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Numerical solutions have been obtained for steady viscous flow past a circular c..-l;nder 

a t  Reynolds numbers up to 300. A new technique is proposed for the boundwy con- 

dition a t  large distances and an iteration scheme has been developed, based on New- 

ton’s method, which circumvents the numerical difficulties previously encountered 

around and beyond a Reynolds number of 100. Some new trends are observed in the 

solution shortly before a Reynolds number of 300. As vorticity starts to  recirculate 

back from the end of the wake region, this region becomes wider and shorter. Other 
flow quantities like position of separation point, drag, pressure and vorticity distribu- 

tions on the body surface appear to be quite unaffected by this reversal of trends. 

1. Introduction 

The problem of viscous incompressible flow past a circular cylinder has for a long 
time received much attention, both theoretically and numerically. I n  spite of many 

numerical methods and calculations, the Reynolds number Re = 100 (based on the 

diameter) appears to be the upper limit for which complete, steady flow fields have been 

reliably determined. There are many reasons for the continuing interest in this prob- 
lem and in attempts to  carry numerical calculations to still higher Reynolds numbers. 

One of these reasons is that  it is a good model problem for flows past other bodies of 

practical importance. Steady solutions for the circular cylinder become experimen- 

tally unstable around Re = 40. Use of flow control methods to stabilize unstable 

solutions could lead to  important new classes of flows, which a t  first may be studied 

more easily numerically. Many difficulties are encountered in attempts to  analytically 

describe the complete flow field. We believe that numerical methods can provide 
further information on the limiting properties of the steady flow for increasing Rey- 

nolds numbers. Questions such as the asymptotic development of the recirculation 

region (wake bubble), drag, position of separation point, vorticity and pressure distri- 

butions, etc., are all open and they are relevant to the understanding of high-Reynolds- 

number flows. 

Brodetsky (1923) suggests a solution for infinite Reynolds number in which vortex 

sheets bound an infinite wake region containing stagnant flow. This solution is often 

referred to  as the Helmholtz-Kirchhoff free streamline model because of their intro- 

duction of vortex sheets (Helmholtz 1868; Kirchhoff 1869). Both an infinite wake and 

a finite drag is in agreement with experimentally and numerically observed trends for 

low Reynolds numbers (up to  100 to 200). Batchelor (1956) gives however arguments 
against these features of the limit and suggests that  the vorticity inside the wake in the 
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limit need not be zero but can take a constant value on each side of the line of sym- 

metry. Solutions of this kind (if they exist) would allow for a finite wake and therefore 

no drag on the body. 

The most notable phenomenon we observe a t  high Reynolds numbers (Re > 260) is 

a shortening of the wake region with vorticity being convected into its interior. Our 

upper limit, Re = 300, is not high enough however to establish whether or not this new 

trend will persist. 

I n  a recent theoretical work, Smith (1979) assumes that the wake length will increase 

to infinity and that the flow will tend to the Brodetsky limit with no vorticity inside 

the wake. There are of course profound differences between the consequences he draws 

from these assumptions and our results for Re > 260. However, there are also differ- 

ences for much lower Reynolds numbers as for example his figure 3 for the skin friction 

shows. Our numerical results agree well with the comparisons he quotes and confirm 

therefore the discrepency illustrated in that figure. 

The flow problem is formulated mathematically in $2 .  In  $ 3 we discuss the most 

frequently encountered numerical difficulties. Section 4 discusses boundary conditions 

a t  large distances. The final numerical method is presented in $ 5  with the obtained 

results discussed in 9 6. This numerical method was employed for Reynolds numbers 

20-300. Some results for Reynolds numbers 2-10 are also presented, although they 

were obtained by a different technique, using a direct iteration scheme based on fast 

Poisson solvers. Since many methods work successfully in that range and the flow 

patterns are well known, this low-Reynolds-number method will not be discussed 

further. 

The extensive numerical calculations for high Reynolds numbers were performed on 

the Control Data Corporation STAR 100 computer, located a t  the CDC Service Center 

in Arden Hills, Minnesota. We wish to express our gratitude to Control Data Corpora- 

tion for making this computer system available to us. The solution of large banded 

linear systems of equations was the most time-consuming part of the present calcula- 

tions. These solutions ran about 200 times faster on the CDC STAR 100 than on the 

Caltech IBM 3701158 computer. The IBM machine was used for Reynolds numbers 

from 2 up to 10, for preliminary tests of the high-Reynolds-number method on very 

small grids and for the final data processing and graphical presentation. 

2. Mathematical formulation 

I n  terms of stream function Y and vorticity o, satisfying 

= ay /ay ,  v = - a ~ / a x ,  (1) 

(2) o = a v p x  - aulay, 

the Navier-Stokes equations can be formulated 

A T + @  = 0, (3) 

where A = a2/ax2 + a2/ay2 and the Reynolds number Re, based on the diameter d, is 
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Re = U d / v .  The quantity U is the free-stream velocity and v is the kinematic coefficient 

of viscosity. We will from now on assume that U = i d  = I. 

It is convenient to work both numerically and theoretically with the deviation from 

uniform flow 

instead of with YP. 
kcr(X,Y) = Y(X,Y) - y (5) 

A polar co-ordinate system can be introduced by the conformal transformation 

1 
[+i7 = -ln(x+iy). 

n 

(The variables 6 and 7 are connected to the usual polar co-ordinates r and # by r = ent 

and # = nrry.) The Navier-Stokes equations take in these co-ordinates the form 

A$ = -n*rZw, (7) 

here 
A = a 2 p p  + aZ/a72. 

We assume symmetry and consider only the upper half-plane. The half-plane minus 

the cylinder gets mapped into the semi-infinite strip 0 < 7 < l , <  2 0 (figure 1) .  

