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Abstract: Numerical simulations are carried out for mixed convection flow in a vented cavity with a heat conducting 
horizontal square cylinder. A two-dimensional solution for steady laminar mixed convection flow is obtained by using the 
finite element scheme based on the Galerkin method of weighted residuals for different Richardson numbers varying over the 
range of 0.0 to 5.0. The study goes further to investigate the effect of the inner cylinder position on the fluid flow and heat 
transfer in the cavity. The location of the inner cylinder is changed horizontally and vertically along the centerline of the 
cavity. The effects of both Richardson numbers and cylinder locations on the streamlines, isotherms, average rate of heat 
transfer from the hot wall, the average temperature of the fluid inside the cavity and the temperature at the cylinder center 
inside the cavity are investigated. The results indicate that the flow field and temperature distributions inside the cavity are 
strongly dependent on the Richardson numbers and the position of the inner cylinder.  
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INTRODUCTION 

Mixed convection in a cavity is relevant to many 
industrial and environmental applications such as in heat 
exchangers, nuclear and chemical reactors and cooling of 
electronic equipments etc. In engineering applications, the 
geometries that arise however are more complicated than 
simple cavity configurations filled with a convective fluid. 
The geometric configuration of interest is of the presence 
of cylinder entrenched within the cavity. Several 
investigators have dealt conjugate heat transfer inside an 
enclosure with the presence of a body. House et al.1 
numerically examined the effect of a centered, square, heat 
conducting body on natural convection in a vertical square 
enclosure. They found that heat transfer across the cavity 
might be enhanced or reduced by a body with a thermal 
conductivity ratio less or greater than unity. Oh et al.2 
numerically studied the natural convection in a vertical 
square enclosure containing a conducting body generating 
heat, when a temperature difference existed across the 
enclosure. They analyzed the variation of streamlines, 
isotherms and average Nusselt number at the hot and cold 
walls with respect to temperature difference ratios for each 
Rayleigh number. However, Lacroix and Joyeux3 
performed a numerical study of natural convection heat 
transfer from two vertically separated heated cylinder to a 
rectangular cavity cooled from above. Later on, Lacroix 
and Joyeux4 conducted a numerical study of natural 
convection heat transfer from two horizontal heated 
cylinders confined to a rectangular enclosure having finite 
wall conductances. They indicated that wall heat 
conduction reduced the average temperature differences 
across the cavity, partially stabilized the flow and 
decreased natural convection heat transfer around the 
cylinders.  
 
Nomenclature 
 

d  Dimensional cylinder length (m) 
D Non dimensional cylinder length 
g  Gravitational acceleration (ms-2) 

k  Thermal conductivity of fluid (Wm-1k-1) 
ks Thermal conductivity of cylinder (Wm-1k-1) 
K Solid fluid thermal conductivity ratio 
L  Length of the cavity (m) 
lx Dimensional distance between y-axis and the 

cylinder center (m) 
ly Dimensional distance between x-axis and the 

cylinder center (m) 
Lx Dimensionless distance between y-axis and the 

cylinder center  
Ly Dimensionless distance between x-axis and the 

cylinder center  
Nu Nusselt number 
p  Dimensional pressure (Nm-2) 
P  Dimensionless pressure 
Pr Prandtl number 
Re Reynolds number 
Ra Rayleigh number 
Ri Richardson number 
T  Dimensional temperature (K) 
u, v Dimensional velocity components (ms-1) 
U, V Dimensionless velocity components 
V  Cavity volume (m3) 
w Height of the opening (m) 
x, y Cartesian coordinates (m) 
X, Y Dimensionless Cartesian coordinates 

Greek Symbols 
α  Thermal diffusivity (m2s-1) 
β  Thermal expansion coefficient (k-1) 
υ  Kinematic viscosity (m2s-1) 
Θ Non dimensional temperature 
ρ  Density of the fluid (kgm-3) 

