THIS abOve takES CARE OF THE FIRST RIGHTENDPOINT
15 X=5X(ASP)
22 X=X-SN
XN=X-SN
IF((DH(X).LT.TANTHI).AND.(DH{XN).GT.TANTHII) .GO TO 53
IF(X,GT.ALEP) GO TO 22
60 T0 92
53 NSP=NSP+1
\$X(NSP)=XN
SLOPE\approxTANTH!
G=H(SX(NSP)]-(SLOPE*SX(NSP))
X=SX(NSP ;-SN
29 X=X-SN
IF({SLOPE*X)+B.LY.H(X)) CO TO 39
IFIX.GT.ALEPI. CO TO 29
G0TON92
SX(NSPI=X-(SN/2.O)
CO TO 15
92 NSP=NSP+1
SX\NSPIEALEP
GO. TO 564
563 SX(1)=REP
SX(2)=ALEP
NSP=2
564 CONTINUE
C LAST VALUE IN SX(-J) IS ALEP
WRITE (6,101.) (K,SX{KI;K=1,NSP)
101 FORNAT{':,SX(',14,O)=0,E15.8)
DO 317 JNX=1,NANI
THS=FLOAT(JNX)*(0.8726646 E-02)
DTHS=180.0%THS/3.1415927
SCANG (JNX)=DTHS
S=CMPLX{0.0,0.0)
KKN=1.
10. CDNT INUE
ALCHESX(KKN+LI
GUPP=SK(KKN)
S=STBTNT(ALON,AUPP)
KKANKKNN+2
IF.IKKN.LT.NSPI.AND.CIKKN+ 1). LT.NSP I| GO TO 10
C TO CCNVERT TO TRUE SCATTERED E FIELD FOR EINC OF UNITY HAG
SECMPLX(-0.70711;-0.70711/%S/SRTHE
AB=CABS(S)
ESSS(JNX.)=AB
ANG=160.0\&ATAN2IAIMAG!S),REALISII/3.1415927.
EFPACJNX IEANG
317 CONTINUE
\$0: 531 JK=1,NANI

```
```

 *EmESSS\JK)
 OB=20.0%ALOG10(E)
 A=EFPA(JX)
 AS=$CANG(JK)
 531 WRITE (6,532).AS,E,A,DB
 532 FORMAT(* *'SCAT ANG FROM HORI2"', E15.B," MAG OF E FIELD='.
 2.E15.8;' PHASE ANG**,E15.8;' DB=',E15.8)
 DO 535 1KE=1,NANI
 IND=IKE-1
 THSD=FLOAT(IKE)/2.00
 Y(I)=ESSSIIKE)
 535 CALL PLOT (THSD,Y,1,IND,50.0.0.0)
 G0 TO 1002
 1000 WRITE{6,1592)
 1592 FORMAT('SURFACE IS NOUT.ILIUMINATED*)
 CONTINUE
 STOP
 END
 FUNCTION H(X)
 COPMON /OOG/AONE,CONE,PONE, ATHO,CTHO,PTHO,ATRE,CTRE;PTRE
 H=AONE*S IN(CONE*X&PONE) +ATHO#SIN(CTHO*X&PTWOI +ATRE*SINICTRE*X&PTRE
 21
 RETURN
 END
 FUNCTION DHEXI
 COHMON /DCG/AGNE,CONE,PDNE, ATWO,CTHO,PTNO,ATRE,CTRE,PTRE
 .-- DH=AONE*CONE*COS (CONE*X+PONE) &ATWO &CTWO*COS{CTWO*X+PTWO\
 2 +ATRE*CTRE*COS\CTRE*X*PTRE\
 RETURN
 END
    ```
FUNCTION BINTEXX,YYI
```

 C XX IS LOWER LIMIF OF INTEGRATION, YY IS UPPER LIMIT
 C P..... PHYSICAL OPTICS RADIATION INTEGRAL MITH PLANE WAVE INCIDENT
 C TM CASE
 COHPLEX S:BINT
 COMPLEX GASS5
 COMMON /HOG/ G;THI,THS,HE
 COMHON/P IG/ SECTOR,OX,REP,SECD10
 C`..'BREAK INTEGRAL FROM XX TO YY INTO SHALLER SEGMENTS' OF LENGTH
 C SECIOR AND INTEGRATE OVER EACH SEGNENT USING GAUSSIAN INTEGRATION
 S=CHPLX(0,0,0,0)
 CDDSINT(IYY-XXI/SECTOR)
 IF{LDS:EQ.OS GO TO 10
 DO }100\mathrm{ INJ=1,LDS
 UL=XX+(FLOAT(INJ)*SECTOR)
 ALL#XX+{FLOAT(INJ-1)*SECTORF
 100'S=S&GASSS(ALL,UL)
 C NOW TO GET LAST FRACTION DF SEGMENT LEFT OVER FROM SURFACE SEGMENTATION
S\#StGASS5(XX+(FLOAT(LDS)*SECTORI,YY)
60 10 50
*10 S=GASS5 (XX,YY)
50% CONTINUE
BINT=S
RETURN
END

```
```

FUNCTION GASS5 {XL.XU\
COMPLEX GASS5,FTBI
FIFTH ORDER GAUSSIN INTEGRATION
XL IS LOWER L'IMIT,XU IS UPPER LLMIT
XU-XL IS LESS THAN OR EQUAL TD SECTOR
COHMDN/GSNN/GHL,GW2;GH3;GW4;GW5;GU1,GU2;GU3;GU4;GU5
DVDFEP = (XU-XL)/2.0
DVSMEP=(XU+XLI/2.0
XU5=GUS\&DVDFEP+DVSMEP
XU4=GU4*DVUFEP+DVSMEP
XU3=GU3*DVDFEP+DVSMEP
XU2=GU2*DVDFEP4DVSMEP
XU1 =GU1\&DVDFEP+DVSMEP
GASS5=DVDFEP*(GHL*FTBIIXU1)+GW2*FTBI(XU2)+GW3*FTBIIXU3)
2 4GW4*FTBI(XU4) +GH5*FTBI(XU5))
RETURN
END
FUNCTION FTBI(X)
CONPLEX FTBI
C THIS IS THE FUNCTION TO BE INTEGRATED
C THIS IS FOR THE TM CASE
COHMON/HOG/G,THL ,THS,WE
COMMON/PIG/ SECTOR,DX,REP,SECDIO
GCCzG%(COS(THI)+COS(THS))
GSS=G*{SIN(THI)+SIN(THS))
RCK=REP-(2.0*WE)
FTBI=SIN{THI-ATANIDH(XI)*SQRT(1.0+(CH{X)*\&2|)*
2 CEXP{CMPLX(0.0. ({X*GCC)+(H(X)\#GSS)])]
C THE FOLLDWING ACCOUNTS FOR TAPERING
ABSX=ABS(X)
IF(ABSX-RCK) 1500,1500,2000
2000 IF(X.LE.(WE-REP)) FTBI=CMPLX(0.0,0.01)
IF(X,GE.(REP-HE)) FTBI=CMPLXIO:0,0.0)
IF({X.GT.(NE-REP)).AND.(X.LE.{(2,0\#HE)-REP)))
2 FTBImFTB!*(0.5+10.5*SIN({G/2.0)*(X-{(1.5*WE)-REP))||!
IF(IX.LT.(REP-WE)):AND.(X,GT. (REP-(2.O*WE)|))
2 FTBI=FTBI*(0.5-10.5*SIN(\G/2.0)*(X-{REP-(1.5*WE|)|)|)
CONTINUE
RETURN
END

```
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{C. . THIS PROGRAM USES PHYSICAL OPTICS TO CALCULATE THE BACKSCATTERING} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{3}{*}{\begin{tabular}{l}
C. IN THE LIT REGIONS THE SURFACE CURRENT IN \(2 N X H\) \\
GAUSSIAN INTEGRATION USED \\
FOR THIS PROGRAM TO GIVE USEFUL RESULTS THE SURFACE MUST HAVE
\end{tabular}}} \\
\hline & \\
\hline & \\
\hline \multicolumn{2}{|l|}{C. FOR THIS PROGRAM TO GIVE USEFUL RESULTS THE SURFACE HUST HAVE} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{3}{*}{C: NSP IS THE NUMBER OF SHADOH POINTS}} \\
\hline & \\
\hline & \\
\hline \multicolumn{2}{|l|}{C SURFACE UNDER CONSIDERATION LIES BETHEEN ALEP AND REP} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{C. SN IS THE STEP SI2E TAKEN TO DETERMINE SHADDHING}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{C. ALLOH THE LOCATIDNOF THE END POINTS OF INTEGRATIDN WITHIN}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{. C (ANI IS THE NUMBER OF angles iscattering to be Examineo} \\
\hline C & HAKE DIMENSIONS OF ESSS , SCANG,EFPA SMALL AS PDSSIBLE TO AVOID \\
\hline \multicolumn{2}{|l|}{c. LAGE DF CARDS RETURNED} \\
\hline \multicolumn{2}{|r|}{\multirow[t]{2}{*}{NANI SHOULD BE THE DIMENSION. DF
DIMENSION Y 110\()\), ESS \((360)\)}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{NAMEL IST/RON/AB ANG, DTHS}} \\
\hline & \\
\hline & COMPLEX S.BINT \\
\hline \multicolumn{2}{|l|}{C. SCATTER SHADOHING HAS NDT BEEN ACCOUNTED FOR} \\
\hline \multicolumn{2}{|r|}{} \\
\hline \multicolumn{2}{|r|}{\multirow[t]{2}{*}{COMMON HHOG/ G\%THI, THS ; WE
COMMON/PIG/ SECTOR, DX,REP, SECDI}} \\
\hline & \\
\hline & \multirow[t]{2}{*}{} \\
\hline & \\
\hline & \multirow[t]{2}{*}{NE IS THE ELECTRICAL WAVELENG TH
G-2.0*3.1415927/WE} \\
\hline & \\
\hline & \multirow[t]{2}{*}{SRTWE®SQRT( HE) .} \\
\hline & \\
\hline & AONE=40.0 . . . . ... .... . . . . .. . . . . \\
\hline & CONE \(=2.0\) 3. \(1415927 / 200.0\) \\
\hline & \multirow[t]{2}{*}{PONE \(=0.0\)
ATHD \(=0.0\)} \\
\hline & \\
\hline &  \\
\hline & PTHO=0.0 \\
\hline & ATRE \(=0.0\) \\
\hline & \multirow[t]{2}{*}{CTRE \(=0.0\)
PTRE \(=0.0\)} \\
\hline & \\
\hline & NANI \(=360\) \\
\hline &  \\
\hline & \multirow[t]{2}{*}{SECOLOPSECTOR/10.0} \\
\hline & \\
\hline & CM1 \(=0.2369268\). \\
\hline & G12 \(=0.47862867\) \\
\hline & 6W3 00.568889 \\
\hline & \multirow[t]{2}{*}{GH4=G W2
GNS \(=\) GHI} \\
\hline & \\
\hline & GU1 -0.9061798 \\
\hline & \(G \cup 2=-0.53846931\) \\
\hline & OU3=0.0 \\
\hline & CU4=-CU2 \\
\hline & \multirow[t]{4}{*}{\begin{tabular}{l}
6U5a-GU1 \\
THE ANGLE OF INCIDENCE SHOULD NOT OE GREATER THAN 90 DEG TH1:40.0*3.1415927/180:0 \\
IF THE INCIDENCE ANGLE IS WITHIN TEN DEGREES OF 90 NO SHADOOHING
\end{tabular}} \\
\hline & \\
\hline & \\
\hline & \\
\hline & TAKEN INTA ACCOUNT \\
\hline & LFIABSITHI-1.5707I.LT.0.1751 G0 T0. 563 \\
\hline & TANTHIE TANTTHI \\
\hline & DTHI 180.0 THI/3.1415927 \\
\hline & \multirow[t]{2}{*}{\begin{tabular}{l}
WRI TE 6,1071 ) DTHI \\
FORHAT: © ANG OF INC FROM PDS \(X\) AXIS - . \(E 15,81\)
\end{tabular}} \\
\hline & \\
\hline
\end{tabular}
```

 REP=200.0
 ALEP=-REP
 SN=HE/10.0
 NSP=1
 DIMENSION SXILOOOS
 IF(DH(REPI.GT.TANTHII GO TO 106
 SX(NSP) =REP
 60 T0 105
 106 SLOPE=TANTHI
 B=H(REP)-(SLOPE&REP)
 X=REP
 109 X=X-SN
 IF((SLDPE*X)+B,GT.H(X)) 60.T0 109
 IFIX.LE.ALEP\ GO TO 1000
 SX(NSP) EX-(SN/2.0)
 105 COMTINUE
 C THIS ABOVE TAKES CARE OF THE FIRST RIGHTENDPOINT
 15 X=SX(NSP)
 22 X=X-SN
 XN=X-SN
 IFI(OH{X).LT.TANTHI!.AND. (DH{XN).GT .TANTHTI! GD TO 53
 IF(X,GT,ALEP) GO JD 22
 G0T0 }9
 53 (NSP=NSP+1
 SX(NSP)=XN
 SLOPE=TAMTHI
 8=H(SX(NSP))-{SLOPE早SX(NSP)I
 X=SX(NSP)-SN
 29 X=X-SN
 IF((SLOPE&X)+B.LT.H(X)) GO TO 39
 TFIX,GT.ALEPI GO TO 29
 GO 10 }9
 39 NSP=NSP+1
 SX(NSP)=X-{SN/2.O}
 G0 T0 15
 92 NSP=NSP+1
 SX(NSP)=ALEP
 00 TD 564
 563 SX(1)=REP
 SX(2)=ALEP
 NSP=2
 564 CONTINUE
 c. SURFACE IS NOH SEPERATED INTO LIT AND UNLIT ZONES
 C LAST VALUE IN SXISI IS ALEP
 NRITE (G,101) (K,SX|K|, K=1,NSP:
 101 FORMAT(', 'SXI',I4,'1=',E15, 81
 C. THE FOLLONING FINDS THESCATTERED FIELDS DUE TO THE LIT ZONES
DD 3L7 JNX=1,NANI
THS=FLOAT(JNX)*{0.8726646 E-02\
DTHS=180;0*THS/3.1415927.
SCANGI JNXI =DTHS
S=CHPLX\0.0.0.01
KKN=1
10 CONTINUE
ALOH=SX(KKN+1)
AUPP=SX(KKN)
S=S\&BINT(ALOW,AUPP)
KKNEKKN+2
IF ITKKN.LT.NSPI.AND. (IKKN+II.LT.NSPII 60 TO. 10
C: \TOGONVERT TO TRUE SCATTERED H FIELD FOR HINC OF UNITY MAG
SES\#CMPLX10.707EL;0.707III/SRTHE
Ag=CABS(S)
08=20%OHALOGSOLABI
ESSS (JNX I=AB
ANG=180:O+A TAN2 \AIMAGISI, REAL IS|1/3.61415927
EFPAIJNXI=ANG.
WRITEI6,1431 DTHSIOAB, ANG;OB