On the surface of the body, the boundary conditions are 

1C.(O,7) = -sin (w), (9) 

corresponding to vanishing normal and tangential derivatives of Y. Symmetry gives 

@ = 0 and w = 0 as boundary conditions on 7 = 0 and ’I] = 1. Numerically, two bound- 

ary conditions must also be supplied a t  some outer limit rm. The choice of these outer 

conditions will be discussed in detail later. One commonly used simple choice is to use 

the ‘free stream’, i.e. II. = 0,  w = 0 on this boundary. As we will see, this choice is very 

unsatisfactory. Even when applied hundreds of radii away from the body, it will lead 

to significant errors in the flow field (in particular in the vorticity) right up to the body 

surface. 
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3. Numerical difficulties for increasing Reynolds numbers 

Sooner or later numerical attempts to  simulate accurately the flow a t  increasingly 

high Reynolds numbers run into factors which limit further progress. The existence and 

the nature of such factors have rarely been discussed in the numerical literature on this 

problem. We believe however that the following list contains the main problem in this 

respect. 

1 .  How to implement boundary conditions a t  large distances. 

2. How to implement boundary conditions a t  the surface of the body. 

3. How to get a reliable rate of convergence for the numerical iterations (a rate 

which does not deteriorate seriously with increasing Reynolds numbers). 

4. How to approximate the vorticity transport equation in a way which (i) is stable, 

(ii) is a t  least accurate to  second order, ideally allowing Richardson extrapolation (or 

deferred correction) to fourth-order accuracy, (iii) makes the overall iteration scheme 

convergent. 

The item 1 above will be the subject of a detailed discussion in 94. Here, we will only 

make brief comments on the other items and then wait until 5 5, where we will see how 

the proposed method handles them. 

Problem 2 arises because we have two boundary conditions for $ and none for w ,  

where one for each variable might have proved easier to  work with. Many different 

techniques have been tried a t  the boundary. It is our impression that convergence 

problems have been present a t  this boundary in many cases. 

We believe that the limiting factor in most previous work is contained in problem 3. 

The physical problem becomes unstable with respect to unsymmetric disturbances 

around Re = 40. With symmetry imposed, stability persists much longer (for how long 

is not known). Numerical methods for the steady symmetric problem have in most 

cases involved iterations between the stream function and vorticity equations. Such 

iterations introduce an artificial time in which instabilities can be encountered quite 

early without the symmetric problem being unstable in real time. We believe this 

artificial time instability is the main reason why accurate calculations have not yet 

reached high Reynolds numbers. Our approach to  this problem is to solve the coupled 

stream function and vorticity equations rather than using one equation a t  a time in 

some iterative manner. 

The vorticity equation in steady calculations has often been solved as an elliptic 

system with a method based on the successive over-relaxation method. Local 

diagonal dominance must then be assured for the difference approximation of the 

vorticity transport process. This has led to such methods as upwind differencing (see 

Roache 1976, p. 64 for references). I n  its simplest form, using simple uncentred 

approximations for aw/ag and aw/av, the local accuracy is only first order, which com- 

putationally is extremely inefficient. Different techniques to  maintain second-order 

accuracy have been given. Allen & Southwell (1955) give a scheme which can be 

described as a continuous transition between upwind differencing and centred 

approximations. The diagonal dominance is barely maintained a t  all instances. I n  the 

limit of step sizes going to zero, the approximations become centred, and the whole 

method is therefore formally of second order. Dennis (1973) has studied this method for 

finite step sizes and has found that it works surprisingly well and may even allow 

5. How to get adequate but not wasteful resolution of all the different scales. 
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Richardson extrapolation. Another idea to obtain second-order accuracy is to extend 

the approximation width in the upstream direction. Leonard (1979) has described 

such a method. The general experience seems to be however that upwind techniques 

compare unfavourably with centred approximations with respect to accuracy. There 

is no generally accepted simple scheme which satisfies all the requirements listed under 

problem 4. 

The flow field shows a mixture of different scales for high Reynolds numbers. There 

is close to the body a thin boundary layer, which separates and extends downstream. 

Far away from the body, a narrow wake contains a sharp perturbation from free 

stream while, in all directions far out, a slow but non-trivial perturbation exists. Usual 

polar co-ordinate systems which are dense enough to resolve the wake far out will be 

very wasteful in other directions. Our choice of grids will exploit the fact that w < 1 

and @ is very smooth and governed by a simple linear equation in most of the outer 

field. 

It is not always easy to tell which of these difficulties has been the most pronounced 

in previous steady calculations. We have indicated some guesses in table 1, which 

summarizes a number of previous contributions to the problem. 

4. Far-field boundary conditions 

Two boundary conditions must be supplied a t  some finite, large distance r m  from the 

cylinder (or a t  infinity if a transformation has been made which brings infinity to a 

finite distance). Since both the stream function and the vorticity equations are of 

elliptic nature, it appears natural to supply one condition for each of the variables 

along each edge. 

Asymptotic formulas are known for @ and w as the distance r increases to infinity 

(see for example Imai 1951). The leading terms are 

Q = (&Rer)hsin$ny, erfQ = 2n-h e-@ds; with 

C, is the drag coefficient. I n  2,  y co-ordinates, this means that, to  leading order and a t  

large distances, the difference @ between stream function Y and free stream y looks 

like a simple source with equal outflow in all directions balanced by an inflow in a 

narrow region behind the body. At high Reynolds numbers, this simple picture is valid 

first a t  very large distances. Figure 2 show plots of @ for Re = 2 and Re = 200. The 

ultimate directions of some of the lines (given by ( 1  1) when C, has first been calculated) 

have also been marked. As the Reynolds number increases, CD decreases and therefore, 

according to (11)) the strength of the radial outflow. The flow behind the body is 

almost stagnant and the inflow in the 9 variable does not decrease correspondingly. 

This causes the large circulation in @ that  we see in figure 2 ( b ) .  

SD” 
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FIGURE 2.  The I) field for (a )  Re = 2 and ( b )  Re = 200. 

The vorticity far from the body is concentrated in a thin streak downstream with 

maximum strength inversely proportional to the distance. Since the question of 

boundary condition for w turns out to be much simpler than the condition for +, we 

consider that case first. 

Boundary condition for w at rm 

Vorticity is transported along streamlines and dissipated by viscosity. It is only 

because of the dissipative term that a boundary condition a t  the outflow side is needed. 