Subscripts 
av Average 
h  Heated wall 
i  Inlet state 
c  Cylinder center 
s  Solid 

Abbreviation 
CBC Convective boundary conditions 
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Shuja et al.5 numerically studied mixed convection in 
a square cavity due to heat generating rectangular body and 
investigated the effect of exit port locations on the heat 
transfer characteristics and irreversibility generation in the 
cavity. They showed that the normalized irreversibility 
increased as the exit port location number increased and 
the heat transfer from the solid body enhanced while the 
irreversibility reduced. Also, the influence of vortex 
shedding on the heat transfer characteristics of the 
rectangular protruding body was conducted numerically by 
Shuja et al.6 considering heat transfer enhancement due to 
flow over a two-dimensional rectangular protruding bluff 
body. Roychowdhury et al.7 analyzed the natural 
convective flow and heat transfer features for a heated 
cylinder placed in a square enclosure with different thermal 
boundary conditions. Dong and Li8 studied conjugate 
effect of natural convection and conduction in a 
complicated enclosure. They observed the influences of 
material character, geometrical shape and Rayleigh number 
on the heat transfer in the overall concerned region. They 
finally concluded that the flow and heat transfer increased 
with the increase of thermal conductivity in the solid 
region and besides, both geometric shape and Rayleigh 
number also affected the overall flow and heat transfer 
greatly. The problem of laminar natural convection heat 
transfer in a square cavity with an adiabatic arc shaped 
baffle was numerically analyzed by Tasnim and Collins9, 
they identified that flow and thermal fields were modified 
by the blockage effect of the baffle and the degree of flow 
modification due to blockage was enhanced by increasing 
the shape parameter of the baffle. At the same time, Braga 
and de Lemos10 investigated steady laminar natural 
convection within a square cavity filled with a fixed 
volume of conducting solid material consisting of either 
circular or square obstacles. They used finite element 
method with a collocated grid to solve governing 
equations. They showed that the average Nusselt number 
for cylindrical rods was slightly lower than those for square 
rods. Recently, Das and Reddy11 investigated conjugate 
natural convection heat transfer inside an inclined square 
cavity with an internal conducting block. At the same time 
Xu et al.12 experimentally observed the thermal flow 
around a square obstruction on a vertical wall in a 
differentially heated cavity and Zhao et al.13 numerically 
investigated conjugate natural convection in enclosures 
with external and internal heat sources.  

However, there is little information about mixed 
convection processes when a heat-conducting cylinder 
exists within a vented cavity and the location of the inner 
cylinder is moved along the horizontal and vertical 
centerline of the cavity. In this situation, the flow and heat 
transfer in the cavity are largely affected by the locations 
of the inner cylinder for different Richardson numbers. The 
objective of the present study is to present comprehensive 
numerical results for the configuration as shown in Figure 
1. Finally, the effect of the locations of the inner cylinder 
for different Richardson numbers on the flow and heat 
transfer within the cavity is present and explained briefly. 

 
PROBLEM FORMULATION 

The physical model considered here is shown in 
Figure 1, along with the important geometric parameters. It 
consists of a square cavity with sides of length L, within 
which a square solid cylinder with size, d and thermal 
conductivity, ks is located. A Cartesian co-ordinate system 
is used with origin at the lower left corner of the 
computational domain. The top, bottom and left vertical 

walls of the cavity are kept adiabatic and the right vertical 
wall is kept at a uniform constant temperature, Th. The 
inflow opening located on the bottom of the left wall and 
the outflow opening of the same size is placed at the top of 
the opposite heated wall as shown in Figure 1. For 
simplicity, the size of the two openings, w is set equal to 
the one-tenth of the cavity length (L). Cold air flows 
through the inlet inside the cavity at a uniform velocity, ui. 
It is also assumed that the incoming flow is at the ambient 
temperature, Ti and the outgoing flow is assumed to have 
zero diffusion flux for all dependent variables i.e. 
convective boundary conditions (CBC). All solid 
boundaries are assumed to be rigid no-slip walls. 