```
```

|43 FORMATI' SCATTERING ANG' EEL5.8;" |AG=0,E15.0;" PHASE ANGLE=',
2E15.8;' DA='EES.8)
317 CDNTINUE
DO 53I JK=I,NANt
EmESSS (JK)
A=EFPA(JK)
AS=SCANGIJK {
531 NRITE (6,532) AS,E,A
532 FORMAT(" ", SCAT ANG FROM HDRIZ=" EEL5.B.' MAG OF H FIELD=*.
2 E15,8,' PHASE ANG\#:4,E15.81
DO 535 IKE=1, NANI
IND=I KE-1
THSD=FLOAT(IKEI/2.00
Y(1l=ESSSIIKE)
535 CALL PLOT (THSD,Y,1,IND,50.0,0.0)
GO TO 1002
1000 WRITE{6,1592)
1592 FORMATI'SURFACE IS NOT ILLUMINATED'I
1002 CONTINUE
STOP
END
FUNCTION H(X)
COMMON /DOG/AONE,CONE,PONE, ATWO,CTWO, PJHO,ATRE,CTRE;PTRE
HFADNE*S IN(CONE\&X +PONE YATWD*S IN(CTWQ*X+PTHO) +ATRE*SINTCTRE*X+PTRE
2)
RETURN
END
FUNCTION DHIXI
COMHON /DOG/AONE,CONE,PONE, ATHD,CTHO, PTHD,ATRE,CTRE,PTRE
DH=AONE\#CDNE\&COS(CONE*X+PONE I + ATWO\$CTHO\&COS (CTWO*X+PTHO)
2 *ATRE*CTRE*COS (CTRE*X +PTRE:
RETURN
END
FUNCTION BINTIXX,YY:
C XXIS LOHER LIMIT OF INTEGRATION,YY IS UPPER LIHIT
C PHYSICAL OPTICS RADIATION INTEGRAL HITH PLANE WAVE INCIDENT
TM CASE
COMPLEX S.BINT
COMPLEX gASS5
COHMON /HOG/ GITHI,THS,WE
COMMON/PIG/ SECTOR;DX;REP;SECDIO
C. BREAK INTEGRAL FROM XX TO YY INTO SMALLER SEGMENTS DF LENGTH
C SECTOR AND INTEGRATE OVER EACH SEGHENT USEVG GAUSSIAN INTEGRATION
S=CMPLX{0,0,0,0}
LDS=INT(IYY-XX)/SECTORI
IFILDS.EQ.OI GO TO 10
DO 100 INJ=1,LDS
ULEXX\&(FLOAT(INJ)*SECTOR)
ALI.EXX+(FLOATIENJ-I)*S ECTORI
100 S=StGASS5(ALL,UL)
SMS\&GASS5 (XX I FLOAT IL OSI*SECTOR IIYYI
GOT0.50
10.S=GASS5(XX,YY)
50. CONTINUE
BINT=S
RETURM
ENO

```

FUNCTION GASS5 (XL, XUI

\section*{... COMPLEX GASS5 \&FTBI}
\(c \quad\) FIFTH ORDER GAUSSIN INTEGRATI ON
\(C\) XL IS LOHER LIMIT XU IS UPPER LIMIT
\(C \quad X U-X L\) IS LESS THAN OR EQUAL TO SECTDR
COMMDN/GSNN/GW1,GW2,GW3;GW4, GW5;GU1;GU2,GU3,GU4,GU5
DVDFEP= (XU-XLI/2.0
DVSMEP= (XU+ XL )/2.0
XU5-CU5*DVDFEP + DVSMEP

XU3:GU3 *DVDFEP +DVSHEP
XU2 =GU2 \(=\) DVOFEP + DVS MEP
- XU1 \(=G U 1 * D V O F E P+D V S H E P\)

GASS5=DVDFEP* (GW1*FTBI IXU1) +GH2*FTB11 XU2) +GH3*FTB! (XU3)
2 +GW4*FTBI (XU4) +GH5*FTBI (XU5)I.
RETURN
END
FUNCTION FTBI (XI
COMPLEX FTBI
THIS IS THE FUNCTION TO BE INTEGRATED
C THIS IS THE FUNCTION TO
C THIS IS FOR THE TM CASE
COMMDN/HDG/G, THI; THS , NE
COMMON/PIG/ SECTOR,DX,REP,SECDIO
GCC \(=\) G*(COST THI \()+\) COS (THSI)
GSS=G*(SIN(THII+SINITHSI)
RCK=REP-(2.0*WE)
FTBI=SIN(THS-ATAN\{DH(X)))*SQRT(1.0+(DH(X)**2))*
2. CEXP(CMPLX(0.0, \((1 \times \neq G C C)+(H(X) \neq G S S) \|)\)
C. THE FOLLOWING ACCOUNTS FOR TAPPERING

ABSX=ABSIX:
(F(ABSX-RCK) 1500,1500 \& 2000
2000 IF (X.LE. (WE-REP) FTBI \(=C\) MPLX \((0.0,0.0 .0)\)
IFIX,GE,(REP-WEI) FTBI=CMPLXIO, (1,0,0)


- IF( \((X, L T,(R E P-H E))\). AND. \((X, G T,(R E P-(2,0 * W E) \mid) 1\)

1500. CONTINUE

RETURN
END
```

C. THIS IS A METHOD OF MOMENTS SULUTION
C TM POLARIZATION SYMMEIRIC MATRIX
C NSUB SEGNENTS HAVE N MIOPOINTS
C NSUB.IS THE SÜBSCRIPT WHICH CDUNTS THE END POINTS
C N IS THE SUBSCRIPT WHICH COUNTS THE MIDPOINTS
WATCH MAX SLOPE SO THAT THE X INCREMENTS AKE SMALL ENOUGH
THE. REGIGN UNDER CONSICERATIGN LIES BETWEEN -EP ANO EP
DIMENSION YI1OI,CMC(360)
COMPLEX SNN,SST
COMPLEX FSS
UDUBLE PRECISION DAL,DDX,DUC2,DUC,DALC,OR
COMPLEX FINCI30 1,STS
CONMON /PIG/ AONE,CONE,PCNE,ATWO,CTWO,PTWO,N
COMPLEX AHAN2O
COMPLEX F(300),S(45150);SS,T
COMPLEX FIH
DIMENSICN X{3001
DIMENSICN XMIU(300)
CUMPLEX STO
C WE IS THE ELECTRICAL WAVELENGTH
HE=25.0
G=6.2831853 /WE
STS=SQRT (HE)\#CMPLX(1.0.1.5)\&{+0.707107)/3:1415927
DC=NE/10.0
DX=0C/10C4.0
DC2=DC/2.0
EP=200.0
API=3.1415927
c THE FELLCHING CONSTANTS dEFINE THE SURFACE
AONE=25.C
CENE=2.0*3.1415927/200.0
PGNE=C.0
ATMO=C.O
CTHO=G.0
PTHO=O.O
CALL SCLOKI
C THE fOLLOWING BREAKS THE SURFACE INTO SEGMENTS DC CENTIMETERS LONG
C. BY LINE INTEGRATION USING STEPS OF LENGTH DX FOR THF INTEGRATIUN
NSUP=1
X(NSUB)=-EP
DDC=DBLE(DC)
DOX=CBLE(DX)
DDC2=DBLE{DC2J
1002 DAL=0.00D 00
-OR=TRLE\XINSUBI)
1001 DR=OR+DDX
R=SNGL(OR)
DALG=DAL
EAL=CAL+(CDX*OSGRT(1.000) +((CBLE(DH(R)))**2I))
IF(|(DUC2-DAL).LE\&C.OD CO).AND.((OOC2-CALO).GE.O.ODOOI)
2. XMID(NSUB)=R
IFIOAL.LT:CCCIGO TO 1002
NSUB=NSUB+1
X(NSUB)=R
AC=SNGL(CAL)
WRITE (6,3521 AL,NSUB
.352 FDRMATI','ALEI,E15,8,' NSUB=1,141
IFTIROLT.EPI GO TO 1002
TIMEFRCLCK ITL.CI
WRITETG,3276 TIME,
3276-FORMATIC','TIME=O,F1O.6,'SECCNDS'I
N=NSUB-I
DO 1004 J=1,NSUB
1F IJ.EQ:HSUB) XMID(NSUBI=0.0
XXX=X(J.)
XMD\&XMID(J)

```

1004 WRITE (6,1003) \(\mathrm{xxX,XMD}, \mathrm{~J}\)
1003 FORMAT \{BH XIJ|=,E15,8,9H XMID(J)=,E15.8,3H J=,13\}
c THIS ENDS THE SURFACE SUBDIVISION NMOLN- 1
\(\mathrm{NH}=\mathrm{N}-3\)
C. DIMENSIDN OF S IS N(N+11/2

C DINENSIDN OF FINC,F IS N DPIF:0.7853982.
\(E E=2.71828\)
\(G A=G * D C /(2.04 E E)\)
C. SNN is the DIAGCNAL ELEMENT OF THE INPUT MATRIX SNN = AHANZO (GA)
WRITE 16,400 ) SNN
400 FDKMAT (5H SNN \(=2 E 15.8\) )
Ot \(100 \mathrm{NJ}=1, \mathrm{~N}\)
MJPD=NJ+1
S(ISUE (NJ, NJI) \(=\) SNN
C THIS FINDS ELEMENTS ON THE DI AGONAL
IF (NJPH.GT NI GO TO 100
DO 100 NA \(=N J P O, N\)
C. THIS FINDS OFF DIAGDNAL ELEMENTS

