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In this paper, the dynamics of an interface under the influence of surface tension is studied 
numerically for flow in the Hele-Shaw cell, where the interface separates an expanding bubble 
of inviscid fluid from a displaced viscous fluid. Of special interest is the long-time behavior of 
the so-called q-pole initial data, whose motion is explicitly known and globally smooth for the 
zero surface tension flow. The numerical method is spectrally accurate and based upon a 
boundary integral formulation of the problem, together with a special choice for the frame of 
motion along the interface. In 64-bit arithmetic, a transition from the formation of side branches 
to tip splitting is observed as the surface tension is decreased. The tip splitting occurs on a time 
scale that decreases with the surface tension. This is consistent with some experimental 
observations. However, by increasing the arithmetic precision to 128 bits, it is found that this 
transition occurs at a yet smaller surface tension. The tip splitting is associated with the growth 
of noise in the calculation at unstable scales allowed by the surface tension, and a simple linear 
model of this growth seems to agree well with the observed behavior. The robustness of the 
various observed structures to varying amounts of noise is also investigated numerically. It is 
found that the appearance of side branches seems to be the intrinsic effect of surface tension, and 
the time scales for their appearance increases as the surface tension decreases. These results 
suggest, with some qualification, that surface tension acts as a regular perturbation to evolution 
from this initial data, even for long times. 

I. INTRODUCTION 

Fluid flow in the Hele-Shaw cell is quasi-two- 
dimensional because the fluids involved are confined be- 
tween two closely spaced plates. The case in which one 
fluid (usually with a negligible viscosity) displaces another 
has been studied extensively. Exact, self-similar shapes 
(the Saffman-Taylor fingers) have been found for the in- 
terface between the two fluids, when surface tension is ab- 
sent, for the channel geometry.“’ Much of the subsequent 
work is concerned with the role of surface tension along 
the interface in the selection of finger width (see Ref. 3 for 
a review). More recent experimental and theoretical work 
considered self-similar solutions and the role of surface 
tension in circular or sector geometries.~’ Increasingly, 
interest has been drawn to another aspect of the problem- 
time-dependent behavior. The complex patterns formed by 
an expanding bubble are striking (for some of the experi- 
ments, see Refs. 9-l 1). Natural questions concern the role 
of surface tension, as well as its interaction with noise, in 
producing these structures. Certain initial conditions with 
simple analytic strucure are particularly interesting. In 
these cases, the time-dependent behavior under zero sur- 
face tension is governed by a set of ordinary differential 
equations, and in this sense, the flows are exactly 
solvable’2-‘5 (or see Ref. 16 for a brief review). Some as- 
ymptotic analyses have also been done to see how these 
solutions, most especially their analytic structures, change 
in the presence of small surface tension.‘7-20 

Recently, for such initial data that give expanding in- 

viscid bubbles, Dai, Kadanoff, and Zhour6 (subsequently 
referred to as DKZ) performed a numerical study of their 
evolution under surface tension. In the absence of surface 
tension, these initial conditions give bubble interfaces that 

form outward cusps at a finite time (the q-zero data), as 
well as bubble interfaces with broad expanding “petals,” 
that exist and remain smooth for all time (the q-pole data). 

By this property these latter solutions most resemble the 

Saffman-Taylor fingers. The computational method used 
by DKZ was based on conformal mapping. For the q-zero 
data with surface tension, they observed that the interface 
remained smooth, and the cusp was replaced by a bulb of 
fluid. For the q-pole initial condition, the computational 

approach limited their study to the early time behavior of 
the interface shape, and little difference was observed in the 
shape of the interface with a small surface tension as com- 

pared to that without. 
The q-pole data is a good vehicle through which to 

investigate the effect of small surface tension over long 

times. The underlying zero surface tension solution is ex- 
plicitly known and nontrivial, and exists for all time, but is 

not an exact solution in the presence of surface tension 
(unlike an expanding circle). And the limit of zero surface 
tension is an interesting one here. The interface problem 
with zero surface tension is linearly ill-posed, and singu- 
larity formation seems generic for the system. Therefore, it 
is not clear that surface tension acts as a regular perturba- 
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tion for arbitrarily long times even when the underlying 

solution exists and is smooth. 
In this paper, we study numerically the longer time 

behavior of the q-pole initial data. Instead of a conformal 

mapping method, we employ a boundary integral method 

in which the interface is represented as a vortex sheet. The 

vortex sheet strength satisfies a Fredholm integral equation 

of the second kind, and with the appropriate quadrature 

method, the resulting set of linear equations can be solved 

rapidly through iteration. This method is spectrally accu- 

rate and with special choices for the frame of motion of 

computational points along the interface, it is successful in 
solving the long-time behavior of the Hele-Shaw flow. 

Calculating in 64-bit arithmetic, we find that at “large” 

surface tensions the interface rapidly forms a nearly circu- 
lar shape. As the surface tension is decreased, the com- 

puted solution resembles more closely the zero surface ten- 
sion solution, and the effect of surface tension is to create 

side-branch structures on the interface. As the surface ten- 
sion is decreased yet further, a transition is observed to tip 
splitting, which occurs on a time scale that decreases with 

the surface tension. This is consistent with some experi- 

mental evidence.‘r However, by increasing the arithmetic 
precision to 128 bits, we find that this transition occurs at 

a yet smaller surface tension, and we associate the tip split- 

ting with the growth of noise in the calculation at unstable 

scales allowed by the surface tension. A simple linear 
model of this growth seems to agree well with the observed 

behavior. Through investigating numerically the robust- 

ness of the various observed structures to varying amounts 
of noise, we conclude that the appearance of side branches 
seems to be the intrinsic effect of surface tension. The time 
scales for the appearance of the side-branching structures 
increase as the surface tension decreases, which suggests 
that for our initial condition, surface tension acts as a reg- 
ular perturbation even for long times. Qualifications to this 

statement are discussed below. 
This approach is similar to studies carried out in the 

study of vortex sheet motion in two-dimensional Eulerian 
fluids. There the linear motion is ill-posed due to the 

Kelvin-Hehnholtz instability. Krasny” regularized the 

motion by smoothing the Birkhoff-Rott integral, and 

noted the interplay between the smoothing parameter and 
the precision of the calculation. Baker and Shelley,23 re- 

placing the sheet with a thin layer of constant vorticity, 
reached a similar conclusion. 

The organization of this paper is as follows. The 
boundary integral formulation of the problem is given in 
Sec. II. The numerical methods for solving this formula- 

tion are discussed in Sec. III. In Sec. IV, the particular 

initial conditions of interest and their evolution under zero 
surface tension are described. Numerical calculations of an 
interface under zero surface tension are discussed in Sec. V. 

In Sec. VI, simulational results for several surface tension 

parameters are presented and their dependence on noise 
and surface tension is analyzed. Some concluding remarks 

are given in Sec. VII. 

FIG. 1. The Hele-Shaw cell. Fluid 1 and fluid 2 ace confined between two 
plates separated by a distance b. A bubble containing tluid 1, which has 
negligible viscosity, expands into fluid 2. 

II. THE BOUNDARY lNTEGRAL FORMULATION OF 
THE EQUATIONS OF MOTION 

Boundary integral methods have been used to compute 
free surface motion of inviscid and incompressible fluids 
(see, for example, Ref. 24). Tryggvason and Aref used 
such methods to find the time-dependent behavior of Hele- 
Shaw flow in a channel geometry with periodic boundary 
conditions.25 There, a boundary integral representation 
was used to obtain the vorticity density on the free inter- 
face, and vortex-in-cell techniques were then used to evolve 
the interface. In this paper, a similar formulation is used, 
but the interface is evolved with its velocity derived di- 
rectly from the integral representation. The formulation 
here is closer to that used by DeGregoria and Schwartz to 
solve the evolution in a channel geometry.26’27 Since in our 
problem, the periodic boundary condition arises naturally 
from the closed smooth interface, the quadrature methods 
used for the boundary integrals give a spectrally accurate 
evolution in space. 