 
Figure 1: Schematic of the Problem with the Domain and 

Boundary Conditions 
 

MATHEMATICAL MODEL 
The flow within the cavity is assumed to be two-

dimensional, steady and laminar with constant fluid 
properties. The radiation effects are neglected and the 
Boussinesq approximation is considered. The 
dimensionless equations describing the flow are as follows: 
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For heat conducting cylinder, the energy equation is 
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The governing parameters i.e., Reynolds number (Re), 
Richardson number (Ri), Prandtl number (Pr) and the solid 
fluid thermal conductivity ratio (K) are included in the 
preceding equations and boundary conditions are defined 
as 

( )
2Re , ,Prii s

i

g T T Lu L kRi and K
ku

β υ
υ α

−
= = = =  

The appropriate dimensionless boundary conditions (as 
shown in Figure 1) used to solve Eqs (1)-(5) inside the 
cavity are given as follows: 
At the inlet: U = 1, V = 0, Θ = 0 
At the outlet: Convective Boundary Condition (CBC), P = 
0 
At all solid boundaries: U = 0, V = 0 
At the heated right vertical wall: Θ = 1 

At the left, top and bottom walls: 
0 1,0

0
X YX Y= =

∂Θ ∂Θ
= =

∂ ∂
 

At the solid-fluid vertical interfaces of the 

block: s

fluid solid
K

X X
∂Θ∂Θ ⎛ ⎞⎛ ⎞ = ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

 

At the solid-fluid horizontal interfaces of the 

block: s

fluid solid
K

Y Y
∂Θ∂Θ ⎛ ⎞⎛ ⎞ = ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

 

The average Nusselt number (Nu) at the hot wall is defined 
as 

/

0 1

L Lh

h X

LNu dY
L X =

∂Θ
= ∫

∂
         (6) 

and the bulk average temperature in the cavity is defined as 
1

av dV
V

Θ = Θ∫                                                                 (7) 

where, Lh is the length of the hot wall and V is the cavity 
volume. 
 
METHOD OF SOLUTION 

The numerical procedure used in this work is based on 
the Galerkin weighted residual method of finite element 
formulation. The application of this technique is well 
described by Taylor and Hood14 and Dechaumphai15. In 
this method, the solution domain is discretized into finite 
element meshes, which are composed of non-uniform 
triangular elements. Then the nonlinear governing partial 
differential equations i.e., mass, momentum and energy 
equations are transferred into a system of integral 
equations by applying Galerkin weighted residual method. 
Gauss quadrature method performs the integration 
involved in each term of these equations. The nonlinear 
algebraic equations thus obtained are modified by 
imposition of boundary conditions. These modified 
nonlinear equations are transferred into linear algebraic 
equations by using Newton’s method. Finally, these linear 
equations are solved by using triangular factorization 
method. 

 
GRID REFINEMENT CHECK 
 Five different grid sizes of 3976, 4798, 6158, 6278 
and 7724 elements are chosen for the present simulation to 
test the independency of the results with the grid size 
variations. Average Nusselt number at the heated surface, 
average temperature of the fluid inside the cavity and the 
solution time are monitored at Ri = 1.0, Lx = Ly = 0.5, D = 
0.2 and K = 5.0 for these grid elements (Table 1). The 
magnitude of average Nusselt number at the heated surface 

Table 1: Grid Sensitivity Check at Ri = 1.0, K = 5.0, D = 
0.2 and Lx = Ly = 0.5 

Elements 3976 4798 6158 6278 7724 

Nu 4.84242 4.84221 4.83259 4.83287 4.83245

Tav 0.19719 0.19720 0.19723 0.19722 0.197223

Time(s) 385.219 493.235 682.985 698.703 927.359

 
Table 2: Comparison of Average Nusselt Number with 

House et al.1 

Nu 
Ra K 

Present study House et al.1 

0 0.2 0.7071 0.7063 

0 1.0 1.0000 1.0000 

0 5.0 1.4142 1.4125 

105 0.2 4.6237 4.6239 

105 1.0 4.5037 4.5061 

105 5.0 4.3190 4.3249 

 
and average temperature of the fluid inside the cavity for 
6278 elements shows a very little difference with the 
results obtained for the other denser grids. Hence, for the 
rest of the calculation in this study, a grid size of 6278 
elements is chosen for optimum results. 