XM=XMID(NJ)
\(X N=X M I D(N A)\)
RHO=SQRT \((()(X N-X M) * * 2)+((H(X N)-H(X M)) * * 2))\)
RHGERHD\#G
S\{ISUB(NJ, NA) IEAHAN20 (RHG)
100 CONTINUE
C. THIS CCMPLETES THE FILLIN OF THE MATRIX
C. THIS EEGINS THE CONVERSICN TO UPPER TRIANGULAR MATRIX

S(1)=CSOHTIS(11)
DO \(1 K=2\), \(N\)
1. S(K)=S(Ki/S(1)

00 2 \(1=2, N\)
IMOFI-1
\(1 \mathrm{PO}=1+1\)
\(T=C M P L \times 10.0,0.01\)
\(003 \mathrm{~L}=1, \mathrm{Ma}\)

\(3 \quad J=T+(S(L)) *+2)\)
\(1!=(1 * N)-((\mid(1-1) * 1) / 2)+N-1)\)
S(It)=CSQRT(SAII-T)
IF(IPO.GT.NI GOTO 2
DO 5 I \(=1 P D_{i} N\)
\(T=C M P L \times(0,0 ; 0.0)\)
DO \(6 M=1.1 M 0\)
\(M I=(M+M)-(1(1(M-1) \mid * M) / 2)+N-1)\)
\(m=(M+N)-\left(\left(M_{4}(M-1) 1 / 2\right)+N-J\right)\)
6 TIET \(+(S(M J) * S(M I))\)
IJ×( \(\ddagger+N)-\{(\{(1-1) * 1] / 2)+N-J \mid\)
5 S(1J)=\{S(IJ)-TI/S(II)
2 CONTINUE
C THIS ENDS THE CGNVERSICN TO UPPER TRIINGULAR MATRIX. WRITE 16,12221 N HE

TH=60.0*3.1415927/180. C
THXXD \(=180.041 H / 3.1415927\)
WRITE (6.9333) THXXD
9333 FORMAI. 9 H IHC ANGE, E15.81
C. TH IS TKE ANCLE OF INCIDENCE FROM THE HORIZONTAL STH ESN TH
CTH=COS (TH)
C \(\because\) THIS FINDS THE INCIDENT FIELO ION THE NJTH SEGMENT
DO 455 HJ=LiN
ENJEFLOATINJI
\(X M=X M 1 O(A J)\)
F(NJ)=CEXP (CMPLXCO.0,G*( \((X M \neq C T H) \div(H(X 1) * S T H)])\}\)

IF（XM．LE．（\｛HE末1．（I）－EP）F\｛NJ）＝CMPLX（0．0．0．0）
IF（XM．GE，\((E P=(1.0\)＊WE \(\mid) \quad F(N J)=C M P L X(0.0 .0 .0)\)

2 F（NJ）\(=F(A J)\)＊\((0.5+(0.5 * S I N(1 G / 2.0) *(X M\) ..... －（\｛1．5＊WE｜－EP）\() \|\)
IFI（XM AGE．IEP－（2．0＊WE））I．AND．（XM ..... －LT．（EP－（1．0＊WE ））\()\)
2．\(F(N J)=F(N J) *(9.5-(0.5 * S I N(1 G / 2.0) *(X M\) －（EP－（1．5＊WEIII）｜
455 CONTINUE
WRITE（6，254a）（NJ，F（NJ），NJ＝1；N）
2948 FUFMAT（＇\({ }^{\prime \prime}\) ，INC FIELO FI＇，14， 1
THIS BEGINS THE BACK SUBSTUTIUN
F（1）＝F（1）／S（1）
\(0010152, N\)
1 MD＝ \(1-1\)
TECMPLX（C．0．j．01
DO 11 Lxi，IMG
\(L I=(L * N)-(()(L-1) * L) / 2)+N-I)\)
11 TET＋（S（LI）tF（L））
\(I=(I * N \mid-(\{(\mathbb{I}-1)+I) / 2)+N-1)\)
10．\(F(1)=(F(I)-T) / S(1 I)\)
NN＝（N＋（N＋1））／2
F（NI＝F（N）／S（AN）
\(\mathrm{NMC}=\mathrm{N}-1\)
0025
\(\mathrm{K}=\mathrm{N}-\mathrm{I}\)
\(\mathrm{KPO}=\mathrm{K}+1\)
IrCMPLX（0．0，0．0）
DO 26 LEKPO，N
\(K L=(K+N)-(((1 K-1) * K) / 2)+N-L)\)
26 T：T＋\｛S（KL）＊F（L））
\(K K=(K * N)-(1((K-1) * K) / 2)+N-K)\)
F（K）＝（F（K）－T）／S（KK）
25 ．CONTINUE
THIS ENDS THE BACK SUBSTITUTIONS
UD \(491 \mathrm{~K}=1, \mathrm{~N}\)
STT＝CABS（FIKI）
STOFF（K）
ANNN：ATAN2（AJMAG（F（K））；REAL（F（K））｜＊180．0／3．1415927
491 ：WRITE \(6,4921 \mathrm{~K}, \mathrm{STO}, \mathrm{STT,AANN}\)
492 FORHAT（＇ \(1,{ }^{\prime} F\left(1,14,{ }^{\prime}\right)=4,2 E 15,8\), ..... OR
2．E15．8）
Dn \(317 \mathrm{JNX}=1.360\)
THaC．e72664625E－02 FFLOAT（JNX）
TICMPLX（C．0．0．0．3）
OO 310 \(1=1, N\)
XNEXMIDI 11
310 T＝T＋（IFII）＊CEXP（CMPLX（O．O，G＊（ \((X N * \operatorname{COS}(T H))+(H(X N) * S I N(T H I) \| I))\)
c THIS CORRECIST TO TRUE SCATTERED FIELD
```TचSTS申t
```

CM＝CARSTT
CMC IJNXIECH $^{2}$
CANG＝57．296＊AT ANZ（AIMAGITI，REALIT）I
THN $=T H+57.296$
DB＝20：0＊ALOG＇LO（CM）
317．WRITE（6，312）CMCANG，THU．DB
312 FORMAT 118 HRELATIVEEFIELD＊E15．8．7H ANGLE＝，E15．B，

```2． 23 H ANGLE FFGM HAPI ZUNTAL天，EI5， \(8,7 H\)OB＝，E15．81
```

```
 DO 576 I KE=1.360
 THSD=FLDATIJKEJ/2.O
 IND=IKE-1
 Y(1)=CMC (IKE)
 570 CALL PLOTITHSD,Y,I,INO,50.0,0.O1
 STOP
 ENO
 FUNCTIDN HIXI
C THIS DEFINES THE SURFAGE
 COMMCN /PIG/ AONE,CINE,PONE,ATHO,CTWO,PTHO,N
 H=AONE*SIN(CUNE*X+PONE) +ATWO*SIN(CTHO*X+PTHO)
 RETURN
 END
 FUNCTION DH(X)
 OH(X) IS THE DERIV. OF H(X)
 COM&ION /PIG/ ACNE,CONE,PONE,ATHO,CTHO,PTWO,N
 OH=AONE*CONE &COS ICONE*X+PONE I AAT WO *C ThO*COS\CTHO&X+PTHOI
 RETURN
 END
FUNCTION ISUB \((J, K)\)
COMMON /PIG/ AONE, CONE \&PONE, ATWO, CTWO, PTHO, N .
C THIS CONVERTS ELEMENTS OF UPPER TRIANGULAR NATRIX TO A LINEAR ISUB=(N*J)-(\((()(J-1) \div j) / 2)+N-K)\)
C ARRAY COUNTING LEFT TO RIGHT SIARTING HITH FIRST ROH RE TURN
END
```

```
C THIS IS A METHOD DF MOMENTS SOLUTION FOR BISTATIC SCATT TM CASE
C. GAUSSIAN INTEGRATION IS USED TO CALCULATE THE MATRIX ELEMENTS
C UNIT INCIDENT ELECTRIC FIELD. IS ASSUHEDIOF COURSE THIS IS MODIFIED
C NEAR THE ENDPOINTS DF THE SURFACE BY ILUUMINATION TAPPERING
C NSUB SEGMENTS HAVE N. MIDPOINTS
C. NSUB IS THE SUBSCRIPT WHICH COUNTS THE END POINTS
C N IS THE SUBSCRIPT WHICH CQUNTS THE MIDPOINTS
 watch max slope so that the x INCKEMENIS are small enough
 THE SURFACE UHOER CONSIDERATION LIES BETW EEN -EP ANO +EP
 THE ARRAY XMIJ CONTAINS THE X CDCRDINATES DF THE MIDPOINTS OF THE
 SEGMENTS,XMIII IS THE MIOPOINT OF THE ITTH SEGMENT
 THE ARRAY X(J) CONTAINS THE X COORDINATES OF THE ENDPOINTS OF THE
 SURFACE SEGMENTS;X(II;XII+1) ARE THE LOWER AND UPPER X COORDINATES
 OF THE ENDPOENTS OF THE I'TH SEGMENT
 PHASE REFFERENCE IS AT THE URIGIN OF.THE COORDINATE SYSTEM
 CCMPLEX SNN, SST
 COMPLEX S
 DIMENSION Y(10), CMC(360)
 NAMELIST/D/ WE, EP, THXXD, AONE, CONE, PDNE, ATWD, CTWO, PTHO , N
 NAMELIST /E/F.XMID
 COMPLEX FSS
 COMPLEX STS
 COMMON /PIG/ ADNE,CONE,PONE,ATHO, CTWII, PTHO,N
 CDMPLEX C(236,236)
 COMPLEX F(236) ,SS,T,CTEST
C : THE DIMENSICNS OF, C ANO F MUST BE COMMENSURATE
C THATIS CILILI ---- FILI
 COMPLEX FIN
 COMPLEX HAN2
 DIMEASION X(500)
 DIMENSION XH(58O)
C. THE FOLLOWING CONSTANTS DESCRIBE THE SURFACE
 ACNE \(=50.0\)
 \(C O N E=6.28316 / 800.0\)
 PONE: \(3.1415927 / 2.0\)
 ATHO \(=0.0\)
 CTNO=0.0
 PTHO=A. 0
C HE IS THE ELECTRICAL HAVELENGTH
 HE \(=25.0\)
 G=6.2831853 /WE
 DC=UE/10.0
 \(0 X=D C / 1000.0\)
 DC2=DC/2:0
 \(E P=200.0\)
C \(\therefore\) THE FOLLDWING BREAKS THE SURFACE INTO SEGMENTS DC CENTIMETERS LONG
 \(C\) EYUIVE INTEGRATION USING STEPS OF LENGTH DX FOR THE INTEGRATION
 NSUB=1
 X(NST3) E -EP
 1002 AL=0.000
 R=X(NSUB)
 1001
 \(R=R+D X\)
 ALUEAL
```



```
 IF(IIDCZ-ALI.LE.0.0).ANO. (\((D C 2-A L D) . G T . O . O 1) \quad X H(N S U B)=R\)
 IF(AL-LT.OCIGO,TO 1001
 WRITE \((6,352)\) AL,NSUB
 352 FOHMAT(4, 'AL=';E15.8, ' NSUB=0, (4)
 NSUB \(=\) NS UB +1
 \(X(N S U S)=R\)
 IF (ALLT.EPI CO 101002
 N二NSUB- 1
 DO 1004 J=1,NSUB
 IF (J.EQANSUBI XMSNSUB)=0.0
 \(\mathrm{XXX}=\mathrm{X}(\sqrt{1})\)
 \(X M D=X M(J)\)
```

```
 1004 WRITE (6,1003) XXX, XNO,J
 1003 FORMAT (6H X(J)=,E15.8;9H XM{J)=,E15.8,3H J=,13)
 C THIS ENDS THE SURFACE SUBDIVISION
 NMO=N-1
 NM3 =f)-3
C:ODMENSION OF FINC,F IS N
 DP1F=0.7853982
 EE=2.71828
 GA=G*DC/(2.0*EE)
C SHN IS THE DIAGONAL ELEHENT OF THE INPUT MATRIX
 SNN=HAN2(GAI#DC
 HRITE (6,400) SNN
 400 FORHAT (5H SNN=,2E15.8)
 00 100 NJ=1,N
 C(NJ,NJ)=SNN
 100 CONIINUE
C CONSTANTS FOR GAUSSIAN INTEGRATION'S TH . DRDER
 GU1=-0.9C61798
 GU2=-0;53846931
 GU3=0.0
 GU4=-GU2
 GU5:-GU1
 CH1=0.2369268
 GH5=0.2369268
 CH4=0.47862867
 CH2=0.47862867
 GW3:0.568B8B8
 DO 3361 MR=1,N
 XHMEXM(AM)
 HXHMEH(XHM)
 DO 3361 MC=2,N
 IF (MC.EO.MR) GO T0 3361
 EPL=X(MC)
 EPU=X(MC+1)
 DYDFEP={EPU-EPL\/2.0
 DVSMEP=(EPU+EPL)/2.0
 XU5=GU5*DVDFEPHDVSMEP
 XU1 =GUL &DVDFEP+DVSMEP
 XU2=GU2*OVDFEP+DVSMEP
 XU3=GU3*DVDFEP&DVSMEP
 XU4=GU4&DVUFEP+DVSMEP
 CIMR,MC I= OVDFEP*!
```



```
 2 XU11)+2II
 2+GH2 *HAN2(G*SORY(()XU2-XMM)**2)+((H().U2)-HXMM)**2:))*SQRT(1.0+(OH(
 ...2 xU21क由2I)
```



```
 2XU3)**21)
```



```
 ... }\because2XU4j**21
 2+SN5*HAN2(G*SQRT(\(XU5-XMM)*&2)+((H)(:U5)-HXMM)**2)))*SQRT(1.O&(DH(
 2xu51क+2111
 3361 CONTINUE
 C THIS COMPLETES THE FILLIN DF. THE MATRIX
C ONCNSYMMETRIC CROUT
 FIRET COLUMN OK
 TOQ GET FIRST ROH
 pa,10J=2;N
 10, C{1,J}=C{i,j)/(C{1,1)
c
 NOW HORK ON ROW AND COLUMH SET K
 DO 11K K=2,N
 KMO=K-1
 KP.O=K+1
```

```
C .. TO GET DIAGONAL ELEMENT
 S=CMPLX(0.0,0.0)
 DO 12-1K=1,KMD
 12 S=S+C(K,IK)&C(IK,K)
 C(K,K)=C(K,K)-S
C.TO GET ELEMENTS IN COLUMN K BELOW ROW K
.........IF (KPO.GT.N! GO TO 17
 .DO 13 IROWEKPO,N
 S=CMPLX10.0,0.01
 OD 14 JJx1,KMO
 14 . S=S+C(1ROW,JJ)#C(JJ,K)
 13 C(IROW,K)=C(IROW,KI-S
 C \cdots TO GET ELENENTS IN ROH K TO THE RIGHT OF COLUNH K
 DO 15 ICOL=KPO,N
 DO 16 JKFI;KMO
 .16 SES+C(K,jR)#C(JR,ICOL)
 15.C(K,ICOL)={C(K,ICOL)-S)/C(K,K)
 17 CCNTINUE
 11. CCNTINUE
 HRITE 16,12221 N,HE
 1222 FORMATI3H N=,13,4H WE=,E15.8)
 THI=3.1415927*60.0/180.0
 THXXD=THI*180.0/3.1415927
 WRITE (E.9333) THXXD
 9333 FORMAT(SH INC ANG=,E15.8}
C THI IS THE ANGLE OF INCIDENCE MEASURED FRION THE HORIZUNTAL
C IE, THE POSITIVE X-AXIS
 STHESIN(THI:
 CTH=COS(THI)
C . THIS FINOS THE INCIDENT FIELO ION THE NJTH SEGNENT
 DO 455 NJ=1,N
 XGyXM(NJ)
 F(NJ):EEXP{CMPLX(0.0,G*({XG*CTH)+(H(XG)*STH))))
 C
C
c taperd illuminAtion
C
 1F{XG.LE,((HE#1.0)-EP)) F(NJ)=CMPLX(0.0,0.0)
 IF(XG.GE.(EP-(1,0*WE)): F(NJ)=CMPLX(0.0,0.0)
 IF({XG.GT.((1.0#WE)-EP)).AND.(XG.LI: (1 (2.0*WE)-EP{))
```



```
 IPI(XG GE.IEP-(2.0*WE)H).AND.(XG .LT.(EP-(1.0*WE)|I)
 2 F(NJ) =F(NJ)*{0.5-{0.5*SIN{(G/2.0)*{XG -{EP-(1.5*WE)!})!)
 APSF=CABS{FINJJ)
 HRITE(6,83) NJ,ABSF
 83.FCRMATI: INC FIELD AT XMI,,I4,IFO,EI5,8)
 455 CONT INUE
 C THIS BEGINS THE BACK SUBSTUTION
 C CCNVERSION GF SOURCE SIDE
 F(1)=F(1)/C(1,1)
 DO 90 \J=2;N
 SmCMPLX(0:0,0.0)
 \because, JMO=IJ=I
 DO,91 IK=1,1JMO
 91. S=S+C(IJ,IK)*F(IK|
 90 F(IJ)=(F|(J)-S)/C(JJ,Id)
C. .. MOH FOR FINAL BACK SUBSTITUTICN
```