Here we are interested in HeLShaw flow in a circular 
geometry. The spacing between the two closely spaced 
plates is b. We assume fluid 1 has a negligible viscosity, 
while fluid 2 has a finite viscosity p and is incompressible. 
As shown in Fig. 1, fluid 1 forms a bubble inside fluid 2. 
Fluid 1 is kept at constant pressure and mass is being 
pumped through point 0 at a constant rate. So its area S 
increases at a constant rate dS/dt. The region occupied by 
fluid 2 is the physical region and we are interested in ob- 
taining the time-dependent behavior of the interface be- 
tween the two fluids. Once the interface is known, we can 
calculate all the physical quantities of fluid 2. 

In fluid 2, we have Darcy’s law: 

b2 
v=--VP, 

W 

together with the incompressibility constraint 

v-v=o, 

(1) 

(2) 

where v and P are the velocity and pressure, respectively, 
of fluid 2. Thus, the pressure is harmonic and plays the role 
of a velocity potential, and the velocity field is irrotational. 

There are boundary conditions on the velocity. At in- 
finity there is the contribution from the mass source at 
point 0. At large distances, the increase in area of fluid 1 
produces a radial velocity inversely proportional to the 
distance from the injection point: 
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bl+m 1 dS x 
v(x) -+ --2, 

Finally, we enforce the requirement that the interface 

27rdt 1x1 (3) move with the fluid through the evolution equation 

where dS/dt is the time derivative of the area of the bubble. &* 
2n 

at (P,f) = 
s 

HP’) 

On the interface there is the Laplace-Young condition: 
dp’ 

0 Z(P) -dP’) 

PI interface=TKy (4) 

where r is the surface tension and K is the local curvature. 
Using Eq. (1) on the interface, this can be rewritten as the 
boundary condition on the velocity: 

b2 

s*v=--12P 
-I’$= -$d$s. (5) 

Here s is the unit tangent to the interface, the subscript s 
denotes differentiation with respect to the arclength, and 
do===2’R7b2/12,uS, is an amalgamated surface tension pa- 
rameter with units of length (as in DKZ). There is the 
further physical requirement that the interface move with 
the fluid. We will now see that the motion of the interface 
completely determines the motion of the fluid. 

The description of fluid 2 is put into a convenient form 
by using complex variables. Let Q* = u -iv be the complex 
conjugate velocity field, T=x+iy a point in fluid 2, and 
z(p) =x(p) +iy(p) a 2r-periodic function in a real param- 
eter p, which describes the location of the closed interface. 
Following Tryggvason and Aref,25 we can write the veloc- 
ity as the sum of two contributions: 

dS/dt 1 1 
Q*I,=--- 

27T q+T2 s 

2-r Y(P’) 

0 q--z(p’) 
dp’. (6) 

The second term is an irrotational velocity, given as a vor- 
tex sheet along the interface, with vortex sheet strength 
y(p). The first term is the velocity induced by the pumping 
at 0. The boundary condition equation (3) is satisfied by 
the first term since for large 77 the integral term contributes 
only at 0( l/q’), not O( l/n>, because y(p) has zero mean 
(see below). The boundary condition (5) is satisfied 
through the determination of the vortex sheet strength. 
Using the Plemelj formula to take the limit of Eq. (6) to 
the interface, we have 

lim @Ia= 
?-4P) 

YCP’) 

Z(P) -dP’, 
dp’. (7) 

Here Ps denotes the principal value integral and the sub- 
scripts indicate partial derivatives. The integral in Eq. (7) 
is called the Birkhoff-Rott integral. 

Using Eq. (7) together with boundary condition equa- 
tion ( 5)) the following integral equation is found easily for 

Y(P): 

z;(P) 
fT(P) s(P) 

P 
(9) 

where S,(P) = Iz,(P) I is the derivative of the arclength 
with respect to p. As in Refs. 15 and 16, S, is set hereafter 
to 2rr. The term in parentheses is simply the fluid velocity 
evaluated at the interface. The remaining term is a velocity 
in the direction tangent to the interface, and corresponds to 
a choice for the frame of motion of points along the inter- 
face which comes from a specific parametrization of the 
curve. For example, if T=O, then a point on the interface 
moves in the Lagrangian (fluid) frame. This change-of- 
frame term is included for computational convenience, and 
specific choices for T will be discussed in the following 
sections. Aside from the inclusion of a change-of-frame 
term, the only change in Eqs. (8) and (9) from those given 
in Ref. 25 is that the pumping term replaces a gravitational 
term. 

Equations (8) and (9) constitute a complete formula- 
tion of the interface evolution problem. Equation (8) is a 
Fredholm integral equation of the second kind for y(p). It 
is known that Eq. (8) has a unique solution, which can be 
found through fixed point iteration (see, for example, Ref. 
28). We write Eq. (8) as 

Y(P)=uy)(P)+~p(p), (10) 

where L is the linear integral operator in Eq. (8)) and 0, 
are those terms not involving y and are a perfect derivative 
in p. This implies that y has zero mean, and thus is also a 
perfect derivative. The eigenvalues /z of L are real, have 
multiplicity one, and ‘-satisfy I/z ] 6 1.28 In particular, 
;1= - 1 is an eigenvalue while /2= -+- 1 is not. The eigenvec- 
tor associated with eigenvalue - 1 has a nonzero mean. In 
the above equation, both y(p) and 13,(p) have zero mean, 
thus the eigenvalue - 1 is not relevant to any fixed point 
iteration whose beginning iterate has zero mean, and the 
iteration will converge to the solution of Eq. ( 10). For use 
in the next section, we also note that for the adjoint linear 
operator of L, any constant is the eigenfunction associated I 
withA=-1. 

The result of linear analysis of an expanding circular 
bubble of radius R(t) provides an instantaneous growth 
rate ak( t) for a perturbation-of wave number k> 0. This 
growth rate in the analytic frame is (see, for example, Ref. 
15): 

ckk(t) =& 
dS/dt do 

(k- 1) -yy----- R(t) (k-l)k(k+l) 

(11) 

y(p) = -2 Re( zp(p> &PSI” ztp~~~~pq W) For a constant pumping rate, say dS/dt = 2~, we obtain the 
familiar Mullins-Sekerka instability, seen in many other 

-2ddc,(p)-2 Re(F$). (8) 

contexts,29 which-shows the competition between the de- 
stabilization effect due to pumping and the stabilizing effect 
due to surface tension. For d,=O, ak scales with k, and the 
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system is linearly ill-posed (the growth rates are un- 
bounded for k + CO ) . This is very similar to the linearized 
behavior associated with the Kelvin-Helmholtz instability 
of Eulerian fluid dynamics. When do is positive, the surface 
tension stabilizes the high modes, and for do sufficiently 
small, there is a mode of maximum growth, whose wave 
number scales roughly with the surface tension as dc “2. 
Note also that the “effective surface tension,” d,,/l? (t), 
decreases as the size of the bubble increases. 

III. NUMERICAL METHODS 

Here we discuss the numerical discretization and solu- 
tion of Eqs. (8) and (9). The use of an alternate-point 
quadrature method gives spectral accuracy in calculating 
the principal value integrals,30s31 and spatial derivatives are 
also found with spectral accuracy through the discrete 
Fourier transform (DFT). As in calculations of the 
Kelvin-Helmholtz instability by Krasny,32 we filter the in- 
terface in Fourier space at each time step. The convergence 
of such a scheme for Hele-§haw flow has been subse- 
quently proved, both with or without surface tension.33734 

Assuming that the interface is a closed curve, then 
z(p) and y(p) are 2rr-periodic functions ofp. The interval 
[0,25-) in p is discretized uniformly with pi=jh, for 
j=O,l,...,N- 1 and h=2n-/iV. An integer subscript de- 
notes position, and by Zj (t) is meant an approximation to 
z(jh,t) (and likewise for yj, etc.). By zj(t) is meant a 
discrete approximation to zp( jh,t) . 

The choice of a quadrature method for the Birkhoff- 
Rott integral in Eq. (9), together with a method of differ- ’ 
entiation in p, determines the discretized linear system to 
be solved for rj. Here the Birkhoff-Rott integral is dis- 
cretized by the modified point vortex approximation 
(MPVA) to yield for Eq. (9) the system of ordinary dif- 
ferential equations (ODE’s) 

(12) 

j+k odd 

for j=O,l,...,N- 1. When z(p) and y(p) are analytic func- 
tions of p, the MPVA is an infinite-order approximation to 
the Birkhoff-Rott integral. In particular, if both y and z 
are analytic on the strip [ -ip, +ip] for p > 0, it can be 
shown that the discretization error of the MPVA to the 
Birkhoff-Rott integral can be bounded by a term of the 
form C(p)e-PN (see Ref. 31). 

