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CHAPTER I 

INTRODUCTION

The scattering of electromagnetic waves from the ocean surface 

has been of great interest for some time. In this work the scat

tering from one dimensional sea-like random surfaces is ex

amined by a variety of computational methods, with a view to 

establishing what practical limitations must be satisfied on such 

surface parameters as radius of curvature, mean squared height, e tc ., 

in order that the statistical properties of the scattered radiation 

may be calculated with reasonable accuracy. The results of the com

putations are then used to discuss the applicability of the several 

theoretical models for sea-surface scattering (geometrical optics, 

physical optics, perturbation theory and the composite model) and the 

prospect for direct calculation of the scattered fields from the 

actual sea surface.

During the past few years, theoretical and experimental work here 

and abroad (Refs. [ l ] - [7 ] }  has led to an understanding of the mech- 

anisms responsible for scattering and emission of microwaves by the 

ocean. For off-normal backscatter, the "Bragg-scatter" from capil

lary and short wavelength components of the ocean surface, which 

can be calculated by perturbation theory, has explained the angular



2

and polarization dependence of the microwave radar return. When 

1 combined with the known height spectrum (Ref. [8 ]) of the ocean 

surface, i t  explains the weak dependence of backscatter on electro

magnetic wavelength and wind velocity. Near the specular direction, 

I . e . ,  near normal incidence for backscatter, the scattering is con

trolled by the slope distribution of the large scale structure of 

the surface. This part of the scattering is calculated by geometrical 

optics, and explains the dependence of the emissivity of the surface 

on wind velocity.

Nevertheless, the many assumptions required in finding the 

scattered fields by the perturbation or geometrical optics approxi

mations, particularly assumptions about the Gaussian character of the 

surface height statistics, and the applicability of the theoretical 

approximations to the actual sea surface, have led to considerable 

discussion about the validity of the various theoretical solutions 

(Ref. [9 ]) . Since straightforward verification by measurement is 

not practical, partly because of d ifficu lty  in the measurement process 

Its e lf  and partly because of the d ifficu lty  in specifying exactly what 

the surface was when the measurement was being made, i t  1s desirable to 

have a direct method for calculating the scattering from a specific 

realization of the ocean surface. Direct calculations w ill allow a 

realis tic  assessment of the validity of the various theories, without 

any assumptions about the statistical properties of the surface. I f  

a statistical average of the scattered fields over an ensemble of 

surface representations is required, i t  'can be obtained (albeit at



some cost.) by a direct summation of the scattered fields from the 

individual surface representations.

The specific surfaces considered here are cylindrical perfectly 

conducting surfaces as shown in Fig. 1. The surface generators are

THITHS

z

Fig. 1 .—The scattering surface. .

parallel to the z axis, and the surface elevation is specified by 

y b | ( x), The incident field  is a plane wave whose direction of 

propagation lies in the x,y plane and makes an angle of THI with 

the positive x axis, while the observation direction makes an angle 

of THS with the positive x axis. Time dependence is assumed to be 

e^ut and has been suppressed throughout. All distances are measured 

in centimeters.

Three different methods for calculating the fields from such 

a surface are developed here. Although the details are discussed 

la ter i t  is desirable to outline each technique at this time.



The f irs t  approximate method is the geometrical optics tech

nique (G.O.), For a given surface, and given scattering and in

cidence angles, the program locates the specular points on the 

surface (points where the local incidence angle equals the local 

scattering angle) and evaluates the radius of curvature at each 

specular point. The scattered far fie ld  is then found by summing 

the contribution from each of the specular points, including an 

extra 90° phase sh ift for the fields scattered from concave up 

portions of the surface. Shadowing of one section of the surface by 

another section may be taken into account.

The next approximation is the physical optics (P.O.) technique. 

For a given surface the scattered fie ld  1s computed by integrating 

over the approximate surface current

(1) Js * 2n x ff1

where.n is the outward normal to the surface and TT1 1s the incident 

magnetic fie ld . Shadowing is always taken into account, as this 1s 

Implicit In the physical optics formulation.

The last method developed here is based on a point matching 

solution to the integral equation satisfied by the true surface 

current Ts. The scattered fields are then found by integrating 

over the surface currents. Test cases (e.g ., the wedge 

problem) have shown this method to be by far the most accurate; 

hence I t  1s used as a standard to which all others are compared. 

However, because of computer storage limitations, this program can 

not handle surfaces whose arclengths are greater than ^ 0  electrical



wavelengths, whereas the 6.0. and P.O. programs can, 1n principle, 

handle surfaces of any length provided sufficient computer time is 

available.

In order to avoid edge effects, tapering of the Incident fie ld  

1s necessary in the integral equation solutions. The same tapering 

has been applied 1n both the G.O. and P.O. solutions so that they 

can be directly compared to the exact fields. The tapering applied 

here is illustrated in Fig. 14 of Chapter IV.

In the succeeding chapters each of these methods w ill be 

described in detail. By comparing the results for a series of 

test surfaces, the limitations of each method are established.



CHAPTER I I  

THE GEOMETRICAL OPTICS METHOD

The f irs t  approach to examining the scattering from a one 

dimensional rough surface is the geometrical optics method. By 

this 1s meant that the scattered fie ld  is computed by finding 

the specular points on the surface, and associating with each such 

point a scattered fie ld  amplitude and phase which depend on the 

geometrical properties of the surface at the specular point.

A. Geometrical Optics

Conservation of energy flux along a ray path w ill provide us 

with the geometrical optics fie ld  strengths (Ref. [10]).

Consider the two dimensional ray tube shown in Fig. 2. I f  uQ 

1s the fie ld  strength at some reference point at a distance p from 

the caustic and u is the fie ld  strength at distance p + % from the 

caustic, then the conservation of energy in the, ray tube requires

CAUSTIC

F1g. 2 .—Ray tube geometry.
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(2) u2 p de B u2 (p + a) de

so that one may write

<»> « o  -  e' j l a -

The factor e " ^ *  with x_ the electrical wavelength and6

(4) k -  2ir/Xe

accounts for the phase shift between p and p+t.. Equation (3) fa ils  

at i  equal to -p. This location (at the confluence of the rays) is . 

termed a caustic. Kay and Keller (Ref. [11]) have demonstrated that 

at points beyond the caustic U  less than -p) Eq. (3) is s t i l l  valid 

i f  a phase shift of +90° is introduced.

To use geometrical optics i t  is necessary to find a ll points 

on the scattering body at which the law of reflection is satisfied 

locally for the particular set of THI and THS under consideration.

Once these points are located Eq. (3) is used to calculate the scat

tered fie ld . Figure 3 shows the geometry for the calculation of 

the scattered fie ld  from one such specular point. By the law of 

reflection, the local Incidence and scattering angles are equal and 

are marked ANG 1n the figure. The distances marked rc and p are the 

radius of curvature and the distance from the specular point to the 

optical Image of the source (1 .e ., the caustic distance) respectively. 

The distance p is given by a cylindrical mirror formula as



y OBSERVATION' N  DnciTirthi
SOURCE

POSITION
THS *

THI
AN6

ANG

H( x)
SPECULAR POINT

n IS THE NORMAL 
TO THE SURFACE

OPTICAL \  
IMAGE OF 
THE SOURCE

Fig. 3 .—Specular point geometry.

(5) L -  2 . 1
p I r . I  COS (ANG) A •

In the cases considered here the distance to the line source, a. 

w ill be assumed to be In fin ite , hence

| r j  cos (ANG)
( 6)  > - - c - > - ■   •

I f  the specular point Is taken as the reference position then Eq 

gives us , the scattered fie ld  at the observation position

(7)

*  R for A »  p (far fie ld )



where Is the incident fie ld  evaluated at the specular point and 

R is a reflection coefficient. I f  the electric fie ld  is parallel 

to the surface generators (T.M. case) and û  1s taken as the inci

dent electric f ie ld , then u_ is taken as thte scattered electric  

fie ld  with R o - 1 .  I f  the magnetic fie ld  is parallel to the surface 

generators (T.E. case) and û  is taken as the incident magnetic fie ld , 

then u 1s the scattered magnetic fie ld  and R -  +1. For dielectric 

scatterers the corresponding Fresnel reflection coefficients are to 

be used for R. This makes the geometrical optics program the easiest 

to convert from perfectly conducting bodies to penetrable bodies.

Up to this point the scattering surface has been assumed to 

be concave down at the specular point. I f  the body is concave up 

at the specular point then the caustic position is above the surface 

instead of below, the scattered rays pass through the caustic on 

the way to the observation point i f  the observer is in the far fie ld , 

and thus a phase sh ift of +90 degrees must be introduced. The 

‘distant scattered fields may then finally  be written

:S/a\ -

Point

(8) E?U) = -E’
] Specular

|rc | cos (ANG) fi-jk *
■ ------------ I. .  . - . . . .  .  I - — —  — ; C

VjT

for the T.M. case and

(9) H?(i) •=
■ ‘Specular

Point

|rc| cos (ANG) e-jk *

2 . 7 T ~
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for the T.E. case, where e 1s +1 I f  the surface 1s concave down at

the specular point and 1f the surface 1s concave up at the specular

point.

On an actual surface there may be several specular points con

tributing to the total scattered fie ld , so I t  1s important to pre

serve the phase relationships among them. Phase reference is taken

at the origin, and an Incident wave of unit amplitude 1s assumed,

1.e

(10) E* = e"jir ’ *  (T.M. case)

(11) H* = .e " ^  * ?  (T.E. case)

where

• ' ' _

(12) IT . ' IT *  | M - x  cos (THI) - H(X) sin (THI)).
e :

With the aid of the geometry shown in F1g. 4, the scattered far 

field* 1s found from Eq?. (8) and (9 ), with i « ^  ŵ ere

(13) £2 *  -IT* Ds e - x cos (THS) - H(x) sin (THS),

and

(14) Ds = cos (THS) x + sin (THS) y
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TH ITHS

THS
H(x)

Fig. 4 .--Far field scattering geometry

is the unit vector in the scattering direction. Since Jtj »  %. 

Eq. (8) becomes, for the T.M. case

|rc| cos (ANG) JkQ(x)(15)

where

p(x) 8 x (cos (THI) + cos (THS)) + H(x) (sin (THI) 

' + sin (THS)).

(16)

Similarly, fbr the T.E. ease

r J  cos (ANG)
(17)



The total scattered fie ld  in the THS direction is the sum of the 

fields scattered by each of the specular points. The numerical 

values of the scattered fields as calculated by the programs of 

Appendix A, and plotted in the various figures of Chapter V are 

denoted by e|  and H ,̂ and have been normalized with respect to 

the actual fields by

' < ]

► - ■ ^ e -  1
L.

(18) '' H

H1 «5 u , j
» J

I t  is clear that Eqs. (15) and (17) fa il i f  the radius of 

curvature is in fin ite  at the specular point. This is because the 

source was assumed at in fin ity , I . e . ,  &o +  ». I f  were to be 

held fin ite  then from Eq, (5)

(19) 11m *  i Q

and the singularity in Eqs. (15) and (17) would not occur. In ad

dition to the singularities caused by an in fin ite ly  distant source, 

there are a number of other shortcomings of the G.O. approximation. 

Among them are: a failure to account for wedge diffraction effects 

(radius of curvature goes to zero), a failure to account for d if

fraction from shadow boundaries into shadowed regions (Ref. [12]), 

a failure to property predict the scattered fields i f  the surface
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features subtend only a few Fresnel zones (Ref. [13])r and finally  

a failure to predict any scattered fie ld  i f  no specular point exists 

on the body.

Implicit in the geometrical optics technique is the concept of 

shadowing, that is , a specular point cannot contribute to the scat

tered fie ld  unless i t  can be seen by both the source and the observer. 

The program developed here can account for shadowing of this type.

B. Discussion of the Geometrical Optics Program

For geometrical, optics calculations the f irs t order of business 

1s the location of the specular points. Figure 5 shows the geometry.
y

XSTOPXSTART

Fig. 5 .—Geometry for specular point location.

The surface height profile is described by H(X) and the regions under 

Investigation lies between XSTRT (X START) and XSTOP. THI and THS 

have already been defined; THN (THETA of the NORMAL) 1s the angle 

between the normal (n) to the surface and the positive x axis. 

■Clearly



(20) THN(x) = tt/ 2 + Tan'1 (dH(x)/dx).

The Taw of reflection gives (x,H(X)) as a specular point when

(21) THS - THN(X) a THN(X) - THI 

i . e . ,

(22) (THS + THI)/2 -  THN(X).

The program calculates the function

(23) E(X) = (THS + THI)/2 -  (u/2 + Tan"1 (dH(X)/dx)

for many points in the interval (XSTRT, XSTOP) and when this

function changes sign a specular point has been located. The col

lection of points so located is stored in an array XN(J). To save 

running time two searches are made, f irs t  a coarse grain search and 

then, In the neighborhood of each specular point, a finer grain pass 

Is made. ”■

The search must satisfy two requirements. F irst, i t  must be 

fine enough to 1ocate a ll specular po1nts; this requi res that the 

surface must be sampled often enough to get an adequate description 

of Its  structure. For example i f  the surface were described by a 

Fourier series then one would expect that sampling every twentieth 

of the minimum mechanical wavelength would be sufficient. Secondly, 

the specular positions must be located to within a small fraction of 

an electrical wavelength so that the phase relationships among the 

various specular points are correctly maintained. In the light of



these considerations a f irs t  search might be made at a step size of 

(the minimum mechanical wavelength)/20. The fine grain search would 

then be made with a step size of say (r /2 0 .0 )  or (1st step size/2.0) 

whichever is the smallest. In the program, the coarse step size is 

called DLTAX (DELTA X) and the' fine step size is called DLTAXOO. The 

local angle of incidence for each specular point is stored in an 

array ANG(J). This angle is used in the computation of the scat

tered field  and is shown in Fig. 5. Once a complete pass is made 

over the surface, the scattered fields are computed. I t  should be 

noted that whenever any one of THI, THS, H(X) is changed, the 

complete pass must be made again.

The actual program, given in Appendix A, makes the scattered 

fie ld  computation for two cases:

1) all specular points, contributing,

2) scattering from concave up specular points neglected 

when calculating the scattered fie ld .

The second case, clearly incorrect, was an attempt to see how the 

computed fields would correspond to the results of certain s ta tis ti

cal theories which neglect the concave up specular points. In the 

program the electri c fle ld  calculated from the f1 rst case 1 s called 

ESCNS (ELECTRIC FIELDS SCATTERED WITH NO SHADOWING) and from the 

second case ESCDNS (ELECTRIC FIELD SCATTERED.FROM CONCAVE DOWN 

POINTS- WITH NO SHADOWING). V '

Geometrical optics allows shadowing to be taken Into account 

without much extra e ffort. The three types which may occur 

(specular point not Illuminated by source, specular point not visible



to observer, both) are shown 1n Fig. 6. Each point 1n the array of 

specular points, XN , 1s examined for inbound shadowing 1n the 

following way. A line 1s passed through the specular point XNj, 

H(XNj) with slope tan(THI). The equation of the line is

(24) YI(X) >  Tan(THI)x + (H(XN )̂ - Tan(THI) XNj) .

A

(NBOUND SHADOWING ONLY

OUTBOUND SHADOWING ONLY

INBOUND AND OUTBOUND SHADOWING

•FIg. 6. —Specular point shadowing.
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Then x 1s Incremented in the proper direction until one of the 

following occurs. The f irs t  possibility is that at some point 

x, YI(x) becomes greater than the maximum value that H(x) can 

attain for any value of x in the Interval XSTRT, XSTOP. This 

value of H(x) is called HMAX and must be supplied for each surface 

being considered. I f  the surface is a sum of sinusoids then HMAX 

is equal to the sun of the individual magnitudes. The second 

possibility is that at some point the value of x is Incremented out 

of the Interval (XSTRT, XSTOP) being considered. The third and 

final possibility is that at some point x the line YI(x) Intersects 

the surface profile H(x). When the f irs t  or second case occurs the 

specular point is not shadowed. In the third case the specular 

point is Inbound shadowed and for that particular 1, XN(j) is set 

equal to a number much larger than XSTOP. This allows XN̂  to be 

skipped when the contribution from each of the specular points 1s 

being computed. A very similar test is applied for outbound 

shadowing.

When both the inbound and the outbound shadowing tests are 

conpleted the array of specular point positions contains values 

• which are either in the range XSTRT < X < XSTOP or XN̂  »  XSTOP.

The scattered fie ld  1s calculated as in the case where shadowing 

Is neglected except that when XNj > XSTOP the fie ld  from this 

specular point 1s not put Into the sum. The scattered fie ld  with 

shadowing accounted for is called ESCWS (ELECTRIC FIELD SCATTERED 

WITH SHADOWING) and the scattered fie ld  calculated with only con

cave down non-shadowed specular points contributing is called ESCD.
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C. Using the Geometrical Optics Program

While the storage requirement is minimal, the running time of 

this program depends largely on the step sizes which have to be 

used during the search for the specular points, and the number of 

scattering angles. This means that as the length of the surface 

increases, the time per pass required to find the specular points 

goes up and the number of passes over the surface also increases, 

since to see detail in the scattered fie ld  pattern the scattering 

angle must be examined at a larger number of points (finer grain).

The half-power beamwidth of a uniformly Illuminated aperture of 

width XSTOP-XSTRT,

_ 0.88  \
(25) beanwidth = xsVop - XsTrT rad1ans

l - • '
affords a crude estimate of the fineness of the grain which must 

be taken. The increment in THS should be less than a fifth  of this.

The program has been checked for several cases, two of which 

w ill now be.mentioned. The simplest check was the comparison with 

hand calculations for a surface described by

(26) H(x) « 50 cos(2 itx/80 0 )

with x 1n the range (-200,200). This surface has only one specular 

po1rit or none at a ll depending upon THI and THS. Another check was v ;

performed for a sinusoidal surface 1 ike the one shown in FI g. 7. ^



THS T H I

•  SPECULAR POINTS

Fig. 7 .—Specular points on a sinusoidal surface.

In this case the specular return comes from a collection of regu

la rly  spaced points which look like a pair of linear arrays of 

point sources. The program found the specular points and cal

culated the total scattered fie ld  correctly.



CHAPTER I I I  

THE PHYSICAL OPTICS METHOD

The next complexity of approximation to the scattered fields 

to be considered here is gi ven by the physical optics method.

A. The Physical Optics Approximation

Physical optics (P.O.), (Ref. [14 ]), approximates the true 

surface currents on a perfectly conducting body by the currents

magnetic fie ld  evaluated at the surface. These approximate currents

fields. The P.O. surface current 1s exact i f  the scattering body 

is perfectly conducting half space and the Incident fie ld  1s a plane 

wave. As the surface curvature decreases the P.O. currents depart

. o n  the surface goes to zero (a wedge), the method fails entirely. Nor

' A 4
2n x H on the portions of the surface which are 

- illuminated
(27) 3*5 - -  _

0 on the portions of the surface which are
, shadowed

A «j
where n is the outward normal to the surface and H is the incident

are then used in the radiation -integral to calculate the scattered

more and more from the true currents; as the curvature at some point

do the scattered fields predicted bv P.O. satisfy the reciprocity 

 theorem except for backscatterlng. Nevertheless, the P.O. method 

  has a slgnificant advantage over G.O. in that the fields remain

20
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bounded even 1f the radius of curvature of the surface becomes in 

f in ite . Hence the fla t facets of a surface can be approximately 

handled.

Whether or not P.O. provides any more useful Information than 6.0. 

Is a question of long standing,and the answer seems to depend upon the 

geometry of the scattering body (Ref. [15]), For the kind of surfaces 

considered here i t  w ill appear that P.O. gives a good approximation 

to the scattered fields over a significantly wider range of surface 

characteristics than G.O. I t  is Important to note that in this work 

the far fie ld  radiation integral over the physical optics currents is 

evaluated numerically to give the scattered fields. Unlike a number 

of rough surface scattering theories (Ref. [16 ]), no stationary phase 

approximation to the far fie ld  radiation Integral is used. I t  is 

well known (Ref. [17]) that when the stationary phase approximation 

must be made, one obtains the G.O. result and there 1s then no d if- 

/ ference between the two approaches.

physical optics currents. In the T.M. case, (see Fig. 8) the 

incident electric field is a z polarized plane wave of unit magnitude

The far-zone scattered fields w ill now be calculated using the

and the incident magnetic field  is

. +jk(xcos(THI)+H(x)s1n(THI)) v „ ^
(28) W  » e [-Sin(THI)x + cos (THI) yj/n

where n is the impedance of free space. Usi ng Ref. [18] and the factwhere n is the impedance of free space. Usi ng Ref. [18] and the fact 

that the tanoenti al electri c fie l d vani shes on the s urface, the
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THITHS

Fig. 8 .— Geometry for T.M. physical optics.

don, , 7  • j k lF ' Fo l
(29) e» (F0) - - V -  }  (  (nxR1) ^ — —  dzdc

'1 1 1 -  |F' F'

where rQ is the position vector to the observation point, 7  1s the 

position vector of a point on the surface and n is the unit outward 

normal to the surface. The notation c ^ j indicates that the Inte

gration Is to be carried out only over those portions of the contour 

which are optically Illuminated.

Since ti* and n are independent of z one can show, by using an 

appropriate integral representation for the Hankel function (Ref. 

[19 ]), that the scattered fie ld  is
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(30) I s (p0) » (2nxHt ) H<2)(k |p-r0 |) dc

'111

where a ll variables are confined to the x,y plane

0 1 ) P0 ' xo x + yo y

02) p s x x + y y

and Hp^(x) is the Hankel function of the second kind and zero order, o to)
Using the large argument approximation for '(x ) ,  the far fie ld  

scattered electric fie ld  becomes

(33) eS2(p0) -

,ir -jk|p |
|  sin (THI-tan"* (A) )

i l l

,3kq (x ,R ^ dx

where H(x) describes the surface height profile,

(34)

and Q(x) is given by Eq. (16). As before, the factor

e
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has been suppressed in both the computed and reported values of the 

scattered electric ,fie ld , so that the actual fie ld  e|(F 0) related 

to the print out value E® by .

(35) E| = E*(p0) e

When the Incident magnetic field  is z directed (transverse 

electric case) f t  is convenient to work with the scattered magnetic 

fie ld . The la tte r is found from Ref. [20]

(36)
-Jk |r-r0 |

4. B*(rn) « 2 f I (nxfl1) x v *  - ■ dz dc
I I  |r - r0|
ci l l

where F  1s the Incident magnetic fie ld  (see Fig. 9). The two

dimensional far f ie ld  scattering becomes from Eq. (36)

THS THI

FIg. 9; —Geometry for T.E. physical optics



-JMPol J l - 4lnfvt
(37) ----------g—  [  s1n(tSi((l) -  THS)e

JlSoi V *  'i lV

Jl+H2 dx.

Again, the factor
• ’

-JMp0 I
e _

l i p j

1s suppressed in the programs of Appendix A, so that the plotted 

or tabulated fie ld  strengths, H|, are related to the true fields, 

h|(p0) by

(38) H* = H|(F„) J l^ T  edk|l>o1 .

' v  ' • ? , . -

There are two further considerations that may be discussed at 

this time. For b1static scattering 1t may happen that not a ll of 

the currents set up on the surface by the incident fie ld  are optically 

visible to the observer (see Fig. 10). In the physical optics pro

grams developed here no account was taken of this possibility. 

Obviously such considerations do not arise for backscattering.

So far, 1n this chapter a perfectly conducting surface has 

been assumed. Physical optics can be generalized to treat dielectric 

surfaces by using a pair of equivalent electric and magnetic surface
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THS THI

ILLUMINATED BUT NOT VISIBLE

Elg. 10.--0ptically Invisible surface currents.

currents obtained from the fields of a plane wave Incident on a 

dielectric half space (Ref. [21]). Since two Integrations would 

be required to compute the scattered fields* 1t would seem that the 

running time should nearly double, but very l i t t le  extra storage space 

would.be required.

B. ' Discussion of the Physical Optics Computer Programs

For e1ther polar1zation the physical optics program 1s dlvided 

Into two parts. The f irs t , and by far the most d iffic u lt, finds 

the shadow boundaries on the surface, since the Integrations are to 

be performed only over the Illuminated section of the contour. The 

second part performs the necessary Integration to calculate the 

scattered far fields.
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The program opens by considering the function H(X) which des

cribes the surface between the defined endpoints ALEP (Left End Point) 

and REP (Right End Point). The search for shadow boundaries begins 

at REP by determining whether or not the right endpoint casts a 

shadow on the surface and proceeds from right to le ft  (see Fig. 11).

ALEP REP
END POINT CASTS SHADOWuONTO 
THE SURFACE I.#. TAN"|(“ | ) >THI

REPALEP
END POINT DOES NOT CASTA

MR
SHADOW ONTO THE SURFACE
Le. TAN-,$M  ) < THI 

I MR

Fig. 11. —Shadowing at the right end point.