NMO $=\mathrm{N}-2$

```
 00 160 L=1,NMO
 K=N-L
 KPO=K+1
 S=CMPLX<O.0,0.01
 DO 175 JO=KPO,N
 175 S=5+C{K,JO} कF{JO\
 160 F(K)=F(K)-S
 00 425. KCURR=1,N
 ABF=CABS(F(KCURR)I
 ANGF=180.0*ATANZ\AIHAG(F{KCURR|), REAL|F{KCURRI)|/3.1415927
 425 HRITE(6,553) KCURR,ABF,ANGF
```



```
 C THIS NOS THE BACK SUBSTITUTIONS
 DC 439 KURR=1,N
 IND=KURR-1
 Y(1)=CABS(F(KURR))*4.0*WE/(6.28318*377.0)
 XCRD=FLOAT(KURR)
 439.CALL PLOTIXORD,Y,1,IND,0,0200,0.01
 DU 440 KURR=1,N
 IMD=KURR-2
 Y(1)=1B0.O*ATAN2\AIMAG\FIKUKR)|,REAL|FIKURR|||/3.1415927
 XORD=FLOAT(KURR).
 440 CALL PLOT(XGRD,Y,I,IND,180,0,-180.01
 DC 317 JNX=1,360
 TH=0.87266463 E-02*FLOAT(JNX)
 T=CMPLX{0.0,0.0)
 DO 310 1=1,N
 Xf:=XM(1I
```



```
 T*T*DC*SORT(HE)&CMPLX(-0.707107,-0.707107)/3.1415927
 CW=CABS\T\
 CB=20.0*ALOG10(CM)
 CNC I JNX I=CM
 CANG=57.296*ATAN2IAIMAG(T),REAL(T))
 T+D= TH*57.296
 317 WRITE (6,312) CH,CANG,THD,OB
 312 FORMAT II8H RELATIVE E FIELD=,E15.8,7H ANGLE=,E15.8.
 2 23H ANCLE FRUM HDRIZONTAL=,E15.B;6H'`DB= ,E15.8)
 DO 441 IES=1.360
 IND=|ES-1
 VIII=CMCIIES:
 THSmFLOATIIES\/2.0
 44 CALL PLOTITHS,Y,1,IND,50.0,0.01
 STOP
 END
 FUNCTIOM HIXI
C - THIS DEFINES THE SURFACE
 COMMON /PIG/ AONE,CONE,PONE,ATWO,CTHO,PTHO,N
 H=AONE*SINICONE#X+PONE I +ATWO*SIN (CTWO*X+PTWO\
 RETURN
 END
 FUNCTION HANZIXI
c. I DO JHIS TO AVOID RETYPING THE WHOLE GAUSS INT. PART
 CCMPLEX HAN2
 COMPLEX AHANZO
 HAN2=AHAH2O(X):
 RETURN
 ENO
 FUNCTION OH(X)
C OHIXI IS THE DERIV. OF H(X)
 COMMCN /PIG/ AONE,CONE,PONE,ATWU, CTWO,PTHO,N
 OH=ADNE*CONE*COS{CONE*X +PONE) +ATHO&CTWO*COS{CTHO&X+PTWO)
 METURN
 END
```

```
 N=NOSUB-I
 DO 1004 J=1,NSUQ
 |F(J.EQ,NSUB): XM(NSUB)=0.0
 XXX=X(J)
 XMD= XM(J)
 1004 WRITE (6.1003) XXX,XMD,J
 1003 FDRHAT (GH X\J)E;EI5,8,9H XM(J)=,E15,E,3H J=,13)
 C THIS ENDS THE SUPFACE SUHDIVISIEN
 C THIS INSURES THAT N IS ODD
 KK=0
 5733 KK=KK+1
 IF ((2*(K-1).EQ.N) tO TO 5731
 IF (2*KK.EQ.N) 60 TD 5732
 GD T0 5733
 5732 N=N-1
 5731 CONTINUE
 WRITE (5,3728) N,KK
```



```
 MO=N-1
 NM3=N-3
C OLAENSION DF FINC,F IS N
C MATR IX FILL IN
C ... BL BY COLUMNS
 FGR FIRST COLUMN
 De 3661 I=1,KK
 3661 C(1,1)=CD(2*(-1,1)+(CO(2*I-1,2)/2.:))
 FDR LAST COLUMN
 DO 3678 1=1,KK
 3078 C(1,KK)=(CO(2#1-1,2*KK-2)/2.C)+CO(2*1-1,2*KK-1)
c FOR MIDDLE COLUHNS.
 DO 56 1=1,KK
 ||=2*1-1
 KKM1 =KK-1
 DO 56 J=Z,KKML
 JJ=2*J-1
 C{I,J)=(CD(II,JJ-1)/2.C)+CO(II,JJ)+(CO(II,JJJ+1)/2.0)
 56 CONTINUE
C THIS CDMPLETES THE FILLIN OF THE MATRIX
C . NONSYMMETRIC CROUT
C FIRST CDLLOM OK
C TMGET THE FIRST ROW
 DO 40 J=2,KK
 10.C{1;J}=C{1,d)/C{1;1}
 MOH MORK GM RDW AND-COLUMN SET K
C: DO 11 KOH NORK
 KMO=K-1
 KPO=K+1
C TG GET DIAGONAL ELEMENT
 S=CHPLX(0.0.0.0)
 00 12 IK=1,KMD
 12 S=StC(K,IK)&C(IK,K)
 C(K,K)=C(K,K)-S
 TO GET ELEMENTS IN CDLUMN K BELOW ROW K
 IF(KPO:GT.KK) GO TO 17
 DD 13 1RON=KPO,KK
 $=CNPLX(0.0;0.01
 DO. 14, JJFI,KMO
 14.5mS+C(IRON,JJ)#C(JJ,KI
 13.C(1ROWOK)=C(IRONOK)-S
 TO GET ELEHENTS IN ROW K TO THE RIGHT OF COLUMN K
 00.15 ICOLZKPOIKK
 SOCMPLX(0.0.0.0)
 00 16 JR=1,KMO
 S=S+C(K,JR)+C(JR,{COL)
 15 C(K,ICOL)={C(K,ICOLI-S)/C(K,K)
 17. COMTINUE
 11 CUNTINUE
```

```
 WKETE (6,1222) KK,HE*
 1222 FIRMAT\'1;' KK=t,14,' HE=',E15.81.
 TH=3.1415927*60.01180.0
 THOEG=57.29578%TH
 HRITE (6,9333) THDEG
 9333 FDRMAT\9H.1NC ANGE,E15.8)
C TH IS THE ANGLE LIF INCIDENCE FROM THE HORIZONTAL
 STH=SIN(TH)
 CTH=CDS(TH)
C.. THIS FIHOS THE INCIDENT FIELD ION THE NJTH SEGMENT
 DO 455 NJ=1,KK
 XG=XM(2##J-1)
 FP(HJ)=CEXP{CMPLX(0.O,G#((XG*CTH)+(H(XG)#STH))|)
 1F(XGGLE,((WE#1.0)=EP)) FP(NJ)=CMPLX(0.0,0.0)
```



```
 IFI(XG.GT.(1L.O$NEI-EP)I,AND.(XG.LE.((2.S*WE)-EPH)
```



```
 IF{{XG.GE,(EP-(2.D#HEI)),AND.(XG.LT.(EP-{1.C#WE)I))
 2 FP{NJ)&FY(NJ)*{0.5-(0.5*SIN(|G/2.*)*(XG-(EP-(1.5*कE)|||)|
 455 CONTINUE
 WRITE(6,9410) (NJ,FP(NJ),NJ=1,KK)
 9410 FORMAT{' ','INCIDENT FIELD FINC(', [4,'f=0, 2E15.8)
C THIS BEGINS THE BACK SUBSTUTION
C CONVERSION OF SOURCE.SIDE
 FP(1)=FP(1;/C(1;1)
 00 90 IJ=2,KK
 S=CMPLX{0,0,0,01
 IJMOT=IJ-1
 .UO D1 IKEl.IJMO
 31 S=S+C(1J.IK|&FP(IK)
 90 FP{IJI={FP(IJ)-S /C\1J,IJ)
C .. NON FDR FINAL BACK SUBSTITUTION
 NMO=KK-1
 00 160 L.EI,NMO
 K=KK-L
 KPO=K+1
 S=CMPLX (0.0.0.0)
 DO 175 J0=KPO,KK
 175 S=S+G(K,JD!*FP(JD)
 160 FP{K} =F P(K)-S
 KKM1:KK-1
C TO RECDNSTRUCT THE CURRENTS
 DO 47 IRA=1, KKM1
 47.. F(2*IRA)=(FP(IRA) 4FP(IRA+1)|/2.0
 DO 45 IRA=1,KK
 .48 F(Z*1RA-1) =FP(IRA)
 WRITE (6;4970)((J,FP(J)),J=1,KK)
 4970 FGRMAT(*,OFP(1,15; ()=1, 2E 25,8)
 WRITE (6,553) (F(K),K=1,N)
 553 FORMAT (6H F{K)=2E15,8)
C THIS ENDS THE BACK SUBSTITUTIONS
 DO439:KURR=1,N
 INDEKURR-1
 Y(1)=CABS(F{KURR))%4.0*WE/(6.28318%377.C.)
 XORD=FLOAT (KURR)
 439. CALL PLOT (XORD,Y,1,IND,O.O2GU,C,C)
 OO $40 KURR=1 ON
 INO=KUNK-1
 YIII#200;0 *ATAN2 (AIMAG&F(KURR) I,REAL (F(KURR) / //3.1415927
```

```
 XOKD=FLGAT {KURRI
 440 CALL PLUT{XORU,Y,2,IND,180,(',-180.0)
 00 317 JNX=1,360
 TH=0.01.745329क&FLOAT I JNX I/2.0
 T=CHPLX(0.0.0.0).
 OIT 310 I=1,N
 XN=X#(I)
 310 T=T+ ((FII|=CEXP(CMPLX(0.0.G*{(XN*COS(TH))+(H(XN)*SIN(TH)|H)|)
```



```
 T=T&DC #SART (NE) %CNPLX(-0.707107, -0.707 107 1/3.1415927.
 CH=CADS\T1
 OB=20.0&ALOG10 (CM)
 CANGE57.296*ATANZ(AIMAG(TI,REAL(T))
 THD=TH*57.296
 ABES(JNX)=CM
 327 HRITE (6,312) CM,CANL,THD,DB
 312 FOHMAT IIBH RELATIVE E FIELD=,E15.8,7H ANGLE=,E 15.8,
 2 23H ANGLE FRGN HDR1LONTAL=&E15,B,6H DH=,E15.8)
 00 9500 JC =1,360
 Y(1)=ABES(JC)
 E=FLOAT(JC)/2.0
 IND=JC-1
9500 CALL PLOT(E,Y,I,IND,50,O,iN,O)
 STOP
 END
 FUNCTION COU(MR,MC)
 COMPLEX CD
 CDMPLEX AHAN2O
 COMMON/GASSN/ GU1, OU2,GU3,OU4,GU5,GW1,GH2,GW3,GW4,GW5
 COHMDN /HDG/ XH(400),X(400),GA,G,DC
 IF{MK NE ,MC: GO TO 100
 COEDC*AHAN2O(GA)
 60.10 200
1)C CONT INUE
 XHM=XM(MR)
 HXMM =H (XMH)
 EPL=X(MC)
 EPU=X(NC+1)
 DVDFEPE(EPU-EPL)/2.0
 DVSMEP={EPU+EPL1/2.0
 XU5=GU5*DVDFEP+DVSHEP
 XU1=GU1 &DVDFEP +OVSMEP
 XUZ=GUZ&DVDFEP & DVSNEP
 XU3=GU3*DVDFEP&DYSMEP
 XU4\approxGU4%DVDFEP4DVSMEP
 CO=DVOFEP*:
 2&GWL#AHAN2O(G*SORT({(XUL -XMM)**R)+((H(XUI)-HXNM)**Z)|)SSQRT(1.0
 2+{0|!xuli*$21)
 2*GH2*AHAN20(G*SQRTT(IXU2-XMM)**2)+((H(XU2)-HXNM|**2)|) &SQRT(1.0
 24(DH(XU2)##2):
```



```
 2+(DH(XU3))क=21)
```



```
 2&(0H(XU4)क##2))
```



```
 2*(DH(XU5)*क21)]
200 CONTINUE
 RETURN
 END
```