The discretized form of Eq. (8) is then 

N-1 

C 
k=O 

(13) 

\ j+k odd / 

We find that when the interface is well resolved, Eq. ( 13), 
like Eq. ( lo), is contractive and can be solved by fixed 
point iteration at each time step. However, the discretiza- 
tion introduces its own complications. For convenience we 
write the fixed point iteration of Eq. (13) in matrix nota- 
tion as 

,“+LLhrn+O’, (14) 

and make several remarks. 
( 1) The iteration matrix Lh is such that elements of I? 

with even index are only updated by elements of I? with 
odd index, and vice versa. This has several consequences. 
First, if 2 is an eigenvalue of Lh then so is -1; L, has a 
discrete eigenvalue very close to - 1, the continuous eigen- 
value of L. As it will be exponentially close when N is 
large, let us assume that it is - 1. Thus I+, has an eigen- 
value of + 1 which arises solely from the discretization, 
and the Fredholm alternative must now be satisfied for 
invertibility. That is, for invertibility it is required that 
WI. 0’ =0 where WI is the eigenvector of the adjoint op- 
erator Lz associated with /I= 1. This brings in the second 
consequence of the odd/even structure of Lh . If VA= {II]} 
is the eigenvector associated with /2, then 
V-,=-(( - l)juj). Fortunately, Ll inherits the odd/even 
structure of Lh . Again, dropping terms exponentially small 
in IV, the eigenvector W- 1 ={wj} of Lr satisfies Wj= 1, 
and thus W, = {( - 1)‘). This is the DFT basis vector at 
the Nyquist frequency N/2. The solvability condition then 
becomes simply that 0’ has no component in its DFT at 
this frequency. This is achieved by either explicitly setting 
the N/2 mode to zero, or by the interface being well re- 
solved in which case the highest frequencies are of the size 
of the round-off. 

(2) The odd/even structure of the iteration matrix also 
implies that the iteration matrix Lh has Property A (see, 
for example, Ref. 35, p. 121). Such iteration matrices ap- 
pear in solving other elliptical problems using finite- 
difference methods, and schemes for accelerating the con- 
vergence of the Jacobi (fixed point) iteration have been 
discovered and analyzed.3’ Here we use the cyclic Cheby- 
shev semi-iterative method which requires ten times fewer 
iterations than the Jacobi method. 

(3) Other spectrally accurate discretizations of the in- 
tegral equation (8), related to Eq. ( 13), can be found and 
analyzed. Making use of the following identity, 

s 

2n z,(p’) 

0 z(p) -z(p’) 
dp’+;=O, 

Eq. (8) can be rewritten as 

Zp(P)Y(P’) --zJP’MP) 

z(p) -z(p’) 

x&f-; y(p) +O,(P,. 
) 

Note that the integrand is now smooth. Applying the 
MPVA to this form of Eq. (8) yields the matrix equation 

I-= (Lh+Dh)I’+O’, 

where the diagonal matrix Dk arises from the MPVA to the 
identity above. Each component ‘of Dh is thus exponentially 
small in N. This yields naturally the two matrix iterations 

T’“f’=(Lh+Dh)F’fO’ or (I-&) r~+1=Lhrn+8’. 
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In the first, ,+l is an exact eigenvalue of the iteration 
matrix (no exponentially small terms), and the associated, 
exact eigenvector to the transposed operator is 
W1 ={( - l)]). However, the iteration matrix is no longer 
of Property A. The iteration matrix of the second method 
is of Property A, and now has both * 1 as exact eigenval- 
ues. But, as with Eq. (13), the identity W,={( - 1)‘) only 
holds to exponentially small terms in N. 

(4) Each time step involves direct evaluations of the 
Birkhoff-Rott integral at a computational complexity of 
O(#). While not cost effective for the values of N used 
here, at larger values of N it would be worthwhile to em- 
ploy a fast summation method, such as the method of local 
corrections36 or a fast multipole method.37 

After solving Eq. (13) to obtain yj, the velocity of the 
interface is calculated through E?q. ( 12). The evolution is 
advanced by a fourth-order Runge-Rutta routine. To 
maintain resolution of the interface, the number of points 
is doubled (using the DFT) whenever the highest Fourier 
modes of the interface begin to rise out of the round-off. 
For zero and small surface tension calculations it is neces- 
sary to filter the solution to control the anomalous ampli- 
fication of round-off error.32 This is due to the ill-posedness 

of the linearized motion, as indicated by the dispersion 
relation ( 11). The filter is accomplished at the level of the 
round-off of the calculation. At each time step the DFT of 
z(p) is formed. If a Fourier amplitude is less than a pre- 
scribed tolerance, it is set to zero. For example, in our 
64-bit (15 digits) and 128-bit (30 digits), this tolerance is 
set to lo-l2 and 10-46, respectively. 

IV. INITIAL CONDITIONS AND THEIR EVOLUTION 
UNDER ZERO SURFACE TENSION 

We follow DKZ by focusing on initial datum for which 
the exact evolution is known when the surface tension is 
zero. The exact motion is nontrivial, and a review of these 
results (see also Refs. 12-15) is given in DKZ. We con- 
sider two particular examples of such initial data. In the 
first, the initially smooth interface sharpens outwards and 
loses its smoothness at a finite time by the formation of a 
cusp. In the second, the motion of the expanding interface 
exists for all time, and bears some resemblance to experi- 
mentally observed bubbles. 

In the results presented hereafter, the initial interface 
has a q-fold symmetry which is preserved by the equations 
of motion. This symmetry is incorporated into the algo- 
rithm, and N refers now to the number of points resolving 
this portion of the interface. The Fourier expansion of z(p) 
then has the form: 

+m 

z(p) =e@ C aneiqnp. 
n---m 

Following DKZ the “q-zero” initial condition refers to 
the q-fold symmetric initial shapes of the interface, 

z(p,t=O) =e@ 
( 

l- &e+P , 
) 

where, ZQ,E( 0,l) . This is a map from the unit circle onto the 
interface ifp is considered to be the angle on the unit circle. 
By substituting w for e@ with 1 w ( > 1, the resulting map, 
f(w), maps the unit circle and its exterior analytically 
onto the whole physical domain; f( w ) is the Riemann map 
of the physical region.38 The map preserves this distribu- 
tion of zeros and evolves as 

f(o)=A(t)w ( 
u(t) 

l-(l-q)wq ) 
1 

(16) 

where the real functions A(t) and u(t) satisfy a coupled 
pair of ODE’s, and have initial values A (0) = 1.0 and 
u(0) =ue< 1. For q>3, A(t) and u(t) are monotonically 
increasing functions of time. There is a critical time t,, at 
which u= 1, and the derivative, g= f,, acquires a zero on 
the unit circle. Consequentially, the interface develops 
cusps and the solutions break down (see Ref. 12). For 
q=3 and u0=0.5, the critical time is t,=O.5625... . 

Conversely, there are also initial conditions for which 
the motion exists for all time. The “q-pole” initial condi- 
tion refers to the q-fold symmetric initial shapes of the 
interface, 

0 --n 

z(p,t=O) =e@ C 
UO 

- &nP 

n=-m 1+qn ’ 
(17) 

where aoe(O,l). Again, a Riemann map of the physical 
region is given by replacing e@’ in ( 17) with o for 1 w I> 1. 
The evolution is as follows: 

u(t) 
0 

dP,t) =--A(t) U( elP+A(t)e@ C 
u-“(t) 

~ 
n=-02 (l+qn) 

u(t) 
x l-- 

( 1 
eiwp 

u(t) ’ 
!18) 

where A ( t), u(t) , and u(t) are real functions whose evo- 
lution is governed by a set of ODE%. Here g has as singu- 
larities q simple poles, at w = u ( t) “qenlrm/q, and also q sim- 
ple zeros, at w==u(t)“qe’2vm’q for m=O(l)(q-1), all 
within the unit circle. The time evolution of the conformal 
map preserves this distribution of poles and zeros in g (see 
Ref. 16). By choosing the initial conditions A(0) = 1, u(O) 
=0, and u(O)=u,> -0, we have that O<v(t) <u(t) <l 
for all t > 0. That is, the solution always exists. Moreover, 
both u(t) and u(t) approach 1 for large times (U exponen- 
tially, and u algebraically). 