I f  THI (the Incidence angle required to be less than 90°) is greater 

than 80° i t  is assumed that no shadowing occurs. The starting point 

of the Illuminated zone (either REP or A of Fig. 11) 1s stored in the 

f1 rst position of an array called SX (Shadow boundaries X, co

ordinate). The value of x is decremented until either a point on 

the surface 1s reached where the tangent-slope condition

(39) J i - ta n (T m )

is satisfied, at which point a shadow zone begins, or x becomes less 

than ALEP, in which case the second entry 1n SX Is ALEP. On the 

other hand i f  Eq. (39) 1s satisfied for some x between SX̂  and ALEP 

then this value of x is stored in SX2, a line with slope tan (THI)



1s passed thru the point, and Its  Intersection (1 f  any) with H(x) is 

found. I f  there are no such Intersections, then a ll of the surface 

to the le f t  of the point 1s shadowed. I f  an intersection does exist 

then the search for a point where the tangent-slope condition is 

satisfied begins again. This process continues until x is decre

mented past ALEP. The array SX thus stores the positions o f  

points with an illuminated zone on their le ft  in oddly subscripted 

locations and the points with an illuminated zone on their right in 

evenly subscripted locations {see Fig. 12), The size of the decrement 

used to locate the boundaries should be small.enough to catch the 

surface features, and to locate the ends of the shadow zones within 

a fraction of a wavelength.

sxQ

A

REP = SXiALEP

Fig. 12.—Illustration of shadowed and Illuminated zones.

. . The integration over the illuminated sections of the surface 

to find the scattered fields is performed 1n a subroutine called 

BINT(XX,YY) (B1stat1c radiation Integral) the arguments of which are 

the In itia l and final coordinates of one of the illuminated zones in
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sx(J). The Integration Is repeated for each zone until a ll Illum

inated zones have been considered. The total scattered fie ld  (called 

S) for a particular THI and TNS 1s the sum of the zone fields.

Except for normalization, the programs for the two polarizations 

differ only in the subroutine called FTBI(X) (function To Be 

Integrated); the factor sin (THI-tan**  ̂ (ft)) for the T.M. polarization 

1s replaced 1n the T.E. case by sin(THS-tan*^ (ft)). The actual 

Integration over the physical optics surface currents is performed by 

a five point Gaussian integration. In choosing the interval on the x 

axis over which the five point Gaussian Integration is to be applied, 

two conditions must be met. The firs t 1s that- the number of sample 

points along the contour must exceed five per wavelength. Presuming 

surface slopes of less than 60°, this means that ten sample points 

should be taken per electrical wavelength on the x axis. The second 

condition is that, i f  the surface were to be represented by a Fourier 

series, there should be 8-10 sample points per minimum mechanical 

• wavelength along the x axis. Presuming,for example,that the f irs t  of 

the above conditions Is the most stringent, each section of Illumin

ated surface ( I .e . ,  between x = SX^ and x>  SX ,̂ j  odd) would 

be d1 vided into half electrlcal wavelength 1 ntervals pi us a fractional 

interval, and five point Gaussian integration would be applied to each 

of the half electrical wavelength Intervals, and to the last, 

fractional,Interval. ' ;



C, Cbrnnents on the Use of the Physical Optics Programs

J Q s  in the case of G.O., the storage requirements are minimal, 

while running time depends upon the length of the surface and number 

of iincidence and scattering angles which are investigated. For each 

THI t J h e  search for 111 uni nation boundaries is performed only once, 

but t J h e  integration must be repeated for each scattering angle con

s i d e r e d .  For many of the scattered fie ld  computations considered here 

the s in g le  of incidence was held fixed and the scattering angle was 

varier d between 0 and 180°. For such cases the time required to find 

the -f 11 uminated zones on the surface is small compared to the time 

requ-f red to do the integrations for the scattered fie ld .

As the surface length is increased the time required goes up 

rapi <31 y  since the integration for each scatterlng angle takes longer 

and “•THS must be incremented with a finer grain to get an accurate 

reproduction of the structure in the scattered fie ld  pattern. The 

size o f  the increment for THS has already been discussed in connection

with the geometrical optics program. For example, the time required

to a surface 16 electrical wavelengths long, with THS incre-

ire n te d  by 0.5° from 0 to 180°, was 1.8 min. By comparison, 21 min. 

were required for a surface 100 electrical wavelengths long with 

increments in THS of 0.25° from 30° to 170°, i . e . ,  560 values o f THS. 

The value o f the increment In the last case appears to have been 

just^  adequate to see the detail 1n the pattern.

Among the checks of the P.O. program Is a computation for a fla t  

s tr^  p  with no tapering o f the illumination, for which a closed form



physical optics result is easily obtained. The agreement was 

excellent for both polarizations. In Chapter V, P.O. w ill be compared 

with the other two'methods of computing the scattered fields. Special 

attention w ill be given to the range of surface parameters over which 

the P.O. approximation is valid.



CHAPTER IV.

THE INTEGRAL EQUATION METHOD

In this chapter the third and most accurate method fo r  calcu

lating the scattering w ill be examined. Here the scattered fie ld
«

is obtained from the exact surface current, which is found from a 

moment method solution of an integral equation. There a re  no re 

strictions on the curvature or form of the surface, but because of 

machine storage limitations only surfaces of rather short length 

(30 x to 60 x ) can be handled.

A. Moment Methods

This section contains a brief Introduction to the method o f  

moments. For more information and other applications o f  this method 

lefer to Ref. [22], on which the following is based.

The objective of the moment method is to determine, numerically, 

the function F which is a solution of the inhomogenous operator 

equation

(40) C(F)e G

where C( ) is a given linear operator and 6 is a given function. 

Suppose that F can be expanded in a set of basis functions b



where Fn 1s the n-th unknown coefficient of the expansion of F in 

that basis. Note that 1f  a computer 1s to be used, N w ill have to 

be fin ite . Using the linearity property of C

(42)
N N

‘  U , b> ‘  A

To convert the operator equation to a set of sii 

an inner product, a scalar, <h,g> 1s defined for functions h,g and s 

such that

(43)

(44)

(45)

<h,g> .« <g,h>

<ah + pg,s>a<h,s> + p<g,s>

<h,h*> = 0, I f  h = 0.

* G.

multaneous equations

Let {W_.} be a set of weighting functions and take the Inner 1 *
product of both sides of Eq. (42) with M̂ . Us 

the Inner product, the original operator equat’

. ■ N
(46) " I  <Wm, C(b )> F *  <Wm, G> us] m ■ n n m

which

ng the properties of 

on 1s converted to



. -■ ■ 34

(48) C n <Wm, C(b )>' im m v n

and

(49) G « <Wm,6>.m m *

The solution, , to this system of equations can be found by any 

one of several methods, two of which are discussed 1n Appendix B.

The solution may be exact or approximate depending upon N, bn, and

For the integral equations to be solved here, the current 1s 

expanded in a basis of non-overlapping pulses of unit amplitude, 

while the weighting functions are chosen to be delta functions whose 

singularities occur at the centers of the pulses. The inner product 

1s chosen to be

(50) ,<g.h> -  j  g h dc
.. • c.

where c Is the contour of the scattering surfaced This choice of 

basis and weight functions amounts to enforcing the integral equation 

at the centerpolnts of the pulses, and is usually called "point- 

matching."- For the operator equations considered In this work the 

system of simultaneous equatiohs which result from polnt matching are 

well'conditioned, i . e . ,  suitable for computer solution (see Ref. [23]).



B. Integral Equation for Transverse Magnetic Polarization

In order to apply the point matching technique to the rough 

surface scattering problem, i t  is f irs t  necessary to find an 

appropriate linear operator. For this purpose the integral equation 

relating the unknown surface current to the known incident fie ld  

has been chosen.

The incident electric fie ld  is z directed, the incident magnetic 

fie ld  is transverse (T.M. polarization) to the generators of the 

surface with contour c as shown in Fig. 13. I f  the total electric

y

Fig. 13.—Geometry for T.M. scattering.

field is written as the sum of the incident fieldT* and the scattered 
field Is , the boundary condition

(51) ^

must be satisfied on c. The scattered field  is given 1n terms of 

the z directed surface currents, Jz (p') ,  by (see Ref. [24])
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(52) E | 6 > -  j  J2< ? ) ^ 2)( k | p V | )  di'

for the two dimensional case, where is the Hankel function of. 

the second kind and order zero, n 1s the Impedance of free space 

and k is the wave number, 2tt/ x0- Combining this with the boundary 

condition (Eq. (51)) gives the integral equation for the unknown 

surface current

(53) eJg> = J a .| JzGT«) H<2)(k|F-p '|) t l <

C

where pV iT* are now both confined to the contour c. Equation (53) 

can now be identified with Eq. (42) as follows: -

e! ( p) corresponds to 6, v

J (p̂ 1) corresponds to F,* 1 *

and the operator

" " ( ) H ^ (k |p ’-F '|)  da* corresponds to C( ).

As it- stands the integral equation requires the consideration of 

the current on the entire boundary c; 1f the entire contour of a 

two dimensional earth were to be included, the storage requirements 

for a moment method sol ution would be astronomical. I t  seems reason

able to assume that for standard radar wavelengths and with di recti ve 

antennas, the surface current is appreciable over only,a very small
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portion of this contour. Thus 1t w ill be presumed that the surface 

current outside a certain Illuminated region, which extends from -EP 

(End Point) to + Ep, can be neglected (see FIg. 14). To simulate the

t {x I — THE ILLUMINATION 
V  TAPERING

EP
CONTOUR

\ NEGLECTED PORTION OF THE CONTOUR

/
/

FIg. 14.—Modification of true contour to 
a shortened contour.

illumination of the surface by a directive antenna, tapering of the 

Incident fie ld  strength is  introduced via the function, t ( x ) , 

in the following way. The amplitude of the incident field  1s taken 

as unity to within two electrical wavelengths from each end point. 

Between one and two electrical wavelengths from each end the field  

is sinusoidally tapered to zero. Oyer the,last wavelength the

• * t.. ,JW.



incident fie ld  is taken to be zero. The incident field  with tapering 

included, E^(p)» is thus

^  +j|2(cos(THI) X + sln(THI) H(x))
(54) E j(D  = t(x ) » t(x ) o e

The validity of this tapering approximation has been checked 

by lengthening the dead zone at each end of the region under con

sideration and noting the change 1n the surface currents and 

scattered fields. The results of this test are presented in Section 

D of this chapter and do indeed justify  the assumption of negligible 

currents beyond the illuminated region. .

Although tapering.of the incident fie ld  is not needed in the 

P.O. or G.O. formulations, i t  has usually been included in the 

calculations so that the results of a ll the techniques can be fa ir ly  

compared. The only cases 1n which tapering is not used are special 

tests of the individual methods.

The integral equation becomes

(55) e’ (F) = £>• f Jz ( ? )  H<2 )(k |p -p '|) d f

with p", p'.both confined to the section of the contour for which 

-EP<x<EP.

• T h e  method of moments can now be applied. The surface is 

divided Into segments of equal arclength DC, and the current, J2 , is 

expanded in a basis of non-overlapping pulse functions as
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N '■■ ■ - '
' (56) Oz(p') -  I  Fn P* (p'-pn) _

where p*n is the position vector of the midpoint of the n-th segment 

of the surface, Fn is a complex number representing the magnitude 

and phase of the current over the n-th segment of the contour, and 

the n-th basis function Pj  ̂ (fT'-pjj) is a pulse of unit amplitude and 

width DC along the contour c. Thus the actual surface current 1s

to be approximated as shown in Fig. 15. For a reasonable represen-
* .

tation of the surface current, the pulse width, DC, must be a fraction

SURFACEl 
CURRENT!

o.L
0

Fig. 15.—Approximation of the surface current, 

of an electrical wavelength; X /10 has been found to be satisfactory.C
The shape of the surface must also be considered in choosing DC, 

since the surface must be accurately modeled by strips of width DC. 

Hence, 1f  xm is the shortest mechanlcal wavelength in the Fourler 

spectrum of the surface, then DC should also satisfy DC <. X^IO.

Of course the more restrl ctlve of the two condi tlons should be met. 

Applying the method of Section A of this chapter to Eq. (55)

S -T H E  ARCLEN6TH



where /  means "integrate over the n-th segment of the contour".
. DCn

Taking the inner product of Eq. (57) with the weighting functions,

(58) •citp'-pj. e1(D> ° Fn < 5 • }H*2)( k | p V | )  to.
n

so .

(59) E1 (pm) -  §3- j  F„ f H<2>(k|pm-PM) <!*' T -.

n ' 1 K  \  :

which 1s the same as the NXN matri x form

(60) [C] [F] * [E] 

where



41

and'F 'Is the unknown amplitude and phase of the current 1n the 

n-th contour segment. Once Eq. (60) 1s solved, the surface current 

1s known.

The far fie ld  scattering from the surface Is found from the 

surface currents and Eq, (52) to be

E|. which 1s related to the true scattered fie ld , Eq. (63), by

(63) E|(?) = Jz (p*) <U*

Fn %  (p'-Pn) ejk(p'"pW

The output of the computer programs Is a normalized scattered field

(64) E| = E|(?) f iF l IpI

C. Discussion of the Computer Program for Transverse
Magnetic Polarization

Several different programs were written using the above formu

lation of the problem. In the f1rst part of this section the common
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features of the programs w ill be discussed arid later their d if

ferences and relative merits.

All of the T.M.I.E. (transverse magnetic Integral equation) 

programs require that the surface have its  arclength subdivided Into 

segments of width DC, and have the endpoints and midpoints of these 

segments stored. The surface breakdown is shown in Fig. 16. The

EP xm, | xm2| xm 

xt x, x4

Fig. 16.—Breakdown of surface into segments 
of length DC.

j-th  segment lies between Xj and x ^ ,  while the j-th  midpoint 

(XMj) is such that X^Mj<X^+1. The surface is segmented by using 

the arclength formula and rectangular rule Integration. After the 

surface subdivision is completed the programs differ somewhat 

depending on how the matrix elements are calculated.

Once the matri x elements have been calculated the f irs t  part 

of a two part solution of the system of equations begins. In a ll 

of the solution methods used the matrix is factored into an upper



and a lower triangular matrix, see Appendix B. The matrix elements 

depend only upon the surface profile H(x), and are Independent 

of the Incident fie ld , THI or THS so that the factorization need be 

done only once for a given profile. In the second part of the 

solution the array [F] is loaded with the tapered incident electric  

field  at each of the XM̂ ; the back substitutions (described 1n 

Appendix B) are then carried out to find the current coefficients, 

Fn. The scattered fields are then calculated from Eqs. (63) and 

(64).

The differences in the several programs for the T.M.I.E. lie

mainly in the calculation of the matrix elements (Eq. (61)). The

simplest way to evaluate Eq. (61) for itfn 1s to presume that

Hp^(k|p*-p"'I) is constant over the n-th interval^ then o 1 m 1

<6 5 > c ra. S  H 2 ) ( k I V ' > n l )  DC

I f  m=n, a small argument approximation to (X) 1s made and 

integrated analytically, giving

where e 1s the base of the natural logarithm. In practice the 

matrix elements are simply the Hankel function and the I s- • DC is 

accounted for when the fields are printed out. This approximation 

results in a symnetric matrix which, i f  efficiently stored, requires



only N(N+l)/2 storage locations. The length of surface which can be 

treated 1s Increased by a factor of V2* over that which can be treated 

by methods requiring the storage of the fu ll matrix. Appendix B 

gives the details of the storage and solution methods.

In another program, 5 point Gaussian integration, Ref. [25], is 

used to evaluate the 0 ^  for n^n, and when nph Eq. (66) 1s used.

The matrix 1s no longer symmetric so all N terms must be stored.

A third program was written which takes advantage of the fact 

that the currents are continuous on the surface except at sharp 

edges (Ref. [26]). Since the column vector [F] of Eq. (60) represents 

the current, continuity requires that adjacent entries be similar. 

Hence i t  1s possible to interpolate. The currents at the even 

numbered stations may be approximated 1 n terms of the adjacent 

currents by

■W  F2n '  <F2n-l + W ' 2

For simplicity, the original matrix w ill be assumed to be of odd

I •

(68) N> 2 kk + 1

I f ,  for example, Ns7 then, using Eq. (67) in Eq. (60), one obtains 

the reduced system



45
c,„ . ■ c,, : c.

E, ■ C,,F, .  -f(F ,iF 3) ♦ C,,F, + - ^ F j )  * C)5F5 +. - | V f7> ♦ C„F7

Q ’ C “C
Ej -  C31F, + - i^ F j+ F j) ♦ C33F3 ♦ - f ^ F F j )  ♦ C^Fj . - f ( F 54F7) t t j j F ,

ES -  C5,F, + %(F,+F3) ♦ C j/3 ♦ - f ^ F j )  ♦ C65F5 ♦ T*<F5«F7) ♦ C„F,

c * * c c
E, .  C„F, ♦ - ^ F 1+F3) + C„F3 ♦ - |% 34F5) + CreFs ♦ -fiFj-FFj) + C„F7

where only odd rows have been retained, i . e . ,  F2 , F^, Fg are considered 

known. Collecting terms,

(70) Ek -  <Ck, + F1 + ( %  + Ck3 + % ) F 3 + (t 3- + Ck5 + % ) F 5

+ ( -^ ■ + ck7)F7 

for k * 1,3,5,7,

and the number of unknowns has been reduced to kk. Since matrix 

manipulations are made using regular subscripts in the machine, i t  1s 

very desirable to relabel the coefficients in the reduced system as 

follows ’V :;x

r . .  C(2m-l).(21-2) . r  . C(2m-l),{21)
(71) Cml : 2 ~  (2m-1).(21-1) + V

for the "interior" columns where mFl,2 ,3 ,• \* ,kk and i —2,3,-• * »kk-1.

The f irs t  and last columns of the reduced matrix are
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/«*m  r 1 n (2m -l),(2kk-2 ) ■ p
(73) m,kk *  2 ------------+ (2m -l),(2kk-l).

The are the elements of the original NXN matrix while Cj^ are ele

ments of the kkXkk reduced matrix. In the computer program the Cjj are 

called while the original matrix elements are labeled CO^.

When using the Interpolation technique the surface is subdivided 

as usual except that, i f  an even number of segments 1s produced, then 

the last segment is dropped to make N odd. The system of equations 

Is now

(74) [C][FP] -  [E]

where [E] is f ille d  with the incident electric fie ld  at the midpoints

of the segments with odd subscripts and the matrix [C] 1s loaded 

according to Eqs. (71), (72) and (73). After the solution has been 

found the column vector FP(J) contains the currents on the segments 

with odd subscripts. The complete set o f surface currents [F] 1s 

obtained by interpolation with

F«4 , *  FPj for j  *  1,2, • • • ,kk
(75) 23-1 J ■

F2j B (FPj + FPj+1)/2 for j  *= 1 ,2 , ‘ V*,kk-l.

Once the column vector [F] has been f ille d  in , the calculation of the 

scattered f1 eld proceeds as in Eqs. (63) and (64). The 1 nterpolation 

technique has been applled to the program which uses Gaussian 

integration to calculate the matrix elements.
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The big advantage of interpolation is the dramatic increase in 

the size of the surface which can be handled for a given storage 

capacity. I f  the machine can handle an arclength of L using the 

non-symmetr1c, non-interpolation program then the symmetric matrix 

program can handle an arclength of J T L  while the interpolation 

technique w ill do an arclength of 2 L with the same amount of storage. 

The Interpolation program s t i l l  requires that a ll of the original 

matrix elements be evaluated to f i l l  in the reduced matrix (Eqs. (71), 

(72) and (73)).

The integral equation programs require large amounts of storage 

and fa ir ly  long running times compared to either the G.O. or P.O. 

programs. The IBM 360-75 used here can hold a 275 x 275 complex 

matrix in high speed storage so that surfaces of length 27 xe , or 54 xg

i f  interpolation is used, can be handled with DC = A /lO. As for the■
running time, consider the 16 X. long surface mentioned in Chapter I I I  

Section C, which took 1.8 minutes using the P.O. program. The scat

tering from the same surface was computed by the three T.M. integral 

equation methods. The symmetric formulation required 2.8 minutes and 

storage for 14,000 complex numbers. The program which uses Gaussian 

Integration to evaluate the matrix coefficients required 5.0 minutes 

and twice as much storage,while the interpolation program required 

3.3 minutes and storage for 7,000 complex numbers. Where speed 1s 

important the use of the symmetric I.E. program is indicated, while 

long surfaces are best handled by the two point interpolation program. .



D. Tests of the Transverse Magnetic Integral
Equation Programs

The shortened contour assumption is one of the most crucial 

in the construction of the integral equation programs (Fig. 14). The 

obvious way to test i t  is to extend the non-illuminated portion of the 

surface, which amounts to lengthening the contour without changing 

the non-zero portion of the illumination (see Fig. 17). I f  the 

approximation is indeed valid, then the current in the non-illuminated 

sections should fa ll o ff rapidly and the scattered fields should be

the same in both cases. The assumption was tested on a sinusoidal

surface, using the program with Gaussian Integration. When regular 

-tapering was used, the current at the outer ends of the dead zones 

was down by a factor of 30 from that in the central part of the 

contour. When the extended taper was used, the current at the new 

outer ends was down by a factor of 100. The scattered fields for the 

two cases are displayed In'-Fig. 18 and show clearly that the d if

ferences are Insignificant. Thus i t  may be concluded that tapering 

of the incident field  does permit the replacement of the true contour 

by the shortened contour.

The wedge, F1g. 19, for which asymptotic solutions are available,

provides a test.case for the integral equation programs. The angle of

Incidence, THI, was chosen to be 90°. In order to emphasize the ; 

comer contribution, a Gaussian tapering of the incident fie ld  was
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Fig.l 7.—Contour and tapering function used to test the shortened contour assunption
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Fig. 18.--Scattered fields with and without extended boundaries, T.M. case
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THS

I5 \i

Fig. 19.—Geometry for wedge test.

The surface current, Fig. 20, shows the expected singularity at the 

comer. The computed scattered fie ld  is plotted 1n Fig. 21 along with 

the scattered fie ld  calculated independently using the geometrical

theory of diffraction, Ref,. [27]. Again, the agreement is seen to '
v

be excellent. All three T.M. integral equation programs produced 

essentially identical scattered fields. In a test of the self 

consistency of the three programs the scattering from the surface 

H(X) ? 5 sin x was computed. The differences in the scattered 

fields are very minor and would not be perceptible on the scale of, 

e .g ., Fig. 18.

In th§ light of the above tests, there seems to be no reason 

to prefer one T.M. Integral equation program over the other two 1f 

numerical accuracy 1s the only criterion. I f  the running time or 

storage requirements must be considered then the preferred formulation

can be determined by the comments at the end of Section C of this 

'Chapter.- ■'
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E. Integral Equation for Transverse 

Electric Polarization

For the T.E. polarization, the Incident magnetic field  H* 1s 

z directed and i t  w ill be convenient to work with the Integral 

equation for the magnetic fie ld  given (Ref. [28]) by

- jk|r-r' |
(77) Ts(r) « 2 n x TT1 ( r) + ^ rn (r )  x |  Ts( r ‘ j x v* ? —  ~ ■ ds

s  , r _ r  *

where r ,  r ' are both position vectors of points on the surface, tf*(r)

1s the incident magnetic fie ld , Tg(r) 1s the surface current, n 1s the 

outward normal to the surface and j  Indicates that the region about 

r' « r 1s to be deleted from the Integration. See Fig. 22.

F,7' BOTH ARE POSITION VECTORS 
OF POINTS ON THE SURFACE s

F1g. 22.—Three dimensional geometry for 
. T.E. Integral equation.

The two dimensional Integral equatlon can be obtalned by con

sidering an In fin ite ly  long cylinder as shown 1n F1g. 23. When the 

Incidence direction lies 1n the x,y piane the fields and surface 

current have no z dependence so that Eq. (77) can be reduced to
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P  t P  BOTH LIE  in  x ,y  PLANE

F1g. 23 .--Two dimensional geometry for 
T.E. integral equation.

c

H,(2 )(k |F -ri) dc1

where (p ^ 1) Is the unit vector in the p’- p  direction and h| 2^(x) 

Is the Hankel function of the second kind and order 1.

Just as in the T.M. case, tapering is introduced to account 

for the directional properties of radar antennas, and to lim it the 

size of the system of linear equations which w ill result from 

Eq. (78). One may now assume that the surface currents are zero 

except near the illuminated region and the qlosed contour can then
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be replaced by the open contour of F1g. 24. For this polarization 

the current flows transverse to z along the surface so

EPEP

F1 g. 24. —Open contour

(79) Ts(p‘ ) *  (z x n ( ? ) )  Js(? )  * T(p 1) Js (p ' )

where T(p"') and n(p’' ) are the unit tangent vector and the unit normal 

vector to the surface, as shown in F1g. 24. f(p"‘ ) Is given in terms 

of the profile, H(x), by

(80) f ( p ‘ )

1 + ( f t ( x ' ) ) 2

where ft has the meaning assigned by Eq. (34). Using

(81) dC' V (1 + (A(x‘ ) )2)1/2 dx'
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and Eqs, (78) and (79) with the tapered Incident field

V  - J V ?(82) H*(P « t(x ) e 1 

the Integral equation becomes

jir ,.?  osQ  jk f  Js(p')H1(2)(k|p-p-|)
(83) -t(x ) e • f j

P J ( x - x * )2+(H(x)-H(x')) 

C(H(x)-H(x, ))-ft(x )(x -x ')] dx'

where the Integration over x' excludes a small region 1n the contour 

about the point described by p\

The method of moments Is applied to Eqs. (83) just as 1n the 

T.M. case, the current Is expanded 1n a basis of non-overlapping 

pulse functions of width DC, delta functions are used as weighting 

functions and the scalar product Is the same as In the T.M. case.

