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We describe a pseudo-spectral numerical method to solve the systems of
one-dimensional evolution equations for free surface waves in a homogeneous
layer of an ideal fluid. We use the method to solve a system of one-dimensional
integro-differential equations, first proposed by Ovsjannikov and later derived
by Dyachenko, Zakharov, and Kuznetsov, to simulate the exact evolution of
nonlinear free surface waves governed by the two-dimensional Euler equations.
These equations are written in the transformed plane where the free surface
is mapped onto a flat surface and do not require the common assumption
that the waves have small amplitude used in deriving the weakly nonlinear
Korteweg–de Vries and Boussinesq long-wave equations. We compare the
solution of the exact reduced equations with these weakly nonlinear long-wave
models and with the nonlinear long-wave equations of Su and Gardner that do
not assume the waves have small amplitude. The Su and Gardner solutions
are in remarkably close agreement with the exact Euler solutions for large
amplitude solitary wave interactions while the interactions of low-amplitude
solitary waves of all four models agree. The simulations demonstrate that our
method is an efficient and accurate approach to integrate all of these equations
and conserves the mass, momentum, and energy of the Euler equations over
very long simulations.
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1. Introduction

In this paper, we fully model the nonlinear surface waves by solving a system
of two one-dimensional evolution equations derived from the two-dimensional
Euler equations for the free surface elevation and the velocity potential on the
parameterized free surface. These integral–partial differential equations are
then accurately solved using a fast Fourier transform (FFT) pseudo-spectral
numerical method.

The discrete Fourier series and the boundary integral methods are widely
used numerical methods to fully model the nonlinear water wave dynamics
governed by the Euler equations for ideal fluids. See a review by Tsai and Yue
[1] of various numerical methods for water wave problems.

Earlier Fenton and Rienecker [2] expressed the free surface elevation and
the velocity potential as Fourier series in space and integrated the Euler
equations using the FFT for spatial derivatives and a leap-frog scheme for
time evolution. However, this formulation is inconvenient for evaluating the
vertical velocity at the free surface when imposing the nonlinear free surface
boundary conditions. Dommermuth and Yue [3] improved the efficiency of
the method by expanding the vertical velocity at the free surface about the
undisturbed (flat) free surface. A slightly different formulation, proposed by
Craig and Sulem [4], expressed the formal solution of the Euler equations
in terms of the Dirichlet-Neumann operator and approximated the vertical
velocity by expanding the operator in powers of the surface elevation.

The boundary integral method parameterizes the free surface using
Lagrangian coordinates and, by applying Green’s theorem, the velocity potential
is expressed in terms of a distribution of singularities on the free surface,
whose strengths have to be determined [5]. Thus, although the boundary
integral formulation solves some of the difficulties in imposing the free surface
boundary conditions that the Fourier series approach encounters, it requires
accurate approximations of the singular integrals along the free surface.

Both approaches can accurately simulate the surface waves before the waves
break but they are numerically complex to implement. Here, we solve the system
of one-dimensional integro-differential equations, proposed by Ovsjannikov
[6] and derived explicitly by Dyachenko, Zakharov, and Kuznetsov [7] using
the time-dependent conformal mapping technique to map the fluid region
of interest to a strip. Their one-dimensional system of integro-differential
equations is an exact and closed system for fully nonlinear free surface waves
in a homogeneous layer of an ideal fluid described by the two-dimensional
Euler equations. This idea was further generalized and tested by Choi and
Camassa [8] for periodic traveling gravity waves. Unlike the boundary integral
method, this approach does not require approximating complicated singular
integrals and extra steps to compute the strengths of singularities, and can be
solved accurately using an FFT pseudo-spectral method. Compared with the
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previous pseudo-spectral methods proposed by Dommermuth and Yue [3] and
Craig and Sulem [4], the equations are written in the transformed plane where
the free surface is mapped onto a flat surface and do not require an expansion
assuming that the waves have small amplitude.

Because the full Euler equations are often too complicated to analyze
directly, simpler models are commonly used to gain physical insight into
the dynamics of nonlinear waves. See, for example, Choi [9] for various
asymptotic models for water waves. Small-amplitude, long-wavelength waves
are often approximated by weakly nonlinear long-wave models such as the
Korteweg–de Vries (KdV) and the Boussinesq equations [10, 11]. Relaxing
the assumption that waves have small amplitude, Su and Gardner [12] derived
the higher-order nonlinear long-wave model. As the model of Su and Gardner
requires no assumption on wave amplitude, it is expected to better approximate
the exact evolution equations than the classical weakly nonlinear models, but
this has not been carefully examined.

After describing our numerical method for solving the exact evolution
equations, we briefly review the approximate models and describe their
relationships. We then demonstrate the effectiveness of our numerical method
in simulations of solitary wave collisions in water of finite depth and compare
numerical solutions of the exact system with those of various asymptotic
models for long waves. The interactions of low-amplitude solitary waves for
all of the long-wave models are in close agreement, even beyond the weakly
nonlinear regime. When the waves have high amplitude, then only the Su and
Gardner solutions are close to the solutions of the full Euler equations.