c
FUNCTIDN Dil(x)
OHIXI IS THE DERIV. DF'H(X)
COMMON PPIG/ ADNE, CDNF, PONE,ATWU, CTWD, PTWO, N

RETARN
END

FUMCT ION H(X)
THIS DEFINES THE SURFACE
COMMON /PIC/ ADNE,CONE, PONE, ATHA, CTWD, PTHO,N
H=AONE 4 S IN(CONE*X+PDNE) + AT WO*S IN(CTHO*X+PTHO).
RETURN
END


```
 WRITE{6,352) AL,NSUB
 352. FORMAT(4 AL=',E15.8," NSUB=',141
 NSUB=NSUB+1
 X{NSUB}=R
 IF \R.LTT.EP\ GO TO }100
 N=NSUB-1
 WRITE(6,251) N,NSUB
 251:FORMAIT I N=4,I4,
 NSUB=1,141
 DD 1004 J=1,NSUB
 If (J.EQ.NSUB) XMYNSUB)=0.0
 XXK=X(J)
 XMD= XM(J)
 1004 WRITE (6,1003) XXX,XMD,J
 1003 FORMAT (6H X{J)=,E15,8,9H XM(J)=,E15,8,3H J=,I3)
C THIS ENDS THE SURFACE SUBDIVISIDN
 AMC=N-1
 KM3=N-3
 C DIMENSION OF FINC,F IS N
 DPIF=0.7653982
 C MATRIX FILL IN
 00 366: IR=1,N
 00 3662 IC=1,N
 3661 C(IR;IC)=CQ(IR,IC)
 C THIS COMPLETES THE FILLIN OF THE MATRIX
 C NCNSYMMETRIC CRDUT
 FIRST COLUMN OK
 TO GET THE FIRST ROW
 DO 10 J=2,N
 10 C(1;J!=C{1,J!/C(1,1)
 NOH. HORK ON ROH AND COLUMN SET K
 DO 11 K=2,N
 KMC = K-1
- KPO=K+1
C TO GET DIAGONAL ELEMENT
 SzCMPLXI0,0,0.01
 DO 12 IK=1,KMO
 12% SaStC(K,IKI+CIIK,K)
 C(K,K)=C(K,K)-S
 TO GET ELEMENTS IN COLUMN K BELOW ROW K
 IF (KPO,GT.N) GO TO 17
 DO '13 IRON=KPO,N
 S=CMPLX10.0,0.01
 00 14 JJ=1,KMC
 14 S=S+C(IROH,JJ)#C(JJ,K)
C13 C(IROH,KI=C(IRDU,KI-S
C TO GET ELEMENTS IN ROW K TO THERIGHT OF COLUMN K
 00. 15 1CDLEKṔG;N
 S=CMPLX{0.0,0.01
 DO 16 JR=l;KMD
 18 S=S+C(K,JR)*CIJR;ICOL)
 15.C(K,ICOL)={C(K,ICOLI-S)/C(K,K)
 17. CONTINUE
 11 CONT INUE
C:THIS TNDS THE MATRIX FACTORLIATION
 WRITE'16,1222) N,NE
 1222 FORHATI3H NE,I3,4H WE=,E15.8)
 TH1=60.0*3.14159/180:0
 WRITET(6,9333), THI
 9333 FORMAT(9HINC ANG=,E15,8)
C THEISTTHE ANGLE OF INC. MEAS. FROM THE YVE X AXIS
 STH=SIN(THI)
 CTH=COS(THI)
C THIS FINDS THE INCIDENT FIELD ION THE NJTH SEGMENT
 DO 455 NJ=1;N
 XG=XM(NJ)
```

```
C THE SIGN ON THE INCIDENT FIELD HAS BEEN ADJUSTED TO AGREE HITH
C: THE INTEGRAL EQUATION.
 F(NJ)=CEXP{CMPLX{0.0,G*{{XG*CTHI + (H(XG)*STHH)||)*CMPLXX{-1.0;0.0}
C
 TAPPERED ILLUMINATION
 IF(XG.LE.((HE*L,O)-EP)) F(NJ)=CMPLX(0,0,0,0)
 IF(XG,GE,(EP-{1,0*WE))) F(NJ)=CMPLX(0.0,0.0)
 IF({XG.GT.({1.0&WE)-EPI),AND.(XG.LE.((2.0*WE)-EP)|)
 2F(NJ)=F(NJ)*{0.5+(0.5*S[N({G/2.0) &(XC
 -((1.5*WE)-EP)|)|
 IF({XG .GE.(EP-(2.0*WE)),OAND.(XG) .LT.(EP-(1.0*WE)||)
 2.F(NJ)=F(NJ)*(0.5-(0.5*SIN((G/2.0)*(XG - (EP-(1.5*HE))I))
 455 CONTIAUE
 WRITE(6,2948) (NJ,F(NJ), NJ#1,N)
 2946 FORMAT(" "," INC FIELD F(', [4,")=',2E15.8)
C THIS BEGINS. THE BACK SUBSTUTION
C CONVERSIDN GF SOURCE SIDE
 F(1)=F(1)/C(1,1)
 DO 90 IJ=2,N
 S=CMPLX(C.0,0.0)
 IJMO=1J-1
 DO 91 [K=1, I JMO
 91 5=5+C(IJ,IK)*F(IK)
 90 F(IJ)={F(IJ)-S\/C(|J,IJ)
C NOH FOR FINAL BACK SUBSTITUTION
 ANC=N-1
 DO 160 L=1;NMO
 K=N-L
 KPC=K+1
 S=CMPLX (0.0,0.0}
 DO 175 JO=KPD,N
 175 S=S+C(K,JD)$F(JO)
 160 F{K)=F\K)-S
 THIS ENDS THE BACK SUBSTITUTIONS
 DO 554 IKUR=1,N
 AAF=CABS(FIIKURI)
 ANF= 57.296*ATAN2 (AIMAG(F)IKUR)),REAL(F.(IKUR) \)
 554 WRITE(6,553)IKUR,AAF,ANF
 553. FORMAT, (* ',FI', {4;'}=', E15.8;' AT ANGLE=*,E15.8}
 DO 9553 IRRO=1,N
 IND=1RRO-1
 Y(1)=CABS(F(IRRO))
 XRRO=FLOAY(IRRDI
 953 CALL PLOT(XRRO,Y,1,IND;5.00,0.01)
 .0O 9554 IRRO=1,N
 INO= $RRO-1
 Y(1)=57.2958%ATAN2(AIMAG(F(IRROI), REAL{F(IRRO))|
 XRROMFLOAT(IRRO)
 9554 CALL PLOTIXRRO,Y,1,IND,180.0,-180.CI
 00 317 JNX=1,369
 THS=0.01745329%FLOAT (JNX)/2,0
 T=CMPLX(0.0,0.0)
 DO 310:1=1;N
 XNEXM{I)
 TMN=1.57C7963+ATAN(DH(XN):
```



```
 2*COS(THN-THS)!
```



```
 T=1*STS
 CM=CABSIT!
 0B=20.0%ALOG10(CM)
 CANG=57.296*ATAN2(AIMAG(T),REAL(TI)
 TH50=TH5*57:296
 ABESS{NNXI=CM
 317 WRITE 16,312: CM,CANO,THSD,DB
```

```
312 FORMAT (18H:RELATIVE H.FIELUE,E15.8,7H ANGLE#,E15.8,
 2 23H ANGLE FROM HORI LONTAL#,EI5:B:GH DBF,E15.B1
 DO .9500 JC=1.360
 Y(I)=ABES(JC)
 U=FLOATIJCJ/2.0
 IND=JC-1
9500 CALL PLOT(U,Y,I,IND,50.0,0.0)
 STOP
 ENO
 FUNCTION HEX:
C THIS DEFINES THE SURFAGE
 COMMON /PIG/ AONE,CONE,PONE, ATWD,CTWO,PYWO,N
 -H=AONE*SIN({CONE*X)+PDNE} +ATWO*SIN({CTHO*X)+PTHO)
 RETURN
 END
C: FUNCTIHNXI IS TRE DERIV. OF H(X)
 COMHON /PIG/ AONE,CDNE;PONE, ATHO,CTHO,PTHO,N
```



```
 RETURN
 END
 FUNCTION CO(NR,MC)
c THNIS GIVES THE OLO MATRIX CDEFFICIENTS
 COMPLEX CO
 COMPLEX OJC
 COMHON/GASSN/ GU'1,GUZ,GU3,GU4,GU5,GH1,GW2,GW3,GH4,GW5
 COHMCN/HCG/ XM(400),G;X(400)
 COMMON /OOG/ DJC
 COMPLEX AHANZ1
 IF(MR.NE.MC)\cdotGO TO 100
 CO=CMPLX{0.500,0.01
 GO TO 200
 100 CONTINUE
 XMN=XF(MR)
 HXPH=H(XMM)
 EPL =X(MC)
 EPU=X(MC+1)
 CVOFEP=(EPU-EPL)/2.0
 . DVSMEP=(EPU4EPL\/2.0
 XUS=CU5*DVDFEP+DVSMEP
 XU1=GUL&DVDFEP+DVSMEP
 XU2=GU2*DVDFEP+DVSMEP.
 XU3=GU3*DVDFEP + OVSMEP
 XU4=GU4*DVDFEP+DVSMEP
 HXUI=H(XUL)
 .MXU2=H(XUZ)
 HXU3=H(XU3)
 HXU4FH(XU4)
 HXU5=H(XU5)
 -DHXUI =DH(XU1)
 OHXUZ =DHIXUZ:)
 DHXU3=DH(XU3)
 DHXU4EDH(XU4)
 DHXU5=DH(XU5)
 CO-DVDFEP*:
```



```
 2,$((-DHXUL$(XMM-XUI))+(HXIMH-HXUI))
 2/SQRT(((XMM-XUI)क*2)+({HXMM-HXU1))|
 24{GH2*AHAN2I(G*SQRT(()XU2-XMM)**2)+((HXU2-HXMM)**2i))
 2. ((-DHXU2*{XMM-XU2)i)+{HXMM-HXU2i)
```