The current 1s thus represented by

where, p , jTn He on the contour c and p*n 1s the position vector of 

the midpoint of the n-th segment, the Fn's are the unknown expansion 

coefficients and the pulse functions P  ̂ (p-p),) have been described 

In connection with the T.M. case. Placing this current In  Eq. (83), 

taking the scalar product of both sides with the weighting functions 

and using the non-overlapping property of the basis functions results 

In "v; ' ■ ■
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(85) -Kx,,,) i ' J i  ♦

F" ' K C ' ^ )"<f ) % ? | )

[(HCX|n)-H(xl ))-ft(x||) ( V x ') ]  dx,

J ( v x' ) 2+(H(xm>-H(x' ))2

Since f t  is necessary to avoid p"‘ « in the integration of Eq. (85), 

the summation w ill be forced to skip n*=m giving as a system of

equations •

(86)
- j!T4 *p_

-t(x  ) em
N

,e n̂ -| Cmn Fn

where
f

g- 1f m=n

(87) C '  1 im - w
£  J H<Z>(k

V

-  -■I) nH(xm)-H(X1))-fl(xm)(xm-x ') ]  ^  

J(xm-x ')2 + (H(xm)-H(x1))2

■ 1 f  n̂ n

end ^  are the upper and lower x coordinates of the endpoints 

of the n-th surface segnent respectively.
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Once Eq. (86) 1s solved for the coefficients of the surface 

current, Fm, the scattered fie ld  may be found from Ref. [29]

- jk |p -?  I
(88) IIs(r) * i -  f 0s( r ')  x v' -------  d s \

s

Specializing this to the far fie ld  scattering from an In fin ite  

cylinder and using the fact that 7g(P )  is independent of z and 

non zero only over a portion of the cylinder (see F1g. 25).

THS

THN U )

EPEP

Fig. 25.—Geonetry for calculation of far 
fie ld  scattering, T.E. case.

3* EP
rs1n(THS)"H(x>)cos(THSl(89)

jk(x'cos(THS)+H(x')s1n(THS))



Substituting Eq. (84) whose coefficients are now known Into Eq* (89) 

and assuming that the Integrand 1s nearly constant over a surface 

segment of length DC,

(90) H *Q  -  -̂------ Dc * _ ------  I  Fn cos(THS-THN(XlO)
2 /T  j j= f  n-1

" Jk (XtLcos (THS )s1n(THS))
• e

where THN(x) (THETA NORMAL) 1s given by

(91) THN(x) » (ir/2) + tan”1 (ft(x))

as shown 1n F1g. 25. The computed and plotted value of the scattered 

fie ld , h| ,  is given by

.  c r ^ -  | p |
(92) H2 «= Hz (p) JTpTe

F. Discussion of the Computer Program for the 
Transverse Electric Polarization

The programs for the T.E. polarization are very similar to those 

for the T.W(. polarization. As 1n the T.M. case the contour is  broken 

up Into segnents of equal length DC. The same notation Is used for 

the endpoints (x) and midpoints (XM) of the segments (Fig. 16). The 

T.E. and T.M. programs d iffer mainly In the values of the elements 

of the matrix [C], and 1n the dr1v1ng s1de of the system of equations*



Also, for the Integral equation used, the matrix is non-symmetric no 

matter how the coefficients are evaluated. Once again the system of

scattering and incidence angles do not require a completely new 

solution. Only the back substitution portion need be repeated (see 

Appendix B).

Several different programs have been written for the T.E. case, 

the major difference between them being the method used to evaluate 

the coefficients (Eq. (87)). The simplest way 1s to assume that 

the integrand is constant over the strip  width so that

In practice, only the.five point Gaussian integration was used to 

evaluate the o ff diagonal elements o f [C], .since i t  did not require 

much more running time than the simpler method. However, the inter

in the T.M, case with the given by Eqs. (71), (72), and (73).

Thus surface lengths of 27a* (or 54X- with Interpolation) can be 

handled. As an example of the running times required* consider again 

the surface of length 16xe mentioned in Chapter 3 Section C. The

run using the T. E. Integral equatlon program required 5.0 minutes.

equations, (Eq. (86)), is solved in such a way that different

(93)
^ 1f m=n

j *  (DC)

(XMm-XMn)] 1 f ttfn

polatlon technique retains a ll of Its  advantages and goes exactly as

T.E. physical optics program required 1,8 minutes while an equivalent



The Interpolation program for this polarization took 3.5 minutes.

Thus the Interpolation program 1s superior to the non-interpolation 

program both with respect to storage requirement and running time.

G. Tests of the Transverse Electric Integral
Equation Prograttes

The shortened contour assumption plays the same role and 1s 

tested 1n the same way in the T.E. Integral equation programs as 

1n the T.M. case. The contour 1s extended as shown 1n Fig. 17.

When the regular tapering was used, the current at the outer ends of 

the dead zones was down by a factor of 70 from that 1n the central 

portion of the contour. When the extended surface was considered the 

current at the new outer ends was down by slightly more. The nearly 

Identical scattered fields for the two cases are shown 1n F1g. 26.

The wedge provides a test case for which an independent result 

1s available. The test georfetry 1s as shown 1n Fig. 19 except that 

here the Incident nagnetlc fie ld  1s parallel to the comer of the 

wedge. Gaussian tapering of the Incident fie ld , Eq. (76), 1s used.

In contrast to the current singularity 1n the T.M. case, the surface 

current in the T.E. case, FIg. 27, shows the expected r2^3 behavior 

at the comer. The excellent agreement between the scattered fields 

calculated by the 1ntegral equatlon method and the flelds obtained 

from the geometrical theory of diffraction, Ref, [30], Is Illustrated  

In, Fig. 28. Both the non-1nterpolat1on and the Interpolation T.E. 

integral equation programs gave the same result in  this test.
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Fig, 26.—Scattered fie ld  with and without extended boundaries, T.E. case
ro



63

M

I “ *

- X e

Fig. 27.--Conputed |J_| near corner of wedge, T.E. case
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Flg. 28.—Wedge scattered fields case
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The consistency of the two T.E. Integral equation programs was 

checked on a surface with a height profile H(x) = 5 s1n(2irx/200). The 

results were nearly Identical.

The above tests indicate that so far as numerical accuracy 

1s concerned the non-interpolation and interpolation T.E. Integral 

equation programs do not differ. The Interpolation program 1s pre

ferred however because of the savings in storage.



CHAPTER V 

APPLICATIONS

In this chapter the previously developed computer programs w ill 

be used to check the applicability of the geometrical optics, physical 

optics and perturbation approximations to the calculation of the 

scattering from non-uniform surfaces. The Integral equation programs, 

which are believed to be exact, are used as standards.

The f irs t  surface to be considered has been especially chosen 

so that i t  fu lf il ls  the requirements necessary in order that physical 

and geometrical optics both give a valid approximation to the true 

scattered fields. The surface, a single half-cycle of a sine wave, 

has a profile H(X) « 50 cos (2ttX/800) with x between 200.0 cm. and 

-200.0 cm , and clearly has but one specular point for scattering in 

the forward direction. The incident fie ld  is tapered, and has an 

electrical wavelength of 25 cm. Unless otherwise noted, these con

ventions have been used throughout. The criteria  for the successful 

application of G.O. and P.O. are met by this profile since the 

minimum radius of curvature 1s 12.8 xe and, having a maximum height 

of two xgt there are several Fresnel zones on the surface. The scat

tered fields predicted by the G.O., P.O. and I.E . programs are shown 

In Figs. 29 and 30 for the T.M. and T.E. polarizations respectively.
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I t  1s apparent that a ll methods give nearly the same result for 

THS between 87° and ,155°. No scattered fields are predicted by 6.0. 

for THS outside the range 78° and 163° since the normals to the surface 

have a limited range of directions as Illustrated in Fig. 31. The

SO cm

—200 cm 0  200  cm

Fig. 31 .—Limitation of scattering directions predicted
by geometrical optics.

rise 1n the value of scattered field  predicted by 6.0. near 78° and 

163° is due to the movement of the specular point into a region of 

the surface of Increasing radius of curvature. However, as the

specular point gets within two wavelengths of either endpoint the
• *• • *

tapering of the Incident fie ld  suppresses the expected singularity 

1n the scattered fie ld .

I t  should also be noted that for the P.O. results, the T.M. 

fields d iffe r slightly from the correct fields for THS near grazing.



For either polarization the ripple observed 1n the scattered fie ld  

and correctly predicted by P.O. 1s probably a consequence of the 

fin ite  length of the surface. G.O., being a purely local theory, 

w ill not predict effects of this nature.

As a further check of the programs, the above profile was 

multiplied by minus one, I .e . ,  Instead of being concave down the 

surface was concave up. The amplitudes of the scattered fields re

mained unchanged but they all showed a phase shift of 90° due to what 

1n G.O. theory is termed the caustic correction factor.

In order to establish more quantitatively the limitations on 

the G.O. and P.O. approximations, the scattered fields have been 

computed for a set of surfaces with height profile.

(94). H(X) = A s1n(2*X/200) -200 cm. < x < 200 cm.,

i.e .,, the surfaces are two complete mechanical wavelengths long.

With THI fixed at 60°, the amplitude, A, was varied over a range of

5.0 cm. to 50.0 cm. so that the minimum radius of curvature, r ^ ,

varied from 8.0 x 'to 0.8 X . The Important features of the scattered ■ -- ■ © 6
fields over this range of rrm for each polarization are shown 1n

■ j ■ - v m

Figs, 32-37 1n order of decreasing rcn|. Some general trends are 

worthy of mention.

In the f irs t  place, as rcm/xe decreases from 8 to 0.8, the 

agreement between the P.O. results and the exact fields goes from 

excellent to poor. I t  would appear that as long as the surface a l- 

ways has raR/xe greater than, say, 2.5, the P.O. approximation w ill



MINIMUM RADIUS OF CURVATURE =

301-

x
2 0 0cm2 0 0 cm

10 20 30  40 50 60 70 80 90 100 110 120 130 140 150 160 170 180
TH S -TH E  SCATTERING ANGLE

Fig. 32.— Scattered fields predicted, by PU).* G.O., and I.E.
methods for H(x)* 5 sin(2iTX/200), T.H. polarization
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Fig. 33.—-'Scattered fields predicted by P.O., G.O,, and I.E.
methods for H(x)= 5 sin(2irx/200), T.E. polarization
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Fig. 34.—Scattered fields predicted by P.O., G.O., and I.E.
methods for H(x)-15 sin(2«x/200), T.M. polarization
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Pig. 35.—Scattered fields predicted by P.O., G.O., and I.E.
methods for Hfx)58 15 sin(2*x/200), T.E. polarization
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Fig. 36.—Scattered fields predicted by P.O., G.O., and I.E .
methods for H(x)= 25 sin(2«x/200), T.M. polarization
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give reliable values for the scattered fie ld . Even for values of 

rcn/xe * 1 may s t i l l  be considered usable, that 1s, 1t w ill 

reproduce the general structure of the scattered fields although with

sign1f1cantly 1 ower accuracy. This 11 ml tatlon on the radius of curva-
" * 

ture necessary for the successful application of the P.O. approxi

mation 1s in agreement with the results of Ref. [31] 1n which the 

current on a sinusoidal surface of In fin ite  extent Is found. Except 

for scattering and Incidence angles for which no specular points occur 

or for which a specular point coincides with a point of In fin ite  

radius of curvature, the G.O. and P.O. approximations give scattered 

fields very similar to each other even when they are not correct, e .g ., 

Fig. 38. I t  1s interesting to note that where the I.E . and P.O. (and 

hence the G.O.) fields agree the T.E. and T.M. fields are nearly 

Identical but as the radius of curvature decreases the exact fields, 

T.E. and T.M., not only d iffer from the respective P.O. fields but from 

each other. This behavior is not entirely unexpected since for bodies 

wlth 1arge radius o f curvature 1n terms of wavelength the polarizatlon 

independent G.O. 1s known to be a good approximation. As the radius 

of curvature goes to zero, e.g. a wedge, G.O. and P.O. both fa il and 

the scattering is polarization dependent (see the wedge tests in 

Chapter IV).

The failure of G.O. when no specular point occurs on the surface 

or when a specular point coincides with a point of In fin ite  radius o f] 

curvature makes i t  fa r less attractlve than P.O., especially when 

numerical methods are involved. For example, when A«5, (see Fig. 32)



20 
L

O
G

| 
E| 

OR 
H

*
THS 60*

35i

30
200cm  

Xe *  25 cm
200 cm

25

20 '

T.E. P.O.
m  P.o, 
6.0.20

25
t h s - T h e ''’s c a t t e r in g , angle .

Fig. 3 8 > -A ^ e *n t of G.O. and P.O. when they are Incorrect



■; " 78

6.0. predicts no scattered field outside the range 102° < THS < 138°, 

and gives fields which are singular at either end of the range. On 

the other hand, the P.O. approximation correctly predicts the scattered 

fields for a far wider range of THS, including backscatter, and the 

fields are always bounded.

I t  is also of Interest to note that what might be called the 

"fine structure" of the scattering, particularly for THS < 80°,

(see F1g. 32) 1s not due entirely to the fin ite  length of the 

Illuminated region as 1n Figs, 29 and 30 but is strongly controlled 

by the height profile.

Another approximate theory whose validity can be checked by 

the numerical nethods developed here Is the perturbation theory for 

the scattering from "slightly rough" surfaces as formulated In 

Refs. [32] and [33]. Perturbation theory predicts that 1f the ampli

tude o f the surface profile is much less than the electrical wave

length of the incident fields, then the amplitude of the scattered 

fie ld  due to the perturbation of the surface 1s proportional to the 

surface height amplitude. This was checked by calculating, using 

the T.M. Integral equation program, the scattering from a surface 

profile described by

(95) H (x )>  c (s1n(2irx/50) + 1/2 s1n(2irx/l9.7l))

for various values of c. The fie ld  scattered by slightly rough 

surfaces 1s dominated by the scattered fie ld  from the unperturbed 

surface (c*0) whlch Is quite complex for the fin ite  strips considered



79

here. Thus the behavior of the perturbed fields can best be 

Illustrated by considering the difference between the actual fie ld  

and the f la t plate fie ld . The perturbation 1n the scattered fie ld ,

Ep, due to the perturbation 1n the height profile of the originally 

f la t strip is then given by

(96) E « Es - Es v ' p z zo

where E® is the total scattered fie ld  as predicted by the computer
mm

program, and e| q is the fie ld  scattered when c 1s zero ( i .e . ,  a f la t

s trip ). In order to test the prediction that |Ep| ac, a low value

of c (ca0.01 cm.), was chosen as a reference surface amplitude with 

reference scattered fie ld  \ ^ \ *  so that for a fixed scattering angle

expresses the perturbation theory result. The exact fields are 

compared with perturbation theory In F1g. 39 for several values of c. 

The theory appears to fa ll at about c/cj ■ 200 which corresponds to 

a root mean square surface amplitude of approximately xg/10.

In addition to permitting the examination of the applicability 

of various electromagnetic approximations to the ocean surface scat

tering problem, the programs permit direct calculation of the scattered 

fields from any appropriate surface. One such application 1s to the 

calculation o f the expected value of the backscattered power from an 

ensemble of ocean-11ke surfaces. Such an ensemble may be constructed 

from the known height spectrum, Ref. [34]. For a sea surface, the
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F1g.. 39.—Perturbation theory test



height spectrum, Fig. 40, decays as where km Is the mechanical

W(k)
(cm2)

krf* T ”  SHORTER
K m  MECHANICAL

(cm"1) WAVELENGTH

FIg. 40.—Sea surface height spectrum.

wavenumber. A particular member of the ensemble 1s chosen to be

a fin ite  sum of sinusoids with random phases whose amplitudes vary

as k“2 . The k js  are not harmonically related so that the surface, m m
like the ocean, w ill be aperiodic. A surface of this type given by

(98) H(x) » 2.5(0.4 s1n(2irx/200.0 + 0.78)

+ 0.8(10.0/20.0)2 s1n(2irx/l0.954 + 1.6)

-  + 0 .8 (6 .66 /20 .0 )'2s1n(2irX/6.28318 + 2 .4 )

+ 0 .8 (5 .0 /2 0 .0 )2 s1n(2Trx/4.795 + 0 .4 ) )

can be used to generate an ensemble whose elements are different 

sections of this surface.

Physical optics was used to calculate the expected value of 

the backscattered power and fle l d strength from a 75 member ensemble 

made from the surface described by Eq. (98). Each member of the 

ensemble was 75 electrical wavelengths long. On a CDC 6600 computer,



the time required for the run was about 40 minutes. The expected 

values <|E ||2> are shown In-'Fig. 41; the expected value of E| was 

found to be extremely small compared to the root mean square fie ld .

25
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T H S V T H X

Notice that no special form of the slope distribution or other 

statistical properties of the surface have to be assumed. I t  1s also 

possible to use a point by point, I .e .  discrete, representation of the 

surface, such as might be generated by the prescribed statistical 

propertles of the surface.



CHAPTER VI 

SUMMARY AND CONCLUSIONS

In this work the scattering properties of cylindrical 

rough surfaces have been Investigated by several numerical techniques 

In order to test the validity of previous theoretical work. The 

results, using as checks the Integral equation solutions, show that 

geometrical optics 1s not usable for surfaces with radius of 

curvature smaller than 2.5 and may give poor results even when 

this condition is satisfied should the scattering geometry be such 

that no specular point exists or a specular point coincides with a 

point of in fin ite  radius of curvature. With the exception of these 

two cases,geometrical optics and physical optics give nearly the 

Same scattered fields.

I t  was found that the numerical evaluation of the scattered 

fields from the physical optics currents glves good results for 

almost any geometry (except perhaps deeply shadowed configurations) 

as long as the radius of curvature condition, rcm > 2.5 xe , Is 

satisfied. Physical optics, although not always so accurate, has 

an advantage over the integral equation formulation in  that the length 

of surface which can be treated 1s not limited by machine storage 

capacity.'



The Integral equation program has been used to check the pert

urbation theory prediction that the amplitude of the scattered field  

Increases in proportion to the increase in the amplitude of the

surface height profile. The numerical results confirm 1n a quantita

tive way the fact that the theory fails  when the root mean square 

height 1s about one tenth of an electrical wavelength.

The physical optics program, because of Its  ability to handle 

long surfaces and Its  superiority to geometrical optics, has been 

applied to the direct calculation of the expected value of the 

scattered power from an ensemble of ocean-like surfaces which were 

constructed from a height spectrum similar to that of the sea. The 

computer time required, while lengthy, was not found to be prohibitive

The extension of the programs to very long surfaces or to non-

cyllhdrlcal surfaces appears feasible only for the G.O. and P.O.

methods; the storage requirements for an I.E . solution 1n either 

case would be prohibitive. P.O. would probably be the easiest to 

modify to non-cylindrical surfaces, especially i f  shadowing were 

neglected. Since location of the specular points becomes much more 

complicated In the non-cylindrical case, the G.O. method would be 

more d ifficu lt to implement.



APPENDIX A 

COMPUTER PROGRAMS

A listing of all the programs discussed 1n the text 1s presented 

here. To fac ilita te  understanding of the programs, the symbols used 

In the programs have been used 1n the text whenever possible.

All programs require the plot subroutine listed at the end.

The function subprograms AHAN20(x) and AHAN21(x) are required 1n 

the T.M, and T.E. Integral equation programs respectively.



O 
o 

o

C THIS PROGRAM IS FOR 81 STATIC BACKSCATTERING
C ESCNS IS THE RETURNED E FIELD WITH SHADOWING NOT ACCOUNTED FOR
C ESCViS IS  E SCATTERED WITH SHADOWING ACCOUNTED FOR
C ■ • • ...
C GEOMETRICAL OPTICS FOR THE OCEAN SURFACE
C
C SPECULAR POINT SEARCH IS DONE IN TWO STEPS
C #1 IS MECHANICAL WAVELENGTH DEPENDENT,#2 ISREFINNED MECHANICAL OR
C ELECTRICAL WHICHEVER IS  MORE STRINGENT
C DLTAX IS THE SEARCH S 12EW1,DLTAXOO IS SEARCH S1ZEX2
C DELSHA IS SHADUW TEST STEP SIZE
C THIS PROGRAM CAN HANDLE 200 SPECULAR POINTS /PASS IE .  ONE THIC1THS ■'

. DIMENS1CN XN(2001 tANGLE!200)
DIMENSION ACDNSI7 201 ,ANSI7 2 0 ) ,AWCS(7201 tASNSI7201»A0S(7201 
OIMENSION ECDNSI 7 20 IiEWS C720)*  EWCSI720 I »Y( 10 )tESNSf 7201
REAL PI»PI2  
REAL MTWO
COMPLEX ESCNS,ESCWS,ENS 
COMMON CA.C8,CKA,CKO, PHA, PHB, CC,CKC, PHC 
COMPLEX ESCONStESCO
NAMELI ST/CAT/CA ,C8,CKA,CKB,PHA,PHB,CC,CKC,PHC,WAVE,THID 
N4MEL1ST/CUT/ESNS,ASNS, ECDNS,ACDNS,EWS,AWS,EWCS»AWCS,AOS

THE FUNCTION WHICH DESCRIBES THE SURFACE IS
Hm=CA*SlNUCKA+X)+PHA) + CB*SIN((CKB*X|+PHB»fCC*SIN((CKC*XI+PHC)
CA-lO.O
CKA*6.28318 /200 .0
FHA*0.O '
CB-0.0  
CKB»0.0 
PHO*0.0
CC-O.0 . "■ .............
CKC»0.0 
PHC*0 .0
HMAX-ABSCCA» *ABS( CBI+ABStCCI 
P I * 3 . 14159 
P I2 * 1 .5707963

■ •. T P l * 6 .283185 , ■ .............
C WHMIN IS THE MINIMUM MECHANICAL WAVELENGTH

WMMIN=TPI/AMAX1tCKA.CKB.CKCI 
0LX*0«01000 
TWDLX»2O.0*DLX 

C NANI IS THE NUMBER OF ANGLES TO BE INVESTIGATED
, NANI>360

XSTRT > -200 .0  
XSTOP— XSTRT

X  THS IS  THE ANGLE BETWEEN THE POS. X AXIS AND THE SCATTERING DIREC.
,CV;;,;i:THI IS THr ANGLE. BETWEEN THE POS. X AXIS AND THE INC. DIRECTION

THI> 6 0 .0 *3 .1 41 5 92 7 /18 0 .0  
C WAVE IS THE ELECTRICAL WAVELENGTH

WAVE«25.0 •.-■■■ • ■  ̂ ..
DLTAX*WMMIN/10.0

OLTXOO»AMIN1UDLTAX/5.0I ,IWAVE/20.011 * .
0£L5HA*|JMMIN/10.0
XSKIP*XSTOP+( 104*91 . • ■ ' - ■ ' .! V. V ■
TANTHI-TANI TH11 
THIOBTH1 *180 .0 /3 .14159  
CSTHloCOSITHl!

■ SNTHIiS IN ITH Il
NAMELIST/TOM/OLTAX,DLTXOO,DELSHA
WRi TE(6,T0M) '
00 93 IRE-1, NANI " - V  ■ V:
a s n s i i r e ) >0 .0  r ^ : . : - . U . .
ACPNSIIRE 1 *0 .0  '
ANSI IRE1- 0 .0  v:

.. AWCSI IRE I -0 .0  '--iV:-
ESNSIIREI-O.O .7 7 7 .7:.7

\ ■ ECDNS I IRE 1*0 .0  ■'sV-' / ::-7:'7':7:: ' K ,



e m s i i r £ i «o . o
EWCS(IRE)*0.0  

93 CONTINUE
00 17 I J S1*NANI
THS*FLOAT( I J ) *0 .8726646 E-02
THSD*THS*57.29578
AOSt1JI=TH5U ,

! WRITEI6,356) THID.THSD
356 ' FORMAT 111H INC ANGLE*.E15.8.13H SCATT ANGLE*.E15.8)

SUCOS=CSTHl+COSITHS)
• SUSIN=$NTHI+SINITHSI

N*0
C FIRST FIND POSITIONNS CF SPECULAR RETURN AND STORE THEM
C THE FIRST POSITION CAN NOT BE A SPECULAR POINT 

XP*XSTRT 
. SUflD2*(1 H I*  THS 1 /2 .0

E*SUND2-tTHlXPI+PI2I ■■ ■■ -
• 102 KP*XP+DLTAX
: . eo*E . . . . . . . . . . . .  • .....................
I E«SUMD2“ IT H (X P )*P I2 )

IF IE .E Q .O .O ) GO TO 100
IF l( (E O .G T .0 *0 ) .A N D .(E *L T *0 *O )> .O R .U E O .L T .0 .0 )  .AND. tE.GT.0*011)  

2 GO TO 100 
GO TO 101 

. 100 N°N* 1
XN(N)*XP

...... . ANGLEIN)*THS-<THIXPI*PI2.I . . .
; 101 IF  (XP.LErXSTOP) GO TO 102

IF(N.EQ.O) GO TO 372 
C THIS IS TO REFINE THE POSITION OF THE SPECULAR POINT

DO 25 K * l .N
XSO*XN(K) -OLTAX .
E*SUMD2-ITH(XS0)*PI2I 

222 XS0=XS0*DLTX00
' ■ eo* e   ■ :•......

E*SUMD2-ITHIXS0)+PI2)
1FIE.EQ.O.O) GO TO 252
IF I  MEG. GT* 0 * 0 1.AND*{ E.LT* 0 * 0 ) ) .OR*( IEO.LT.0* 0 ) .AND.(E.GT.O.O)11  

2 GO TO 252 
GO TO 253 

252 XN(K)*XSO
ANGLE( K)*THS-CTHCXSOI+PI2 I

. 253 CONTINUE   ~
IF (XSO.LT.XN(K)I GO TO 222 

25 CONTINUE
ESCNS*CMPLX(0 . 0 . 0 . 0 1
E5CDNS*CMPLX(0.0,0.0).................................................................. .......  .......... ........
DO 10 K«1»N
PHAS£«ITPI/WAVE)*(ISUCOS*XN(K))*tSUSIM'H<XN(Kim •

■ RC*RS(XN(K))*C0SlANGLE(K))
IF(RC.LT.O .O) PHASE*PHASE+IPI/2*0I
ENS*~( (SORT (ROS IftC/2 .  G » I *C£XPf CMPL XIU. 0 tPHASEI )>

C TAPPER1NG INCLUDED 
XG'XNtK)
1FIXG.GT• (XSTOP-HAVE)) ENS*CMPLX(G.O.C.O)
IF(XG.LT.IXSTRT*WAVE)) ENS-CRPLXtO.G.G.fll 
|F((XG.GT.<XST0P-(2.C*WAVE)) I.AND.CXG.LE.CXSTOP-KAVE)11 

2 E N S *E N S *(0 .5 - (0 .5 *S IN M 3 * 1A159/MAVE )* IX G -(  XSTOP-I L. 5*WAVE 11) I > I 
IF 11X3*GE.IXSTRT*WAVE)) .AND.IXG.LE.CXSTRT+I2.0*WAVEIII)

• 2ENS«ENS* < 0 .5 * ( 0 . 5 *S IN ( 13 .1 4 159/WAVE)♦» XG-(XSTRT*( 1 . 3 * WAVE>>>1)1, 
ESCNS*ESCNS*ENS *
IF IR S IX N (K )i .L E .O .O ) GO TO 10 
ESCDNS*ESCDNS«ENS . .