2. Mathematical formulation

A two-dimensional ideal flow between the free surface at y = ζ (x , t) and the
flat bottom at y = −h is governed by the Euler equations. These equations can
be expressed in terms of the velocity potential �(x , y, t) as

�xx + �yy = 0, −h < y < ζ, −∞ < x < ∞,

�y = ζt + �xζx , −∞ < x < ∞, y = ζ (x, t),

�t + 1
2 |∇�|2 + gy = σζxx

/(
1 + ζ 2

x

)3/2 + PE/ρ, −∞ < x < ∞, y = ζ (x, t),

�y = 0, −∞ < x < ∞, y = −h,

(1)

where ρ is the fluid density, σ is the surface tension, and PE(x, t) is a
prescribed external pressure.

2.1. Derivation of exact evolution equations

Following the work by Dyachenko et al. [7] and Choi and Camassa [8], let
z(ξ , η, t) = x(ξ , η, t) + iy(ξ , η, t) be an analytic function in the horizontal
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Figure 1. Conformal mapping between (a) physical domain (x , y) and (b) mathematical domain
(ξ , η).

strip −h̄ ≤ η ≤ 0, where z − ξ is periodic in ξ with period l, such that
z(ξ , η, t) maps the rectangle of −l/2 ≤ ξ ≤ l/2, −h̄ ≤ η ≤ 0 onto the fluid
domain (see Figure 1). The mapping function satisfies y(ξ , 0, t) = ζ (x(ξ , 0, t), t)
and y(ξ, −h̄, t) = −h for any ξ ∈ [−l/2, l/2].

It follows from the Cauchy–Riemann equations that the parameterized
functions x(ξ , η, t), y(ξ , η, t), φ(ξ , η, t) = �(x(ξ , η, t), y(ξ , η, t), t) and its
harmonic conjugate ψ(ξ , η, t) are related by the Fourier multiplier transforms
[8]. That is, if the Fourier series of y(ξ , 0, t) and ψ(ξ , 0, t) are given by

y(ξ, 0, t) = a0 +
∞∑

k=1

(
ake−2π ikξ/ l + CC

)
,

ψ(ξ, 0, t) = b0 +
∞∑

k=1

(
bke−2π ikξ/ l + CC

)
,

then, for any η ∈ [−h̄, 0], the following relations hold

y(ξ, η, t) = a0 + h

h̄
η + a0 +

∞∑
k=1

[
Sk(η)ake−2π ikξ/ l + CC

]
,

ψ(ξ, η, t) = b0

h̄
η + b0 +

∞∑
k=1

[
Sk(η)bke−2π ikξ/ l + CC

]
,

x(ξ, η, t) = a0 + h

h̄
ξ + x0 +

∞∑
k=1

[
iCk(η)ake−2π ikξ/ l + CC

]
,

φ(ξ, η, t) = α0

h̄
ξ + φ0 +

∞∑
k=1

[
iCk(η)bke−2π ikξ/ l + CC

]
,

(2)
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where CC represents the complex conjugate, a0 and b0 are real, ak and bk are
complex, and

Sk(η) = sinh[2πk(η + h̄)/ l]/sinh(2πkh̄/ l),

Ck(η) = cosh[2πk(η + h̄)/ l]/sinh(2πkh̄/ l).

As the time derivatives of x and φ in (2) must be periodic in ξ for periodic
waves, the coefficients of the linear functions in ξ have to be independent of time.
This is accomplished by choosing h̄ and b0 as h̄(t) = a0(t) + h and b0(t) = ch̄(t),
where constant c is determined from the initial condition.

On the free surface at η = 0, (2) gives the following relations:

xξ = 1 − T [ yξ ], φξ = c − T [ψξ ], (3)

where all variables are evaluated at η = 0, and T is the Fourier multiplier operator
defined by

T [ y] = 1

2h̄

∫ ∞

−∞
y(ξ ′, 0, t) coth

[
π

2h̄
(ξ ′ − ξ )

]
dξ ′

=
∞∑

k=1

[−i coth(2πkh̄/ l)ake−2π ikξ/ l + CC
]
, (4)

which we call the T-transform.
For deep water (h → ∞), The T-transform becomes the Hilbert transforma-

tion H defined by

H [ y] =
∫ ∞

−∞

y(ξ ′, 0, t)

ξ ′ − ξ
dξ ′=

∞∑
k=1

[−iake−2π ikξ/ l + CC
]
. (5)

Integrating (3) once with respect to ξ yields

x(ξ, 0, t) = ξ + x0 − T [ y], φ(ξ, 0, t) = cξ + φ0 − T [ψ], (6)

where y and ψ are also evaluated at η = 0, and x0, and φ0 are functions of
time to be determined.