The variable p above is not the Lagrangian variable 
that one obtains by setting T-0 in Eq. (9) but rather the 
parametrization which yields the Riemann map, when the 
substitution f (o=eiP) ‘z(p) is made. In Eq. (9), this pa- 
rametrization corresponds to a specific choice of T, given 
in the Appendix. We refer to this choice as the analytic 
frame. That both of these initial conditions evolve without 
the introduction of any high wave-number component for 
n) 1 reflects the fact that the singularities of g are within 
the unit circle. 
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, 4 r-~“----- I-- 
1‘ 3 1 (b) ,. -“““‘-‘----I 

~‘~~l-i-r_ -I,,,,,~ .L28&?!Ctn. : 
-3 -2 -1 0 1 2 3 

t 

FIG. 2. Results for the three-zero initial condition (15) under zero sur- 
face tension with ue=O.5. (a) -loglO[e(t)] vs t, where e(t) is the maxi- 
mum deviation of the result of calculation in the analytic frame from the 
exact solution. The three curves are for N=128, 256, and 512. The crit- 
ical time for cusp formation is &=0.5625... . (b) Simulational results for 
the expanding interface with N=512 at t=O.O and 0.54. The dashed 
curve is the exact solution at t=0.56. 

V. CALCULATIONS WITH ZERO SURFACE TENSION 

In this section, we present numerical calculations for 
both the q-zero and q-pole initial conditions. We examine 
the robustness of the method, and illustrate the very strong 
effect the choice of frame has upon the accuracy of the 
calculation. When the surface tension is zero, we flnd that 
the choice of a good frame in which to compute varies from 
problem to problem. 

We consider first the q-zero initial condition, with q= 3 
and uo=0.5. Then there is critical time, t,zO.5625, when 
the interface develops a cusp. Equations (8) and (9) were 
solved in the Lagrangian frame [T(p) 301, with N= 128 
and At=10w4. By t=O.l, well before tc, the highest Fou- 
rier modes had exceeded the round-off. While there are but 
two modes in the analytic frame, a full spectrum develops 
in the Lagrangian frame. 

Following Ref. 15, in the Appendix is given an expres- 
sion for T(p) [Eq. (A5)], which retains the points in the 
analytic frame. Equations (8) and (9) were solved with 
this T(p) and the initial data above. Three calculations 
with iV= 128, 256, and 512, respectively, were carried out 
until the iteration of IQ. (8) stopped converging. For each 
calculation, At=10e4. In Fig. 2(a), -logIole(t)l is 
shown for the three calculations, where e(t) is the maxi- 
mum error in position of the interface. There is a charac- 
teristic time, to, associated with each value of IV. For t<to, 
the error stays within the round-off. After this tin& to, the 
error starts to increase quickly. This time corresponds to 
when the highest modes exceed the round-off. Soon there 
after the iteration ceases to converge, and the number of 
points needs to be increased to maintain spectral accuracy 
for the calculation and the convergence of the scheme. The 
time to -+ tc as N is increased. The shapes of the interface at 
t= 0 and 0.54 from the calculation with. N= 5 12 are shown 
in Fig. 2(b). At t=0.54, the curvature at the tips is IK] 
~253, or 32 times its initial value. The zero-do exact so- 
lution at t--0.56, right before tc, is shown in a dashed 
curve. Three cusps are about to form at the tips of the 
interface. . b 

Clearly the analytic frame provides a better discretiza- 

FIG. 3. Simulational results for the expanding interface from three-pole 
initial condition ( 17) with N=256. The initial condition is uo=O.5. The 
times for the shapes (moving from inside out) are 0.0, 0.5, 1.0, 1.5, and 
2.0. 

tion for the evolution of the q-zero initial data than the 
Lagrangian one. The reason is straightforward. In the an- 
alytic frame we have 

WP) 
-=ie@[ l-u(t)em3@]. 

dP 
(19) 

As t-+ t,, u(t) + 1. Around the tip region, eV3@ is close to 
1, as a result, dz(p)/~3p+O. That is, in the analytic frame 
more points are placed in the region with the largest cur- 
vature, while in the Lagrangian frame, the points are 
drawn away. 

The story is quite different for the q-pole initial condi- 
tion. In the analytic frame, the decay of the Fourier spec- 
trum in p is governed by the distance of the poles to the 
unit circle. For q=3, uo=0.5, and uo=O, at t=2.0, 
~~0.9938. That is, at t=2.0, the three poles of the deriv- 
ative of the mapping function are very close to the unit 
circle; at least N=8192 points are needed so that the high- 
est modes do not exceed the round-off. 

Consider, on the other hand, the solution of Eqs. (8) 
and (9) in the Lagrangian frame using N=256 points and 
At= 10e4. Now, the solution agrees with the zero-do exact 
solution to ten digits at t=2.0. The interfaces at times 
t=O.O, 0.5, 1.0, 1.5, and 2.0 are shown in Fig. 3. Note that 
the Goi-ds, the places where the growth of the interface is 
greatly suppressed, have started to form. 

To compare the two frames (analytic and Lagrang- 
ian), the Fourier amplitudes associated with each frame 
are shown at times 0.0, 0.5, 1.0, 1.5, and 2.0 in Fig. 4. 
Figure 4(a) shows the calculational results in the Lagrang- 
ian frame and Fig. 4(b) shows the zero-do exact solutions 
in the analytic frame. In the Lagrangian frame, we have a 
full spectrum instead of just the zeroth and the negative 
modes in the analytic frame. Both sets of spectra show an 
overall exponential behavior which guarantees the conver- 
gence of the Fourier expansion. Starting with the same 
initial spectrum, the amplitudes associated with the La- 
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FIG. 4. Comparison of the Lagrangian frame and the analytic frame for 
the three-pole initial condition without surface tension as in Fig. 3. Ab- 
solute values of the Fourier modes versus frequency are shown. Note that 
the frequency scale is different for (a) and (b). (a) The. Lagrangian 
frame. The dashed tine corresponds to t=O. (b) The analytic frame. In 
this frame, only the zeroth mode and the negative modes exist. The lines 
from right to left correspond to the increasing times 0.0, 0.5, 1.0, 1.5, 
and 2.0. 

grangian frame increase much more slowly in time. This 
allows us to use only 256 points to resolve the interface, 
even at time 2.0. 

As was pointed out, the difference in the frames lies in 
how the initial discretization evolves on the interface. The 
distribution of 256 points (marked as “X “) on one-third 
of the interface in the analytic frame at t=2.0 is shown in 
Fig. 5. Most of the points are away from the fjord region, 
leaving the fjord underresolved. This becomes obvious by 
examining 

WP> 
-=ie@A(t) 

1 ---v(t)ee3@ 

aP 1 --u(t)eV3@ * (20) 

At time 2.0, v=O.6695..., and u=O.9938, so [l-u(t)]4[1 
-u(f)], which is also true for the later times.16 At the 
bottom of the fjords, eV3@ is close to 1 which makes dz(p)/ 
(3~ very large and as a result, the points are spread apart in 

0.5 1 

FIG. 5. The interface (one-third portion) without surface tension at time 
2.0. The initial condition is the same as that in the previous two figures. 
“x” marks the distribution of 256 points in the analytic frame. 

the fjord region. While in the Lagrangian frame, the points 
are advanced in time according to Eq. (9)) whose second 
term in parentheses provides a pure tangential velocity 
which serves to move the points toward the fjord region. 