If wrong boundary values are supplied, the introduced errors will decrease exponen- 

tially upwind from this boundary. The only concern we need have is purely numerical. 

The computed values must not fall apart into staggered mesh oscillations far into the 

region. That would normally happen if values for w are given on the boundaries and all 
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approximations are centred and accurate to second order. Upwind approximations of 
the vorticity transport would solve the problem, but with a loss of accuracy. Our 
choice is to use centred approximations, but impose aw/a( = 0 on the boundary (by 

equating the values on the last two mesh lines). As we noted, the problem did not need 

any information from the outer boundary and this method prevents the possibility of 

staggered mesh oscillations. 

Boundary condition for $ at r ,  

The question of boundary conditions for $ is more involved. The quantity $satisfies in 

(, 7 co-ordinates 

Actual physical information has to be supplied through the outer boundary, and it will 

propagate immediately to the interior. A distance r = 100 corresponds to ( = 1.47 and 

r = 1 0 6  to c = 4.40. The use of a large r ,  together with inaccurate boundary values 

does not give a reasonable accuracy. Also, as we will see, we want to avoid numerical 

calculations for large values of r because of increasing differences between the scales 

in the problem. 

A$ + +r2w = 0. (7) 

We will consider four different choices of boundary condition for 4. 
(a )  Free stream (using $ = 0 on the outer edge). 

( b )  One term of the Oseen approximation (equation (1 1)) .  

( c )  Normal derivative zero (a$/a< = 0). 

( d )  ‘Mixed condition’ connecting $ and a$/a[ on the boundary. 

We will briefly discuss the justification for each of these choices and then use two tests 

to assess their accuracy and usefulness. These tests are: 

(i) to plot $ and w when we move r ,  in and out and see how much the flow picture 
changes ; 

(ii) to display the maximum vorticity on the body surface as a function of r ,  with 

the different choices of boundary condition. 

(a )  Free stream 

We know that $ for large [ will tend to a linear function in 7 (with a jump a t  g = 0) and 

that the values of 4 satisfy a Poisson equation in < and 7. The use of the free stream, 

i.e. imposing $ = 0 a t  some small Em, seemsvery crude. Nevertheless, as table 1 showed, 

this has been used in most cases even for very small values of r,. Therefore the method 

has to be studied for accuracy. Figure 3(a )  shows the result of test 1 a t  Reynolds 

number Re = 2 using r ,  = 23.1 and r ,  = 91.5. We can easily conclude that large 
errors have been introduced. In  particular, the vorticity field has changed even up to 

the body surface. Figure 4 ( a )  shows that the maximum vorticity on the body surface 

is as much as 20 yo in error with respect to r ,  = 23-1. Figures 4 ( b ,  c) show that large 

errors also persist for high Reynolds numbers. (Note that larger r ,  have been used in 

figures 4 b, c.)  

(b)  One term of the Oseen approximation 

The use of this boundary condition requires knowledge of the drag coeficient C,. This 

can be evaluated from the current approximation of the flow field a t  each iteration by 

means of a line integral around the body. Figures 2 (a ,  b )  indicate that this boundary 
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Figure 4 (a, b) .  For legend see page 829. 

condition can be expected to be accurate a t  most for very low Reynolds numbers. 

Figure 3 ( b )  and 4 ( a )  show however quite significant errors already for Re = 2. We did 

not try this method for higher Reynolds numbers. 

( c )  Normal derivative zero 

This condition is as easy to apply as free stream (for instance, it requires no evaluation 

of C,). It is a 'softer' condition than $ = 0 and is consistent with the picture of 
equilines of $ eventually going in the direction (radially out from the body every- 

where apart from in the wake where it is radially in towards it). Test number 1 in 

figure 3 ( c )  shows this method to be superior to the previous methods a t  a low Reynolds 

number. Both the justification and the actual performance of this boundary condition 

decrease however with increasing Reynolds numbers as figures 2 and 4 (a,  b )  show. 
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FIGURE 4. Comparison between different outer boundary conditions for + at (a )  Re = 2, 

( 6 )  Re = 40 and (c) Re = 200. 

We feel that, for practical purposes, this condition completely solves the problem of an  

easy and accurate boundary condition for $ a t  Reynolds numbers up to about 40. 

( d )  ' M i x e d  condition ' method 

Let us start the description of this technique with some observations. I n  f ,  y co-ordi- 

nates, the vorticity decays like O(e-*c) along the 6 axis. This vorticity enters as right- 

hand side in the equation (7)  for $. These small values of w are scaled up by the factor 

r2 which is large a t  large distances. We know that the net effect of this is that @ con- 

verges to a linear function of y (with a jump a t  y = 0 )  as r tends to infinity. From 

figure 2 ( b )  howeverwe know that, for reasonable distances and high Reynolds numbers, 

$ behaves in a non-trivial way for all values of y, not just for y z 0. It is desirable to 

apply a boundary condition so close to  the body that the thin transition around 

7 = 0 and the slow variation for all y can both be resolved by the same grid. The 

further out the boundary condition is applied, the more severe will the mixing of scales 

become. 

Figure 5 shows what w and 4 look like in f ,  y co-ordinates a t  R e  = 200. A dotted line 

is drawn where we would like to implement the boundary condition. According to our 

previous discussion of boundary conditions for w ,  we can expect to have fairly accurate 

values of w available close to this line. There are two reasons why $, determined from 

the linear equation (?), takes non-zero values below this line. Let us write $ = 41 + $2 

with the two components $l and 

(i) There is a thin streak of vorticity along the < axis. It decays and gets thinner but 

the factor r2 in ( 7 )  enhances the influence of vorticity a t  large distances. The net effect 

of this streak of vorticity is that $for large values of 6 converges to a function of T,- with 

a jump of y = 0 (as given by equation (11)). I n  the thin region where vorticity is 

corresponding to  the two reasons below. 
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present, a2$Ji3g2 is very small compared to a2$1/8q2 so satisfies approximately 

for constant <. 
far out since they are 

coupled by equation ( 7 ) .  Far out, we can think of this influence as a potential flow with 

$2 satisfying 

(14) 

(ii) The values of $ close to the body influence the values of 

a2$2 a2+2 F+W = 0. 