2/SQRT( $($ (XHM-XU3)**2) + ( $(H X M M-H X U 3)$ ) * 2 2i) $)$


2/SQRTI(IXMM-XU4|**2)+((HXMM-HXU4)**2))
$2+($ GH5*AHAN2 $1(G * S Q R T$ P( $(X U 5-X M M) * * 2)+((H X U 5-H X M H) * * 2))$
2 ( ( $\{-$ OHXU5* (XMM-XU5 i) + (HXMM-HXUS )
2/SQRT(((XMM-XU5)**2)+(1HXMM-HXU5)**2)!)
CO=CO*OJC
200 CONTINUE
RETURN
END

```
 C THIS IS TE CASE USING TWO POINT INTERPOLAYION
 C .. THIS PRDGRAH USES GAUSSIAN INTEGRATION TO GET MATRIX ELEMENTS
 NSUB SEGHENTS HAVE N MIDPGINTS
 NSUG IS THE SUBSGRIPT WHICH COUNTS THE END POINTS
 N IS THE SUBSCRIPT HHICH COUNTS THE MIDPOINTS
 MATCH MAX SLDPE SQ THAT THE X INCREMENTS ARE SMALL ENOUGH
 EP IS THE ERD PIINT
 COMPLEX SNN,SST
 COMPLEX S,CD
 COMPLEX FSS
 COMMON/GASSN/ GUL,GU2,GU3,GU4,GU5,GW1,GH2;GH3,GW4,GH5
 COMPLEX FINC(201,STS
 CDAMON /PIG/ IONE,CONE,PUNE, ATHU, CTWO,PTHO,N
 CONPLEX C(150,150)
 COMMON/HOG/ XM(400),G;X(400)
 COMNON /DOG/ DJC
 COMPLEX DJC
 COMPLEX F(400), FP(400),SS,T,CTEST
 COMPLEX FIN
 CUMPLEX HAN2
 DIAENSION ABES(3601,Y(10)
 C WE IS THE ELEGTRICAL WAVELENGTH
 WE=25.0
 G=6.2831853 /HE
 AONE=5.0
 CUNE=6.28318/200.C
 HCNE=0.0
 ATHO=O.O
 * CTWD=0.C
 PTHD=0.C
 DC F 代/15.0
 DX=DC/10CG.0
 OC2=0C/2.0
 EP=200.0
 STSwDC*CMPLX(-0.7C711,-0.70711)/12.0&SQRT (WE)I
 DJC=CMPLX (0.0.1.0) %G/4.0
 CONSTANTS FOR GAUSSIAN INTEGRATION 5TH ORDER
 GUI= 0.0.9061798
 GU2=-0.53846931
 CU3=0.0
 GU4=-GU2
 GU5=-GU1
 GH1=0.2365268
 GW5%C.2365268
 GN4=0.47862867
 GW2=0.47e62867
 GW3 ry.56A8888
 C
 CONSTANIS FOR GAUSSIAN INTEGRATICN 5 TH ORDER
 C.THE FOLLOWING GREAKS THE SURFACE INTO SEGNENTS OC CENTIMETERS LONG
 NSUB=1
 X(NSUB\ = -EP
 1002AL=0.000
 REX(NSUB)
 1001R R R+OX
 ALO=AL
 AL=AL&(CX*SOKT(1.0+(OHTR)*क्क2)1)
 IF((fOC2-AL).LE.0.0I.ANO.(ICC2-ALO).GT.O.O)) XM(NSUBI=R
 IFIAL.LTIDC 100 T0 1001
 HRITE(6,352) AL,NSUB
 352 FORMAT:' AL=#,E15.8,N NSUB=1,141
```

```
 NSUB=NSUB+1
 X(NSUB)=R
 IF (R,LT.EP| GO TO }100
 N=NSUB-1
 WRITE(6,251) N,NSUB
 251 FORMAT\ N=1,14,' NSUB=1,141
 DO 1004 Jrl,NSUB
 IF (J.EO.NSUA) XM(NSUB)=0.0
 XXX=X(1)
 XHD= XM(J)
 1004 WRITE (6,1003) XXX,XMD,J
 1003 FDRMAT (6H X{J)E,E15.8,9H XM(JI=,E15,8,3H J=,13)
C. THIS ENDS THE SURPACE SUBDIVISION
C THIS INSURES THAT N IS ODD
 KK=O
 5733 KK=KK+1
 IF (12*KK-1).EC.N) GO TO 5731
 IF IZ&KK.EO.N| GU TO }573
 G0 TO 5733
 5732 N=N-1
 5731 CONT INUE
 HRITE (6,3728) N,KK
```



```
 NMO=N-1
 NM3=N-3
C DIMENSION OF FINC,F IS N
 DPIF=0.7853982
C MATRIKFILLIN
C DO BY COLUMNS
C FOR FIRST COLUMN
 DO 3661 I=1;KK
 3661 C(1,11=CO(2*1-1,1)+(CO12# I-1,2)/2.0)
C FOR LAST COLUMN
 DO 3678 I=&,KK
 3678 C(I,KK)=(CO(2*1-1+2*KK-2)/2.C)+CJ(2*I-1,2*KK-1)
c FOR MIOOLE COLUMNS
 00 56 I=1,KK
 11=2#1-1
 KKM1 =KK-1
 DO 56 J=2,KKM2
 \J=2#\-1
 C(I;J.|m(C0(II;JJ-II/2.0)+CO(II,JJ)+(CO(II,JJ+{)/2.0)
 56 CONTINUE
 C THIS COMPLETES THE FILLIN OF THE MATRIX
C HONSYMMETRIC CROUT
C FIRST COLLOM OK
C THO GET FIRST ROW
 OU 10 J=2,KK
 10.C(1,J)=C(1,J)/C(1,1)
c
 NON WORK ON ROW ANO COLUMN SET K
 00.11 K=2,KK
 KMO=K-1
 KPO=K+1
C TO GET DIAGONAL ELEMENT
 S=CHP{X(0,0,0,0)
 OD 12IK=1,KMO
 12S=S+C(K,IK)*C(IK,K)
 C(k,K)=C(k,K)-S
 TO GET ELEMENTS IN COLUMN K BELOH ROW. K
 IF(KPO.GT.&KKI GO.TO'17
 DO 13 IROW=KPO,KK
 S=CHPLX(0.0,0.01
 00. 14JJ=1;KMO
 14 S=S+C(IRON,JJ)*C(JJ,K)
 13 C(IRON,K)=C(IROW,KI-S
C
 TO GET ELEMENTS IN ROW K TD THE RIGHT OF CDLUMN K
```

```
 DO 15 ICOL=KPG,KK
 S=CN!PLX10.C.,C.OI
 DO 16 JR=1,KMD
 16 5FS+C(K,JR)*C(JR,ICOL)
 15C(K,ICOLI={C(K,ICOLI-S)/C(K,K)
 17 CONTINUE
 11 CONTINUE
 WRITE (6,1222) KK,WE
 1222 FURMATI'*'t KK=!,14;" WE=1,E15.8)
 TH=3.1415927*60.0/180.0
 THDEG=57.29578*TH
 WRITE (6.9333) THDEG
 9333 FORMAT (9H INC ANGE,El5.8)
C TH IS THE ANGLE OF INCIDENCE FROM THE HORIZONTAL
 STH=SIN(TH)
 CTH=COS(TH)
C:. THIS FINOS THE INCIDENT FIELD ION THE NJTH SEGMENT
 C
```



```
 DO}455NJ=1,K
 XG= XN(24NJ-1)
 FP(NJ)=CEXP(CNPLX(0.0,G*{(XG*CTH) +(H(XG)*STH)I))*CMPLX(-1:0,0.0)
C INCIDENT FIELD HAS BEEN ADJUSTED TO AGREE NITH INTEURAL EQTN.
 {F(XG.1.E.{{NE&&,Q}-EP)| FP(NJ)=CMPLX(0.0,0.0)
 {F(XG,GT.(EP-1,& #WE)) FP(NJ)=CMPLX(D.E.E.0)
 IF((XG.GT.((1.O#WE)-EP)).AND.IXG.LE.((2.C#WE)-EP)))
```



```
 IF(IXG.GE.(EP-12.0*WE)I).ANC.(XG.LT.(EP-11.0*WE)II)
 2 FP(NJ)=FP(NJ)*(0.5-(0.5%SIN(|G/2.0)*(XG-(EP-(1.5*WE))1)||
 455 CONTINUE
 NRITE(6,941G) (NJ,FP(NJ),NJ=1,KK)
 9410 FURMAT(' ', 'INCTDENT FIELU FINCI',I4,'I=',2EI5,8j
C THIS BEGINS THE GACK SUBSTUTION
C CONVERSION OF SOURCE SIDE
 FP(1)=FP(1;/C(1;1)
 DO 90 IJJ=2;KK
 S=CMPL X(0.0.0.0)
 I \MD=IJ-1
 DU 21 IK=1,IJMD
 91 S=5+C(IJ,IK)*FP(IK)
 90 FP\IJ)=(FP(IJ)-S|/CIIJ,IJ)
 c* NOW FDR FINAL BACK SUBSTITUTION
 NMO=KK-1
 DO 160 LEL,NMO
 K=KK-L
 KPO=X+1
 S=CMPLX 10.0,0.01'
 DO 175'JD=KPG,KK
 175.SFS+C(K,JD)*FP(JD)
 160 FP{K|:FF{K\-S
 KKM1=KK-1
C TO RECONSTRUCT THE CURRENTS
 0O 47 IFAEI,KKML
47.F(2*IRA)=(FP(IRA) +FP(IRA+I)|/2.0
 DO:48. IRA=1,KK
48 F{2*[RA-1j=FPIIRA!
 URITE (6,4970)((J,FP(J)),J=1,KK)
4970 FORMAT(O, 'PP{1,15;,)=1,2E15,8)
 MRITE (6;553) (F(K);K=1;N)
553. FDAMAT (6HFF(K)=,2E15.B)
 DO 0553 1RRO=1 N
 IND=IRRO-I
 Y(1)=CABS(F'IRROI)
 XRPO=FLOAT (IRRO)
```

```
 9553 CALL PLGTIXRRD,Y,1,IND,5.00.0.0)I
 00 9554 \RRO=1 N
 IND=IRRO-1
 Y(1)=57.2958*AT/AN2\AIMAGIF(IRROI), REAL(FIIRRO)|\
 XRRO=FLQAT(IRRO)
 9554 CALL. PLQT (XRRD,Y,1,INO,180.0,-182.0)
C THIS ENDS THE BACK SUBSTITUTIONS
 D0 317 JNX=1,360
 IHS=0.01745329*F LTAT (JNX)/2.0
 T=CMPLX{0.0,0.01
 0N 310 I = 1,N
 XNEXM(E)
 THN=1.57079E3+ATAN(DH(XN))
 310 T=T+({F|1) #CEXP(CMPLX(0.0,G*((XN*COS(THSH)*(H(XN)*SIN(THS))|)))
 2*COS(THN-THSI)
C *********** THIS CORRECTS THE OUTPUT TD TRUE ELE. FIELD
 T*T*STS
 CM=CABS(T)
 DB=20.04ALOG10ICM1
 CANG=57.296*AT AN2 (AIMAGIT),REAL(T)) -
 THSD=THS*57.296
 ABES(JNX)=CM
317 WRITE (6,312) CM,CANG,THSD,CO
312 FDRMAT (16H RELATIVE E FIELDE,E15.B,7H ANGLE#,E15.8,
 2 23H ANGLE FRDM HURIZUNTAL=,E15.8,6H OH3:,E15.81
 00 9500 JC=1,360
 Y(1)=ABES(JC)
 U=FLDAT<JCI/2.n
 IND=JC-1
9500 CALL PLOT(U,Y,1,IND,50.C,0,0)
 STOP