VI. THE EVOLUTION UNDER SURFACE TENSION 

Surface tension is the physically relevant regularization 
of interfacial motion in Hele-Shaw flow. In this section, we 
examine the expansion of the bubble under a small but 
finite surface tension. Numerical simulations of DKZ for 
the q-zero data show that the surface tension prevents the 
formation of a cusp by inducing a splitting of the singular- 
ities in the Kiemann map. The outward cusp in the inter- 
face is replaced with an expanding bulb of fluid. However, 
for the q-pole initial condition, DKZ found it difficult to 
obtain numerically the long-time behavior, even though 
the underlying zero-do exact solution exists for all time. 
Their numerical method is a pseudospectral technique, 
originally developed by Bensimon et aL,l’ for evolving the 
derivative of the Riemann map f. These difficulties may be 
related to the large gradients possible in the conformal 
map, as illustrated for this initial data by the zero-do exact 
solutions given in the previous section. However, the short- 
time calculations of DKZ do indicate that under a small 
surface tension, the interfacial shape and the singularity 
structure of the Riemann map are similar to those of the 
zero-do exact solution. We will concentrate on the q-pole 
initial data, and attempt to study the longer time dynamics. 
We are especially interested in the effect of a small and 
positive surface tension on the expanding bubble, as well as 
its sensitivity to noise. 

A. The choice of the tangential velocity, T(p) 

While the introduction of surface tension presumably 
regularizes the behavior of the interface, it also makes the 
resulting temporal evolution very stiff and necessitates the 
use of very small time steps. This stiffness problem is some- 

what ameliorated by not allowing the computational points 
along the interface to become excessively clustered. More- 
over, while the Lagrangian frame is better than the analytic 
one in this regard (and others), eventually the Lagrangian 
motion leaves the walls of the primary fjords overresolved 
relative to other portions of the interface. This increases 
the stiffness problem. For this reason, we introduce a frame 
which keeps points from becoming too clustered along the 
interface. Additionally, we find that this choice of frame 
leaves the interface better resolved than does the Lagrang- 
ian frame. 

As an example, consider the pure tangential motion 
induced by 

(21) 

where, 

(22) 

and X[ -1 is the Hilbert transform3’ and C is a positive 
constant. Equation (2 1) implies that 
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FIG. 6. Evolution of the interface starting with the three-pole initial condition (17) with u,=O.5 for different surface tension parameters. (a) 
c&=4x lo-‘, for times 0.0 to 28.0 with time increment 4.0. (b) d,,= 10m3, for times 0.0 to 16.0 with time increment 2.0. (c) &=2.5X 10m4, for times 
0.0 to 5.0 with time increment 0.5. [Note that it is on a scale half of (a) and (b).] (d) &=6.25X lo-‘, for times 0.0 to 0.7 with time increment 0.1. 
mote that it is on a scale half of (c).] 

asp(p) 
-= T,(p). at (23) 

Consider the case where the points are close to being 
evenly distributed in arclength, i.e., sJp) =$+.&(p), 
where, E< 1 and $ is the mean of sP . Retaining terms up to 
first order in e, Eq. (23) gives 

as(p) -=G LqG]. at pap 
(24) 

The Fourier transform diagonalizes Eq. (24), and for ev- 
ery Fourier mode Sk with k#O (SP is fixed) we obtain 

Thus, in this model problem with no normal motion, this 
choice of tangential velocity serves to drive the points to- 
ward a uniform distribution along the arclength. In the full 
problem, we partially exploit this property by defining 

, 
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(26) 

and choose C= 0.1, The second term above is the tangen- 
tial fluid velocity, so (26) specifies that the only tangential 
motion that appears in Eq. (9) is that given by T. 

8. Results 

1. General features 

Figures 6(a)-6(d) show the evolution of the expand- 
ing bubble for the four (decreasing) values of the surface 
tension do=4X 10m3, 10W3, 2.5 x 10m4, and 6.25~ 10P5, 
respectively. Again, the initial interface is the q-pole initial 
condition with q=3 and u,-,=OS, shown as the innermost 
bubble. In each figure, the bubble position is shown at 
several times (see the figure captions for details). The cal- 

culation for a particular surface tension is stopped when it 
becomes necessary to increase N beyond 512. In general, 
the smaller the surface tension, the shorter the time over 
which the calculation could proceed. This results from the 
ramification of the interface due to the lingering structures 
(hereafter referred to as structures), whose time and space 
scales both decrease with de. For comparison, Fig. 7 shows 
the shapes at t=25, 15, 5, and 0.7 for d,=4X lo-‘, 10m3, 
2.5 x 10W4, and 6.25 x 10m5, respectively, each superim- 
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FIG. 7. Comparison of the bubble shapes at late times for different da’s. FIG. 8. The evolution of an interface with the same three-pole initial 
The innermost bubble is the initial shape and the solid curves from the condition as that in Fig. 6, but with da=O.OS. The innermost bubble 
smallest to the largest correspond to the interface at time 0.7,5, 15,25, for 
&=6.25X IO-‘, 2.5 X 10m4, 10M3, and 4X 10W3, respectively. Each curve 

shows the initial shape. The other two solid curves correspond to times 15 
and 30, superimposed with the zero-d,, exact solution at the same times. 

is superimposed with the zero-d,, exact solution at the same time shown in 
a dashed curve. The insert shows the details of the bottoms of the primary 
channel region for the larger three ds’s. 

posed with the exact zero-d,, solution at that time (dashed 
curves). The innermost shape is again the initial bubble 
position. The insert shows the details of the bubbles at the 
bottom of the primary fjord for the larger three dO’s. These 
shapes are all calculated in 64-bit arithmetic. 

For early times, the shape of the interface under sur- 
face tension varies little from that without surface tension. 
Except for the smallest value of do, for which the second- 
ary structures form quickly, the three primary fjords form 
with or without surface tension; they are contained in the 
form of the initial data. Upon the formation of the primary 
fjords, the interface divides naturally into three regions: the 
channels which are formed by the sides of the primary 
fjords, the bottom of the fjord where the sides of the chan- 
nel curve and meet, and the expanding fronts (the primary 
“petals”) which are separated by the primary fjords. 

curves. Here, do is close to dc, , and the primary fjords have 

not developed even at very late times, causing substantial 
difference in the shape from that of the zero-d0 exact solu- 

tion. The do’s in Fig. 6 are much smaller than dcl ; the 

primary fjords develop as when d,, is zero. The interface 
with the smallest do in Fig. 6 is an exception, since 64-bit 
arithmetic was used in the simulation, the structures de- 
velop earlier than the primary fjords. The bottoms of the 
fjords are only moved slightly outwards. The channels of 
the primary fjords have all about the same width, deter- 
mined by the initial data, up to a correction by the surface 
tension. 

When surface tension is present, the interface at the 
bottom of the primary fjords adjusts itself to even out the 
curvature and achieve a lower surface energy (propor- 
tional to the length of the interface). The larger the surface 
tension, the faster and larger is this adjustment. A similar 
behavior is also observed in the simulations of DeGregoria 
and Schwartzz6 in the channel geometry. The differences 
between “large” and “small” surface tensions can be strik- 
ing. Let dcl be the surface tension parameter beyond which 

the linear growth of every mode is suppressed. For the 
initial condition used to generate Fig. 6, dc, is about 0.09. 

For do larger than dc,, DKZ has observed that the fjords 

are suppressed and the interface tends toward circularity.‘6 
A circle is not likely to be the time-asymptotic state, since 
the effective surface tension decreases as the bubble ex- 
pands, and any expanding near-circular bubble eventually 
becomes unstable. Figure 8 shows the interface at t=O, 15, 
and 30 in solid curves for d,=O.O8. The zero-d,, exact so- 
lutions at the corresponding times are shown in dashed 

The behavior of the primary fjord regions is consistent 
with a uniform convergence to the underlying zero-do ex- 
act solution. Conversely, the expanding front develops 
structures for every small but finite surface tension used, 
and any sense of uniform convergence to the almost circu- 
lar front of the “limiting” solution is not apparent (see Fig. 