(The right-hand side in (7)  is already taken care of in equation (13) for The bound- 
ary conditions for $2 are $2 = 0 a t  the three sides q = 0 ,q  = 1, < = 00 and unknown a t  

6 = As figures 2 ( b )  and 5 clearly show, this term $2 is important along the full 
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extent of the outer boundary. The Oseen approximation assumes the flow in the wake 

to depend on the drag only and fails to describe this part $2 of the solution for $. 
These observations lead us to  the following method: 

( a )  We suppose a guess $* for the variable $ is available a t  < = &. 
( b )  With o known at two mesh lines close to .$,, we can use (13) to solve for 

(two-point boundary value problems) on these fines and thus get an  approximation for 

( c )  We evaluate $2 = $* - $l a t  [ = 5,. Since $2 satisfies (14), we can easily (Fourier 

decomposition) find &,kz/a[ a t  [ = Em. (Note that this does not require any numerics to 

be performed beyond Ern.) 
( d )  Given the guess $* = $1 + $2 we have thus found a$l/a[ and 8$2/8[, i.e. given 

$ we know a$/a<. This is exactly the right form of a mixed condition to be imposed on 

( 7 )  a t  [ = 6,. We can put this relation in the form: Given $ on the next to the last mesh 

line, we can find it on the last line. That formulation is ideally suited for iterative 

methods to solve ( 7 ) .  

Figures 4 (b ,  c )  show how this condition works for Re = 40, 200 respectively. We did 

not try it for Reynolds numbers lower than 40 since the simpler condition a$/a[ = 0 

worked sufficiently well there. 

As a summary, it appears that the use of the simple a$/a< = 0 for Reynolds numbers 

up to about 40 and the mixed condition for higher Reynolds numbers solves the 

question of boundary condition for $ at large distances. 

Dennis (1976) also points out the insufficiency of the free stream as the outer bound- 

ary condition and proposes a technique based on matching w ,  &/a[, $ and a$-/a< 
between an inner region governed by the Navier-Stokes equations and an outer region 

governed by a simplified version of the equations. The approach suggested for the 

outer region differs in many respects from our observations of the flow pattern and our 

conclusions from it. I n  particular computations are performed throughout this outer 

region (to find both $ and w ) ,  and the simplified equations have terms in a2/ag2 
dropped. The term a2$/a[2 is assumed to be small compared to a2$/av2 a t  large 

distances. This leads to parabolic equations which can be marched for both $ and o. 

Both the economy and the justification of such an approach seem unclear to us in 

the light of our previous discussion. 

w . , / a <  a t  5 = Em. 

5. Numerical method for steady solutions 

The main problem that a method for steady solutions a t  high Reynolds numbers 

must solve is the one of assured fast rate of convergence for the discrete approximating 

equations. Since the real physical problem may be unstable, any iteration technique 

which can resemble artificial time may have convergence problems. This danger is 

entirely circumvented with the use of Newton’s method for the discrete nonlinear 

system of equations. With an initial guess close enough to a simple solution, quadratic 

convergence is assured. Many iterative methods fail to converge as moving wave 

patterns appear in the artificial time. Because of the quadratic convergence, such 

waves cannot appear in this method. The price to be paid for this guaranteed perform- 

ance is a comparatively high computational cost. This is no longer a major concern 

with the introduction of extremely powerful array processors. 

We have already remarked that the problem involves different scales. Vorticity is 
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FrauRE 6. Steps in the mapping of the inner region, c = 0.2. (a) x plane; 
(a) p plane; ( c )  z plane; ( d )  5 plane. 

only present at  the body and in a streak downstream from it. This region is the only 

one where the problem is truly nonlinear. Outside that region, we have only to solvo 

A$ = 0. (15) 

The solution to this equation only changes on a large scale. This clearly suggests the 
use of two different grids with different numerical methods on them. 

The dotted region in figure 6 (a )  is a suitable computational region for the nonlinear 

part of the flow field. A conformal mapping of a region of such shape to a rectangle can 

be achieved explicitly. For instance, setting p = x* maps the upper half-plane minus 

the unit circle (figure 6a)  into the region in figure 6 ( b ) ,  and z = c(p - l / p )  maps the 

segment of the unit circle onto the imaginary axis and leads t o  region in the figure 6 ( c ) .  

In  these figures and in the following computations, the constant c was given the value 

0.2. Finally, we want to obtain a mapping which resembles the original x, y system far 

downstream and the z co-ordinates close to the surface. This suggests a final step 

5 = z( I + z2 )  c - ~ .  The real and imaginary axis are kept from the z plane but the cubic 

term cancels the cube root in the initial step (figure 6 4 .  

We put a rectangular grid in the 5 plane as is shown dotted in figure 6 (d) .  Its  images 

in the other planes are shown in figures 6 (a-c). (Changing the constant c affects the 

width of the mapped wake region in the x plane.) The complete mapping from x to 5 
can be written as 

z = c(x4 - 1/99), 1 
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and it can be inverted in closed form (choosing principal branches) by 

833 

With the notation x = c+ ir and 6 = a + ip equations ( 7 )  and ( 8 )  take, in the 6 plane, 
the forms 

aa2 ap2 2 aa'ap ap*aa aa: 'ac  aa aw ap aB)/M) a t  I 0, (19) ( 
a2w a2w Re a$ aw a$ aw -+-+- - --- -- - -+-.- 

where M = 

real and imaginary parts of the complex function 
+ (a/3/a<)2. The functions aa/ac and ap/ag can be evaluated as the 