 
CODE VALIDATION 

The present code was extensively validated based on 
the problem of House et al.1 We present here some results 
obtained by our code in comparison with those reported in 
House et al.1 for Ra = 0.0 and 105 and three values of K = 
0.2, 1.0 and 5.0. The physical problem studied by House et 
al.1 was a vertical square enclosure with sides of length L. 
The vertical walls were isothermal and differentially 
heated; where as the bottom and top walls were adiabatic. 
A square heat conducting body with sides of length equal 
to L/2 was placed at the center of the enclosure. For the 
same parameters used by House et al.1; the comparison of 
average Nusselt number at the hot wall is shown in Table 
2. The present results have an excellent agreement with the 
results obtained by House et al.1 
 

 
RESULT AND DISCUSSION 

Mixed convection flow and temperature fields in a 
vented square cavity filled with a horizontal square solid 
cylinder are examined. The numerical model developed in 
the present investigation is used to carry out a number of 
simulations for the parametric variation of Lx, Ly and Ri. 
The range of Ri for this investigation is varied from 0 to 
5.0 by changing Gr while keeping Re fixed at 100. In this 
simulation, the values of K and D are assigned 5.0 and 0.2 
respectively. Air is chosen as working fluid with Pr = 0.71. 
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(a)           (b) 
 

Figure 2: (a) Streamlines and (b) Isotherms for Different Locations of the Cylinder at Ri = 0.0. 
 

Flow and thermal field 
Figures 2-4 show the distribution of streamlines and 

isothermal lines for various locations of the cylinder at Ri 
= 0.0, 1.0 and 5.0 in the cavity. Figure 2(a) shows the 

distribution of streamlines for different locations of the 
cylinder at Ri = 0.0. When the inner cylinder moves closer 
to the left wall along the mid-horizontal plane (Lx = 0.25, 
Ly = 0.50), the major flow is diagonal from the inlet to the 

Lx = 0.50 
Ly = 0.75 

Lx = 0.50 
Ly = 0.25 

Lx = 0.75 
Ly = 0.50 

Lx = 0.25 
Ly = 0.50 
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(a)           (b) 
 

Figure 3: (a) Streamlines and (b) Isotherms for Different Locations of the Cylinder at Ri = 1.0. 
 

exit and an eddy with two inner vortices is developed near 
the left top corner of the cavity. Also, a very small vortex 
is appear at the right bottom corner in the cavity. Further, if 
the cylinder moves closer to the heated wall along the mid-

horizontal plane (Lx = 0.75, Ly = 0.50), the eddy changes 
its pattern from bi-cellular vortices to a uni-cellular vortex 
and the small vortex becomes disappears in the cavity. On 
the other hand, the uni-cellular vortex squeezes and thereby 
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Lx = 0.50 
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Ly = 0.50 

Lx = 0.25 
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(a)           (b) 
 

Figure 4: (a) Streamlines and (b) Isotherms for Different Locations of the Cylinder at Ri = 5.0. 
 