10 CONTINUE
ACO-CAOSfESCONSI ,
IF IA C O .LT .l.O  E -05) GO TO 59
ANACD«57.29578*ATAN21AIMAGIESCDNSI * REAL!ESCDNS) I 

' 59 CONTINUE
. I f IA C D .L T * 1 .0  E -05 ) ANACD>0.0



esmagbc a u s ( esc nsi 88
ESANG»ATAN2(AIMAG(ESCNS),REAL{ESCNSH*lflO. 0 /3 ,  1415927 

t NRITE(6 t726l ESMAG.ESANG
726 FURMATt* ' , 'H A G . OF SCATT. E F IELD **,£ 1 5 .8 * 'PHASOR ANGLE*'tEl5«Bt 

23X,«WlThOUT SHAOtJWlNC* )
,-a WR1T£. (6 ,1 2 1 )  ACDtANACC

121 FORMAT!' * * * S CATT• FIELD NO SHADOW CONCAVE DOWN TIPS 0N L Y * ',E 15 .8 ,  
2'PHASOR ANGLE**«E15.81 

ESNS(IJ)=ESMAG *
I ECpNStIJ)=ACO

ASNSIIJ)*ESANG
ACDNSI1J)=ANACC .................

C NOW FIND THE SHADOWING EFFECT . .
C INBOUND SHADOWING  . .

IF  (ABStTHl-P I21 .LT .0 *0 5 }  GOTO BOO 
DO 327 K=1.N
B1*H(XN(K))-(TANTHI*XN(KI)
STEPI*OELSHA . . . . . .  •...
IF ITANTHI.LT.0 . 0 1 STEPI*-DELSHA

  XI*XN(KHSTEPI
GO TO 471 ,

A7C XI*XI♦STEPI 
471 Y I=(TANTH I*X I)*B I

IF  ( V t . iE .H (X n - ) '  XNUI-XSK1P  
IF(ABS(XN(K)l.GT.XSTOP) GO TO 499
IFCABSCXII.GT.XSTOP) GO TO 499 . ..........
IF(Yt.LE.HMAX) GO TO 470

499 CONTINUE 
327 CONTINUE
500 CONTINUE ......................................

C OUT BOUND SHADOWING
IF< ABS(THS-P121.LT.0 .0 5 )  GO TO 639 
TAN THS* TAN (THS)
DO. 633 KK*=I »N
IF (XN(KK).GT.XSTOP) GOTO 633

C THE ABOVE CARD HAKES SURE THAT TIME IS NOT SPENT ON A PT, ALREADY
C KNOWN TO BE SHADOWED

BO-HIXNtKK))-(TANTHS*XNCKK)1 ............................
STEPO*OELSHA *
IF(TANTHS.LT.O.O) STEPO«=-OELSHA ‘....... .....................
XO**XN( KK)+STEPO
GO TO 671 ' • .

670 XO-XO+STEPO
671 YD*ITANTHS+XQ)*80 .......

I F ( YO.LF.Ht XO)) XN(KK)*XSKIP
IFCABSiXNCKKM.GT.XSTOP) GO TO 699 - .......  .
IF  iABStXCD.GE.XSTOP) GO TO 699 
IF  CYO.LE.HMAX) GO TO 670 

699 CONTINUE
’ . .6 3 3  CONTINUE .... .........  .......... •..... ................

639 CONTINUE
C END OF SHADOWING EFFECT.................. ........  .......... ...........

IN1NIN*0
; ESCWS*CMPLX(0.0,0.0).................................................................................



I . . . . '
; ESCD*CMPLX( 0 .0 *0 .0 1

DU 19 K»1,N "
C NEXT CARO SKIPS THE SHADOWED SPECULAR POINTS

IF  IXNIKI.GT.XSTOP I GO TU 19 
ININ1N-K

• PHASE*>(TPl/HAVE)*((SUCOS*XMKm(SUSIN*H(XN(KI>ll 
RC«RS(XN(KI I OS (ANGLE I Kl)

• IF(RC.LT.O.O) PHASE-PHASE+tPI/2.0) 
ENS«-l(SQRTlABS(RC/2 . 0 m*CEXPlCMPLX(0 . 0 ,PHASEm

C TAPPER1NG INCLUDED
XG-XNIKI
IF(XG«GT• ( XSTOP-WAVE)) ENS“CMPLXI0.0,0 .0 )
IF fXG .LT . (XSTRT+WAVEI) ENS“CMPLX(C. 0 , 0 . 0 )
IF ItX G .G T .IX S T O P -(2 .0 # WAVEl 11.AND.( X G .LE .< XSTOP-WAVE!) I 

2E N S «£N S *(O .5 -(0 .5 *S IN (t 3 . 14159/WAVE I * ( XG-(XSTUP-<1 .5 *W A V E IIII)»
I F ( { XG.GE.IXSTRT+WAVEI1 . AND.!XG.L E*IX5TRT+I2.0*WAVE)I))

2ENS«=ENS* (G. 5 * (0 .5 *S IN (  ( 3.14159/wAVE)*(XG-(XSTRT*(1.5*WAVE 111)11 
ESCWS“£SCWS+ENS
1F(RS(XN(KI I .L E .0 .0  ). GC TO 19 *
ESCD«-ESCD4ENS

19 CONTINUE •
IF !  IN1NIN.EQ.0) WRITEI6*3149I 
I H  ININ1N.EQ.0I GO TO 23 *
ABESCDsCAOS(ESCbl 
IFIABESCD.LT. 1 .0  E -05 ) GO TO 58 
ANESCD=57.2957B*ATAN2IAIHAG(ESCD)*REAL(ESCD)I 

58 CONTINUE
IFIABESCD .L T .  l.OE-051 ANESCO«=0.0 
ESMAGS-CABSIESCHSI
E SANGS<= AT AN2 ( AIM AGIESCWSI * REAL (ES CMS) I *  1 80 .0 /3  .1415927  

3149 FORMAT( •  'NO SCATTERED E FIELD WITH SHADOWING*1 
IF I1 N IN IN .N E .0 )  WRITE(6*776I ESMAGS,ESANGS 

T76 FORMAT!* * * * MAG OF SCATT. E FIELD WITH SHADOWING«*» E15.B,'PHASOR 
2ANGLE=' *E 1 5 .8 1 

IF (  IM N 1 N .N E .0 ) WRITE(6*2118l ABESCD, ANESCD 
2118 FORMAT!* SCAT FIELD WITH SHAD. CCNCAVE DOWN ONLY**',E15.8,

2* PHASOR ANGLEa',E15.81 
EWSIIJ)=ESMAGS 
EWCS(IJ)“ ABESCD 
AW S(IJIsESANGS 
AMCSIIJI*ANESCO 
GO TO 23 

372 WRITE (8 *3152 ) THID*THSD
3152 FORMAT( '  NO SPECULAR POINTS FOR TH IO » '* E 1 5 .8 , • AND THSD®* *E15.8 )  
23 WRITEI6, 7791 

WRITE(6*773) •
779 FORMAT(1H I

J 7  CONTINUE .......

C FDR THE PLOTS '
DO 536 IK0-1,NANI . .
INDMKO-l 
THSD“ AOS(IKOI 
Y(1l«ESNS(IKOI 

• 536 CALL PLOT(THS0,Y»l*INO*5 0 .0 *0 .0 1  
DO 337 IKO*l*NANl 
INDsJKO-1 
THSD-AOSIIKQ)
Yll)sEWS(IKO).

537; CALL PLCT(THS0,Y,1,IND,5 0 .0 * 0 .0 )
00 538 IK0«1,NANI 
IND-1K0-1 • •
THSO»AUS(IKO)
Y( 1)*ECDNS(1K0I

S38 CALL PLOT(THSD,Y,I,INO,5 0 .0 ,0 .0 1  
DO. 539 IK0-1*NANI

* IND-IKO-1 . * .
THSD* AOS ( IKOI
Y ( 1 I“ EWCS((KOI



539 CALL PLOTCTH5D,Y»1 , IN D ,5 0 .0 ,0 .0 )
00 936 KKRL«l,NANI ..
ANG0i.=FLOATIKKRU/2.0 
IH E S N S tK K R H .LE .0 .0001 ) GO TO 936 
DONS*-20 .0*ALOGIO1 ESNSIKKRL I I 
WRITE(6 ,937) DONS*ANGOS 

937 FORMAT ( '  UBNS»* ,6 1 5 .8 ,»  ANGOS*1 ,E 1 5 .8 ) 
936 CONTINUE

00736 KKRL*1,NANI
ANG0S= FLOAT(KKRL1 /2 .0
IF (  HHSfKKRL).LE.0 .0 6 01 ) GO TO 736 '

* OBS=20.0*ALOG10«EWSIKKRL))
H R ITE I6 ,737) CBS,ANGOS 

737 FORMAT 11 UBS*1,E 1 5 .8 , • ANGOS**,E15.8I 
736 CONTINUE 

STOP 
END

FUNCTION RSIXI
COMMON C A, CB « CKA,CKB, PHA, PHD, CC,CKC»PHC ....................

C THIS GIVES THE RADIUS OF CURVATURE AT X
■ HP»ICA*CKA*COSHCKA*X)+PHAH+ICB*CK«*COSICCKB«XI+PHBH 

2MCC*CKC*C0SUCKC*XI+PHC) I 
HPP«-<(CA*CKA#CKA*SINC(CKA*X)+PHA))+ (CB*CKB*CKB*SINC CCKB+XUPHBl I 

2+(CC*CKC*CKC*SIN(CCKC*XI + PHCHI .
R S *< < l.0 *< H P *H P n ** l.5 )/C -H P P >
RETURN '

. . . . . .  . . _ £ N 0 . . . ,  -  • • •  • •  ' *  '

FUNCTION THIXI •
COMMON CA,CB»CKA»CKB,PHA, PHB,CC,CKC,PhC
TH«ATAN2((CA*CKA*C0St(CKA#X)FPHA)) ♦ C CB*CKB*COS ( ICKB*XMPHBI I 

2"MCC*CKC*CaS(CCKC*X)+PHC) 1 ,1 .0 )
C THIS FUNCTION GIVES THE ANGLE BET. THE TANGENT TO H(X) AND THE 
C HORIZONTAL

RETURN .
END . ‘ • • • • •

FUNCTION H U ) .
COMMON CA,C&,CKA»CKB,PHA,PHB,CC,CKC,PHC 

■' H«ICA*SIN( ICKA+X ) +PHAI )+(CB*S INKCKB+X) +PHBI) *CC*SIN( (CKQ*XI+PHCI 
RETURN 
END



91

DIMENSION YIIO)»ESSS(360I 
. C THIS IS THE TM CASE .

C “ "TH IS  PROGRAM USES PHYSICAL OPTICS TO CALCULATE THE BACKSCATTERING
• C FROM A SEA SURFACE BY DIVIDING SURFACE INTO LIT ANO UNLIT REGIONS

C IN THE LIT REGIONS THE SURFACE CURRENT IN 2NXH
C GAUSSIAN INTEGRATION USED
C   FOR THIS PROGRAM TO GIVE .USEFUL RESULTS THE SURFACE MUST HAVE
C RADII OF CURVATURE NO LESS THAN 1*HE
C ------- NSP IS THE 7JUM8ER OF SHADOW POINTS'
C • SURFACE IS DESCRIBED BY AONE*SIN(CCNE*X+PONE) ♦ATWO*SINICTWO*X
C "  ♦PTWO)*ATRE*SIN<CTRE*X+PTRE)
C SURFACE UNDER CONSIDERATION LIES BETWEEN ALEP AND REP

” C ' 'SN IS THE STEP SIZE TAKEN TO DETERMINE SHADOWING
■ C IT  MUST BE SMALLER THAN ANY SURFACE FEATURES AND MUST ALSO
“ C--------ALLCW THE LOCATIONOF THE END POINTS OF INTEGRATION WITHIN

C A SMALL FRACTION OF A WAVELENGTH
* C NANI IS THE NUMBER OF ANGLES I SCATTERING) TO BE. EXAMINED

C MAKE D1MENSICNS OF ESSS * SCANG.EFPA SMALL AS POSSIBLE TO AVOID
" C  V LAGE *  OF CAROS RETURNED 

C NANI SHOULD BE THE DIMENSION OF gSSS,SCANG,EFPA
------------ NAMELlST/RON/ABfANGtDTHS

DIMENSION SCANGI360) ,EFPA(360) ■ .
  COMPLEX S.BINT - .
■ C SCATTER SHADOWING HAS NOT BEEN ACCOUNTED FOR
 ' COMMON /DOG/AONEtCONE«PONE»ATKOfCThO«PTWO,ATRE,CTREtPTRE

* COMMON /HOG/  G,THI,THS,WE 
„  COMMON/PIG/ SECTOR,DX,REP,SECD10

COMMON/GSNN/GW1, GW2, CW3, GW4, GW5, GUI, GU2, GU3, GU4, GU5 
. . .. .  WE-25.0

C WE IS THE ELECTRICAL WAVELENGTH
.............  G -2 .0 * 3 . 1415927/WE

SRTWE-SQRTIHEI
  CX-WE/I5.0 •

A0NE-50.0
  CONE-2.0 *3 .1415 92 7 /800 .0

PONE-3.14159/2.0
  ATMO-O.O

CTfcO-O.O
 "••■;* pfwO-O.O ’ ■  .............. —...........    • ..........................

ATRE-0.0
--------------CTRE-0.0 ..............................................     "•

PTRE-C.O
 “' ‘ NANI-360 ......  ..............................

* SECT0R-WE/2.0
------------ SECDI0-SECT0R/10.0 ............. ...............

C CONSTANTS FOR GAUSSIAN INTEGRATION 1
GW1-0.2369268
GW2-0.47662867 ’
GW3-0.568B89
CW4-GW2

 * GW5-GW1   '.... "■.................................................
GUI— C. 9061798 
GU2— 0.53B46931
GU3-0.0 * ,
CU4— CU2 '
GUS— GUI ■ ;

C   THE ANGLE OF INCIDENCE SHOULD NOT BE GREATER THAN 90 DEG
T H I-6 0 .0 *3 .1 415927 /180 .0  

C IF THE INCIDENCE ANGLE IS WITHIN TEN OEGREES OF 90 NO SHADOWING'
• C TAKEN INTO ACCOUNT ■ . ' "•

IF tA B S IT H I- l .5 7 0 7 I .L T .0 .1 7 5 )  GO TO 563 
TANTHI-TANITHII 
OTHI-1 8 0 .0 * T H l /3 .1415927 
WRfTE(6,1071I.DTHI 

■ 1071 FORMAT I * • , •  ANG OF INC. FROM POS X AXIS > ' ,E 1 S .6 I  .



REP»200.0 .
AL£P*-REP
SN-WE/10.0
nsp- 1  ' '*■. ' •..........  . :

. DIMENSION SX(LOOO) *
IFIDHIREPI.GT.TANTHII GOTO 106 

• SX(NSPI«REP 
GO TO 105 

106 SLOPE*TANTHl
B*'HI REP I-1  SLCPE*REPI 
X"REP 

109 X*X**SN
IPCfSLOPE#X)+B.GT*H(X)I GO TO 109 
IPIX.LE.ALEPI GO TO 1000 
S X(N SP)*X-($N /2 .0 )

105 CONTINUE
C THIS ABOVE TAKES CARE OF THE FIRST RIGHTENDPOINT 

15 X»SX{ASP) . .
22 X-X-SN .

. XN-X-SN ■
IFCI DH(XI*LT*TANTHlI*AND*( DH(XN).GT.TANTHII) GO TO 53 
IFIX.GT.ALEP1 GO TO 22 
CO TO 92 

53 NSP»NSP*1 
' SX(NSP)*XN 

SLOPE»TANTHl
B*HISX(^SPlI-(SLOPE*SXlNSP)I 
X-SXINSPI-SN 

29 X-X-SN
IF(iSLOPE*XMB.LT.HCXI) GO TO 39 
IFIX.GT.ALEPI GO TO 29
GO TO 92‘ ‘ ..................

39 NSP»NSPM
 SXtNSPt*X-(SN/2.0> •

GO TO 15 . ........
92 NSP-NSPM

SX(NSP)BALEP 
GO TO 564 

563 SX(1I>HEP 
SX(2I"ALEP 
NSP-2 

564 CONTINUE 
C LAST VALUE IN SXWI IS ALEP

' WRITE (6*1011 (K*SX(KI|K»ltNSP)
101 FORMATI• • » , S X l » . l 4 , ' ) « ' t E l 5 . 8 >

DO 317 JNX«1,NANI 
THS«FLOAT(JNX)*l0.6726646 E-02J 
OTHS-1BO.OMHS/3. 1415927 
SCANGIJNXI-DTHS

  S-CHPLXIO.0 ,0 .0 )
KKN-1.

•'••■'10' CONTINUE  ■'...........
ALCW-SXIKKNUI

* ‘ AUPP-SXCKKNI
S*S+BINT(ALOW*AUPPI 
KKA*»KKN*'2 i •
IF I IKKN.LT.NSPI.AND.CIKKN*11*LT *NSP11 GO TO 10 

C TO CCNVERT TO TRUE SCATTEREO E FIELD FOR EINC OF UNITV MAG,
S*CNPLXC-0*70711.-0#7071 II♦S/SRTHE

* .... AB-CABSISI
ESSSIJNXI*AB

' * ANG«160.0*ATAN2IAIMAG(SltREAL|Sl1 /3 .1415927  
EFPAIJNXl*ANG 

317 CONTINUE
pO 531 JK-IiNANI
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  "fc-ESSStJKI
. DB*20.0PALOG10(E)

A-FFPAIJKI
AS*$CANG(JK)

531 WRITE < 6 ,5 3 2 1 AS.E.A.DB  
532 FORMATC1 *»* SCAT ANG FROM HORU®' * £ 1 5 .8 . *  HAG OF E FIELD"**

2 E 1 5 .8 , '  PHASE ANG»«.E l5 .8t* D B * ' .E 1 5 .8 )
DO 535 1KE"1.NANI 
IND“ IKE“ 1
THSD-FLOATIIKEl/2.00

 VCIJb ESSSCIKEI
535 CALL PLOT (TH SDtYtltINDt50 .O tO .01

GO TO 1002 . . .
1000 WRITE(6.1592)
1592 FORMATt*SURFACE IS NOT, ILLUMINATEO*)
1002 CONTINUE .

  STOP ' '
END . '

21   . .

RETURN
END . . .  . . .. . .

. . .  ► « i ‘ i •

FUNCTION DHlX I * * * ‘ .......
COMMON /DCG/AONE, CONE tPONE.ATWO,CThO. PTWO.ATREtCTRE.PTRE 

”  OHBAONE*CONE*COS(CONE*X*PONE)+ATWO*CTWO*COS(CTWO*X*PTWOl 
2 ♦ATRE*CTRE*COS(CTRE*X+PTRE)

• >" RETURN
END „ .

FUNCTION GINTIXX.YYI ■
C XX IS LOWER LIM IT OF INTEGRATION.YY IS UPPER LIMIT
C"........PHYSICAL OPTICS RADIATION INTEGRAL WITH PLANE WAVE INCIDENT
C TM CASE

COMPLEX StBINT 
COMPLEX GASS5
COMMON /HOG/ G. TH11THStWE
COMHON/PIG/ SECTOR.DXtREPiSECD10 *

C BREAF INTEGRAL FROM XX TO YY INTO SMALLER SEGMENTS'OF LENGTH
C SECTOR AND INTEGRATE OVER EACH SEGMENT USING GAUSSIAN INTEGRATION
 S-CKPLXCO.0 .0 .0 1

’ LDS-INTI(YY-XXf/SECTOR)
IF(LDS.EQ.O) GO TO 10 
DO 100 INJ*1.LDS
UL«j(x*lFLOAT! INJI*SECTOR).......................................................
ALL»XXf (FLOAT (INJ-1)*SECT0R )•

100 Sa S4GASS5(ALL.UL)
C NOW TO GET LAST FRACTION OF SEGMENT LEFT OVER FROM SURFACE SEGMENTATION

 S"S*GASS5(XX+(FL0AT(LDS)*SECT0R).YY)
GO TO 50

10 S«GASS5IXX.YYI '...................
SO CONTINUE .

 ‘ BINT-S / ........  r  v -
' ■ ■■RETURN - ■

END'- '    . .. ... . ...

COMmJ W d OG/AONE,CONE.PONE.ATWO.CTWO.PTWO.ATRE.CTRE.PTRE 
H«AONE*SIN(CONE*X+PONE)'t,ATWO*SIN(CTWO*X*PTWOH-ATRE<‘SIN(CIRE*X*.pTRE



FUNCTION GASS5 CXL*XUI ‘
COMPLEX GASS5.FTBI ........ .........................

C  FIFTH ORDER CAUSSIN INTEGRATION
C XL IS LOWER LIMIT,XU IS UPPER LIMIT
C XU-XL IS  LESS THAN OR EQUAL TO SECTOR

COMH0N/GSNN/CWl.»GW2,GH3,GW4,GW5,GUl,GU2»GU3,GU*,GU5 
'  DVDFEP«IXU-XL»/2.0

DVSMEP»(XU«-XLI/2.0 ....... ...........
  ... XU5,6U5*OVOFEP+OVSMEP

• XU4»GU**DV0FEP+0VSM6P"; .
XU3«GU3*DVDFEP+DVSMEP .
XU2"GU2+DVDFEP*OVSMEP ■
)IU1«GU1*DVDFEP+DVSMEP
GAS$5*DVDFGP*IGW1*FTBU XUll+GW2*FTBIIXU2)+GW3*FTBIIXU3I

  2 4GWA*FTBIIXU<H+GH5*FTBI(XU5)I
RETURN . . .

  END

FUNCTION FTBKXI ............
COKPLEX FTB1 

C ,THIS IS THE FUNCTION TO BE INTEGRATED
C THIS IS FOR THE TM CASE

COHMON/HOG/G «THI«THS«UE.................................................................. .........
COfMON/PIG/ SECTOR,OXtREPfSECOlO *
GCC=G*(COS(THI) fCOS ITHS11 * ................
GSS»G*(SIN(THII + S IN(THSn

  RCK>REP-(2.0*WEI ------
F T B I«S IN (T H I-A T A N C D H IX n i*S Q R T (1 .0+ tC H (X l**2 ||*

2 CEXPICMPLX(0.0,UX*GCCK(HIXI«GSS))I1  
C THE FOLLOWING ACCOUNTS FOR TAPERING

* ABSX»ABS(X)
IF(ABSX-RCK) 1500,1500,2000  

2000 IFCX.LE.IW E-REPII FTBIbCMPLXIO.O,0.01 
IF tX .G E .(R EP-W E )) FTBI«CMPLXIO.O,0.0 1 
IF ((X .G T .(U E -R E P n .A N D .(X .L E .U 2 ,0 *w e i~ R E P )I)

2 FTBI“ F T B I* (0 « 5 * (0 .5 *S IN ( (G /2 .0 1 * ( X- ( ( 1 . 5+WEI-REP)) ) 11 
IFC(X .LT.(REP-W En.AND.(X .GT.IREP-(2.0*W E) I ) )

2 FTBI“ F T B I* C 0 .5 - (0 .5 * S IN ( (G /2 .0 ) * (X - IR E P - I1* 5*WE1)11)1  
1500 CONTINUE 

RETURN
• END ,     • ■■■'
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C THIS IS THE TE CASE
C . THIS PROGRAM USES PHYSICAL OPTICS TO CALCULATE THE OACKSCATTERING 
C FROM A SEA SURFACE BY DIVIDING SURFACE INTO LIT AND UNLIT REGIONS
C IN THE L IT  REGIONS THE SURFACE CURRENT IN 2NXH
C GAUSSIAN INTEGRATION USED
C ' FOR THIS PROGRAM TO GIVE USEFUL RESULTS THE SURFACE MUST HAVE 
C RADII OF CURVATURE NO LESS THAN 1*WE
C NSP IS  THE NUMBER OF SHADOW POINTS .
C SURFACE IS DESCRIBED BY AONE*SIN(CONE*X*PONEI *ATWO*5IN(CTWQ*X
C . ♦PTNOI*ATRE*SlNICTRE*XfPTREI
C SURFACE UNDER CONSIDERATION LIES BETWEEN ALEP AND REP
C SN IS THE STEP SIZE TAKEN TO DETERMINE SHADOWING
C IT  MUST GE SMALLER THAN ANY SURFACE FEATURES AND MUST ALSO
C ALLOW THE LOCATIONOF THE END POINTS OF INTEGRATION WITHIN
C A SMALL FRACTION OF A WAVELENGTH
C NANI IS  THE NUMBER OF ANGLES (SCATTERING) TO BE EXAMINED
C MAKE DIMENSIONS OF ESSS . SCANG.EFPA SMALL AS POSSIBLE TO AVOID .
C LAGE I  OF CARDS RETURNED
t  NANI SHOULD BE THE DIMENSION OF ESSS,SCANG.EFPA

DIMENSION Y 1101«ESSS(360)
NAMELIST/RON/AB, ANGiOTHS 
DIMENSION SCANGI3 6 0 ) .EFPAI360)
COMPLEX S.BINT .