(20) 
a< az ap ( 1 + 3 z 2 ) ( p +  l i p )  

ax a2 'ap'ax 3xc2 
_ _  - -- - -- 

In  a further transformation step, the grid was compressed close to the body and 

stretched far out by the change 

where c1 and c2 are constants (0.008 and 0.1 18 respectively in our work). A rectangular 

region in the y ,  p plane is now discretized equidistantly. On this rectangular grid in the 

y, p plane, we approximate the transformed Navier-Stokes equations in the straight- 

forward way with centred, second-order approximations. On this inner grid, $ was 
given on all the boundaries and also a$/ay on the body surface. For w ,  no condition was 

given on the surface, w = 0 on top and bottom boundaries and aw/ay = 0 on the right 

side boundary (large distance). When we used our fine grid (65 x 114 pointsin the p and 

y directions respectively, corresponding to an outer boundary approximately 600 radii 

from the body), the condition involving the normal derivative a$/ay at the surface 

was approximated using a centred approximation with an artificial point inside the 

body. Use of (18 )  a t  the surface allowed this inside point to be eliminated, giving a 
relation between w at the surface and $ at the mesh line nearest the surface. The less 

accurate method of approximating a$/ay by a one-sided stencil out from the body 

(and no artificial point inside the body) is also satisfactory in this problem, and was 

used in our calculations on the coarse inner grids (33 x 4 4 , 3 3  x 52 and 33 x 86). 

The discretizations we have described lead to a large coupled nonlinear system of 

equations with the same number of equations as unknowns. Newton's method is now 

used to solve this system. To describe the structure of the Jacobian matrix for this 

system, we need some additional notation. Assuming the grid in the y ,  /3 plane is of 

size N x M ,  we let 

a: = c l ( e c ~ ~ -  11, (21 )  

w3, -.., W N  

27 P L M  98 
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FIGURE 7. Structure of the linear system in Newton's method. 

be vectors of length M - 2 containing the values of o along the M - 2 interior points in 

the p direction on the N different grid lines. (For example w1 contains the values of the 

vorticity on the body surface.) Similarly, we use 

$17 $2, $3 $N 

for the function $. Further, let 

Rwz, Rw,, ..., RwN-1, 

R$2> R$3, ..'> R$N-1 

be vectors containing the residuals in the vorticity and stream function equations 

centred along lines 2 to N - 1. Finally, 

RBCII.1, RBCwN, RBC$N 

are the residual vectors for the boundary conditions on lines 1 and N .  (Since is 

known, we do not enter as an unknown. RBC$, refers to  the second condition, 

aglay given.) 

The Jacobian coefficient matrix takes a shape which'directly reflects the shapes of 

the approximating stencils. The particular ordering of the equations and the unknowns 

in the linear system shown in figure 7 may a t  first look irregular. This ordering, however, 

leads to  a coefficient matrix which easily simplifies to a form well suited to numerical 

solution. As a first step in solving the system, we superpose multiples of the equations 

in the first N - 2 (block) rows to eliminate all entries in the bottom right major block. 

The bottom left major block then assumes a 13-diagonal form, which is completely 

confined inside the dotted region in figure 7. Figure 8 shows the structure of this band 
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FIGURE 8. Structure of the 13-diagonal banded coefficient matrix. 

General grid size 
M x N  

Size of reduced Bandwidth 4 x M - 7  
banded system to Number of 

solve equations ( M - 2 )  x ( N +  1) 

numerical solution LU-decomposition - 
Back substitution - 

(estimate) 
LU-decomposition - 

Computer time for CDC STAR-100: 

IBM 370/158: 

Grids used in present work 

Coarse grid Fine grid 
6 5 x  114 

--7 

33 x 48 

125 253 

1519 7245 

2.55 s 29.33 s 

0.22  s 1.25 8 

8 min 1 h 40 min 

TABLE 2.  Sizes and computer times for banded linear systems. 

matrix (with the lines displaced sideways so that the diagonals go vertically down in 

the picture). The approximate cost of solving this banded system is shown in table 2. 

TheLU-decomposition for the 65 x 114grid requires approximately470 x 106additions 

and multiplications. Using FORTRAN with no special optimization, this required 29.33 

seconds (including all non-arithmetic operations like loop control, partial pivoting 

7.7-2 
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FIGURE 9. An example of the superposition of outer and inner grids. 

etc.) on the CDC STAR 100, giving an average speed of about 16 Mflops (Million 

floating point operations per second, 64 bit wordlength). 

The 13-diagonal system we obtained after the initial elimination could have been 

generated more directly first by analytically eliminating’w between (18) and (19) and 

then by approximating the resulting fourth-order biharmonic-type equation for 4 with 

standard centred approximations. It is not clear which is the better method by which 

to  generate the final banded system. 

As we have observed earlier, $ behaves non-trivially in all directions from the body 

ev-en a t  large distances. If  w is known inside the wake, * can be found everywhere 

from the simple equation ( 7 ) .  To solve this equation, we use a modified polar grid 

(, 7‘ with 5, 7’ given by 

(22) 

On this grid, we discretize 6 and y‘ equidistantly. Figure 9 shows a typical case of inner 

and outer grids superposed onto each other. 

We can now describe the complete method. Assuming we have an initial guess for 

$ and w ,  we carry out the following steps: 

1. Perform one Newton iteration on the inner grid. This gives an improvement in w 

(and in $). 

2 .  Interpolate w to the outer grid using two-dimensional cubic splines (fourth-order 

accurate). 

3. Solve the Poisson equation for II. on the outer grid (with the ‘mixed’ boundary 

condition a t  the outer boundary). This solution is obtained by ‘black-red’ ordered 

successive over-relaxation (SOR). 
4. Interpolate these new 4 values back to the edges of the inner grid. Return to 

step 1 .  

When the grid sizes become large, step I is the most expensive one. It also converges 

quadratically while the iterations between the grids only converge linearly. For these 

1 
[ + i y  = - h ( x + i y ) ,  7‘ = 74. 

7T 
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reasons, we perform only one Newton iteration for each outer iteration. I n  the step 4, 

over- and under-relaxation can be used when the values of @ on the edge from the 

previous iteration are corrected with better approximations. The use of relaxation 

factors between 0.5 and 1.5 (rather than 1.0 corresponding to using only the new 

approximation) led in all cases to an overall convergence with a factor of about 10 

during each full cycle over steps 1-4. Six to  eight digits of accuracy in solving the non- 

linear system (truncation errors are probably larger) thus required about eight itera- 

tions. Complete computer times, including all overhead, ranged from between 1 and 

2 minutes for a 33 x 48 inner grid and between 6 and 8 minutes for a 65 x 114 inner 

grid. These times were independent of the Reynolds number. 