 END
 FUNCTION H(X)
 C THIS DEFINES THE SURFACE
 COMMON /PIG/ AONE,CDNE, PONE, ATWO,CTWU,PTWD,A
 H=AUNE*SIN{(CONE*X) &PONE) +ATWD*SIN({CTHD*X) &PTWO)
 BETURN
 END
 FUNCTICA DH(X)
 C DHIX) IS THE DERIV. OF H(X)
 - COMMTN /PIGI AONE,CONE,PONE, AT NO,CTWO,PTHO,N
 \thereforeDHFAONE#CONE*COS(ICONE#X) &PCNE)&ATWO*CTWO#COS({CTHO*X)+PTHO)
 RETURN
 END
 - FUNCTICN CO(MR,MC)
 C . THIS.GIVES THE OLD MATRIX COEFF゙ICIENTS
 COMPLEX CO
 CCHPLEX DJC
 CCMHON/GASSH/ GUL,GU2;GU3,GU4,GU5,GHL,GW2;GH3;GW4;GH5
 COMMON/HDG/ XM(40CI,G,X(400)
 CCMMON /OOG/ OJC
 COMPLEX AHAN2I
 IF(NR NE ,NC) GO TO }10
 CO=CMPLX (0,500,),C.1
 60 10 200
 100 CONTINUE
 XMM=XM(MR)
 HXMN=H(XHM)
```

```
 EPLEX(MC)
 EPU=X(MC+1)
 DVDFEPE(EPU-EPLI)/2.0
 DVSHEP=(EPU*EPL//2.O
 XU5=GU5*PVDFEP4OVSMEP
 XU1=GU1#DVDFEP+UVSMEP
 XU2 = GU2*DVDFEP & DVSMEP
 XU3=GU3* DVDFEP+DVSMEP
 XU4: GU4* DVDFEP +DVSMEP
 AJOHIFATAKIDHEXULII
 ATOH2=ATAN(OH(XU2))
 ATDH3=ATAN(DH(XU3))
 ATDH4=ATAN(DH(XU4))
 ATOH5=ATAN(OH(XU5))
 HXVI=H(XUL)
 HXUZ= [(XUZ)
 HXU3=H(XU3)
 - HXU4=H(XU4)
 HXUS=H{ XUS)
 CO= DYDFEP*!
```



```
 2OH(XUI|**2))*((-SIN(ATOHI) &(XMM-XUI))+(COS(ATCHI)*(HXMM-HXU1)])
 2/SQRT(((XNH-XU&)F*2)+((HXMN-HXU1)*&2))
```




```
 2/SORT({(XMM-XU2}*#2)+{(HXM住-HXUZ)**&2))
 2+GW3*AHAN21(G*SORT(()XU3-XMM)**2)+((H(XU3)-HXMM)*#2)))*SQRT(1.041
 201I(XU3) +*2))*(1-SIN(ATDH3)*(XMM-XU3))+(COS(ATDH3)*(HXMM-HXU3):I'
 2/SORT (((XMH-XU3)**2) +((HXMN4-HXU3)**2))
 2+GH4*AHAN2!(G*SORT((IXU4-XMM)#*2)+((H(XU4)-HXMM)**2)))#SORT(1.0+1
```



```
 2/SORT(f(XMH-XU4) क& 2)+({HXMM-HXU4)**2))
```



```
 2DH(XUS)**2))*(i-SIN(ATOH5)*(XMM-XUS)) +(COS(ATDHS)*(HXMM-HXU5)\)
 2/SQRT (((XNM-XUS)**2)+((H゙XMM-HXU5)**2)
 CO=DJC*CO
200 CONTINUE
 RETURN
 END
```

```
C THIS IS THE HANKEL FUNETION UF TYPE 2 AND.OF ORDER I
 DGUBLE PRECISION XD,OX,A1,A2,A3,A4,A5;A6,HJI,B1, B2, B3, B4,B5,AHJI;
 2TDX,A1,A2,A3,A4,A5,A6,TL;T2,13,T4,T5,T6,T 7,DSOX,B6
 CCMPLEX AHAN21
 DX=DBLE(X)
 If (X,GT.3.0) GO T0 200
 XU= CX*DX/9.00400
 A1=-0.31761D-03+0.1169D-044xD
 A2=0.004433190+00+41*XD
 A3= -0.039542890+80+A2 # XD
 A4=0. 21093573D+7.)+A3* XD
 AS=-0.562449450+00+A44X0
 AG=0.5D+00+A5*XD
 HJIFAG*DX
 B1= -0.040C9760+00+0.00278730+00**0
 B2=0.3123951D+60+B1*X0
 03=-1:31648270+00+B24XO
 B4=2.16827090+00+B3**O
 B5=0.22120910+00+B4+50
 B6=-0.6366198D+:3:+854X0
 AHJI=(B6/DX)+F,JI%OLGC(DX/2.C)*0.63661977
 AHAN21=CMPLX(SNGL(HJI):-SNGLIAHJII)
 G0 10 }30
200 TOX=3.010X
 A1=0.001136530+00-0.00020033* 1DX *
```



```
 A3*.00017105u+00+A2#TDX
 A4=0.0165966704Q0+A3*TDX
 A5=C.156D-05+A4*TUX
 A6=0.79788456U+00+A5% TDX
 T1=0.000798240+00-0,000291660+00*T0X
 T2=0.000743480+00+T14TDD
 T3=-0.006 378790+DC+T2*TUX
 T4=0.00005650D+00+13 FTOX
 T5=0.1249.96120+00+T4*TDX
 T6=-2.356194490+i,n+T5*TDX
 T7=0x+16
 OSOX=AG/DSORT(DX)
 AHAN21=CMPLX(SNGLIUSOX*DCOS(T7)I,-SNGLIOSQX*OSIN(TTIII
300 cantINuE
 RETURN
 END
```

```
 FUNCTION AHANZO(X)
C .. THIS IS THE HANKEL FUNCTION OF ORDER O AND OF TYPE 2
 OOUBLE PRECISION XSO,B10,D8,B6,B4,B2,C10,C8,C6,C4,C2,D5;D4,D3,
 202;D1,E5,E4,E2,E1,EO,XD,DX,FO,E3,HJ,DSX
 COHPLEX AHAN2O
 DX=DBLE(X)
 IF (X.GT.3.0) GO T0.100
 XSQ=0X*OX/0.90+01
 B 10= -0.394440-02+XSQ*0. 21D-03
 88=0.0444479D+00+XSO*B10
 86=-0.3163866D+00+XSQ*B8
 B4=1.2656208D+00+XSQ*86
 B2=-2.24C99970+00+X5Q#B4
 HJ=1.00+00+XSO*B2
 C10=0.427916D-02-XSQ*0.248460-03
 C0= 0.4261214D-01+XSO4C10
 C6=0.253001177D+00+XSQ*C8
 C4=-0.743503 84D+004 XSQ*C6
 C2=0.605593660+00+XSO#C4
 HY=SNGL(0.367466910+00+0.63661980+00*HJ*DLOG(DX/2.0)+XSO4C2)
 AHAN2O=CMPLX(SNGL(HJ);-HY)
 G0 10 200
100 Y0=3.0/0x
 C5=-0.728050-03+X0*0.144760-03
 04=0.137237D-02+D5*XD
 03=-0.95120-04+D4*XD
 D2=-0.55274C0-02+03*XD
 DI= 0.77D-06+D2**O
 FC=0.797e84560+00+XD*D1
 E5=-0.29333D-03+XD*0. 1,35580-03
 E4=-0.54125D-03 +E5 % XD
 E3=9.262573D-02+E4#XD
 E2=-0.3954D-04+E3*XD
 E1=-0.41663970-01+E24XD
 EO= (-0.785398160+004XD*E1)+DX
\because, DSX=DSQRT(DX)
 AHAN20=CHPLXISNGL (FO*DCOS(EO)/DSSNI-SNGLIFO*DSIN(EO)/DSXIH)
200 CONT INUE
 RETURN
 END
```

```
 SUBROUTIINEPLOT (X, Y,N,IND,YMAXX,YMINI
 OIMEAS IONMIII 9), YLABEL(6), Y[10N,MARK(10)
 DATA HARK(1),MARK(2), MARK(3),MARK(5),MARK(6) ,MARK(7),MARKIB).
 2MARK(9),NARK(10),MARK(4)/1H*,IH.,IHI,IHO,IHN,1HH,1HI,IHZ,1H-,1HX/
 DATA IHLANK,NOPT, IPLUS/!!H,1HS,IH+I
 |F (INU)1, 1,11
 2 WRITE(6.3)
 3 FORMATIIHL//25X,48HORDER·IN WHICH PLOT SYMBOLS ARE USEO F=IXONHIZ
 *-//30x,39HTHE SYMBGL (S) INOICATES OFF-SCALE DATA//I
 DC7J=9,119
 7MIJI=MARK(10)
 NCCUNT=10
 SCALE=160.0/(YMAX-YMIN)
 LLL={-YMJN*SCALE\+11.5
 008J=1;6
 R=J-1
 8 YLABEL{J)=R*20.0/SCALE+YMIN
 HRITE(6;9) (YLA甘EL(1),I=1;6)
 9 FORMAT(6X,1PE9.2;5\IPE20.21),
 COTO122
12 NCOUNT=NCOUNT +1
 0099J=1,119
99 Hi{J}={HLANK
 IF|LLL.GE.11,AND.LLL.LE.110JHILLL YミMARK(10)
 IF'(NCOUNT-101133,132,133
132
89 M(J)=IPLUS
133 DO2CJ=1,N
 L=|Y(J)-YMIN)*SCALE+0.5
 1F(L)14.17.17
 14 IFIL+10)115,1E,16
 15,M(1)=NOPT : . . 3
 G0T020
 LL=L+11
 M(LL)=MARK(J)
 COTO20
 17 IF(L-108)18,19,19
 18 LL=L+1I
 MILL\=MARK(J)
 GOT020
 19. M1119)=NOPT
 20 CONTINUE
 IFINCOUNT-10121,25,21
 21 WRITE(6,24) (N(J, 1, J=1,119)
 24 FORMAT (1X,129A1)
 GOT027
25 WRITE(6,26) (X,(M(J),J=9,119))
26 FORMATI IX,F7.3 ,111AAII
 NCCUNT=O
 27 CCNTINUE
 RETURN
 END
```


## APPENDIX B

SOLUTION OF SYSTEMS OF SIMULTANEOUS LINEAR EQUATIONS

Several direct methods exist which find the solution vector, [X], when the system of equations
(99) $[C][X]=[B]$
is given. The two methods used here were the square root (or Cholesky) method for symmetric systems, and the Grout method for non-symmetric systems (Ref. [35]). Both methods take advantage of the fact that a non-singular matrix [C] is equivalent to [L][U], where [L] is a lower triangular matrix and [U] is an upper triangular matrix. So

or
(101) $\sum_{k=1}^{\min (i, j)}{ }^{2}{ }_{i k} u_{k j}=c_{i j}$
since
(102) $\quad \ell_{i k} \equiv 0$ if $k>1$ and
(103) $\quad u_{k j} \equiv 0 \quad$ if $k>j$.