C SCATTER SHADOWING HAS NOT BEEN ACCOUNTED FOR
COMMON /DOG/AONE.CONE•PONE. ATWO»CTWO, PTWO »ATRE .C TRE»PTRE 
COMMON /HOG/ G.THl.THS.WE 
COMMON/PIG/ SECTOR.DX.REP.SECD10
COMMON/GSNN/GW1 *GW2,GW3t GW4.GW5* GUl.GU2.GU3.GU4.GU5 
HE*25.0

C HE IS THE ELECTRICAL WAVELENGTH
G *2. 0 * 3 . 1415927/WE 
SRTWE-SQRTIUE)
DX-WE/15.0
AONE-40.0 . ‘.................... ......
CONE-2. 0 *3 .  1415927/200.0  "
PONE-O.O
AT HO * 0 .0

  C TWO-0 .0  ...    .. -.................... .•
f . . PTWO-O.O

ATRE-0.0 ■ ......... - •......... ..............  .........
CTRE-O.O

• PTRE-O.O .......... .............  ...................
N A N I - 3 6 0

-SECTOR*WE/2.0 
SEC010"SECTOR/10.0  

C CONStANTS FOR GAUSStAN INTEGRATION 
GW1-0.2369268 
6X2*0.47862867  
GH3 *0 .568889  

.. CH4-GW2 
GW5-GH1
GUI— 0.9061798 . •' •
GU2—  0. 53846931
GU3«0.0 • • •

" GU4— GU2
• GU5— GUI ■

C ‘ THE ANGLE OF INCIDENCE SHOULD NOT BE GREATER THAN 90 OEG 
T H I - 6 0 .0 *3 .1415927 /180 .0  .

C I F  THE INCIDENCE ANGLE IS  WITHIN TEN DEGREES OF 90 NO SHADDOWING
C TAKEN INTO ACCOUNT

IF lA B S IT H I-1 .5 7 0 7 ) .LT .O .1751 GO TO 563 
- TANTHI*TAN(TH11 

D T H l-1 8 0 .0 *T H I /3 .1415927 
* NR1IE(6 .1071) 0TH1

' 1071 FORMAT I • •• • ANG OF INC FROM POS X AXIS - S E 1 5 . 8 I



REP-200.0  
ALEP— REP
SN-WE/IO.O * .................. .......................
NSP-l
DIMENSION SX(10001 .....................
IFIDHIREPl.GT.TANTHI) GO TO 106 
SX1NSP1-REP 
GO TO 105

106 SLOPE-TANTHI . . .  .
B-H(REPI-(SL6PE*R£Pt 
X-REP 

109 X-X-SN
1F| I SLDPE*Xl *B.GT.H( X I1 GO TO 109 
1FIX.LE.ALEPI GO TO 1000 
S X IN S P I-X -ISN /2 .0 I  

105 CONTINUE
C THIS A8QVE TAKES CARE OF THE FIRST RIGHTENOPOINT 

15 X-SXINSP)
22 X-X-SN 

XN-X-SN
• IF((O H(X)*LT.TANTHI1 . AND.(DHIXNI*GT.TANTHI11 GO TO 53 

IFIX.GT.ALEP) GO TO 22
GO TO 92 . ........... .........................

53 NSP-NSP+l 
SXINSPl-XN 
SLOPE-TANTHI
B-H(SXINSPI)- ISL0PE6SXINSPII 
X-SXINSP1-SN *

29 X-X-SN
IF t(SLO PE*X l+B .LT .H (X I) GO TO 39 
IF t  X.GT.ALEPI GO TO 29 
GO TO 92 

... 39 NSP-NSP+l
SXINSP) - X - l  SN/2.0)
GO TO 15 .........................................

92 NSP-NSP+1
SX< NSPI-ALEP 
GO TD 564

■ 563 SX I I I -R E P  ....
SXI2I-ALEP
NSP-2  ■■■ *

564 CONTINUE
C SURFACE IS NOW SEPERATEO INTO L IT  AND UNLIT 20NES
C LAST VALUE IN S X IJ I IS ALEP

WRITE 16,1011 (K ,SX IK),K -l.NSP» .
101 FORMAT! • V 'S X I  • , 1 4 , * I - *  *E15 .81 

C THE FOLLOWING FINDS THE SCATTERED FIELDS OUE TO THE L IT  ZONES
DO 317 JNX-1,NANI 
THS-FLOAHJNX 1*10.8726666 E-021 
DTHS-180iO*THS/3.1415927.
SCANGIJNXI-DTHS 
S-CMPLXIO.0,0.01

. KKN-1 .. ■ ........
10 CONTINUE

ALOW-SXIKKN+1)
AUPP-SXIKKNI 

. S-S*B1NT(AL0W,AUPP)
. . KKN-KKN+2

. IF  ((KKN.LT. NSPI .AND. ( (KKN+l I .LT.NSP 11 GO TO 10
t :  TO CONVERT TO TRUE SCATTERED H FIELD FOR HINC OF UNITY HAG

S -S *C H P LX (0 .T07tl ,0.70711 l/SRTWE .
* ; a b - c a b s ( S )

DB-2C.O*ALOG10(ABI
..............ESSSIJNXl-AB

ANG-180.0*ATAN2| AIMAGISI*REALIS11/3 .1415927  
EFPA1JNX l-ANG. •
WRITE(6 *1431 OTHS*Aft*ANG*OB
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143 FORMAT) '  SCATTERING ANG'.E15.S,* IIAG-* .E 1 5 .8 ,*  PHASE ANGLE** ,
2 E 1 5 .8 ,*  DB«*.E15.8)

317 CONTINUE ■ ■ ' *
Ob 531 JK-l.NANI  
E-ESSSIJK)
A-EFPA!JKI 
AS*SCANG(JKI 

531 WRITE (6 .5 3 2 )  AS.E.A
532 FORMAT!* • * *  SCAT ANG FROM HORIZ-* .E 15 .B ,*  HAG OF H F IELD**.

2 E 1 5 .8 ,*  PHASE ANG**.£15 .81  . . .
DO 535 IKE*1.NANI 

‘ IN D - IK E - I  ■■ .......
THSD-FL0ATUKEI/2.00
V I 1 1*ESSS!IKE) ......... ....................

535 CALL PLOT (TH SD .Y ,1 iIN D .5 0 .0 f0 .0 1  
GO TO 1002 

1000 WRITEI6,15921
1592 FORMAT!1SURFACE IS NOT ILLUHINATED*1 
1002 CONTINUE

■ ‘.........STOP .....................   - • •• ‘   ’
END

21
RETURN '  . . .
END

2 >ATRE*CTRE*COS (CTRE*X*PTREI
RETURN
END• » - *

■ *

FUNCTION BINT!XX.YYI 
C XX. IS LOWER LIMIT OF INTEGRATIQNtYV IS UPPER LIMIT  
C PHYSICAL OPTICS RADIATION INTEGRAL WITH PLANE WAVE INCIDENT 
C ' TH CASE

"COMPLEX S.BINT
- COMPLEX GASSS •

COMMON /HOG/ GtTHItTHSfWE 
 COMMON/pIG/ SECTOR.OXi REP.SECD10
C BREAK INTEGRAL FROM XX TO YY INTO SMALLER SEGMENTS OF LENGTH 
C SECTOR AND INTEGRATE OVER EACH SEGMENT USING GAUSSIAN INTEGRATION 

S-CHPLX!0 .0 ,0 .0 1
LD5*lNT!lYY-XXI/SECTORI ...............
IFILDS.EQ.O) GO TO 10 

. DO 100 INJ-l.LOS
UL*XX*(FLOATIINJJ +SECTORI 
ALL-XXt(FLOAT!INJ-1)*SECT0RI 

100 S-S+GA SS5!ALL «ULI ‘
S-S+GASS5IXX*I FLOATILOS I ‘ SECTOR». YYI
GO TO 50 : v.-■

10 S*GASS5! XX.YYI ' . —  •
50 CONTINUE

b i n t - s /
RETURN

'■.■"'END : .. ;v . ■.■■■■■



FUNCTION 6ASS5 IXL.XU1
  COMPLEX GASS5.FTBI

C FIFTH ORDER GAUSSIN INTEGRATION
C XL IS LOWER LIMIT»XU IS UPPER L IM IT
C XU-XL IS  LESS THAN OR EQUAL TO SECTOR

. COMMON/GSNN/GWlt GW2.GW3.GWA.GW5.GUl.GU2.GU3.GU4.GU5 
DVDFEP*»I XU-XLI /2»0
DVSMEP»*XU«-XLI/2.0 .................  ...............
XU5»GU5*DVDFEP*DVSHEP 
XUA»GU4*DVDFEP«-DVSMEP 
XU 3» GU3 *DVD FE P *D V SHE P 
XU2*GU2*0V0FEP+07SMEP 

• XUl«GUl*DVOFEP*OVSHEP
GASS5°DV0FEP*(GW 1*FT BI tX U ll*G W 2*FTB I( XU21+GW3*F TBIC XU3I ' 

2 +G W 4*FrB I(XU*I+G W 5*FTBIIXU 5II.
‘ . RETURN

END .

FUNCTION FTBI IX I 
, COMPLEX FTBI

C THIS IS THE FUNCTION TO BE INTEGRATED
C THIS IS  FOR THE TM CASE.................................... ......................................

COMMON/HOG/G,THIi THSrHE 
COMMON/PIG/ SECTOR«DX«REP. SECDIO 

’ GCC»G*(C05( THI1+COSITHSII
GSS=G *lSINITHII+SIN1THSII 
RCK«REP-I2.0*WEI
FTBI*5IN(THS-ATAN(DH(XI) 1*SQRTC I  •OMDHCX 1**211*

2 CEXPICKPLXIO.O. H X *G C C I* (H (X l*G S S )lll 
C THE FOLLOWING ACCOUNTS FOR TAPPER ING

ABSX"ABSIXI
IFCABSX-RCKI 1500.1500,2000 

2000 IF IX .LE .IW E -R E P II FTBI-CMPLXIO.O.O.OI
IFIX.GE.IREP-W EI I FTB I»C M PLX(0.(l.0 .0) 
IF K X .G T .IW E -R E P ll.A N O .tX . lE . I f ;  .0*W6 l-REP 11 1 

2 FTBI“ F T 8 l* (0 «  5*1 0« 5 *$ IN ( (G /2»0 f * I X - I  I I  •5*WE1-REPI I D )
- IF t (X * L T . IREP-WEI). AND. ( X.GT. ( REP-12 . 0*WE) 111 
2 F T B I« F T B I* I0 *5 - t0 .5 *S IN t IG /2 » 0 l* IX - (R E P -C 1 .5*WE111111 . 

1500 CONTINUE
RETURN .
END
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C THIS IS A METHOD OF MOMENTS SOLUTION
C TM POLARIZATION SYMMETRIC MATRIX
C NSUB SEGMENTS HAVE N MIDPOINTS
C NSUOIS THE SUBSCRIPT WHICH COUNTS THE END POINTS
C N IS  THE SUBSCRIPT WHICH COUNTS THE MIDPOINTS 
C WATCH MAX SLOPE SO THAT THE X INCREMENTS ARE SMALL ENOUGH
C THE- REGION UNPER CONSIDERATION LIES BETWEEN -EP AND EP 

DIMENSION Y IIO I.C M C I360 I 
COMPLEX SNN.SST •
COMPLEX FSS
DOUBLE PRECISION DALiDDX,DDC2|DDCfDALCtDR 

. COMPLEX F1NCI30 I tSTS
COMMON /P IG /  AONEtCONEtPCNEtATWOtCTWCfPTWOfN 

-  COMPLEX AHAN20
COMPLEX F I3 0 0 ItS IA 5 l5 0 > » S S ( T 

. - COMPLEX FIN
DIMENSION X13001

  DIMENSION XMI0I300)
COMPLEX STO 

C WE IS THE ELECTRICAL WAVELENGTH
WE«25.G
G »6.2831853 /WE
SIS*SQRTIWEI*CMPLX(1.Ot 1 *3 »*1+0. 707 IG 7)/3 .'IA 15927
DC*NE/10.0
DX=t)C/1006.0 '
DC2-OC/2 »0 
EP«200.Q 
A P I*3 .1915927 

C THE FCLLCWIKG CONSTANTS DEFINE THE SURFACE
A0NE-25.0 ;
CCNS*»2.0 *3 .  1415927/200.0

. PONEcG.O   .
ATNO»C.O 
CTK0*=C .0  

" PTHO»0.0 
CALL SCLOKI

C THE FOLLOWING BREAKS THE SURFACE INTO SEGMENTS DC CENTIMETERS LONG
C BY LINE INTEGRATION USING STEPS OF LENGTH DX FOR THF INTEGRATION

NSUE-1 
. XfNSUB)=-EP 

DDC«DBLE(DC)
... DUX*CBLE(DX) .,

DDC2*DBLEIDC2I ■ 
l0O2 DALnO.OOD OD 

-DR*CPLE(X(NSUB))
1001 DR*DR+DDX -- >

R-SNGLIOR)
DALQ»OAL
CALcCAL«(COX*OStiRT(t.00  00 ♦ ( ( CSLEIOHIR) 11 * * 2 ) ) )  
tF t(lO O C 2~U AL).L£.C .O O  CO) . AND*. ( IOOC2-CALO). GE.O.OD 001)

2 XMIDINSUB)»R 
IF  I OAL.LT .CCOGO TO 1001 

. NSUB»NSUO+l
XINSU8)»R . ' ..■.I.
AL«SNGL(CAL) V .

' WRITE 16 ,352) AL'NSUB
•J52 FORMAT!* • # *AL«* »E1 5 .8 **  NSUB*1»14)

, IF ^ IR .L T .E P I GO TO 1002 
T lM E -R C LC K ltl.C )
WRITE 16 ,3276  I t im e , ■ ' ‘ . J - . / ’

3276 FORMATI* » , • TIME='»FI0.6,»SECONDS*I 
M-NSUB-I ■ ■
DO 1004 u* I t  NSUB 
IF  IJ.Eq.NSUB) XMlDCNSUB)*0.0 

■ ■■■ XXX-XIJI 
XMDVXMIOIJ)



1004 WRITE (6*1003 ) XXX,XMD,J
1003 FORMAT (6H X tJ )» ,E 1 5 .8 ,9 H  X M lM J)« ,E 1 5 .8 ,3H  J = * I3 l 

C THIS ENOS THE SURFACE SUBDIVISION
MtO*N- I
NN3»N-3 * •

C p i  HENSIDN OF S IS N IN + ll/2  ...................
C DIMENSION OF FINC,F IS N

OP I F.=0* 7853982*
E E «2 .71828 
GA»G*0C/(2.0*EE)

C SNN IS THE OIAGCNAL ELEMENT OF THE INPUT MATRIX 
SNN*AHAN20(GA)
WRITE (6 ,4 0 0 ) SNN 

400 FORMAT ( 5H SNN-.2E15.8)
DO 100 NJC1,N
(WP0®NJ+1 . . .
SUSUBINJ,NJJ l=SNN 

C THIS FINDS ELEMENTS ON THE DIAGONAL
IF  (NJPO.GT.NI GO TO 100 
00 100 NA'NJpO.N 

C THIS FINDS OFF DIAGONAL ELEMENTS
XM«XMID(NJ)

, XN»XMID(NA)
  RHOESQRT(( IXN -XM )#*2)+I CHiXN) — HI XM))4 *2 ))

RHGtRHD«G
S( ISUBINJ.NA) )*=AHAN20(RHG)

100 CONTINUE
C THIS CCNPLETES THE F ILL IN  OF THE MATRU

C THIS BEGINS THE C0NVER5ICN TO UPPER TRIANGULAR MATRIX
S(1 1s CSQKT(SClt)
00 1 K*2,N

1 S (K )s S ( K ) /S ( l )
00 2 I»2 ,N

... ... IM 0« I-1  ........................
IP0=1*1

.. T*CMPLXI0 .6 ,6 *0 1 ....................................................... .................... ..
00 3 L * i,W O
L I* ( L * H ) “ ( ( t I L - i ) * L I / 2 ) * N - l )

3 T=T♦ ( SI L I ) * * 2 )
( l - l l * I ) / 2 l + N - I  )

S tII)*C S Q R T (S (1 It-T I
1FUP0.GT.N1 GOTO 2 •-
00 5 J CIP0,N  
T>CM PLXt0.0,0.0)
DO 6 M«1»1M0
M I« tM * N ) - ( t l tM - l) * M ) /2 ) * N - I I  
fU *(M *» |)- 11 CM*{ M -1 )» / 2 ) )

6 T » T *tS tM J )*S (M I)1
I J « t I * N ) - ( ( 1 1 1 - l ) * i  I /2 M N -J )

5 S tI  J )*(S <  I J ) - T ) / $ U I  I
2 CONTINUE V

C THIS ENDS THE CGNVERSICN TO UPPER TRIANGULAR MATRIX,
WRITE (6 ,1 2 2 2 ) N,WE 

1222 FORH/VTOh M *,!3 ,4 H  W e*,E 15 .8 l 
; T H -60 .0*3 .14159?7/180 .C

TH X X D «l80.0*TH /3.1415927 
WRITE (6 , ’9333) THXXO 

9333 FORMAT!9H INC ANG«,E15.8)
C . TH 1$ THE angle of INCIDENCE FROM THE HORIZONTAL

 STH>S1N(TH)
c t h * c o s ( t H )  ■■

C THIS FINOS THE INCIDENT FIELD ION THE NJTH SEGMENT
DO 455 «J»1,N  : : , .• ■■■■■■
ENJ»FLOAT(NJ)
XM-XMIOIAJI
F(NJI-CEXPtCM PLX(O .O iG *((XM *CTH)«(H(Xt)*STH)I)>
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TAPERED ILLUMINATION ' * * ♦ * * ♦ ♦ * * ♦ * * ♦ *

1F IX M .LE .U H E 41 .C I-E P )) F IN J)*C M PLX !0.3 ,0 .0 )
1F 1X M .C E .|E P -!1 .0 *W E II) F IN J)*C M P LX I0 .3 ,C .0 I 
1FU X M .G T.I (l.O *W E )-£P n .A N D .(X M .L E .((2 .0+ W E )-E P ) I )

2 F I N J I * F I N J ) 4 | G . 5 ' , I 0 * 5 ^ S I N ( ( G / 2 . 0 I * I X M  - I  ( l . 5 *W E )-EP I ) ) )  I 
IF1IXM « G E . ( E P - ! 2 .0 *H £ I  11 .AND • ( XH .L T . CEP-11.0*HE)) ) I

2 F I N J ) » F 1 N J I * ( 0 . 5 - I 0 . 5 * S I N I  1 G / 2 . 0 IM X M  - ! E P - l l . 5 * W E m  ) 1 1 
ASS CONTINUE ' ,

WR!TEI6,2S48J IN J ,F ( N J ), NJ*1«N)
2940 FU PH AT C * INC FIELD F ( I A , ' I * • , 2E1S.8)

C THIS BEGINS THE BACK SUBSTUT1UN 
• F (1 ) * F ( 1 )/S (1 1

00 10 1=2,N .
■ ■ ■ IH O 'I - I    -         r

T*CMPLXIC.0 ,0 .0 )
DO 11 L * l ,  IMC . ..
L i = a * N i - m ( L - n * L i / 2 ) + N - n  

11 T=T*I  SI L I | * F ( L I )
1 1 *1 I A N ) " I ! ( ! I - l ) * I ) / 2 l+ N - 1 1  

10 F I I I M F I I I ' T I / S l l l l  ' '
N N = IN 4 !N + l)} /2
F IN }=F IN I/S (N N J , ..........
NMC*N-1
00 25 1 *1 ,NMO •..................................................................... ..........
K *N -I "
KI»0*K + 1
TaCFVPLX 1 0 . 0 , 0 . 0 )
DO 26 L*KPO,N
K l * C K * N ) - ( ( ( ( K - l ) * K I / 2 I + N - L 1

26 T « T + I S 1 K L ) * F ( L ) ) ..............................................
K ^ * lK * N ) - ( t I ( K - l) * K ) /2 1 + N - K )
F tK I= IF (K )-T I /S (K K I ..................

25 CONTINUE 
C THIS ENOS THE BACK SUBSTITUTIONS 

00 491 K*1,N  
STT*CAOS(FIK)I 
STO*FIK|
AHNN*ATAN2( AIMAG( F ( K 1 ) , REAL( F (K ) ) 1 * 1 8 0 . 0 / 3 . 1 4 1 5 9 2 7

491 WRITE 16,492) K,STD,STT,ANNN
492 FORMAT!* • ,  * F ( • ,1 4 , *  I * * , 2E1 5 .6 ,•  OR * ,'A M P * ',E 1 5 .8 ,« A T  ANGLE*'• 

2 1 :15.8)
DO 317 JNX*1,360  

•TH*0. 872664625E-02 ♦FLOAT!JNX)
• T «CMPLXiC. 0 , 0 . 0 )  ..............

OD 310 1 * 1 ,N 
XN-XMID! 1 1

i 310 T*T+ 1 |F lII*C EXP|C M PLX!O .O tG ^( (XN4C0S1THII+!H! XN I^SIN ITH) H I  1)1 
C THIS CORRECTS T TO TRUE SCATTERED FIELD

. ■: . T-STS4T 
CM-CARSIT)
CMC!JNX)*CM

.. CANG=57,296*AT AN2!A1MAGIT t,REALIT 11 ........
TH0*TH*?7.296 ■. 'V
0 8 *2 0 .0 4  AL0G10 ( CM I

; 317 WRITE 1 6 ,3 1 2 1 CM,CANG,THD,D8 '-'v.
312 FORMAT I18H RELATIVE E F1ELD *,E 15.8 , 7H ANGLE*,E15.8,

2.23H  ANGLE FROM HORIZONTAL*,£ 1 5 .8 ,7H D Q *,E 15.8 |
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00 57ff IKF»1.360 .......
THSD»FL0AT«lKe»/2.0 •
IN O -IK E -I
Y (l)«ChCUK E)

576 CALL PLOTtfHSO.Vii,1ND»50 .0 *0 .0 1  
STOP
ENO . ...   '
FUNCTION HI XI 

C THIS DEFINES THE SURFACE
COMMON /P IG / AONEtCDNEfPONEiATHOi CTWOi PTHOi N 
H=AONE*SIN(CUNE*X+PONE) *-ATWQ*SINICTWO#X+PTWU) '
RETURN
END _ . , .. ....

FUNCTION OH(X)
C OH( X) IS THE OERIV. OF H(X)

COMMON /P IG / ACNEtCONEtPONE.ATWO*CTWO ,PTWO,N 
OH»=AOtlE*CCNE*COS ICON E*X+PQNE I+AT WO *CTV.U*CO SI C TWO*X*PTWO I 
RETURN 
END

• FUNCTION IS U B IJ.K I "  '
COMMON /P IG / AONE.CONE»PONE»ATWD»CTWO«PTWO,N .

C THIS CONVERTS ELEMENTS OF UPPER TRIANGULAR MATRIX TO A LINEAR
IS U 8 * IN * J I - ( 1 1 1 J - I I * J I/21 + N -K I 

C ARRAY COUNTING LEFT TO RIGHI S1ARTING WITH FIRST ROW
RETURN *      .
END
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C THIS IS  A METHOD OF MOMENTS SOLUTION FOR BISTATIC SCATT TM CASE
C GAUSSIAN INTEGRATION IS USED TO CALCULATE THE MATRIX ELEMENTS
C UNIT INCIDENT ELECTRIC F IELD -IS  ASSUMED.OF COURSE THIS IS MODIFIED
C NEAR THE ENDPOINTS OF THE SURFACE BY ILLUMINATION TAPPERING
C NSUA SEGMENTS HAVE N MIDPOINTS
C . NSUB IS THE SUBSCRIPT WHICH COUNTS THE END POINTS
C N IS  THE SUBSCRIPT WHICH COUNTS THE MIDPOINTS
C WATCH MAX SLOPE SO THAT THE X INCREMENTS ARE SMALL ENOUGH
C ‘THE SURFACE UNDER CONSIDERATION LIES BETWEEN -EP AND +EP
C . THE ARRAY X K IJ I CONTAINS THE X COORDINATES OF THE MIDPOINTS OF THE
C SEGMENTS|XM(11 IS THE MIDPOINT OF THE I 'T H  SEGMENT
C THE ARRAY X (J I CONTAINS THE X COORDINATES OF THE ENDPOINTS OF THE
C SURFACE SEGMENTStXU J tX (K - l)  ARE THE LOWER AND UPPER X COORDINATES
C . OF THE ENDPOINTS OF THE I 'T H  SEGMENT
C PHASE REFFERENCE IS AT THE ORIGIN OF.THE COORDINATE SYSTEM

. .. COMPLEX SNNtSST 
COMPLEX S .