Direct jumps in Reynolds numbers 20-40-100-1 30-160-200-230-260 were used 

with the 65 x 114 inner grid. I n  the proximity of Reynolds number 300 smaller con- 

tinuation steps were needed: 260-275-285-290-295-297.5-300. If the initial guess was 

not sufficiently close to  the solution, the Newton iterations diverged, first in the areas 

where the guess (the solution a t  a previous Reynolds number) was least accurate. This 

was in the region where vorticity recirculation was observed. The changes were there 

very rapid as a function of the Reynolds number. Since Reynolds number 300 also is 

close to the upper limit a t  which results are reliable due to truncation errors (calcula- 

tions on a grid twice coarse began to deviate significantly shortly before Reynolds 

number 200) and since further mesh refinement would have been too costly, no effort 

was made to reach still higher Reynolds numbers. We found no indication of any kind 

that any principal problem was present, which might have prevented further increases 

in Reynolds number, had a finer grid been used. 

We will now discuss how the proposed method handles the difficulties that were 

listed in $3. 

1. Boundary conditions a t  large distances were discussed in detail in $4.  We applied 

the ‘mixed ’ boundary condition t o  the outer grid only. A Dirichlet condition, obtained 

by interpolation from the outer grid, was used for the inner grid. Since the outer grid 

was handled by SOR, the ‘mixed ’ condition was easily implemented. 

2. The problem with boundary conditions a t  the surface of the body was that we 

had two conditions for 9 and none for w ,  when one for each variable might have been 

easier. With Newton’s method, all that  is required to obtain quadratic convergence is 

the correct number of equations, an isolated solution, and a sufficiently good initial 

guess. The fact that there was not one condition for each of the variables @ and w has 

become completely irrelevant. 

3. Quadratic convergence is assured in Newton’s method for isolated solutions. This 

excludes every possibility that waves or similar features may move in artificial time 

during the iterations. (The linearly convergent outer-inner iteration to find boundary 

values for $ for the inner grid could conceivably have failed to converge.) 

4. Since convergence on the inner grid has been assured, there is no longer any need 

to introduce special stencils or other methods to stabilize the vorticity transport 

approximation a t  the expense of the accuracy. Second-order centred approximations 

satisfy all the three requirements. Since the interpolation between the grids was 

fourth-order accurate, overall fourth-order accuracy could have been obtained by 

Richardson extrapolation. 

5. The chosen grids, with the inner one refined a t  the body surface, seemed to give 

suitable resolution in all regions. It was possible to use a much cheaper numerical 



838 B. Fornberg 

~ ~- - 
+ .  
0 1 2  5 10 15 20 25 30 35 40 45 50 

20 25 30 35 40 45 50 0 1 2  5 10 15 

0 1 2  5 10 15  20 25 30 35 40 45 50 

A+\. . .- 
0 1 2  5 10 15 20 25 30 35 40 45 50 

FIGURE 10 (a-f). For legend see page 839. 

technique in those regions where the equations were without special nonlinear 

difficulties. 

6.  Results 

There are many questions on the limiting flow fields at  high Reynolds numbers that 

remain open. Although this investigation does not solve any of them, distinct trends 

for increasing Reynolds numbers can be seen in several cases. The most striking feature 

we notice is a recirculation of vorticity from the end of the wake region, starting around 

a Reynolds number of 260. This leads to quite sudden changes in some flow quantities 
like the length and the width of the wake region while other quantities, such as the 

vorticity and pressure distributions on the body surface and the drag, seem quite 

unaffected. The rest of this section contains a discussion of the results, mainly focusing 

on the numerical aspects rather than on the physical consequences of the observations. 

As was mentioned in the introduction, the results for Re = 2 to 10 were not obtained by 

the present method, and are of comparatively low accuracy and graphical 
resolution. 

Figures 10 and 11 show the streamlines and the vorticity fields for Re = 2 to 300. We 

notice a recirculation of vorticity, clearly developed beyond Re = 290 but suggested 
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FIGURE 10. Streamlines at different Reynolds numbers. (a) Re = 2 ;  ( b )  Re = 4;  ( c )  Re = LO; 

(d )  Re = 2 0 ;  ( e )  Re = 40; (f) Re = 100; (9)  Re = 200; (h) Re = 230; ( i )  Re = 260; ( j )  Re = 290; 

( k )  Re = 295; ( I )  Re = 300. 

by the vorticity fields already at Re = 200, 230. This widening of the region with 

vorticity causes the separating streamline to close nearer the body. (The small ‘island’ 

of low vorticity in figure 11 ( I )  should be connected with the thin streak approaching 

it from the left. The vertical mesh resolution was not sufficient for representing this 

streak continuously.) 

To ensure as far as is possible that the observed features of the flow fields are real 

and not peculiarities of the discrete approximations, we checked the independence of 

these solutions to changes in the grid sizes. Halving the densities of both outer and 

inner grids from 129 x 132, 65 x 114, respectively, to 65 x 52, 33 x 48 (also, corres- 

ponding to a smaller total region) only offered sufficient resolution power up to a 

Reynolds number of around 150. Figures 12 (a)-(h) compare the flow fields using these 

different grids for Re = 20 and 200. The discrepancies are quite large a t  Re = 200 but 

the figures show that the beginning of a trend towards a recirculation of vorticity, is 

present on both grids. At Re = 290, only the fine grid could be used, but we have a 

parameter c available in the conformal mapping for the inner grid. This constant c was 

changed from 0.2 to 0.25 and 0.3. This corresponds to halving the vertical extent of the 

inner grid (i.e. doubling the vertical grid density). Figures 13(a)-(f) show the effect 
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FrGURE 11 (a-f). For legend see page 841. 

these changes had on the computed flow fields. We note a slight movement of the line 
for equal vorticity. The vorticity in this outer area is almost constant and the point- 

wise change is much smaller than the movement would seem to suggest. 