7). 
The structures appear first by ripples developing some- 

where along on the front. For the two larger do’s [Figs. 
6(a) and 6(b)] these ripples occur on the sides of the 
primary petals, adjacent to the primary fjords, while for 
the smaller d,,‘s [Figs. 6(c) and 6(d)] the ripples occur 
across the center of a primary petal. One might refer to the 
first as side branching and the second as tip splitting. This 
behavior is partially consistent with the experimental re- 
sults of Tabeling et al. on the stability of viscous fingers in 
a channel.‘l They found that at lower velocities (higher 
surface tension), the instability first observed occurred 
(asymmetrically) at the sides of the finger, while at higher 
velocities (lower surface tension) the first instability was 
tip splitting. The stability of the petal center at higher sur- 
face tension may be related to a stabilizing mechanism 
through which perturbations are convected toward the 
channels away from the petal center, similar to the stability 
of a propagating flame front39 and the stability of a curved 
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front such as a Saffman-Taylor finger or dendritic 
crystal.@ 

From the ripples there develop both straight, growing 
fingers, like those at the sides of the primary fjords in Fig. 
6(b), and more typical expanding iingers, which we follow 
Ben Amar’ in calling “petals.” The straight Saffman- 
Taylor 6ngers are well studied in the channel geometry.3 
The expanding petals seem to be unique to the sector and 
circular geometries. The sector geometry refers to flow be- 
tween two diverging slip walls, with the mass source of 
inviscid fluid at their intersection. Interest in this geometry 
arose from it being intermediary between channel and cir- 
cular geometries.4-8 Petals in the sector geometry are the 
analog to Saffman-Taylor fingers in the channel, with the 
sector and petal angles playing the respective roles of chan- 
nel and finger widths. Similarity solutions have been found 
and angle selection by surface tension has been studied. It 
was found that the selected petal solution ceases to exist 
when the petal becomes sufficiently large. Thorn& et al. 
studied experimentally petal growth in the sector geometry 
and found an eventual tip-splitting instability that allows 
the petal to bifurcate and restabilize temporarily at a 
smaller effective sector angle.s In the circular geometry 
they were able to fit petal profiles to those obtained in a 
sector with a correspondingly chosen angle. As in the set- 
tor geometry, these observed petals eventually become un- 
stable to tip splitting. 

A similar situation is observed here, where expanding 
petals are observed for all small but nonzero surface ten- 
sions. The tip splitting is most apparent at the smallest dc, 
occurring atop every secondary petal. In the circular ge- 
ometry, the experimenters were able to extrapolate the ef- 
fective sector sides of an observed petal and found their 
intersection to be the mass source at the center. Here this 
property is only present for the largest do [note the sector 
lines drawn in Fig. 6(a) as the dot-dash lines]. For the 
do=25 x 10m4, the interior sectors for the expanding pet- 
als meet not at the origin, but rather near the protruding 
tip of the initial bubble [note the sector lines drawn in Fig. 
6(c) as the dot-dash lines]. In this case, the primary fjord 
is dominant and apparently shields the true mass source, 
and creates in its stead an effective one. 

For an interface with surface tension, the result of lin- 
ear analysis on an expanding circle provides a maximum 
growth mode with a characteristic length scale. When the 
length of the interface is of the order of this length scale, 
ripples develop on the interface, as has been observed ex- 
perimentally in channel, sector, and circular 
geometries.4**21*4~” For de used in Fig. 6, the dependence of 
this length scale on de is roughly. dh’2. When do is de- 
creased by a factor of 4, the size of the secondary fjords 
which separate the secondary petals is decreased by a fac- 
tor of 2. 

The shape of the interface at late stages of the fingering 
process resembles those obtained via diffusion limited ag- 
gregation (DLA)42 [for DLA, see for example, Ref. 43). 
Experiments in porous media also show similar shapes.44 
In log-log scale for dc=O and the larger three da’s in Fig. 
6, Fig. 9 shows the bubble area S(t) vs D(t), the “radius 

DLA Time 

1 I- .,I I , . ..I 
1 10 100 

R 

FIG. 9. Bubble area S(t) versus radius of gyration D(t) in log-log scale. 
The dashed lie has a slope of 1.7, as calculated for DLA. The right 
vertical axis gives the time scale. 

of gyration.” Here, D(t) is defined as the maximum dis- 
tance of a point on the interface from the injection point. 
The radius of gyration has been used as a measurement of 
complexity, as the slope of log D vs log S gives roughly d, 
where d is the dimension of the bubble of fluid 1. For 
example, the slope is two for a circular bubble. The slope 
for zero-d, solution is 2.1, but this is because the bubble is 
not yet large enough to ignore the area taken by the chan- 
nels. Initially the positive do curves follow the zero-d,-, one. 
When the ripples appear, the slope starts to decrease. The 
dashed line has a slope of 1.7, which is the corresponding 
slope from DLA.43 

2. Effect of noise and surface tension 

The results of the previous section leave us with an 
apparent paradox. As the zero-do exact solution for the 
q-pole initial condition does not develop unbounded cur- 
vature, perhaps small do acts as a regular perturbation of 
the system. Indeed, the short time numerical results of 
DKZ showed convergence of the computed solution to the 
zero-d0 exact solution as do-O. However, that limit also 
takes us to an ill-posed system. Our long-time solutions for 
small and positive d, differ from that for zero-d,-, funda- 
mentally in that secondary structures develop. Further, 
Figs. 6 and 9 show that the structures develop earlier for 
smaller d,, which suggests that the surface tension might 
be a singular perturbation when long time behavior is con- 
cerned. To study this question, we will first concentrate on 
the onset of rippling, and its dependence on noise and sur- 
face tension. 

We start by identifying features in curvature that result 
in rippling in order to define an onset time, t$ which marks 
a significant departure from the zero-do exact solution. Fig- 
ures 10(a)-10(d) show curvature versus arclength at the 
times 1.0, 1.5, 2.0, and 2.5, respectively, where the 
arclength is measured from the bottom of a fjord to the 
center of an adjacent front. The solid curves correspond to 
results for do=23 X 10m4 calculated in 64-bit arithmetic. 
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FIG. 10. Comparison of the zero-d, exact solutions (long-dashed curves) 
and the simulational results for do=2.5X 10e4 with 64-bit arithmetic 
(solid curves) and 12%bit arithmetic (short-dashed curves). (a)-(d) 
Curvature versus arclength, measured from the bottom of a Qord to the 
center of a neighboring front, for the respective times 1.0, 1.5, 2.0, and 
2.5. (e) The interface (one-third portion) at time 2.5 for the three cases. 
The insert shows the details of the front of the interface. 

The long-dashed curves correspond to the zero-do solution. 
At early times, little difference is observed between them, 
especially at the front region [Fig. 10(a)]. Soon, however, 
oscillations develop in the d0=2.5 X 10m4 solution [Fig. 
10(b)], the amplitudes of which increase in time [Fig. 
10(c)]. When the sign of curvature oscillates along the 
front [Fig. 10(d)], the ripples are apparent as shown in 
Fig. 10 (e) . These oscillations in curvature that precede the 
apparent ripples are observed for all positive do considered 
here with do < 0. ldcl . We identify the onset of the oscilla- 

tions with the onset of rippling and define c to be the time 
when a new local extremum in curvature just develops 
along the front. For example, cs 1.2 for do=2.5 x 10m4. 

In the case of the Saffman-Taylor finger solutions in a 
channel geometry, although there is one finger that is lin- 
early stable when surface tension is present,3 both simula- 
tion and experimental results show that it can undergo 
instability when it is perturbed by a disturbance with a 
finite amplitude. 26127,41P21 DeGregoria and Schwartz’s nu- 
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merical studies26927 and Bensimon’s analysis45 show that 
noise plays an important part in the stability properties of 
the interface. In particular, a heuristic analysis of Bensi- 
mon suggests that the minimum amplitude of noise needed 
to drive the finger solution unstable decreases exponen- 
tially with do. Numerical simulations reveal that the finger 
that undergoes instability bifurcates (tip splitting) .26P27P46 
A natural question. arises on the nature of the structures 
seen here: Are they only amplification of noise-say the 
round-off in the arithmetic, or are they intrinsic to the 
initial condition ( 17) under evolution equations (8) and 

(9)? 
We employ a simple linear model to study the evolu- 

tion of noise. Because of its expansion, the front of the 
bubble is the most unstable region of the interface. Accord- 
ingly, we consider the linear evolution of noise-seeded per- 
turbations by ( 11) : 

40) =~3,(da,(t), (27) 

where R(t) is chosen to be that at the front center for the 
zero-do solution [also setting dS/dt=2?rR (t) dR (t)/dt]. 
The center has the greatest radius of curvature along the 
front, and the zero-d, behavior there describes well the 
behavior for small and positive surface tension before the 
onset time G. To account for the symmetry factor 4 = 3, we 
consider only k= 3n in ( 11) . 