 DIMENSION Y IIO I*C M C I360)
\ NAMELIST/D/ WE.EP.THXXD.AONE,CONE,PONE,ATWO.CTWO,PTHa,N

. .. NAMELIST /E /F .X M IO  .
COMPLEX FSS 

. .  COMPLEX STS
COMMON /P IG / AONE.CONE,PONE,ATWO,CTWl)fPTWO*N .

. . . . .  COMPLEX C (2 3 6 .2 3 6 l
COMPLEX F (2 3 6 )«SS. T.CTEST 

C : THE DIMENSIONS OF.C AND F MUST BE COMMENSURATE
C THAT IS  C l L . L I  F IL I

COMPLEX FIN
. COMPLEX HAN2 •

  DIMENSION X I500I
DIMENSION XMI500I 

C THE FOLLOWING CONSTANTS DESCRIBE THE SURFACE
ACNE— 50.0
C0NE*6*28318/800*0  .
P0Ncc3 . 1415927/2*0 
ATWO-O.O 
CTNO-O.O 

. PTH0*0.0
C WE IS THE ELECTRICAL WAVELENGTH

WE«25.0
G®6*2831853 /WE

. ' -i DC*WE/10*0 • .................
DX*DC/1C00«0 

• ■ 0C2«DC/2‘.0  
'EP-200.0

C . T H E  FOLLOWING BREAKS THE SURFACE INTO SEGMENTS DC CENTIMETERS LONG
C BY LINE INTEGRATION USING STEPS OF LENGTH DX FOR THE INTEGRATION
 ..... . NSUDC1

XINSL3)**-EP
1002 AL>0.000 * .............

R-XINSUBJ
1001 R«R*DX ■ ................. .

ALO-AL ■
... AL»AL+tDX*SQRTIi-.0+<DH(R>**2)l) .

IF t< < D C 2 ~ A l).L E .0 .0 ).A N 0 .((0 C 2 -A L t)l .G T .O .O I) XHINSUBI-R 
. . IfCAL.LT.OCIGO TO 1001 

' WRITE 16.3521 AL.NSUB *
352 FORMAT!* S 'A L - ' iE lS . 8 , '  NSUB«* *14)

v NSUB»NSUB+i 
: ... .X IN SU BI-R

IF  Ift.L T .E P ) GO TO 1002 
N«NSVD-l
DO 1004 J-ltN S U B
IF  1J.EQ.NSUBI XMINSUBI-0.0 . •
XXX-X(J) . ‘ ■-
XHO> XMIJ1
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1004 WAITE 16,10031 XXX,XtlD,J
1003 FORMAT (6H X (J» -,E 1 5 .6 ,9 M  XM( J }= , E15. 6 , 3H J » , 13)

C . THIS ENDS THE SURFACE SUBDIVISION
  NM0*N-l ■

NM3<f{-3
C ‘ OIHEflSION OF FINC.F IS  N 

• O PIF«0.7853982 
EE<2*71828 
G A*G *0C/I2.0*EE)

C SHftf IS THE DIAGONAL ELEMENT OF THE INPUT MATRIX
SNN*HAN2IGA)*DC 
WRITE (6 ,4001  SNN 

400 FORMAT I5H SNNs ,2 E 1 5 .8 )
00 100 NJ«1*N 
C(NJ,NJ)*=SNN 

100 CONTINUE •
C CONSTANTS FOR GAUSSIAN INTEGRATION 5 TH .ORDER

 -  GUI— 0 . 9061798
GU 2—0.53846931

■  .......  GU3*0«0 ■ ■■ ■*........................................   . ■ ■ • - .......
GU4—GU2
GU5—GUI ...............................

.

-
GH1<0.2369268

. . . . . . .  GWS«0.2369268 . . .    . -
GW4 0  . 47862867 .

..............GM20 .  47862867
CW3«0.5688888 

  DO 3361 MR»l,N
XMH«XM(f(M
HXMH«=HIXHM)................. ............................
DO 3361 H C *l,N  
IF  (HC.EO.MR) GO TO 3361 

■ EPL-XIMC) .
 ..... EPU°XIMC*1 I ........  .......................

DVDFEP»IEPU-EPL)/2.0 
DVSMEP-IEPU+EPL1 /2 .0  
XU5“ GU5*DV0FEP+DVSMEP 

. . - XU1-GUIADV0FEP+DVSMEP . . .  ..
XU2<GU2<<DVDFEP40VSMEP 

... - XU3<GU3*DVDFEP*DVSHEP
XU4<GU4<<DVUFEP40VSMEP

  C1MR,MCI<DVDFEP<<I
'2fGWl4HAN2(C0SQRTl((XUl-XMMI*<*'2)+( (H (X U 1I-H X M M 1**2)I)*S Q R TI1 .0^ID H I 
2 XU11 * * 2 ) I
2+GM2*HAN2(G*SQRT(((XU2-XMMt**2) + l  (HD.U2 l-H X M M )**? !) )*SQRT(1 .0*1  OHI 

- - 2 XU21 **2 1 )‘
24GW3*HAN2(G4<SQRT( 11 XU3-XMM) * *2  )♦ (  IH |y U 3 l-H X M M l**2 I) l*SQRT 11.0+1 OHI 

. 2  XU3I<<4<2M
2*CW4*HAN2(G*SQRT(C(XU4-XMM)«4'2)+( (H(XU4)-HXMM1**2M )*S Q R T (1 .0 f(D H I 

- 2 XU4)‘* *2 M
24GW5*HAN2tG*SQRT(((XU5-XMM)**2)4( (HC;U5)-HXM M )**2M  ) *SQRTCl.O+IOHI 
2 XUGI<<4<2111 

3361 CONTINUE
THIS COMPLETES THE F IL L IN  OF THE MATRIX .>

‘ NCNSYMMETRIC CRQUT
FIRST COLUMN OK '
TOO GET FIRST ROW
DO 10 J<2,N - T - V y - ' " .a' ,

10 * C ( l . J ) « C ( l * J ) / C ( l , n  
C NOW WORK ON ROW AND COLUMN SET <

DO 11 K<2»N
. kho<k- i  1

KPO-KM



C . .. TO GET 01 AGONAL ELEMENT - r
S-CMPLXIO.0 ,0 .0 )

.■...DO 12 IK «1 ,K M 0  ......................... .......
12 5 “ S4-CC K * IK )*C (IK ,K )

. C<K*K>®C<K,K)-S
C TO GET ELEMENTS IN COLUMN K BELOW ROW K
  IF  (KPO.GT.NI CO TO 17

DO 13 IROW-KPO.N .
S«CMPLX<0.0 ,0 .0 )  - ..........................................................
00 14 JJ«ltKMO 

14 S®S+C (IRO N,JJ)*C (JJ,K)
13 ClIRDW *K)*C(IROW .KI-S

C * TO GET ELEMENTS IN ROW K TO THE RIGHT OF COLUMN K
00 15 ICOL*=KPO,N « . • • ■

  S-CMPLXtO.0 ,0 .0 )  .
DO 16 JR®l,KMO

16 $«S*C(K,JR)*C(JR,1C011
15 C IK . ICOL) = (C C K .IC O L)-S )/C IK .K )
17 CONTINUE 
11 CONTINUE

WRITE (6 .1 2 2 2 ) N.WE 
1222 FORMAT OH N=*I3*4H  WE**E15.8)

T H 1 -3 .1415927*60 .0 /180 .0  
THXXD=THi*180.0 /3 .1415927
WRITE (6 ,9 3 3 3 ) THXXD................................ ..................

9333 FORMAT(9H INC ANG=,E15.8)
C THI IS THE ANGLE OF INCIDENCE MEASURED FROM THE HORIZONTAL
C IE. THE POSITIVE X-AXIS 

- . STHa S IN (TH II
CTHbCGSITHI)

C THIS FINDS THE INCIDENT FIELD ION THE NJTH SEGMENT
DO 455 NJ**I *N 
XGfXMIKJ)
FIN J )»CEXP (CMPLXIO.O*,G* C (XG*CTH)♦ (HIXG) *STH) ) )  I

C
c
C TAPERD ILLUMINATION
cc ~ "... .   •

IF (X G .L E .((W E *1 .0 )-E P )) FCNJ)»CMPLX10.0 ,0 .0 )
- IF (X G .G E .(E P -(1 .0*W E )> ) FINJ)*>CM PIX(0.0 ,0 .0 )

IF (  IXG.GT. ( ( 1 .0*W E)-EP))  .AND.!XG. LI:. ( 12.0*WE )—E P)) )
2 F (N J )® F (N J )*(0 .5  + (0 .5 *S 1 N U G /2 .0 )M X G  -1 1 1 . 5*WE ) -E P )) ) )  I

IP K X G  .G E .(E P -(2 .0 *W E ))).A N D . (XG ,L T . (EP-11.0*W E) ) ) )
2 F IN J )* F (N J )* (0 .5 -1 0 .5 *S IN I |G /2 .0 )* (X G  - IE P -I1 .5 *W E )) 11) I

ABSF«CABS(FINJ))
WR1TEI6.83) NJtABSF 

03 F C R M A T I'IN C  FIELD AT XMI• , 1 4 , • I « * ,E 1 5 .8 I 
455 CONTINUE .

C THIS BEGINS THE 8ACK SUBSTUTION
, C CONVERSION OF SOURCE SIDE . . . . .  . . .. ..

F I1 )« F (1 ) /C I1 ,1 )
  DO 90 IJ -2 *N     ...vv. ,,

S-CHPLXIO.0 ,0 .0 1
... . . fJ H O M J - l •  • •*. •: ••• .

DO 91 1K«1,IJM0 
-  91 . S -S * C IIJ , IK ) * F I  IK )...........................................
, 9 0  F M  J )® (F ( I  J l - S I /C I  I J ,  1 J ) .-■■
C • HOW FOR FINAL BACK SUBSTITUTION
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NMO*N-l

.............  00 160 L«1,NM0 , . •
K«N-L

. KPO-K+1 ............... ■ ............
S«CMPLX«0.0,0.0l

  00 175 JO«KPO,N .    -............... .
' 175 S*S+CIK*JOJ*FIJOI .
,  160 F IK l-F IK I-S  ... .....  ..........

. 00 625 KCURR«1*N
  ABF*CABSCFIKCURRII

ANGF«180.0*ATAN2IAIHAGIFIKCURR1I. REALIFiKCURRl»» / 3 . 1415927 
625 W RITEt6,553) KCURR,ABF.ANGF

553 FORMAT! * F I 16* * I * ' , E 1 5 . 8 * 1 AT. ANGLE* ,E 15.8 »
C V THIS NOS THE BACK SUBSTITUTIONS

DC 639 KURR»1«N ‘
  INQbKURR-1 ,....

V III*C A B S IF lK U R R n *6 .0 *W E /|6 .28318*377.0 )
XCRO=FLOAT( KURR) ..................

639 CALL PL0TIX0R D ,Y ,1 ,IN D ,0 .0 2 0 0 *0 .0  I
...'. 00 660 KURR»1*N ................................

IND®KURR-1
....... Y(11*1B0.0*ATAN2<AIMAG{F(KUHR1I ,REALIFIKURRM 1/3.1615927

XC1RD=FL0AT I KURR),
660 CALL PL0T<XGRD*Y*1*IND,1B0.0 ,-1 8 0 .0 1

DC 317 JNX»1*360
TF«0.87266663 E-02*FL0ATIJNXI • - .........
T*CMPLXIO.0 *0 .0 )

... DO 310 1 *1 ,N
XI»*XM( I 1 •

310 T*T+ IIF IIl*C E X P IC M P LX (O .C ,G *I IXN*C0SITH) ) + (H IX N )*S IN IT H III I >11 
T»T*DC*SQRTlWEI*CMPLXl-0.707107 ,-0 .7071071 /3 .1615927

  CP-CABSCTI
CB*2O.0*ALOGIOICMI
CKC(JNXt»CM
CANGE57.296*ATAN2IAIMAGIT).REALIT 11 
TFD“ TH*57.296  

317 WRITE (6 ,3 1 2 ) CM,CANG,THD,08
312 FORMAT (18H RELATIVE E F IE LD *,E 15 .8 ,7H  ANGLE*.EIS.B*

2 23H ANGLE FROM HORIZONTAL-,E15.8 ,6H OB- .E 1 5 .8 )
... 00 661 1E5-1,360  .........

IN D -IES-1
  V lll-C M C IIE S )

THS-FLOATI1ESI/2.0 
.6 6 1  CALL P L0T(TH S ,V ,1 ,IN D ,5 0 .0 ,0 .0 )

STOP
: END ..... r .... .......  .....■. ... . • -

FUNCTION* illX I*  ' 4 ’
C THIS DEFINES THE SURFACE

■ COMMON /P IG / AONE.CQNE,PONE,ATWO,CTWO,PTWO,N
  H«AONE*SINICflNE*X+PONEI*ATWO<‘SIN(CTWO*X*PTWO)

RETURN
END . V : . ;

FUNCTION HAN2IX)
C I  00 THIS TO AVOID RETYPING THE W«Ol£ GAUSS IN T . PART

COMPLEX HAN2
COMPLEX AHAN20 . . . .
HAN2>AHAN20IXI
return...........................— .......... .

■ . END ...v. •, . . ' /  ■ : .

: ' ■ ‘ ’ • ' "■ ' ' ' . '

FUNCTION OHIXI 
C OH(X) IS  THE OERIV. OF HIXI

COMMON /P IG / AONE , CONE * PONE* ATVIl), CTWO, PTWO.N 
DH«AONE*CONE*COSICONE*X*PONEl+ArH06CTWO*COSICTWO*X*PTHQI 

• ’ ' RETURN
  END • ' '
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C THIS IS  A METHOD pF-MOMENTS SOLUTION FOR 8ISTATIC SCATT TM CASE
C USING TWO POINT INTERPOLATION
C GAUSSIAN INTEGRATION IS USED TO CALCULATE THE MATRIX ELEMENTS
C NSUtt SEGMENTS HAVE N MIDPOINTS •
C . NSU5 IS THE SUBSCRIPT WHICH COUNTS THE END POINTS
C ' N IS  THE SUBSCRIPT WHICH COUNTS THE MIDPOINTS

WATCH MAX SLOPE SO THAT THE X INCREMENTS, ARE SMALL ENOUGH 
THE SURFACE UNPER CONSIDERATION LIES BETWEEN -EP AND + EP 

-COMPLEX SNN,SST 
COMPLEX S,CO 
COMPLEX FSS. *
COMPLEX F lN C (20I,S TS
COMMON /P IG / AONE,CONE,PONE,ATWO»CTWO,P,TWOiN ... . . ..
COMMON /HOG/ XM1400), X1400) ,GAiG,OC
COMMON/GASSN/ GUI,GU2,GU3,GU4,GU5,GWl,GW2,GW3,GW4,GW5 
COMPLEX C lISO .ISO  I '
COMPLEX FC606I,FP(AOOI,SS,T,CTEST.......................................................................
COHPLEX F.IN
COMPLEX HAN2  .
DIMENSION ABESI36D),Y(10)

C • W6 IS THE ELECTRICAL WAVELENGTH   . ..
WE*25.0

C THE FOLLOWING CONSTANTS DESCRIBE THE SURFACE ...........
AONE-15.0

. C O N E *2.0*3 .1415927/2C 0.0    . .......
P0NEs D»O
ATW fl-6.0 -  . . .................
CTKO-O.O .

. . . PTwO=6.C - -   . . ..
0C-W E/10.0px-oc/iooo.o ...   .
D C 2-0C /2 .0  
D P IF *0 .7853982
6 -6 .2 0 3 1 6 5 3  /WE

.... EE*2.7182B
GABG *C C /(2 ,0 *E E ) *

C  EP IS  THE ENP POINT ...........................
EP«200.0

C CONSTANTS FOR GAUSSIAN INTEGRATION 5 TH OROER
GUI*>0 .9061798  

. .  G U 2 *-0 .53846921
G U 3-0.0
GU4— GU2 . .*  ............  ........ .........  .......................... ...................... .......
GU5*~GU1

. GUI•0 ,2369268  / ...............................................  .........
G W 5-0.2369268
6K4O0. 47662867
GW2*0,47862867 ‘
6W3»P.5688808

C CONSTANTS FOR GAUSSIAN INTEGRATION 5 TH ORDER
C THE FOLLOWING BREAKS THE SURFACE INTO SEGMENTS DC CENTIMETERS LONG
C 0V LINE INTEGRATION USING STEPS OF LENGTH DX FOR THE INTEGRATION

. NSUB-l * ■ ■ . . .■■■:■■■■■■:
X(NSOG>«~EP 

1©02 AL-8 .0 0 0
M XINSUBI

1001 R«R40X ■
ALO*AL ;
At>AL11DX4S0RT<1.0 + ( DHtR) * * 2 H )
1F ( 1 1DC2-ALI. L t .0 ,0  I .AN D *( IPC2-AL0) . GT. 0 . 0 11 XM<HSUQ)*R 
IF U L .L T .O O G O  ID  1001 
NSU8-N5UBU 
X(NSU6I*R .
IF  (R .L T .e P I CO TO 1002
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. . W*N$UD-l ' “ .......................................... . .
• PQ 1004 J°1iNSUp '

IF  (J.ER.NSUB) XRINSUBI=0.6 
XXX=X(J)
XMD= XMtJI 

' 1004 WRITE (6 *1003 ) XXX,XHO.J
: 1003 FORMAT (6H X (J )=  »E15 ,8*9H X M IJ l= *E 15 .e*3H  J « * 131

C THIS ENDS THE SURFACE SUBDIVISION
: t  THIS INSURES THAT N IS ODD..................................................

KK*0 
■ 5733 KK=KK+1

IF <(2*XK-1>.EQ.N> GOTO 5731 
IF ( 2*KK«EQ«N) GOTO 5732 
60 TO 5733

• . 5732 N*N-1 . . .  ......................     ..
. 5731 CONTINUE

WRITE 16*3728) N.KK
3728 FORHAT (* • t'CORRECTED VALUE OF N = » * 14* *KK=' * 14, * 2*KK-1=N 

NH0*N-1 ' .
NM3=N-3

C DIMENSION OF FINC,F IS N
C MATRIX F ILL  IN
C DO BY COLUMNS......................................................................
C FQR FIRST COLUMN

M  3661 1=1.KK ...........
3 *61  C( I • 11 “ CO (2 *1 - 1 . 11+1 CO 1 2 *1 -1 *2 1 /2 *  0.1

C FOR LAST COLUMN ...........................
00 3676 1=1*KK

3678 CCI»KK)=CC0I2 *1 -1 »2*KK-21 / 2 . 0 *CU( 2 * 1 - l» 2 *K K - I I  
C FUR MIDDLE COLUMNS ..

. .. 00 56 1 *1 . KK
11=2*1-1 -

 KKM1=KK-1   ..............
OU 56 J=2*KKM1 

. J J = 2 *J -1  •
CM ,J )= IC O U lf  J J - l ) /2 .C » + C 0 tn * J J I  + (C0( I I ,  J J + n /2 .6 1

56 CONTINUE
THIS COMPLETES THE FILLIN  OF THE MATRIX

NUNSYMMETR1C CRQUT ...... .................
FIRST COLLOM OK 
TO GET THE FIRST ROW 

. 00 |0  JS2*KK
10 C (1 *J )= C (1 *J I/C I1 *1 )

C NOW WORK ON ROW AND COLUMN SET K
DO 11 K=2*KK '■ *
KM0*K-1 

. .  KP0=K+1 
C Tti GET DIAGONAL ELEMENT

S-CMFLXIO.O.O.OI ..........
DO U  1K*1«KM0

12 SBSpC(K»1K1*C( IK *K )
C (K *K )« C U ,K )-S

C TO GET ELEMENTS IN COLUMN K DELOW ROW K
if ik p o ; g t . k k i GO TO 17

   00 13 1R0W«KP0,KK
S-CHPLXIO.O*O.OI 
00 14 JJ«1,KM0

14 S«S4CUR0W «JJI*C(JJ,K1
13 C (lRO W *K)*C(IftO W ,K)'S

C 1 TO GET ELEMENTS IN ROW K TO THE RIGHT OF COLUMN K
00 15 1C0L*KP0*KK ■ ■ ■■■.’ .
S«CMPLX(0.0*0.0)

. . 00 16 JR-l.KMO
16 S«S*CIK»JR)*C(JR.ICOL)
15 C IK » IC 0 L 1= (C (K ,IC O L I-S I/C IK ,K ) ,
17 CONTINUE
11 CONTINUE



WHITE 16,1222) KK,HE*
1222 FUFHATI* •» • K K = * , I4 , ' W E » ',E 15 .B > .

TH -3*141592 7*60< 0 /1 8 0 .0  
TH0£G*!57.29578*T(t 
WRITE (6 ,9 3 3 3 ) THDEG 

9333 FORMAT (.9H-1WC ANG«=,E15.8)
C T H I S  THE ANGLE UF INCIDENCE FROM THE HORIZONTAL
   . STH-SIM TH)

CTH-CDS(TH)
C THIS FINOS THE INCIDENT FIELD ION THE NJTH- SEGMENT 

DO 655 NJ*1«KK 
XG-XM12*WJ-1)
FP(HJI=C£XP(CNPLX(0.0,G *( ( XG*CTH) + (H(XG)#STH)) I )

  IP (X G .L E .((W E *1 .0 1 -E P )) FP (N J)=C M P LX (0.0 ,0 .0 I
1F (X G .G T.(E P -1.6*W E )> FP<NJ)=CMPLXIO.0 ,0 .0 )

  1 F (( XG.GT.( ( 1 . 0*WE)” E P )) .AND.IXG .LE#( 1 2 .P*W E)-EP)) )
2 F P IN J)= F P (N J)fc l0 .5+ (0 *5  *S IN ( (G /2  * 0 ) # ( XG -  H  1 .5*WE l-E P > )) )  I 

. . 1FKXG.GE. (E P -(2 ,0*M E I I ) .A N D .U G .LT . <E P -(1.C*WE) I I )
2 F P (N J )e F P (N J )* {0 .5 -(0 .5 *S IN ( (G /2 .v l*tX G -(E P -C 1 .5 *W E )11111  

. 655 CONTINUE . * ..
W RITE(6,9410) (N J.FP(N J),N J=1,KK>

9610 FORMAT ( 1 •••INCIDENT F1EL0 F IN C (* » 1 4 , * ) = • »2E15.8)
C THIS REGINS THE BACK SU8STUTION
C CONVERSION OF SOURCE SIDE   .

FPC1 l- F P ( l1 /C l 1 ,1 ) . •
„ .. DO 90 I J - 2 , KK       .

S” CHPLX(0 ,0 ,0 ,0 1
IJM O -IJ -1 .................................................................................................... ..........

.0 0  91 IK - 1 , IJMO
.91  S-S«C( 1 J ,IK M F P ( IK ) ..............

90 FP( I  J l *  1FP ( I  J l-S  ) /C ( IJ ,  IJ  )
c wow FOR FINAL PACK SUBSTITUTION............................................

NMO«KK-I 
. 00 160 L-l.N R O

K-KK-L
. . . .  KP0*K«1 ........  ..........

- S *C M PLX(0.0 ,0 .0)
DO 175 JO*=RPO,KK . •    ,.................

175 S -S+C (K ,JO I*FP(JQ )
160 FP C K l*FP (K l-S  ..............

KKH1* K K -1 
C TO RECONSTRUCT THE CURRENTS 

DO 67 IRA-1,KKM1 
67 F (2 *1 R A I- (F P (IK A l+ F P C IR A * ill/2 .0

00 66 IKA-1,KK 
,:48 F U * IR A -1 )-F P (IR A I

- WRITE ( 6 ,4 9 7 0 1 1 (J » F P ( J lI , J B1,KK)
. 6970 FORMAT! * ' * »• FP('  , 15, * Is • , 2E15.8 )

WRITE (6 ,5 5 3 ) (F (K ) ,K -1 ,N )
559 FORMAT (6H F (K ) - ,2 E 1 5 .8).................................................. ......... ..................

C THIS ENDS THE PACK SUBSTITUTIONS
. ... . DO 639 KURR-1,N .. ..  . . . .

INO-KURR-1 ’
. Y (ll-C A B S (F (K U R R I)*6 .0 *W E /(6 .2 8 3 1 6 *3 7 7 .0  

XORO«FLOAT(KURR)
,639 CALL PLOTIXORO, V *1 , IN D ,0 .0 2 tG ,C .C )

00 660 KURR-1,N
  INO-KUKK-1 ■ ^

. ' V I1 1 *1 8 0 .0*ATAN2(AIMAG(F(KURR)) , REAL(F(KURR)11/3 .1615927 ,



. . XUKD*PLGAT(KURR>
440 CALL PLOT(XQRD,Y»i, IN D ,1 8 0 .0 ,-1 8 0 .J )

00 317 JN K-1,360 
TH*0.0l745329*FL0AT(JNX 1 /2 .0  
T«=CMPLA<0.0 ,0 .0 )
00 310 1*1 * N 
XN-XMI1)

310 T-T+ ( ( Ft 1 l<=CEXP(CHPLX(O.O.C*( tXH*COS(TH)1+( HIXN1*SIN(TH11111)1 
C * * * * * * * * * *  THIS CORRECTS THE OUTPUT TO TRUE ELE. FIELD 

T«T*DC*SGRTIWEI*CMPLX<-0 .7 0 7 1 0 7 ,-0 .7 0 7 1 0 7 1 / 3 .1415927 
. CH«CAOS(T>

DB«?0.0*AL0G10(CH)
CANG“ 57.296*ATAN2IAIKAGI T t.R E A H T I1
THD*TH*57.296 ...........