Figures 14 (a)-(d) show details of the flow pictures (with data taken from the inner 

grid) close to  the body for Reynolds numbers 20 and 300 and figure 15 the distribution 

of vorticity on the body surface. The structure and position of the separation point is 

not completely understood. Theory based on the Helmholtz-Kirchhoff model pre- 

dicts that, as the Reynolds number goes to infinity (Bordetsky 1923) the separation 

point may move forward to  an angle of 55’ (measured from the front). Our results (and 

this possible limit) are shown in figure 16. The width of the wake bubble and the 

position of its end (measured from the centre of the circle) are shown in figures 
17 (a,  6 ) .  Table 3 compares the length with earlier results. 

There are several ways to calculate the pressure in the flow field and the pressure 

on the body surface in particular. In  5 , ~  co-ordinates, the pressure satisfies (r = enl) 
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FIGURE 11. Vorticity fields at different Reynolds numbers. For (a)-(Z) see figure 10. 

and the Poisson equation 

with boundary conditions 

i p 'f = O  on 7 = 0  and 7 = 1 ,  

p = 0 on f l  = grn (infinity). 

In  equation (25), T can be replaced by 9 (with no further changes in the equation). 

methods to find the pressure at the front stagnation point: 
With 9 and therefore Y known from our calculations, we employed three different 

1. We solved the Poisson equation (25) with boundary conditions (26). 

2. Weevaluatedthelineintegral(23)from far upstream, [ = f lm,  to fl  = 0 with 7 = 1. 

3. We evaluated the line integral (23) from 6 = Ern to  f l  = Er with 7 = 1.  with (24) 

along a half-circle to fl  = flT, 7 = 0, with (23) to fl  = 0, 7 = 0, and finally with (24) along 
the surface to  6 = 0 , ~  = 1. Figure 18 shows this path. 

Table 4 gives the results obtained with these three methods. 

Method 1 seems quite accurate for low Reynolds numbers only. Aloss of accuracy,for 
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FIGURE 12. Comparison between results on coarse and fine computational grids. Re = 20, (a) 

coarse grid, ( b )  h e  grid, (c) coarse grid, (d )  fine grid. Re = 200, ( e )  coarse grid, (f) h e  grid, 
(9)  coarse grid, ( h )  fine grid. 

high Reynolds numbers is caused by an increasingly singular behaviour of the right- 

hand side of (25), in particular towards the end of the wake bubble. 

Method 2 works well for high Reynolds numbers, but cannot handle low Reynolds 

numbers well. This is because vorticity is then present quite far in front of the body. 

This integration can only use values from the outer grid, since the inner grid does not 

reach the inflow axis. Vorticity was assumed to be absent in this outer region. Although 

interpolation ofw from the inner grid was performed, the term - 2wJRe was not avail- 

able with high accuracy. 

Method 3 was chosen in order to avoid the problem in the two previous methods. It 
probably gave the best overall accuracy. A consistency check was obtained by chang- 
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FIGURE 13. Numerical solution at  Re = 290 for different values of the parameter c in the mapping 
for the inner grid. (a)  c = 0.2, ( b )  c = 0-25, (c) c = 0.3, (d )  c = 0.2, ( e )  c = 0.25, (f) c = 0.3. 

ing the radius of the outer circular part of the path. In  no case did a change within the 

range r = 2 to r = 16 lead to more than a 0-8 yo variation in the calculated pressure. 

The integration from the back to the front stagnation point used data from the inner 

grid, and should be of high accuracy. For this part of the path equation (24) simplifies 

(27) 
to 2 

Pq = Fey, 

since 'Ft and 'Fq both are zero on the surface. 

Table 4 gives the values we have accepted as most likely for the front and back 

stagnation point pressures. They are also displayed in figure 19. We note that the 

trend for the rear stagnation pressure appears to be to pass zero towards positive 

values. This is consistent with Batchelor's limiting solution but is not consistent with 

the Kirchhoff-Helmholtz solution, where the pressure is zero everywhere inside the 

wake. (A Reynolds number of 300 is much too low however to give reliable evidence on 

the final limit.) The pressure distributions over the body surface is shown in figure 20. 

Table 5 compares the front stagnation pressures we obtained with previously published 

results. 
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FIUURE 14 ((I, b ) .  For legend see page 845. 

The drag D on the cylinder is given by 

D = pU2aCD, (28) 

where p is the fluid density, U the free stream velocity, a the radius of the cylinder and 

C, the drag coefficient. This non-dimensional coefficient C, can be evaluated by a line 

integral around the body, choosing for example a circle with radius r .  The formula for 

C, = { ( ~ ~ - ~ ~ ) c o s n y - 2 ~ ~ ~ , s i n ~ y } d y  

CD is 
1 '  

0 
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(d )  

-1 0 1 2 

FIGURE 14. Details of the flow pictures for Re = 20 and Re = 200. Re = 20, (a) stream function, 
(b) vorticity. Re = 200, (c) stream function, (d )  vorticity. 

Evaluation ofC, using different radii r gives to some extent a consistency check on the 

solution. This integral is however subject to severe numerical cancellations, especially 

around the end ofthe wake region a t  high Reynolds numbers. This can be seen by direct 

inspection of the integrands. It may also be concluded from the fact that the trape- 

zoidal rule and Simpson’s rule on the same data give quite different results (with the 

first ones more nearly independent of the radius). In  figure 21 we show C, as a function 

of r for Re 20 to 300. With the exception of the last case, there are three curve5 corre- 

sponding to the coarse and fine grids (outer grids 65 x 52 and 129 x 132 respectively) 

and the Richardson extrapolated result. The differences between these curves and 

their independence of r for small radii suggest that 

at  Re = 20, C, = 2-0001 5 0.0002, 

at Re = 40, C, = 1.4980 f 0*0005, 

a t  Re = 100, C, = 1.058 0.001, 

at Re = 200, C, = 0.829 5 0.002, 

a t  Re = 300, C, = 0.722 f 0.003. 