The initial values for a,, should be chosen to reflect the 
initial “noise” in that mode. However, it is unclear how 
this should be done. Here, the noise is simply chosen to be 
a constant background amplitude by 

a,(t) =CE. (28) 

For example, CE might be chosen as the filtering level of the 
calculation ( lo-l2 for 64-bit arithmetic). However, we 
find that the time scale of growth in this model describes 
best that in the full calculation if we multiply the filter level 
(now E) by a factor ld4 (now c) . One reason for this might 
be that the real noise on the important modes in the cal: 
culations is multiplied by a number of derivatives [for ex- 
ample, the three derivatives to form y in Eq. (S)]. And 
obviously, the effect of nonlinearity is not being accounted 
for. At any rate, the model is only intended to provide a 
rough description of the growth of noise, which it does. 

Figure 11 shows ai vs n for d0=2.5x lo-” from t=O 
to 1.4. Only a band of the lower modes is amplified, and 
there is a mode of maximum amplitude (marked by “ x ” ) . 
Since the effective surface tension decreases as the radius of 
curvature increases, this mode shifts to higher values of II. 
The linear onset time, t,“, is defined to be the time at which 
an amplitude reaches 1% of R(t) . These features are re- 
sults of the growth rate ( 11)) not the results of particular 
size of the initial conditions. Figure 12 shows the growth of 
the lowest 40 modes in the Riemann map from the full 
calculation, in semi-log scale, at the times 0, 1.0, 2.0, and 
3.0. Although nearly all modes grow in time unlike in the 
linear results, there is a band of modes in which some 
modes grow faster than their neighbors. The one with the 
highest amplitude is about the seventh, agreeing with the 
corresponding one in linear results shown in Fig. 11. This 
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0 5 10 15 20 
n 

FTG. Il. The results for the linear model (27). a,, the amplitude of the 
mode n added to an expanding circle, versus n is shown in semilog scale 
for t=O.O to 1.4. The mode with the maximum amplitude for t>O is 
marked by “X”. 

RG. 13. Comparison of the dependence of e and c upon da. t,” is 
determined through the linear model (27); c is determined through the 
full calculation. The solid and the dashed curves are t,” with E= 10-t’ and 
10-26, respectively. The points marked by “+” and “0” are C as calcu- 
Iated from 64 and 12%bit results, respectively. 

mode number is also consistent with the number of ripples 
developed along the front. We obtain that, for 
do=2.5x 10A4, t,”  is about 1.28, close to c. 

Figure 13 shows the dependence of t,”  (solid curve) 
and c (marked by “4”) on do. There is a change in 
behavior in cat do = d% - - 5 x 10m4. For do < dcz, i,” and G 

roughly agree with each other, while they differ drastically 
for do > dcz. Another important feature of the dependence 

of c on do is that $ increases with ‘increasing do for d,, 
< dcz while it decreases for do > dcz. Again we want to point 

out that although changing the factor on E in (28) will 
change the exact agreement in the numbers of $ and t,” for 
do < .d,,,. the trend of their dependence on d,, will not be 

changed. We also note here that Z$ is not the same time as 
the slope deviation from the zero-d, result in Fig. 9. Due to 
its nonlocal nature, that deviation is a relatively insensitive 

10.0000F""""'"""""'""""'"""""""7 

0.1000 

3 

0.0100 t=3.0 : 
t=2.0 : 

0.0010 t=1 .o-, 

0 10 20 30 40 50 
-n 

FIG. 12. Absolute values of the lowest 40 Fourier modes of the Rikmann 
mapping function versus frequency --n in semilog scale at times 0.0, 1.0, 
2.0, and 3.0 for results with &=2.5X 10m4 calculated in 64-bit arithmetic. 

measure of the onset since it is not observed until the sec- 
ondary fjords are well formed. We will demonstrate the 
differing effects of noise, for do in the different regimes, by 
showing differing response to noise of varying amplitude. 

We tlrst increase the size of noise by adding a noise 
term of size E to (17): 

0 -n 
UO 

M 

z(j)=& C - eiqv + Ee’P C e- iqnp. 
1+qn 

(29) 
?I=--00 a=1 

The previous calculations in 64-bit arithmetic are equiva- 
lent to having E of order 10-12. Here we choose M= 50 and 
E= lo- lo for comparison. Figure 14(a) shows the shapes 
for do=2.5x10m4 at the times 0, 0.5, 1.0, 1.5, and 2.6. 
Figure 14(b) shows the shapes for do= 10V3 at the times 0, 
1,2, 3,4, and 5. The long- and short-dashed curves corre- 
spond, respectively, to results from initial conditions (29) 
with e=lO-l’ and (17) [effectively E=IO-‘~ in (29)]. 
Only one-third of the interface is shown. In Fig. 14(b), the 
zero-do exact solution at t=5.0 is also shown in a solid 
curve. For do=2.5 X lo-“, the interface with larger initial 
“noise” develops ripples earlier, with c about 0.8. This 
onset time agrees well with the linear onset time; (t,“), if 
we set E= lo-” in (28). Similarly, we can obtain a t,” for 
each corresponding ‘c by choosing E in (28) to be the same 
value as that in (29 ) . Figure 15 shows the dependence of t,” 
(marked as “A”) and c (marked as “+“) upon E, for 
do=2.5 X 10w4. The times t,” and c agree roughly with one 
another for E< lo-“, while they disagree for E> 10m8. The 
disagreement could be due to the following: the larger val- 
ues of E are close to or larger than the initial values of the 
fastest growing modes, and as a result, the dynamics is 
significantly altered and not captured in the linear model. 
At any rate the results for do=2.5x 10e4 are consistent 
with the assumption that amplified noise is responsible for 
generating the structures. But for d,,= 10w3, the interface 
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(a) 

@Jo ’ ’ 3 4 ’ 
FIG. 14. Comparison of the interface shapes (one-third portion is 
shown) calculated in 64-bit arithmetic with different sizes of initial 
“noise.” The long-dashed curves are from initial condition (29) with 

. E= IO-“, and the short-dashed curves with E= lo-“. (a) do=2.5 X 10V4 
at the times 0, 0.5, 1.0, 1.5, and 2.0. (b) do= lo-’ at the times 0, 1, 2, 3, 
4, and 5. The solid curve is the zero-d, exact solution at t=5.0. 

shows an insensitivity to noise: e does not change with the 
size of E, and neither does the evolution of the interface 
shapes. 

We then decrease the size of noise by carrying out the 
calculations in 128-bit arithmetic on a Cray Y-MP. The 
results for do=2.5x 10V4 are shown in Figs. 10(a)-10(e) 
(short-dashed), in comparison with the 64-bit arithmetic 
results (long-dashed curves) and the zero-do exact solution 
(solid curves). For do=lO-“, Fig. 16 shows curvature ver- 
sus arclength, measured from the bottom of a fjord to the 
center of a neighboring front, at t=3.5 from 12% and 64- 
bit arithmetic results in long- and short-dashed curves, re- 
spectively. The solid curve corresponds to the zero-do exact 
solution. Again, we see the contrast in the behavior with 
different do. For do=2.5X10e4, the results from 128-bit 
arithmetic differ little from the zero-do exact solution even 
after c associated with 64-bit calculations. For do= 10B3 
the 64- and 128-bit arithmetic results differ little from each 
other, showing an insensitivity to the noise level, and they 
both differ from the zero-do exact solution at later times by 
developing oscillations in curvature or ripples on the inter- 
face. 

2.0 --II-T---r- 
1 

+ 

FIG. 15. Comparison of the dependence of t,” (marked as “A”) and t: 
(marked as “+“) upon’e. The initial condition is (29), and the calcula- 
tion is performed in 64-bit arithmetic. 