. ABES( JF/X) *CR ........
317 WRITE 16,312) CM,CANG.THOtOB
312 FORMAT I1BH RELATIVE E F IE LD -,E 1 5 .8 , 7H ANGLE-tE15 .8 ,

2 23H ANGLE FRO^ HORIZONTAL-iE15.8»6H OB=,E15.8)
00 9500 JC*1»3fcO 
V I I ) -ABESI JCI 

. E -F L O A T IJC I/2 .0  
IN0=JC“ 1

9500 CALL PLOT(E,Yt l t I N D , 5 0 . 0 , 0 . 0  
STOP 

. .. END

. FUNCTION CO(MR«MCI ‘ " "  .... ‘ :
COMPLEX CO ■
COMPLEX AH AN 20 ...
COMMOM/GASSN/ GUI,GU2,GU3,0U4,GU5,GWl,CW2,GW3,GW4,GW5 
COMMON /HOG/ XM(AOO).XI400I,GAiG,DC 
1FIMK.RE.NC 1 GO TO 100
C0-DC«AHAN20(GA>......................................................................... ......
GO TO 200 

I X  CONTINUE 
XNM=XM(HRI 
HXMM-HCXMM1 
E P i - x m o

 EPU*=XINC+1> ■    .. ..
OVOFEP-tEPU-EPLI/2.0

-> DVSMEP-CEPU + EPL 1 /2 .0  *................................................................ .....................
XU5-GU5*OVOFEP*PUSMEP

  XU1»GU1*0VDFEP*0VSMEP ; . . ......................  , .................  .....
XU2-GU2*DVDFEP*UVSMEP
XU3«GU3*DV0FEP»DVSMEP .  !__  '

~XU4«GU4*DV0FEP*0VSMEP 
.. CO»DVDFEP*( .

2»GWl*AHAH20(G*SQRT(( iX U l-X M M )**21+UHIXU1l-HXPM I**2 1 1 )*SQRTI1.0 
. 2 *(U II(X U l 1**211 

. 2*GM2*AHAN20(G*SQRTU IXU2-XMM 1**2 1*UH(XU2 t-HXMM 1**2111 *S3RTI 1 .0
 2 + (0 H (X U 2 I**2 I I

2«GN3*AHAN201G*SQRTIIIXU3-XMM1 **2 1 + (I HIXU31-HXMM1**2111*SQRT(1.C 
.. . .. . 2+ I0H IX U 31 **2 1 1

2«GW4*AHAN20(GOSRRTI( IXU4-XMM1**21*( (HCXU41-HXMM1**2 1 )1 *$QRT<1.0 
... 2 t(U t l(X U 4 )* * 2 ) l
‘ ?*GW5*AHAN20(G«SQKT(<tXU5-XMMl**21 + (IHIXU51-HXMM1**2111*SQRTI 1.0 

2 « (0 H tX U 5 1 **2 1 )|. .. ........
200 CONTINUE

RETURN .. ■■■‘I  : •
END ; ■ r:-.v s



FUNCTION DH(X) ’  ' • - ......
PHI XI IS  T«£ OERIV. O F 'H IX I ,

CDKHON /P ie /  A0Ne,CONF»PONE*.ATMa,CTWn,PTWOiN 
OM»>AON£*CONE*COS(CUNE#Xf PONE» + ATWa*CTMQ*COS(CTWOPX*PTWO>
RETURN 
END . . .

FUNCTION H(X)
THIS DEFINES THE SURFACE
COMMON / P | C /  AONE,CONg.FONE.ATWO,CTWO.PTWO,N
H*AONE«SIN(CONE*X+PONEI+ATWO#SINICTHO«X+PTNO|
RETURN
END
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C TE CASE .GAUSSIAN INTEGRATION USED TO FILL I N MATRIX.TNTEGRftt F«3>».’
C NSUB SEGMENTS HAVE N MIDPOINTS
C NSUB IS THE SUBSCRIPT WHICH COUNTS THE END POINTS
C N IS THE SUBSCRIPT WHICH COUNTS THE MIDPOINTS
C WATCH.MAX SLOPE SO THAT THE X INCREMENTS M E  SMALL ENOUGH
C THE ARRAY XHIJI CONTAINS THE X COORDINATES OF THE MIDPOINTS OF THE
C SURFACE S E G M E N T S ,xm ,X (I* l»  ARE THE LOWER AND UPPER X COORDINATES
C OF THE ENDPOINTS OF THE I 'T H  SEGMENT
C THE SURFACE UNOER CONSIDERATION LIES BETWEEN -EP AND +EP

COMPLEX SNN.SST 
COMPLEX S,CO 
COMPLEX FSS
COMMON/GASSN/ GU1,GU2,GU3,GU4,GU5,CW1,GW2,GW3,GW4,GW5 
COMPLEX FINCI20),STS
COMMON /P IG /  ACNE,CONE, PONE,ATWO,CTWO,PTWO,N .
COMPLEX C I23S .235 I •
CCHHQN/HOG/ XM I400),G ,X (400)
COMMON /DOG/ DJC 
COMPLEX OJC
COMPLEX F ( 2 3 5 ) ,SS,T,CTEST 
complex FIN  
COMPLEX HAN2
DIMENSION ABESC360),Y(10)
THE FOLLOWING CONSTANTS DESCRIBE THE SURFACE 
A0NE*40.0
CONE”6 .2 8 3 1 8 /2 0 0 .0  " . .  .
P0NE»0.0 
ATKQ*0.0 
CTWO*=0.0 
PTWQ«0.0
WE IS THE ELECTRICAL WAVELENGTH 
WE*25.0
G«6.2831853 /WE
0C«WE/10.0 
DX®OC/1000.0 
0C2>DC/2.0 
EP»200.0

. STS*-DC*CMPLXIO.707107,0 .707107)/(2 ,0 *S Q R TIW E ))  
DJC®CKPLX(0.0,1 .0)*G /4 .0

CONSTANTS FOR GAUSSIAN INTEGRATION 5 TH 'ORDER 
G U lx -C .8061798
GU2— 0 . 53846531...............................................................................................

' GU3”0 .0  -
GU4“-GU2 '........................ ......... .....................
CU5*-GUl

. . GW1*0.2369266 . , ................... . .
GW5*0 .2369268
GW4-0.47862867 . . ’
GW2«0.47862 867 ... \  .
GW3«0.5688888 ' •

CONSTANTS FOR GAUSSIAN INTEGRATION 5 TH OROER 
THE FOLLOWING BREAKS THE SURFACE .INTO SEGMENTS DC CENTIMETERS LONG 

, BYLINE INTEGRATION USING STEPS OF, LENGTH OX FOR THE INTEGRATION 
NSUB-1 '
X(NSUD)— EP .. . ■

1002 AL*O.COO .. . ■
R-XINSUBI /

■ 1001 R°R+OX ■
• ■ ALO-AL

AL-AL+1DX*SQRT(1 . 0 * ID H IR l* * 2 111
1FIKCC2-ALI . IE .O .O I.A N D .I ID C 2 -A L O I.G T .0.011 XMINSUB)«R
1F(AL.LT.DC) CO TO 1001



o
n
n
n

WRITE(6 ,3 5 2 I AL,NSUB 
352 FORMAT{< A L » * ,E 1 5 .8 , '  NSUB-',IA )

NSUB*NSUB*1
X(NSU6)sR
IF (R .LT.EP) GO TO 1002 
N«NSU8-1
NRITE(6,?51) N,NSUB 

251 FORMAT* • N®1»14,• NSUB"',14)
00 1004 J»1,NSUB
IF (J.EQ.NSUB) XM(NSUB)*0.0
XXX*»X(J)
XMD» XM(J) * •

1004 WRITE (6 ,1 0 0 3 )  XXX,XMO,J •
1003 FORMAT (6H X (J )* ,E 1 5 .8 ,9 H  XMt J)*» ,E15.8 ,3H  J - ,1 3 )

C THIS ENPS THE SURFACE SUBDIVISION 
NMC»N-1 
NM3*N-3

C DIMENSION OF FINC.F IS N 
• DPIF»0.7653982
C MATRIX FILL IN

00 3661 IR *1 ,N  
00 3661 IC=1,N  

3661 C (1R ,IC )=C Q (IR ,IC )
THIS COMPLETES THE FILLIN OF THE MATRIX 

NCNSYMMETR1C CRQUT ,
FIRST COLUMN OK 
TO GET THE FIRST ROW 
00 10 J«2,N

10 C ( 1 ,J ) * C ( 1 ,J ) /C ( 1 ,1 )
C NOW WORK ON ROW AND COLUMN SET K

DO 11 K=2,N 
. KNC“K-1 

KP0»K+1
C TO GET DIAGONAL ELEMENT .......................

S«CMPLX(0.0 ,0 .0 )
DO 12 IK=1,MN0 »

12 S*S*C(K, 1K)*C(IK,K>
C (K ,K )*C (K ,K )-S

C TO GET ELEMENTS IN COLUMN K BELOW ROW K
IF (KPO.GT.N), GO TO 17
DO 13 IROW=KPQ»N . *
S-CMPLXI0.0,0.0)

‘ 00 14 JJ»1,KMC
14 S"S+C(IROW,JJ)*C(JJ,K)
13 C(1R0W,K)*C(1R0W»K)~S ........

C TO GET ELEMENTS IN ROW K TO THE RIGHT OF COLUMN K
00 15 lCDLe KPQ,N 
$>CMPLX(0.0,0.0)

' DO 16 JR®1,KM0
16 S«S*C(K,JR)*C(JRiICOL)
15 C(K»ICOL 1=1C(K.ICOL)” S)/C (K ,K)
17- CONTINUE
11 CONTINUE

C THIS (NOS THE MATRIX FACTORIZATION
WRITE (6 ,1 2 2 2 )  N,ME 

1222 F0RHATI3H N«,13.4H WE«,E15.8)
TH1»6©.0 *3 .1 41 5 9 /1 8 0 .0  
WRITE" (6 ,9 3 3 3 )  .THI 

9333 F0RMATI9H INC ANG«,E15.8)
C THI IS THE ANGLE OF INC. MEAS. FROM THE *VE X AXIS

STH-SIN(THI) ‘
CTW"COS(THl)

C THIS FINOS THE INCIOENT FIELD ION THE NJTH SEGMENT
■ 00 455 N J - l iN

.■ XG-XM(NJ)



o 
o

C THE SIGN ON THE INCIDENT FIELD HAS BEEN ADJUSTED TO AGREE WITH
C THE INTEGRAL EQUATION

FtNJJ*CEXPICMPLXtO.O,G*UXG*CTH)+tH(XGl*STHl I lK C M P L X l- l .O io .O l
C
C  ' ■ ■ ■ ■ - .  * '  .

C TAPPERED ILLUMINATION
.. . 1FIXG.LE.I IW EU.0I-EP11 FINJ)«CMPLX10.0,0.01

IF (X G .G E .(E P -U .O *U E )l)  F INJ)*CMPLX(0.0.0.01  
IF I lX G .G T .K 1 .0 *W E I-E P l) .ANO.IXG.LE. II2 .0*W E 1-EP11I 

2 F IN J l® F (N J )* (0 .5 M 0 .5 *S tN C IG /2 .0 )* tX G  - I  11 . 5*KE1-EP)1111
IF ItXG  .G E .IE P-t2 .0 *W E l)l .A N D .IX G  .L T .(E P -11 .0 *W E )11>

2 F IN J > « F t N j ) * t0 .5 - (0 .5 * S IN t (G /2 .0 I * IX G  -  IEP-I1 .5*M E) ) 1 ) )  I
455 CONTINUE

WRITEt6*2948) INJ.FlNJ),NJ»1*N1  
2948 FORMAT!* * , *  INC FIELD F I * * 1 4 . • ) * * «2E15.81 

THIS BEGINS THE BACK SUBSTUTION 
CONVERSION OF SOURCE SIDE
FI 1 1 - F I1 l /C t 1f I )
DO 90 IJ *2  *N 
S«CHPlX(C.OfO.Ot 
IJ M O -IJ - l  
DO 91 IK *lt IJM Q  

91 5sS *C IIJ  11K )*F I IK) ,
90 F t I J l * I F ( l J J - S ) / C I I J . I J l  

C NOW FOR FINAL BACK SUBSTITUTION
NMC-N-1
DO 160 L»l*NMO 
K*N-L
KPC-KM ' .
S-CMPLXtO.O.O.Ol 
DO 175 JCJaKPO.N

175 S«S*CIK,J01*FtJO) *
160 F IK M F IK I-S  

C THIS ENDS THE BACK SUBSTITUTIONS 
DO 554 1KURS1«N 
AAF*CABSIFIIKURH
AMF«S7.296*ATAN2 (AIMAGIFIIKUR)) iREAL If;! IKUR)) )

554 W RITEI6,5531IKUR,AAF.ANF 
553 FORMAT I *  * * *F I • « 14,» * )■* f E 15 .8 **  AT ANGLE**»E15.81 

00 9553 IRR0»1,N 
1ND*1RR0-1 
YI11 -CABSIFIIRRQll 
XRRO-FLOATIIRRO)

9553 CALL PLOTIXRRO,Y,1,IND,5.00,0.01
■00 9554 IRR0*1,N •

IND«XRR0-1
V I 11*57 .2958*ATAN21AIMAGIFIIRROI1 * REAL!FtIRRO)11 
XRRO-FLOAT(IRROI

9554  CALL PLOT(XRRO,Y,I,IND,1 0 0 .0 , - 1 8 0 .Cl 
DO 317 JNX«1*360 
THS*0.01745329*FLOATIJNX1/ 2 . 0 
T*CMPLX10 .0 *0 .0 1  ■
DO 310 1«1*N 
XN*XHI11
THN-1.57C7963+ATANIDHIXN11 ............

310 f * T *  I IF  111#CEXPICMPLX!0.0»G*((XN*C05(THS11+IHIXN)*5 1NITHS1111)1

C % : S * # I I ! m TTHIS CORRECTS THE OUTPUT TO TRUE MAG. FIELD 
T-T*STS '
CM-CABSITI
0 8 -2 0 .04AL0G10ICMI ' .

. CANG-57.296*ATAN2t AIMAGITI*REALIT|)
THSD-THS*57.296 . ,
ABES1JNXI-CH •

317 WRITE 16*3121 CM.CANG*THSD*OB



312 FORMAT I18H RELATIVE H FIELD«,E15.8,7H ANGLE«*,E15.8, 
2 23H ANGLE FROM HORIZONTAL*,E15.8 , 6H 0B«,E15.B»

DO 9500 JC»1,360 
Vin-A D E S IJC ) ‘
U -FL0ATIJC I/2 .0  •
INO*JC-1

9500 CALL P L O T IU ,Y ,1 ,IN D ,50 .0 ,0 .0»
STOP
END

FUNCTION HI XI
THIS OEFINES THE SURFACE
COHMON /P IC /  AONE,CONE,PONE,ATW0,CTW0,PTW0,N 
H*>AONE*S INI ICONE *X I+PONE > +ATWO*S IN 11 CTKO*X I+PTHO > 
RETURN 
END

FUNCTION DHIX) *
C DHIXI IS THE DERIV. OF H IX I

COMMON /P IG / AONE,CONE,PONE,ATWO,CTHO,PTHO,N 
DH»AONE*CONE*COSI(CONE+XI+PONE)+ ATWO *CT WO♦COSIICTHO*X >♦PTW01 
RETURN 
END

FUNCTION COIHR,MC)
C THIS GIVES THE OLO MAJR1X COEFFICIENTS 

COMPLEX CO
COMPLEX OJC * , „
COMMON/GASSN/ GU1,GU2,GU3,GIK,GU5,GW1,GW2,GW3,GW4,GW5 
COMMCN/HCG/ XMIAOO) »G» X I400.1 

. COMMON /DOG/ OJC 
COMPLEX AHNN21 
IFIMR.NE.MCt GO TO 100 
CO*CNPLXIO.500,0.01  
GO TO 200 

100 CONTINUE 
XNMbXMIMR)

' HXPH-HIXMMI 
EPLbXIHC)
EPU-XIMC+1)
CVDFEP®!EPU-EPLJ/2.0 

... DVSMEP*(EPU*EPLl/2.0 
XU5»CU5*DVDFEP*0VSMEP 
XU1*GU1*0VDFEP+DVSMEP .
XU2-GU2*DVOFEP*OVSMEP 
XU3“GU3*DVOF6P*OVSMEP
XU4«GU4*DVDFEP+0VSMEP *
HXUUHIXUl)
HXU2-HIXU2I v
HXU3«H(XU3>

‘ HXU4»HI XU4I 
HXU5-HIXU5)

. DHXU1>DHIXU1)
DHXU2*DHIXU2I ■
0HXU3-0HIXU3I *.
0HXUA«0HIXU4|

; 0HXU5-0HIXU5I
CO-OVDFEP*! V . . . .

2’MCWl*AHANaiiG*‘SQRTI HXUI-KMMJ**2> ♦UHXU1-HXMM)**2111 
2 * 1 l-DHXULMXMM-XUl 11 + IHXMM-HXUl)I.

’ 2/SQRTK (XMMrXUl 1 **2 1 *1 1HXMM-HXU11 * * 2 111
2+(GH2*AHAN21(G*SQRT(t IXU2-XMM 1**2 ) * t  IHXUE-HXMMI*^! 11 

• 2 *|I-0HXU2*!XMM-XU2JI + IHXMM-HXU2I I



2/SQRTC( ( X M M - X U Z »+(CHXMM-HXUZ> *+ 2 ) ) )
2+CGW3*AHAN21* G*SQRT(( (XU3-XMM>**2>+ 1 IH X U 3-H X M M I**2 I| |  
2 * (  C-DHXU3MXMM-XU3) )♦  (HXMM-HXU3H
2/SQRT C ( ( XHH-XU31 * * 2 )  + ( I  HXMM-HXU3 I *  *2 I )  *

■ 2+{GWA*AHAJi2l 1G+SQRT ( (  (XU4-XMM}**2) ♦ { IHXU4-HXMMI**2I I ) 
2 # ( I-OHXUA*!XMM-XU41 ) ♦ (HXMM-HXU4II

• 2/SQRTI( tXM H-XUAI**21*1 ( HXMM-HXUA1**2  I t )
2+( GW5*AHAM21 ( G*SQRT C ( tXU5-XMM)**2M( <HXU5-HXMM>**2» )» 
2 *t(-0HXU5*!XHM-XU5 I l  + IHXMM-HXUSl I
2/SQRT C U  XHM-XU5I * * 2  >M C HXMM-HXU51 * * 2 I > ) )

CO”CO*DJC 
200 CONTINUE 

RETURN 
END
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c t h is  is  re  case  u sin g - two p o in t  in t e r p o l a t io n
C .TH IS  PROGRAM USES GAUSS IAN INTECR AT ION TO GET MATRIX ELEMENTS 
C NSUB SEGMENTS HAVE N MIDPOINTS
C HSUG IS THE SUBSCRIPT VMlCW COUNTS THE END POINTS
C N IS THE SUBSCRIPT WHICH COUNTS THE MIDPOINTS
C WATCH MAX SLOPE SO THAT THE X INCREMENTS ARE SMALL ENOUGH
C EP tS THE END POINT

: COMPLEX SWNtSST 
COMPLEX St CD 

• COMPLEX FSS
COMMflN/GASSfl/ GUiiGU2,GU3tGU4,GU5tGWl ,GW2iGW3tGW4tGW5 
COMPLEX FINC( 2 0 ) t STS .
COMMON /P IG /  AONEf CONE*P.UNEt ATWUt CTWO «PTWO?N
COMPLEX C(1 5 6 t I 50) ................. .......
COMMON/HOG/ XM(4001tGf X (408)
COMMON /DOG/ OJC 
COMPLEX PJC
COMPLEX F(4D 0)tFP(4 0 0 )» SStTtCTEST 
COMPLEX FIN
COMPLEX HAN2   . . . . . . .
DIMENSION ABESI3601t Y ( 10)

C WE IS THE ELECTRICAL WAVELENGTH .....................
WE*25.C
G*6*2831853 /WE

* AONE*5*0 
C0NE*6.2 83 1 8 /2 00 .C 
PCNE*0.0
ATWffl*0.0 - ....................

\  CTWO*O.C
PTWO*O.C..................................................... .............................
DC*f(E/lS. 0

. . . DX=DC/ 1CCG.0 . . . . . .  -----
DC2«2>C/2.0
ipefcoo.o
STS-OC*CMPLX(-0.7C71I, - 0 . 7 0 7 1 1 ) / ( 2 . 0*SQRT(WE)) 
DJC*CM PIX(0 .0»1.0 I*G /4 .0  

C CONSTANTS FOR GAUSSIAN INTEGRATION 5 TH ORDER
. . .  . G U l« -0 .9061798 . .............

GU2*-0*53846931
• • • - GU3*0»0 . ------- -------------- ,  ..........

CU4*-GU2
  GU5*-GU1   . • • ' ........... - -  '• ■

~  GW I*0 .2369268
.... . . . . .  GW5*G.2369268 ■ . ........  ..... ............ ........

G 1(4*0*47862 867
   GW2*9*47862867 ................

GW3 *0*5688888
C CONSTANTS FOR GAUSSIAN INTEGRATION 5 TH ORDER

C THE FOLLOWING BREAKS THE SURFACE‘ INTO SEGMENTS DC CENTIMETERS LONG
C BY LINE INTEGRATION USING STEPS OF LENGTH DX FOR THE INTEGRATION

Nsua*i
X(NSUB) *-EP .......... .. -■ .-v.

1002 AL*0.000 . ,
■ . K*X(NSUB) • • • ■' ......  ...........

1001 R-R+DX
. ALO-AL • • ••......................... •'..........

AL*AL«(CX*SQKT(I*0*(0H(R1**2 )») •
I F ( ( (DC2-AL)• I E . 0 * 0 ) .AND.( ( CC2-AL0)*GT * 9 * 0 ) )  XH(NSUB)«R
IFIAL.LT.DC)G0 TO 1001 .
WRITE(6*352) AL|NSU0 

352 FORMAT!• AL**tE15.8»» NSUB»*,14 I
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NSUB-NSUB+l ■
X(NSUB)-R
IF  (R .LT .E P) GO TO 1002 
N-NSUB-l

. KRITE(6,2511 Nf NSUB • .............
251 FORMAT! • N« • , I4 ,»  N S U B -*,14)

  00 1004 J-l.N S U B  .... ..
IF |J.EG,NSUB) XM1NSUB)=0.0
XXX*X(J1.......................................................................................................
XMD- X H IJ I 

1004 WRITE (4 ,1 0 0 3 ) XXX,XMO,J
1003 FORMAT (6H X {J )- ,E 1 5 .B ,9 H  X M (J I-,E 1 5 .8 ,3 H  J= ,1 3 I 

C THIS ENDS THE SURFACE SUBDIVISION
C THIS INSURES THAT N IS  000

KK-0 
5733 KK-KKM

IF U 2 *K K -1 ).E G .N ) * 0  TO 5731 
IF  I2*KK .EQ .N) GO TO 5732
GO TO 5733...................................... .........  ...........

5732 N -N - l
.5731 CONTINUE ..........................................................

WRITE (6 ,3 7 2 8 ) N,KK 
3726 FORMAT** •••CORRECTED VALUE OF N * » , I4 , * K K « ',14 , I 2*KK-1»N' I 

NMO-N-1 . '
. - . NM3-N-3 ■ ' . . . . . .
C DIMENSION OF FINC,F IS  N

D PIF-O .7853982 
C MATRIX F ILL IN
C DO BY COLUMNS ............
C FOR FIRST COLUMN

DO 3661 I - 1 ,KK 
3661 CC 1,1 1 -0 0 (2 *1 - I ,1 ) + (C 0 (2* 1 -1 ,2  ) / 2 . 0 )

C . FOR LAST COLUMN ............  .................
00 3678 1 - 1 ,KK 

3678 C (I,K K )*(C O (2 *1 - l» 2 *K K -2 ) /2 .C )*C 0 ( 2 * 1 -1 ,2 *K K -1)
C FOR RIDDLE COLUMNS

DO 56 1 -1 ,KK 
1 1 -2 *1 -1  

. .  ... KKM1-KK-1
00 56 J-2 ,KK M l 
JJ« 2 *J -1
C ( l ,J ) « ( C O ( I I ,J J - l l / 2 .0 » + C 0 (  I I , J J > + ( C 0 ( I I , J J + l ) / 2 . 0 l  

56 CONTINUE.
C THIS COMPLETES THE F ILL IN  OF THE MATRIX
C NONSVMHETWC CROUT
C FIRST COLLOM OK
C TWO GET FIRST ROW

DU 10 J -2  »KK .*
10 C (1 ,J ) -C (1 ,J ) /C (1 ,1 )

c NOW WORK ON ROW AND COLUWN SET K
DO 11 K-2,KK

' KMO-K-l ■ .
KPO-K+1

C TO GET DIAGONAL ELEMENT
S-CMPLXIO.0 ,0 .0 )

• DO 12 IK -l.KM O
12 S -S +C (K ,IK )*C (1K ,K )

■ C IK ,K )-C IK ,K ).-S
C TO GET ELEMENTS IN COLUfAN K BELOW ROW K

IFUPO .G T.KK) GO TO 17 
DO 13 IROW«KPO,KK 
S-CHPLX (0 .0 ,0 .0 1  
DO 14 JJ-l,K M O  

14 S-S+CI MOW, JJ )*C ( JJ ,K )
13 Cl IRCW»KI*C( IROW,K)-S

C TO GET ELEMENTS IN ROW K TO THE RIGHT OF COLUMN K



DO 15 ICOLeKPC|KK 
S«CMPLX(0.t ,C.OJ 
DO 16 JR*l»KMO

16 S«S+C(K,JR)*C( JRtlCOLI
15 C( K » IC G L I*(C (K *IC O L)-S )/C (K »K I
17 CONTINUE
11 CONTINUE . . . . .......

WRITE (6 ,1 2 2 2 ) KK,WE
1222 FORMAT I* ' K K « * , I4 , ' W E«*,E15.8) • .........