These values of C, are displayed in figure 22. 
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FIGURE 15. The vorticity distribution over the body surface. 

1 2 4 10 20 40 100200400 

FIGURE 16. The position of the separation point. 

R e  

The error estimates are, however, by no means completely certain. For example, they 

do not take into account possible errors caused by a too restrictive computational 

region in front of the body for low Reynolds numbers. We do however believe that 
error to  be small. 

The irregularity close to the surface in figure 21 comes from the fact that we used 

values of ~ and w from the outer grid only. That grid was designed for evaluation of$ 

at large distances and is too coarse for drag calculations close to the surface. Table 6 

compares our estimates for C, against others published previously. We believe the 
discrepancies in almost all cases are mainly due to the inaccurate ways in which the 

outer boundary conditions have been handled. For example calculations at  Re = 2 
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I I I 1 I l l  - 
0 20 40 100 200 230 260 290 300 Re 

0 20 40 100 200 230 260 290 300 R e  

FIGURE 17.  The width (a )  and length ( b )  of the wake bubble. The length is measured 

from the centre of the cylinder. 

showed a change in C, from 7.87 to 6.92 (errors about 19% and 5 % )  when a free- 

stream boundary condition was applied a t  r = 23.1 and r = 91.5 respectively. The 

results in closest agreement with ours are those obtained by Dennis (1976) for Re = 20 

and 40 with use of his improved boundary conditions (C, = 1-998 and C, = 1.494 

respectively). 

There are several questions pertinent to the flow field which we did not specifically 

address. For example, there is a possibility that non-unique, steady, perhaps un- 

symmetric, solutions for high Reynolds numbers may exist. We did not detect any 

evidence of simple bifurcations or turning points on the main solution branch up to 
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FIGURE 18. The integration path for the pressure calculation. 
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FIGURE 19. The pressure at (a) the front stagnation point and ( b )  the rear stagnation point. 
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Pressure at front stagnation point 

, 
Method Probable 

Reynolds > correct I 
h 

number 1 2 3 value 

20 0.649 0.604 0.640 0.64 

40 0.586 0.562 0.571 0.57 

100 0.543 0.528 0.523 0.53 

200 0.490 0.514 0.506 0.51 

300 0.415 0.508 0.499 0.51 

Pressure at 
rear 

stagnation 
point 

- 0.27 

- 0.23 

-0.17 

- 0.12 

- 0.09 

TABLE 4. Pressure at stagnation points calculated by different methods. 

0.4 

0.2 

0 

-0.2 

-0.4 

-0.6 

-0-8 

-1.0 

Pressure 

R e = 2  

J 
FIGURE 20. The distribution of pressure over the body surface. 
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FIGURE 21. The computed drag coefficients Co as functions of Reynolds number and radius of 
integration path. ... , coarse grid ; .. -, fine grid ; -, extrapolation. 

Re = 300. Any such singularities would most likely have led to a breakdown or slowing 

up of the inner-outer iteration or a singularity of the Jacobian matrix in the Newton 

method. We monitored the determinant of this matrix and figure 23 shows the log- 

arithm of it. Although we did not find any evidence of non-uniqueness we cannot 

exclude the possibility of entirely different classes of solutions, even a t  Reynolds 

numbers lower than Re = 300. 

This research was supported by Control Data Corporation and by D.O.E. (Office of 
Basic Energy Sciences). 



R
e
y
n

o
ld

s 
n

u
m

b
er

 
...

 
2

0
 

3
0

 
4

0
 

5
0

 
6

0
 

1
0
0
 

2
0

0
 

3
0

0
 

5
0

0
 

T
a
k

a
m

i 
&

 K
e
ll

e
r
 (

1
9

6
9

) 
2

.0
0

2
7

 
1
.7

1
6
7
 

1
.5

3
5

9
 

1
.4

1
8
2
 

1
.3

2
4
6
 

-
 

D
e
n

n
is

 &
 C

h
a
n

g
 (

1
9

7
0

) 
2

.0
4

5
 

-
 

1
.5

2
2
 

-
 

-
 

1
.0

5
6

 
-
 

-
 

-
 

N
ie

u
w

st
a
d

t 
&

 K
e
ll

e
r
 (

1
9

7
3

) 
2
.0

5
3
 

1
-7

3
3

 
1

.5
5

0
 

G
u

sh
ch

in
 &

 S
c
h

e
n

n
ik

o
v
 (

1
9

7
4

) 
-
 

1
.8

0
8
 

-
 

1
.5

1
9
 

-
 

D
e
n

n
is

 (
1

9
7

3
) 

1
.9

9
8

 
-
 

1
.4

9
4
 

P
r
e
se

n
t 

w
o
rk

 
2

.0
0

0
1

 
-
 

1
.4

9
8

0
 

-
 

-
 

1
.0

5
8

 
0

.8
2

9
 

0
.7

2
2
 

-
 

-
 

-
 

-
 

8
 

-
 

-
 

-
 

-
 

2
 

1
.1

6
7
 

0
.9

6
8

 
-
 

0
.9

0
2

 

%
 

-
 

-
 

-
 

-
 

-
 

-
 

2.
 

-
 

-
 

Q
 

0
 

T
A

B
L

E
 6
. 

D
r
a
g
 c

o
e
ff

ic
ie

n
t.

 



864 

2 '  

0" 1 -  

B. Fornberg 

b 

24000 

23800 

23600 

23400 

- 23200 

Z 23000 

- 22800 

2 22600 

22400 

22200 

22000 

21 800 

5 
-0 

I 

0 
M 

\ 

\ 
'x 

\ 

A 

- 

- 
- 

- 

- 

- 
- 

- 
/ 

/ 
/ 

- 

/ 
/ 

- 

- / x  
/ 

I I I I  I I 1 1 1 1  * 
0 20 40 100 200 230 250 275 300 Re 

\ 
\ 

0 20 40 100 200 230 260 290 300 Re 

FIGURE 22. The drag coefficient as a function of Reynolds number. 

/ 
/ 

/ 

, 

FIGURE 23. The determinant of the Jacobian matrix for different Reynolds numbers. 
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