In order to specify [L] and [U], $N^{2}+N$ unknows must be determined. Since there are only $N^{2}$ equations, (values of $C_{i j}$ ), $N$ unknowns may be specified. In the square root method the diagonal elements are assumed equal, i.e.;,

$$
u_{i i}=\ell_{i i} \text { for } i=1, \cdots, N
$$

which gives the $N$ extra conditions; in the Crout method one set of diagonals is specified, namely
(104) $\quad u_{k k}=1$ for $k=1, \cdots, N$.

Suppose that [C] has been broken up into [L][U], then
(105) $[L][U][X]=[B]$
whence by defining

$$
\begin{equation*}
[R]=[U][X] \tag{106}
\end{equation*}
$$

there results
(107) $[L][R]=[B]$
which has the solution
(108) $\quad r_{i}=\left(b_{i}-\sum_{k=1}^{1-1} l_{i k} x_{k}\right) / l_{i 1} \quad$ for $i=1, \cdots, N$
and the sum is omitted, if i equals 1. Once the [R] vector is known the system

$$
\begin{equation*}
[U][X]=[R] \tag{109}
\end{equation*}
$$

is solved by
(110). $\quad x_{i}=\left(r_{i}-\sum_{k=i+1}^{N} u_{i k} x_{k}\right) / u_{i j} \quad$ for $1=1, \ldots, N$

Where the sum is omitted if, $i$ equals. N. Wilkinson (Ref. [36]) has shown that most of the error in a solution of Eq. (99) by triangularization methods comes from the decomposition of [C] into [L][U] and not in the double back substitution (Eggs. (108) and (110)).

The details of the decomposition of [C] into [L][U] will now be considered. For Trout factorization the diagonal elements of [U] are set equal to unity leaving $N^{2}$ equations and $N^{2}$ unknowns in the set of Eqs.(101), (102) and (103), which can be solved as follows:
(i11) $\quad \ell_{i k}=c_{i k}-\sum_{m=1}^{k-1} \ell_{i m} u_{m k} \quad$ for $i=k ; \cdots, N$
(112) $u_{k j}=\frac{1}{\ell_{k k}}\left(c_{k j}-\sum_{m=1}^{k-1} l_{k m} u_{m j}\right)$ for $j=k+1, \cdots, N$
(113) $\ell_{i k}=0$ if $i<k$
(114) $\quad u_{k j}=0$ if $j<k$.

These equations are used in the order: first column of [L], first row of [U]; second column of [L], second row of [U]; third column of [L], est. In a computer solution the elements of [U] and [L] may be written over the original matrix [C] as they are generated. Once this is done the matrix becomes

$$
[C] \underset{\text { STORED }}{\text { FACTORED }}\left[\begin{array}{llll}
\ell_{11} & \cdot & u_{12} & \cdot \\
\vdots & u_{1 N} \\
\vdots & \ddots & & \\
\vdots & & & \vdots \\
\ell_{N 1} & \cdots & \cdots & \cdot
\end{array} \ell_{N N}\right]
$$

and the fact that the diagonal elements of [U] are unity is used only - in the previously described back substitution portion of the solution. If [C] is symmetric then [C] can be factored into

$$
\begin{equation*}
[C]=[U]^{\mathrm{T}}[U] \tag{115}
\end{equation*}
$$

where [U] is the transpose of [U]. Equation (101) becomes


The $u_{i, j}$ 's are found from
(117) $u_{11}=\sqrt{c_{11}}$
(118) $u_{i j}=c_{i j} / u_{11}$ for $j=2, \cdots, N$
(119) $\quad u_{i j}=\left(c_{i j}-\sum_{k=1}^{i-1} u_{k i}^{2}\right)^{1 / 2}$ for $i=2, \cdots, N$
(120) $\quad u_{i j}=\left(c_{i j}-\sum_{k=1}^{i-1} u_{k i} u_{k j}\right) / u_{i j} \quad$ for $\left\{\begin{array}{l}j=i+1, \cdots, N \\ i=2, \cdots, N\end{array}\right.$
and

$$
(121) \quad u_{i j}=0 \quad \text { if } i>j
$$

The value of this method lies in the reduction of storage space required for a given $N$. With the usual Crout method $N^{2}$ storage locations are required, but the square root method requires $N(N+1) / 2$ storage locations since only the upper triangular portion of [C] need be stored and [U] can be found using only the upper triangular part of [C].

A small trick is required if this saving is to be realized in practice, since in FORTRAN IV the use of the dimension statement "COMPLEX C(M,N)" would set aside $N^{2}$ complex storage locations for
the elements of [C] even if only the upper triangular part of [C] were to be filled in and manipulated. To economize on storage a way was found to load the elements of the upper triangular part of [C] into a linear array $N(N+1) / 2$ positions long. It was convenient to preserve the double subscript notation for the matrix manipulations and use a simple formula to access the proper location in the singly subscripted linear array. A symmetric matrix [C] is shown in Fig. 42 with the elements of the linear array $S$ inserted into the corresponding locations of [C]. The order of the matrix is chosen to be 6 for this example.

$s_{1}$	$s_{2}$	$s_{3}$	$s_{4}$	$s_{5}$	$s_{6}$
	$s_{7}$	$s_{8}$	$s_{9}$	$s_{10}$	$s_{11}$
	$s_{12}$	$s_{13}$	$s_{14}$	$s_{15}$	
		$s_{16}$	$s_{17}$	$s_{18}$	

Fig. 42.--Storing a symmetric matrix in a linear array.

Element $c_{11}$ is stored in position $s_{1}: \dot{a}_{12}$ in $c_{2}$, etc. The element $c_{i j}(i \leq j)$ can be accessed in the following way. The rows above the $i$-th row contain $N(j-1)-((i-1)(i-2) / 2)$ elements and in the $i$-th row there are $\mathbf{j}-i+1$ elements up to and including the one to be accessed, hence
(122)

$$
\begin{aligned}
c_{i j} & =s\left(N(i-1)-\frac{(i-1)(i-2)}{2}+j-i+1\right) \\
& =s N \cdot i-\left[\left(\frac{i(i-1)}{2}\right)+N-j\right] .
\end{aligned}
$$

In the programs the subscript manipulations are performed directly in the subscript or accessed by calling a function named $\operatorname{ISUB}(\mathbf{i}, \mathrm{j})$ [Integer Subscript corresponding to $i, j$ ]. If, for example, $c_{15}$ were needed in a computation the element $s(\operatorname{ISUB}(1,5))$ is used. Once the factorization is completed, the back substitutions are performed.

Notice that in either the Crout method or the square root method there are two distinct steps. The first is factoring the matrix and the second i's the back substitution. The first step is independent of the driving column [B] and hence need be'done only once for any given matrix [C] so, any number of driving columns may be considered without re-factoring [C].

## REFERENCES

1. Wright, J.W., "Backscattering from capillary waves with applications to sea clutter," IEEE Trans. on Antennas and Propagation, vol. AP-14, pp. 749-754, (November 1966).
2. Valenzuela, G.R., "Scattering of EM waves from a tilted slightly rough surface," Radio Science, Vol. 3, pp. 1057-1064, (July 1968).
3. Guinard, N.W., et al., "An Experimental Study of a Sea Clutter Mode1," Proc. IEEE, Vol. 58, pp. 543-550, (April 1970).
4. Stogryn, A., "The Apparent Temperature of the Sea at Microwave Frequencies," IEEE Trans, on Antennas and Propagation, Vol. AP-15, pp. 278-285, (March 1967).
5. Barrick, D.E. and Peake, W.H., "A review of scattering from surfaces with different roughness scales," Radio Science, Vol. 3, pp. 865-868, (August 1968).
6. Semenov, B. " "An approximate calculation of scattering of electromagnetic waves from a rough surface," Radiotekh. Elektron., Vol. 11, pp. 1351-1361, (August 1966).
7. Fuks, I., "Contribution to the theory of radio wave scattering on the perturbed sea surface, " Izv. Vyssh, Ucheb. Zaved. Radiofiz., Vol. 9, pp. 876-887, (May 1966).
8. Phillips, O.M., The Dynamics of the Upper Ocean, Cambridge University Press, (1966).
9. Barrick, D.E., "Unacceptable height correlation coefficients and the quasi-specular component in rough surface scattering," Radio Science, Vol. 5, pp. 647-654, (April 1970).
10. Silver, S., Microwave Antenna Theory and Design, pp: 138-143, Dover, New York, (1965).
11. Kay, I. and Keller, J.B., "Asymptotic evaluation of the field at a caustic," J. Appl. Physics, Vol. 25, pp. 876-883, (July 1954).
12. Kouyoumjian, R.G., "Asymptotic high frequency methods," Proc. IEEE, Vol. 53, pp: 864, 876 (August 1965).
13. Beckmann, P, and Spizzichino, A., The Scattering of Electromagnetic Waves from Rough Surfaces, Pergammon, New York, pp. 9-16, (1963).
14. Harrington, R.F., Time Harmonic Electromagnetic Fields, McGrawHill, p. 127, (1961).
15. Kouyoumjian, R.G., "Asymptotic High-Frequency Methods," Proceedings of the IEEE, Vol. 53, pp. 864-876.
16. Kodis, R.D., "A Note on the Theory of Scattering from an Irregular Surface," IEEE Trans, on Antennas and Propagation, Vol. AP-14, pp. 77-82, (January 1966).
17. Silver, S., Microwave Antenna Theory and Design, Dover, New York, P. 121; (1965).
18. Van Blade1, J., Electromagnetic Field, McGraw-Hill, New York, pp. 360-361, (1964).
19. Van Blade1, J., op.cit., p. 413.
20. Van Blade1, J., op.cit., pp. 360-361.
21. Beckman, Petr, Depolarization of Electromagnetic Waves, Golem, pp. 82-86, (1.968).
22. Harrington, R.F., Field Computation by Moment Methods, MacMillan, New York, 1968.
23. Mei, K.K., "Scattering of Radio Waves by Rectangular Cylinders," University of Wisconsin Dissertation, (1962).
24. Harrington, R.F., Field Computation by Moment Methods, MacMillan, New York, (1968), p. 42.
25. Abramowitz M. and Stegun, I.A., Ed., Handbook of Mathematical. Functions, National Bureau of Standards, Appl. Math. Series 55, (1964), p. 916.
26. Richmond, J.H., private communications.
27. Rudduck, R.C., "Application of Wedge Diffraction Theory to Antenna Theory," Ohio State University Antenna Laboratory Report, N.A.S.A. Grant Number NsG-448, (1965), pp. 1-6.
28. Poggio, A.J. and Miller, E.K., "Integral Equation Solutions of Three Dimensional Scattering Problems," Computer Techniques for Electromagnetics and Antennas, Part 2, University of Illinois Short Course, (1970).
29. Van Blade1, J., op. cit., p. 220.
30. Rudduck, R.C., op.cit., pp. 1-6.
31. Zaki, K.A. and Neureuther, A.R., "Scattering from a Perfectly Conducting Surface with a Sinusoidal Height Profile: TE Polarization," IEEE Trans. on Antennas and Propagation, Vol. AP-19, (March 1971), pp. 208-214.
32. Lysanov, Iu.P., "One Approximation for the Problem of the Scattering of Acoustic Waves by an Uneven Surface," Soviet Physics - Acoustics, Vol. 2, pp. 190-197.
33. Leporskii, A.N., "Experimental Investigation of Diffraction of Acoustic Waves by Periodic Structures, "Soviet Physics Acoustics, Vol. 1, pp. 50-59.
34. Phillips, O.M., op. cit.
35. Westlake, J., A Handbook of Numerical Matrix Inversion and Solution of Linear Equations, Wiley, (1968), pp. 10-14.
36. Wilkinson, J.H., Rounding Errors in Algebraic Processes, Prentice-Hall, New Jersey, (1963).