The different regimes of do shown in Fig. 13 can be 
explained by the different roles played by noise. For do 
<. dc,, the round-off in 64-bit arithmetic is amplified to 

eventually give rise to the structures [see Figs. 6(c) and 
6(d)]. Some general features of the amplification process 
are captured in the linear model (27), in particular the 
model gives a good estimate of the time scale of the process 
under the full equations. For do > dcz, the structures [Figs. 

6(a) and 6(b)] are intrinsic and insensitive to noise. 
A consistent picture of the effect of noise and surface 

tension on the structures results from the above tests. In 
Fourier space, the structures correspond to the band of 
modes which contains those modes that grow faster than 
their neighbors (Fig. 12), the cutoff to which is denoted as 
n, . The II, can be roughly estimated from the cutoff to the 
only band of modes that is amplified in the linear model 

arclength 

FIG. 16. Comparison at t=3.5 of the zero-d0 exact solution and the 64- 
and 12%bit calculations for do= lo-‘. The curves are curvature versus 
arclength measured from the bottom of a fjord to the center of an adjacent 
front. 
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(27) (Fig. 1 1 >, although the- linear model gives a under- 
estimation because nonlinear coupling between the modes 
is not considered. Initially, every mode is comprised of a 
“pure” part from ( 17) : 1 f n I= z&(qn- 1 >, which is a de- 

creasing function in it, and a noise part. Both parts are 
amplified under Eqs. (8) and (9). When some of them 
have grown to be larger than their neighbors, structures 
characterized by them become apparent. If initially these 

modes, especially 1 f n, 1 = z$/( qn, - 1 >, are comparable 

to noise, some significant part of the amplified modes 
which determine the structures comes from amplified 
noise. If initially these modes are much larger than noise, 
the later values of these modes come mostly from the 
“pure” initial condition and thus are insensitive to noise. 
Since smaller d,, leads to larger 12, [see ( 1 1 )] and in turn 
leads to smaller 1 f,J , the effect of noise depends on the 

size of do. For example, when uo=0.5 and q= 3, for 
do=2.5x10-‘, n,~35 and If,,[ z 10-13, while If,,] 

z lo-’ for do= 10w3. In 64-bit arithmetic, the different 
comparative size of I fl,, I to the round-off, leads to differ- 

ent response to noise reflected in the simulation results. 
We conclude this section by going back to the question 

raised at the beginning on the effect of the surface tension. 
Since we are interested in the difference of the solution 
with or without surface tension, we will again concentrate 
on the quantity t$ In order to obtain the “true” behavior, 
which is not dominated by the effect of noise, we need to 
identify a “true” c associated with do. From the previous 
understanding of the effect of noise, we can assume that 
this “true” c can be obtained by using 64-bit arithmetic for 
do > dcz while using more precise arithmetic for do < dc, . 

Figure 13 shows c obtained from 64- and 128-bit arith- 
metic! marked by “+” and “0,” respectively, for several 
do%. Also shown in dashed curve is t,” associated with 
128-bit arithmetic by setting ~=10-~~ in (28). The fact 
that c for do=6.25X 10e5 from 12%bit arithmetic (the 
leftmost “Q’) agrees with the above associated t,” indicates 
that for this very small do, even 128-bit arithmetic is not 
precise enough to avoid the effect of noise. Here 
do= 5 x 10m4 seems to be a transition value: even though c 
agrees with t,” in 64-bit arithmetic, c from 64- and 128-bit 
arithmetic results are close to each other too. This is prob- 
ably because the size of the cutoff to the modes that deter- 
mine the structures is close to the round-off in 64-bit arith- 
metic. We also note here that there is a correlation between 
the initial rippling process and the agreement or disagree- 
ment between c and the associated t,“. For those do whose 
c agrees with the associated t,“, as has been observed for 
do=2.5 X 10e4, the effect of noise is strong, and we observe 
that the initial ripples occur across the front of the inter- 
face (tip splitting). For an interface insensitive to noise, 
the initial rippling is side branching. Discarding those val- 
ues of c believed to be in the noise-dominant regime, we 
observe a monotonic increase of c with decreasing do. 

This is a strong indication that a small surface tension 
is a regular perturbation to the Eqs. (8) and (9) under the 
pole initial condition of the form ( 17). There are qualifi- 
cations. A referee has pointed out that an asymptotic anal- 

ysis of Tanveer2’ predicts the formation in the unphysical 
domain of “daughter singularities” from initial zeros in g. 
These singularities begin with zero amplitude, and for 
short times increase in amplitude with some positive power 
of dot. Leaving aside questions of the structural stability of 
these objects, or whether Tanveer’s analysis is applicable 
here, there is the possibility that the Fourier filtering used 
in the numerical method could “erase” such newly born 
singularities. For particular cases, we have studied care- 
fully the effect of both the filter level and the time step. For 
example, for do= lo-“, we decreased both the filter level 
(from lOwi to 10-26), and the time step (from 10m3 to 
10m4), and saw no change in the behavior. The decrease in 
filter level and time step should allow more dynamical 
range in the spectrum, and more accuracy in the time in- 
tegration, respectively. Nonetheless, it may be that such 
new structures would manifest themselves only on longer 
time scales than we have investigated here, or that there is 
not yet sufficient dynamical range to observe them. 

VII. CONCLUSIONS 

We have implemented numerically a boundary integral 
formulation of the Hele-Shaw problem. This method is 
spectrally accurate in space and fourth order in time. In 
order to maintain resolution of the bubble interface under 
surface tension, and to minimize the associated stiffness of 
the system, a tangential velocity was added along the in- 
terface to prevent computational points from clustering ex- 
cessively. For the q-pole initial condition, we have been 
able to continue the simulation long enough to observe the 
formation of new structures on the interface that are pro- 
duced by the surface tension. By varying both the precision 
of the calculation and explicitly adding “noise” to the ini- 
tial data, we were able to distinguish between structures 
arising through the intrinsic action of surface tension, and 
structures arising through the growth of numerical noise at 
scales allowed by the surface tension (under the qualifica- 
tion stated above). Side branching seems to be the intrinsic 
response of the system to surface tension, while tip splitting 
is associated with the growth of noise. 

We found also that for this particular initial condition 
(i.e., the initial analytic structure of g contains pure poles 
and no zeros), the time scale for the occurrence of such 
side branching increases with decreasing surface tension. 
In particular it is consistent with a logarithmic behavior 
for this time scale (as seen in Fig. 13) that has now been 
predicted by Tanveer for this specific case.47 Lacey et al. I7 

have attempted to model the effect of surface tension for 
cases when cusps form in the limiting zero surface tension 
solution. Implicit in their treatment is the assumption that 
surface tension is important only in the neighborhood of 
large curvature. In this sense, as the limiting solution has 
bounded curvature, our results for this initial data agree 
with this assumption. However, Tanveer-z0*47 has also con- 
jectured that there are initial conditions for which the zero 
surface tension solution has bounded curvature (and is 
smooth), yet manifests structure in the presence of surface 
tension whose onset time does not go to infhiity with de- 
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creasing surface tension. In collaboration with Tanveer, we 
are currently investigating such a possibility. 
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APPENDIX: THE ANALYTIC FRAME 

The complex velocity of the interface can be separated 
into a normal and a tangential component, 

* (Al) 

Here V,(p) and V,(p) are real and periodic functions with 
periodicity 2~, which are given by projecting the velocity 
onto the normal and tangential directions, respectively, 

VJp)=lm 
az*(P) Z,(P) - 

at jzp(p) 1 

dS/dt 1 

=Im 2rrzo 

Y(4) 

Z(P) --Z(4) 

1 Y(P) ~ 
= T(p) +j: Iz,(p> I 

Y(4) 

Z(P) --Z(4) 

(A-2) 

To retain the points in the analytic frame, the function 
V,(p) is chosen to make the velocity (Al) an analytic 
function for p not only on the real axis, but also extended 
to the upper half of the complex-p plane, 

V,(P) =iV,(p) -ilz,(p) IfI f& , 
( 1 

where d is an analytic continuation operator which is de- 
fined as follows.15 For a function F(p) =8,“=- manei”P, 

A^{F(p))=ao+2 C aneinp. 
tl<-1 

(A4) 

Finally, the expression for T(p) is obtained by putting 
Eqs. (A2) into Eq. (A3), 

Y(4) 

Z(P) --Z(q) 

(A5) 
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