T H -3 .1615927*60 .0 /180 .0
THDEG*57.29578*TH............................................... ...............

• WRITE (6 ,9 )3 3 )  TH&EG
9333 FORMAT(9H INC ANG»,E15.BI ................

C TH IS  THE ANCLE QF INCIDENCE FROM THE HORIZONTAL
  STH®SIN(TH)

CTH«=CQS O H)
C THIS FINOS THE INCIDENT FIELD ION THE NJTH SEGMENT

C ’ '
C TAPEREQ ILLUMINATION * * * * * 0 * * *  * * * * * * * *  * * * * * * * *
C

DQ 955 NJ«=1 ,KK
XG»XM(2*NJ-1I . ■
FP(NJl*CEXP(CMPLX(0 »0 »G*I(XG*CTH)4 ( H (XG l*STH)) ) )*C M P L X (-i,0 ,0  

C INCIDENT FIELp HAS BEEN ADJUSTED TO AGREE WITH INTEGRAL EQTN*
IF (X 6 .L E ,( (W E * l. f l l-E P )»  FP(NJ)=CMPLXIO.O,G.O)
IF(X6*G1 • (EP-1 •(k#VtE)) FP(NJ)=CttPLX(O.C,C.O)
IF ( ( XG.GT.t ( l.O W E I-E P I ).A N D .l XG.LE, ( (2.C*WEJ -E P )) )

2 FP(NJ|sFP(NJ K (0 .5 * (6 .5 * S IN ( (G /2 .0 ) * (X G  - I  I 1. 5*WE ) - EP) ) ) ) )  
I F I I  X 6 .G E .(C P -(2 .0*V I8 )) )  . AND.(XG.LT. (E P - l1.0*W E)) ) )

7 F P (N J )*F P (N J |t(0 .5 ~ (0 » 5 *S IN ((G /2 .0 IM  XG-( EP-( I *  5* WEI 11)1 ) 
455 CONTINUE

WR1TE(6,9410) (N J fF P (N J)fN JM fK K )
9410 FORMAT (•  • , ‘ INCIDENT FIELD F I f lC l», 14 , • I =* ,2 E 1 5 .8)

C THIS BEGINS THE BACK SUBSTUT ION
C CONVERSION OF SOURCE SIDE

F P I I l  = FP 11) / C l1 , I I  
00 90 I-J*2,KK 
S»C N PLX(0.0,0.9)
lJM O sIJ-1  ■ *
DU 91 IK =1 , IJMO 

91 S«S*C(IJ#1K)#FP(IK1
90 F P (1J ) * ( F P ( IJ ) - S l /C ( I J ,  IJ )

C NOW FOR FINAL BACK SUBSTITUTION
NMO-KK-1 
00 160 L«1,NMG 
K»KK-L 
KP0*K+1
S-CNPLX ( 0 .0 ,0 .OF 
00 175 JD»KPQ,KK 

• 1 7 5  S«S+CIK,JD)*FP(JD)
160 FP(K )»FF(K )-S

KKM t*KK-l .
C TO RECONSTRUCT THE CURRENTS

DO 47 IRA«1,KKM1 
. 47 F (2 *IR A I» (F P ( IRAMFPI IR A + ll I /2 .C

DO 48 IRA?1*KK 
48 F I2 M R A -ll« F P tlR A I

WRITE (6 ,4 9 T 0 )(<  J ,F P (J I) ,J « 1 ,K K )
4970 FORMAT( 1 • , »PP<• ,1 5 ,» ) « • , 2E1S.BI 

WRITE (6 ,5 5 3 ) (p (K ) ,K « l,N )
553 FORMAT (£H F (K )> ,2 E 1 5 .8 )

00 9953 l*R O » l,N  
.... IN D -lR R O -l

V(1)«CA8S(P(IRRO11 
XRP0>FL0AT(IRRO)
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9553 CALL PLOT IXRRO.Y, 1 , IN U ,5 .0 0 ,6 .D  1 
00 9 5 5 * IRRO=l,N 
IND*IKRO-1
Y(ll*57.2958*ATAN 2IA IM AG IF(IR R O H  , REAL I Ft IRRO » ) I 
XRRa^FLQAH IRROJ 

955A CALL PLQT(XRRt)«Y«lftNDf1 8 0 .0 » -1 8 3 .0 )
C THIS ENDS THE BACK SUBSTITUTIONS

00 317 JNX*1, 360 
1HS*0 .0 1 74*3 i9 *F  LWTI JNXI / 2 .0  
T*CHPLX(0.0 ,0 .01  
OQ 310 1 *1 ,N 

, XM*XM( 11
?HN*1 .5707963fATANCDHfXN))

310 T*T ♦ {(F(ll*C EXP tC M PLX (0.0 ,G *< (XN*COS< THSl) H H t XNI*SIN( THS) H D )  
2 *CCS(THN-THS»l 

C * * * * * * * * * *  THIS CORRECTS THE OUTPUT TO TRUE PLE. FIELD
T«T*S1S 
c f i* c A o $ (n  
08* 20 .0*A LOG 101 C M I
CANG*57.29 6 * AT AW2 ( A IM A G IT I,R E AL(T il ■
TH$D*TH$*57.296 
ABES(JNX»*CM i 

317 WRITE (X ,312 I C«,CANG,THSD,C8
312 FORMAT ( I  OH RELATIVE E F IE L 0 *,E 1 5 .B f 7H ANGLE*,E15.8 ,

2 2 JH ANGLE FROf* HORIZONTAL*,E15.8, 6H 0 :J*,E 15.B I
00 9500 JC *1,360 .........
V (ll«A O eS IJC )
U«FL0AT<JC»/2.O ..............
IN Q *JC -l "

9500 CALL P LO T IU ,Y » l,IN D ,5 0 .0 ,9 ,0 1  
STOP
END ............

FUNCTION HI X) •
C THIS DEFINES THE SURFACE

COMMON /P IG /  AONE,CONE,PONE,ATWO,CTWtt,FTWD,N 
H*AONE*SIN((CONE«X)+PONEI+ATW0*SIN(I CTWO*XI*PTWOI 
RETURN
end ; . . . ,

. FUNCTION DHIXI 
C OHI X) IS  THE DERIV* OF HIXI

COMMON /P IG / AONE,CONE,PONE,AT^n.CTWQ.PTWO.N .  '
. DH*AONC^CONE*CQS( ICONE*XI ♦PONE J*AThOFCTWO*COS( (CTH0*X|4-PTW0l
RETURN
ENO _ . .  . . . .  ‘ ,

' . FUNCTION COIMR,MC)
C THIS*GIVES THE OLO MATRIX COEFFICIENTS ........ ........

COMPLEX CO 
CCMPLEX UJC
CCMHON/GASSN/ GU1.GU2, GU3,GlK«GU5,GHt,GW2»GW3,GW4*GW5 
COMMON/HOC/ XMC AOC) , G, X I400) ,
CCMMON /DOG/ OJC 

■ COMPLEX AHAN21 . . . .
IFIHR.NE.NCI GO TO 100 
C0>CHPLX(0.500O.GI 
GO TO 200

100 CONTINUE . • .
XftM*XHIMft)
hxhn- h ix h m i



EPL*X(MC>
 6PU®XIMC+1)

DVDF6P®(EPU-EPLI/2»0 '
DVSMEPM EPU*£PL 1/2*0 
XU5*GU5*DVDFEP+[)VSMEP 

. XU1*GU1*DVDFEP*UVSMEP 
XU2»GU2*0VDFEP*DVSMEP *

. XU3*=GU3*DVDFEP+DVSf$EP
XU4«GU4*0VDFEP*DVSMEP •
AIQHl®ATAMnH<XUlll
AT0H2«ATAN(0H(XU2II
ATDH3»ATAN(DH|XU3II ........  ..........  ...............
ATDH4*=ATAN(OKiXUA|I 
ATOtf5=ATAN( DH{ XU5) I 
HXUl*H(XU 1)
HXUZ«H(XU2> .... ’ -
HXU3»HJXU3)

   HXU4«H(XU4l .... -
HXU5bM(XUS)
CO®DVOFEP*( •

2*GWl*AHAN2l(G*SQRTl( (XU1-XMM1 **2 » ♦ (CHCXU1|«HXMM1**2Il»*SQRT(1.0M 
2DH t X U l)*  *21> * ( < - SIN < A TDH1» *IXMM-XU1 I I  + ( COS1 AT C H II* (  HXKM-HXU111) 
2/SQRT t ( (XMM-XU1 J * * 2 I* (  (HXRR-HXU1I **211
2*GK2*AHAN21(G*S0RTUfXU2-XHM )**2)*l l.H IX U 21-H XM U I**2 ll)*SQ R TU .C M  
2DH1XU2)**2I) « ( |-S1N (A T0N 2I*(X H H -X U 2II♦ ICOS!ATDH21*1HXMM-HXU2III 

.. 2/SORTC( (XMH-XU21 **2 1 + (trtXM M -H XU 2l**2 ll
2*GW3*AHA||211G*SORT 1(1 XU3-XHMI **2  1 ♦ IC Ht Xl|3 l-HXMM I * * 2 111 *SQRTI 1. 0 *( 
2011(XU3)* * 2 ) l*(i-SlNlATDH3J*tXMM-XU311MCOSIATUH31*<HXMM-HXU3I11 
2/SQRTU IXf*M-XU3 l**2 lM lH X M M -H X U 3 )**2 ll 

. 2*GH4*AHA^211 G*SQKT( ( ( XU4-XMM)**2I + ((H(XU4l-HXMM1 * * 2 11J*SQRTC1*0+1
20H (X U 4|**2 I l*U-SIim T0H4l*{XW <-XU411*!COS(ATDH41*(HXMM-HXU4M>

. 2/SQRT ( I  (XMM-XU4 1**2 J + UHXMM-HXU41 * * 2 11
2+GW5*AHAN21 ( G* SQRTU ( XU5-XHMI* * 2 I ♦ I < H( XU5I-HXMMI* * 2 111 *SQRT( I  *Cr+t 

  2 OHI XUS 1 * * 2 1 > *1 1-S1NIATOH 51* IXMM-XU511♦ ( CO S( A TDH51* ( HXMH-HX U5111

2 /S Q R T m X M H -X U 5 l* * 2 1  + l (»?XH H rH XU 5|**2 li  ) '*•
CO»DJC*CO ...................

200 CONTINUE 
' RETURN 

END
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FUNCTION /WAN21U>
C THIS IS THE HANKEL FUNCTION UF TVPE 2 AND-OF .ORDER L

' DOUBLE PRECISION XD.DX t A I«A2, A31 A *, A5‘. A6.HJ I t  B it  02» 83, B4» B5» A H Jl.1 
2T D X ,A 1 ,A 2 .A 3 ,A '..A 5 ,A 6 ,T L , T2, , T5 , T6 , T7 (0S0X,B6 

CCNPLGX AHAN21 .
DX*0BLE<XI
IF IX .G T .3 .0 )  GO TO ZOO 
Xl)*CX*DX/9.OD+OO 
A I— 0 . 31761D-03«0.11C9D-04*XD 
A2*0 •00443319U+QO+4l*'XD 
A3— 0.039542B90+60 + A2*XD 
A4«C.210935 73D+ *5)+A3*XD 
AS— 0.5624«>9e5D+00+A4*XD 

• A6*0.5D+flO+A5*XD ’
HJ1*A6*DX
B l— O.04OC976D+OO+O.OO27873D+D0*XD
B2*O.3123551D+60+Bl*XU
03—'I.3164827D+O0+B2*XO
R 4 *2 .16827090+60+B3*X0 '
B5*0 .221209 ID+00+B4*XD . .
06—0 *63661980+!!*/+Q5*XD
AHJ1*( B6/DX I+l-.Jl *DLQG( D X /2 .G l*0 .63661977  
AHAN21*CMPLXISNGL(HJ1I,-SNGLlAHJllI 
GO TO 300 

200 T0X*3.0/DX
A 1 *0 .0 0 113653DF00-0.00020033*TDX *
A2— 9.00249511P*90+AI*TDX 
A3®,000171050+00*A2*TDX 
A4* 0.016596670+40+A3*TJDX 
A 5 * t. . l 560-05 + A4*T0X J 
A 6 *0 .797884560+00+A5*TDX 
T1*0.000798240+00-0.000291660+00* TPJC 
T2*{3.000743480+00+Tl*TOX 
T3— 0. 006 3787SO+0C+ T2*T0X 

•, T4*0.00005650D+00+T3*TOX 
T5«0.1249.96l2U+06+T4*TDX 
T6— Z.356l9444D+00+T5*T0X

• T7*0X+T6 ,   . •
DSOXcAC/DSORTtOX I
AHAN21»CHPLX(SNGLIDSQX*DCOS(T7)lt-SNGHOSax*DSIN(T7l I I  

300 CONTINUE
• RETURN ■ . • -    ' , ■

'END-
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c

100

200

FUNCTION AH/\N2Q(X) * *  . ' '
THIS IS THE HANKEL FUNCTION OF ORDER 0 AND OF TYPE 2 
DOUBLE PRECISION XSQ, B IO ,B 8 ,6 6 , B 4 ,B 2 .C 1 0 ,C 8 ,C 6 ,C 4 ,C 2 ,D 5 ,0 4 ,D 3 i  

2 D 2 ,D 1 ,E 5 ,E 4 ,E 2 ,E I ,E O ,X D ,D X ,F O ,E 3 ,H J ,D S X  
COMPLEX AHAN20
D X»DB Lem   ‘ ......................
IF  (X .G T .3 .0 )  GO TO.100 
XSQ*DXtDX/0.9D+01
B 1 0 * -0 .3 9 4 4 4 0 -0 2 + X S Q *0 .2 1 0 -0 3  *
8 8 *0 .0 4 4 4 4 7 9 0 + 0 0 +XSQ*B10
B 6 * - 0 . 31638 660+ 00+XS0+B8 •

. 84*1 .2656208D +00+XSQ *06 ............. . ’.............. ........ ....
B2*-2,2499997D+00+XSQ*B4  
HJ*1.00+00+XSQ+B2  
C 1 0 *0 .4 2 7 9 1 6 D -0 2 -X S Q « 0 .248460-03
C 8*-0 .4261214D -01+XSQ *C 10 •:
C6*0.25300117D+00+XSQ*CB  

.C 4 *~ 0 .74350384D+00*XSQ*C6 
C 2 *0 *  60559366D+00+XSQ+C4
H Y*SN GL(0*36746691D+00+0.6 3 6 6 I9 6 0 +00*HJ*DLOG(DX/2.0 )+XSQ*C2l 
AHAN20*CMPLX(SNGLIHJI,-HYI 
GO TO 200
X D *3*0 /0X  ' 1 .
L 5 * -0 .7 2 8 0 5 D -0 3 + X D * 0 .144760 -03  ......
0 4 * 0 .1 3 7 2 3 7 0 -0 2 + 0 5 * XO 
D 3*-0 .951 2D -C 4+ D 4*X 0  
0 2 * - 0 •552 7 4 0 0 -0 2  +D3+XD 
D 1 * -0 .7 7 D -0 6 + 0 2 *X D  
FO *0.797884560+00+XD*D l
E 5 « -0 .2 9 3 3 3 0 -0 3 + X D *0 .1 £ 5 5 8 D -0 3  ...............
S 4 * -0 .5 4 1 2 5 0 -0 3 + E 5 *X 0  
£ 3 * 0 .2 6 2 5 73D-02+E4*XD  
£2“ ~ 0 •3 9 5 4 0 -  04 +E3*XD •
E l * - 0 . 4 1 6 6 3 9 7 0 -0 1+E2+XD  *
EO* ( - 0  *785398160+00+XD*EI)+DX  

. DSX*DSQRT(OX)
AHAN20*CMPLX( SNGL ( FO*OCOS ( EO 1 /D S X ) ,-S N G ll F0*0SI NC EOI/OSX.I) 
CONTINUE ’
RETURN

- END • - .................. . . . .     . . :   :________
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SU&ROUriNEPLOTI X,Y»N »IND,YMAX,YMIN)
DlMENSIUNMI119),YLABELt6 ),Y I10 ).’,MAAK110>
DATA M ARM II .MARK12) .M ARKI3).M ARKI5),M ARKI6),«ARKt7 ) ,MARKIBit 

2«ARKI9),MARK(1 0 ),M A R K I4 l/ lH * ,1 M ., '1 H I, IHO,1HN.1HH,1H1,1HZ,1H-,1HX/
. . DATA lBLAMKfNOPT , 1PLUS/1H * 1K$i 1H*/

IF l I N D I l i  1,11 
1 M U T E (6 ,3 )

3 FORMAT I I  HI//25X,48H0RDER IN WHICH PLOT SYMBOLS ARE USED *,IX0NH1Z 
* - //3 0 X »  39UTHE SYMBOL 1*1 INDICATES OFF-SCALE OATA//1 

DC73»9,119
7 Ml3I*MARK(101 . •

NCOUNT*lO.......................................................................... .
SCALE«lf!O.0/IYMAX-YMIN)
LLL»I-YM IN*SCALE)+11.5 ..........................
0083*1 ,6  

■ R -3-1
B YLABELI 3 ) *R*20.0/SCALE+YMIN 

W RITE(6,9) IY L A B E L II) ,1 *1 ,6 )
9 FORMATI6X,1PE9«2,5 11PE20,2 )  /  I 

GOTO 132 
11 NC OUNT-NCOUNT +1

0099J*1 ,119  . .
99 MIJ)*IBLANK 

. lF (L L L .G E .li.A N D .L L L .L E ,1 1 0 )H (L L L I*H A R K t10)
IFINCOUNT-IOI 133 ,132 ,133

132 00893*11 ,111 ,20  
89 M lJ)*IP LU S
133 D02CJ*1«N.................................................................................

. L *IY I3 )-Y M IN )*5C A LE »0 .5  •
l F | i m , 1 7 , 1 7  ■ ... .. . ‘

16 IF IL + 1 0 )1 5 ,1 6,16
15 HI 1 ) *NOPT . . . .  3 .............

GOTO20
16 L l« L * l l

M lIL)*M AR K(J)
GO TO 20

17 IF IL -1 0 B )1 8 ,1 9 ,1 9
'. 16 LL-L+11 . . . .

f l lL l l 'M A R K U )
■ GOT020 ......  .................  ... ..■■■ ...

19 M l119)*N0PT
20 CONTINUE '      ’ .

IF INCOUNT-10 )2 1 ,25,21
21 NRITEI6,2A) IM IJ  ) ,  3 *1 ,1 1 9 ) ...

: 24 FORMAT!IX, 119AU
•; GOT 02 7 

25 UR1TEI6.26) I X , I f l l 3 ) ,3 - 9 ,1 1 9 ) )  .
26 FORMAT!IX,F7« 3 ,111A1) ..................

NCCUNT-0 •*
27 CONTINUE   • ' . ..

RETURN 
. END



APPENDIX B

SOLUTION OF SYSTEMS OF SIMULTANEOUS LINEAR EQUATIONS

Several direct methods exist which find the solution vector,

[X], when the system of equations

(99) [C] [X] * [B]

is given. The two methods used here were the square root (or 

Cholesky) method for symnetrie'systems, and the" Crout method for 

non-symmetric systems (Ref. [35]). Both methods take advantage of 

the fact that a non-singular matrix [C] is equivalent to [L][U], where 

[L] is a lower triangular matrix and [U] is an upper triangular matrix. ■ 

So •

0 0 '• i  . 0 U11 U1 2 " V U1N C11 c12 C1N

*21 *22  ̂ 0 0 u22 . . .  u2N C21 c22 *

*31 *32 *33 0 0 B ■' • •

•

iN l • • ' * *NN 0 .  0 UNN_ fNl * *•* CNN_

or
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(1 0 1 )  j ,  * 1k  uk j  "  ° 1j

since

(102) s 0 i f  k > 1 and

(103) ukj E 0 k

In order to specify [L] and [U],N +N unknows must be determined.
p

Since there are only N equations, (values of C ^ ), N unknowns may 

be specified. In the square root method the diagonal elements 

are assumed equal, i .e . ,

U11 s for 1 s **•» N
i

which gives the N extra conditions; 1n the Crout method one set 

of diagonals is specified, namely

004) ' Mkk = 1 for k = 1, • •• * N.

Suppose that [C] has been broken up into [L][U], then

(105): [L]CU][X3 *  [B]

whence by defining ,

(106) [R] * [U3CX3 

there results



;(107) [L][R] -  [B]

which has the solution

  1-1
(108) I  t i k xk) / ^  for 1el,***»N

and the sum Is omitted, I f  i equals 1. Once the [R] vector 1s . 

known the system

(109) [U)[X] * [R]

1s solved by •

: ■ ’ i  N V ,  ; •
( T ip )  X i = U1 k xk */ u 1 i  f o r  1=1 * * * • *N

where the sum 1s omitted 1f51 equals N. Wilkinson (Ref. [36]) 

has shown that most of the error 1n a solution of Eq. (99) by 

trlangular!zation methods comes from the decomposition of [C] into 

[L][U] and not 1n the double back substitution (Eqs. (108)’ and (110)). 

The details of the decomposition of [C] Into [L][U] w ill now be

considered. For Crout factorization the diagonal elements of [U] are
2 ? 

set equal to unity leaving N equations and N unknowns 1n the set

of Eqs.(10t;), (102) and (103), which can be solved as follows:



(113) i 1k * 0 1f 1 < k

014) ukj -  0 1f j  < k.

These equations are used in the order: f irs t  column of [L ], f irs t  

now of [U]; second column of [L ], second row of [U]; third column 

of [L ], ect. In a computer solution the elements of [U] and [L] may 

be written over the original matrix [C] as they are generated. Once 

this 1s done the matrix becomes

*  «
FACTORED *11 * u12 ‘ U1N 

•

c --------- to
•  •  •

' %zz
r n

•  •  •  
•

■a m STORED _aN 1 ........... ,£nn.

and the fact that the diagonal elements of [U] are unity 1s used only

‘ in the previously described back substitution portion of the solution.

I f  [C] 1s symmetric then [C] can be factored Into 
* . *

(118) [C ]«  [U]T [U]

where [U]T 1s the transpose of [U]. Equation (101) becomes
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min of (1 , j )

(1 1 6 ) i J l  Uki U k j e C l j

The Uj j 's  are found from

(117) u-ji *= ^

(118) Hjj = c1j /un  for 3“2 »” ‘ »N

(119). = (Cji -  i  U ^)1/ 2 for 1=2,-",N
k—1

(120) * (c^  - uki uk j )/ui r  I b r f l ™ ; . /

%

and

i  '

■'(121*)’ “i j * 0

The value of this method lies in the reduction of storage space
2

required for a given N. With the usual Crout method N storage 

locations are required, but the square root method requires N(N+l)/2 

storage locations since only the upper triangular portion of [C] need 

be stored and [U] can be found using only the upper triangular part 

of [C].

• A small trick 1s required 1f this saving is to be realized in

practice, since in FORTRAN IV the use of the dimension statement
2"COMPLEX C(N,N)" would set aside N complex storage locations for
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the elements of [C] even 1f only the upper triangular part of [C] 

were to be fille d  in and manipulated. To economize on storage a 

way was found to load the elements of the upper triangular part of 

[C] Into a linear array N(N+1)/2 positions long. I t  was convenient 

to preserve the double subscript notation for the matrix manipulations 

and use a simple formula to access the proper location in the singly 

subscripted linear array. A symmetric matrix [C] is shown in Fig. 42 

with the elements of the linear array S inserted into the corres

ponding locations of [C]. The order of the matrix is chosen to be 

6 for this example.

S1 sz* s3 S4 S5 s6

s7 s8 s9 S10 sn

CM
&

S13 s14 S15

• s16 S17 S18

S19 s20

S21

Fig. 42*— Storing a symmetric matrix in a linear array.

Element 1s stored 1n position S jt a ^  1nc2, etc. The element 

can accessed in the following way. The rows above 

the 1-th row contain N(1-1) -  ( (1 - l) ( i-2 ) /2 )  elements and In the 1-th 

row there are j  - 1+1 elements up to and including the one to be 

accessed, hence
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(122) c.jj = s(N(1-l) -  -fed )0"g-). 4- j  - i + i)

* s N - K ( i ^ )  + N - J ] .

In the programs the subscript manipulations are performed directly 

in the subscript or accessed by calling a function named ISUB(iJ) 

[Integer Subscript corresponding to i * j ] .  I f *  for example, ĉ g were 

needed 1n a computation the element s(ISUB(l ,5)) Is used. Once the 

factorization is completed, the back substitutions are performed.

Notice that in either the Crout method or the square root 

method there are two distinct steps. The f irs t  1s factoring the 

matrix and the second Is the back substitution. The f irs t  step is 

Independent of the driving column [B] and hence need be'done only once 

for any given matrix [C] so> any number of driving columns may be 

considered without re-factoring [C],
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