spreads the induced flow path. When the inner cylinder 
moves closer to the bottom wall along the mid-vertical 
plane (Lx = 0.50, Ly = 0.25), the size of the vortex is 
reduced sharply. As a result, the induced flow is spreads 
and almost covers the cavity. Moreover, if the inner 

cylinder moves closer to the top wall along the mid-vertical 
plane (Lx = 0.50, Ly = 0.75), the uni-cellular vortex near 
the left wall further spreads and a very small vortex is also 
appears right bottom corner of the cavity. The distribution 
of isotherms inside the cavity for the four various locations 
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Ly = 0.75 
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Ly = 0.25 
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Ly = 0.50 
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of the cylinder and fixed Ri = 0.0 is shown in the Figure 
2(b). As the inner cylinder moves closer to the left wall 
along the mid-horizontal plane (Lx = 0.25, Ly = 0.50), the 
uniformly distributed isotherms around the heat source 
display that the heat is mainly transported by diffusion due 
to zero buoyancy force. The isothermal lines surrounding 
the heat source seem to have no significant difference as 
the cylinder moves closer to the right wall along the mid-
horizontal plane (Lx = 0.75, Ly = 0.50) and closer to the top 
wall along the mid-vertical plane (Lx = 0.50, Ly = 0.75). In 
addition, more vertical isotherms near the hot wall 
generates when the inner cylinder moves closer to the 
bottom wall along the mid-vertical plane (Lx = 0.50, Ly = 
0.25). 
 However, Figure 3 shows the distribution of 
streamlines and isotherms for different locations of the 
cylinder at Ri = 1.0. If we compare these figures with the 
Figures 2, it is found that as Ri increases from 0.0 to 1.0, 
the effect of convection on heat transfer becomes larger. 
As a result, the intensity of the vortices in the cavity 
increases and the isotherms become nonlinear. Further, the 
distribution of streamlines and isotherms in the cavity at Ri 
= 5.0 is significantly different from that at the lower 
Richardson numbers, because the buoyancy-induced 
convection becomes more predominant than conduction. 
Thus the vortex in the cavity spreads and thereby squeezes 
the induced flow path, and nonlinearity of the isotherms 
becomes higher and plume formation is profound, 
indicating the well-established natural convection heat 
transfer in the cavity. 
 
Heat transfer 

Figure 5(i) shows the average Nusselt number (Nu) at 
the heated surface of the cavity as a function of Richardson 
numbers and for the four different locations of the cylinder. 
Nu increases generally with increasing Ri due to the 
increasing effect of convection. A carefully attention on 
Figure 5(i) shows that Nu is slightly higher when the inner 
cylinder moves closer to the top wall at Ri ≤ 1.0, but at Ri 
> 1.0 it is slightly higher when the inner cylinder moves 
closer to the bottom wall. Figures 5 (ii-iii) show the 
average temperature (Θav) of the fluid and the temperature 
(Θc) at the cylinder center in the cavity as a function of 
Richardson numbers for the four different locations of the 
cylinder. From these figures, it is seen that the average 
temperature of the fluid and the temperature at the cylinder 
center in the cavity are not monotonic with increasing Ri. 

 
CONCLUSION 

A numerical investigation is performed for laminar 
mixed-convection in a square cavity with a heat conducting 
horizontal square cylinder. A detailed analysis for the 
distribution of streamlines, isotherms, average Nusselt 
number at the hot wall, average temperature of the fluid in 
the cavity and the centerline temperature at the cylinder is 
carried out to investigate the effect of the locations of the 
conducting cylinder on the fluid flow and heat transfer in 
the square cavity for different Richardson numbers in the 
range of 0.0 ≤ Ri ≤ 5.0. Cylinder locations have significant 
effect on the flow and thermal fields. The value of average 
Nusselt number is the highest in the forced convection 
dominated area when the cylinder is located near the top 
wall along the mid-vertical plane and in the free convection 
dominated area when the cylinder moves closure to the left 
vertical wall along the mid-horizontal plane. The average 
temperature of the fluid and the temperature at the cylinder 
center in the cavity are not monotonic with increasing Ri. 

Figure 5: Effect of Various Locations of the Cylinder on 
(i) Average Nusselt Number, (ii) Average Temperature and 

(iii) Temperature at the Cylinder Center for Different 
Richardson Numbers, while K = 5.0 and D = 0.2. 
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