By substituting the expressions for x , y, φ and ψ at η = 0 into the free
surface boundary conditions in (1), we obtain the surface Euler equations [8]
for x(ξ , 0, t), y(ξ , 0, t), and φ(ξ , 0, t):

xt = xξ T

[
ψξ

J

]
+ yξ

(
ψξ

J

)
,

yt = −xξ

(
ψξ

J

)
+ yξ T

[
ψξ

J

]
,

φt − φξ T

[
ψξ

J

]
+ 1

2J

(
φ2

ξ − ψ2
ξ

) + gy = σ (yξξ xξ − yξ xξξ )

J 3/2
− PE

ρ
,

(7)
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where J = x2
ξ + y2

ξ and ψ(ξ , 0, t) is related to φ(ξ , 0, t) from (6). From now
on, the dependence on η in x , y, φ, and ψ will be dropped, since only the
variables evaluated at η = 0 appear in (7).

Because x and y are related by the Cauchy–Riemann equations, or (6), it is
sufficient to solve one of the first two equations with the third equation in (7).
We however found it convenient to numerically solve all these equations and
determine both x0(t) and a0(t) from the first two equations.

Equation (7) is the exact parametric evolution equations for surface
gravity–capillary waves under pressure forcing in water of finite depth. Notice
that no assumptions have been made to derive (7) from (1). The formulation
is similar to the boundary integral method for two-dimensional water wave
problems where the evolution equations are written in terms of physical variables
defined on the boundary and the dimension of the original problem is reduced
by one. The nonlocal (linear) operator in the evolution equations can be easily
evaluated by the pseudo-spectral method described in the subsequent section.

2.2. Numerical method

At each time step, the periodic functions (x , y, φ, ψ) are expanded as discrete
Fourier series in ξ using the FFT and their derivatives and T-transform are
computed in Fourier space. For example, the T-transform of a function can be
found via FFT after multiplying the Fourier coefficients by −i coth(2πkh̄/ l),
as shown in (4). With evaluating nonlinear terms in physical space, we
advance the solution of (7) in time with a variable-order, variable-stepsize,
Adams–Bashford–Moulton predictor–corrector method.

We use artificial dissipation (hyperviscosity) to reduce the aliasing error in
solving nonlinear equations (7). The diffusive terms ν�ξ xξξ , ν�ξ yξξ , and
ν�ξφξξ are evaluated, passed through a high-pass filter, and added to the
right-hand side of the x, y, and φ equations, respectively. Here, �ξ is the spatial
step size and ν is chosen in the range between 0.01 and 0.05. To preserve
the accuracy in the lower frequency modes, a high-pass filter defined in the
Fourier space eliminates the lowest 1/2 Fourier modes of the dissipation terms,
leaves the highest 3/5 modes unchanged, and has the linear transition between
the two regions. Thus, the dissipation has no direct effect on the lower 1/2 of
the Fourier modes of the solution, and only dissipates the higher 1/2 modes.

In the absence of surface tension and atmospheric external pressure, the
surface wave equations have nine one-parameter symmetry groups [13], from
which eight conserved quantities can be found. The accuracy of our numerical
solutions is monitored by the following three conserved quantities: conservation
of mass

∫ l/2

−l/2
y(ξ, t)xξ (ξ, t) dξ,
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conservation of horizontal momentum∫ l/2

−l/2
φξ (ξ, t)y(ξ, t) dξ,

and conservation of energy∫ l/2

−l/2

(
φξ (ξ, t)ψ(ξ, t) + gy(ξ, t)2xξ (ξ, t)

)
dξ.

The spatial resolution is between 512 and 2048 Fourier modes based the
steepness of the solution. The time step and spatial resolution are determined so
that the absolute error of conserved quantities is below 10−4 and the relative
error is below 10−3.

2.3. Approximate models

Here, we briefly review the approximate evolution equations for long waves.
In 1969, Su and Gardner [12] derived a system of equations under the sole
assumption that a typical wavelength l is much greater than water depth h, in
other words, ε(≡h/l) � 1. The Su–Gardner (SG) system1 is given, in terms of
ζ and the depth-mean velocity ū, by

ζt + [(h + ζ )ū]x = 0,

ūt + ūūx + gζx = 1

3(h + ζ )

[
(h + ζ )3

(
ūxt + ūūxx − ū2

x

)]
x
.

(8)

Notice that the first equation in (8) implying the conservation of mass is exact,
while the second equation for conservation of momentum contains an absolute
error of O(ε4). Because no assumption that wave amplitude is small has been
imposed to derive this model, the system of equations in (8) should be a good
approximation of the Euler equations even for large amplitude waves, as long
as the long-wave approximation (ε � 1) is valid.

Under the same order of approximation, other forms of equations can be
obtained using, instead of ū, a different velocity. For example, if the horizontal
velocity is defined at a certain depth as y = yα, then the asymptotic relationship
between ū and ũ ≡ u(x, y = yα, t) can be expressed as [15]

ū = ũ + 1
2 (h + yα)2ũxx − 1

6 (h + ζ )2ũxx + O(ε4). (9)

Substituting this into (8) results in the system derived by Wei et al. [16].
Their system is asymptotically equivalent to (8) but the two systems possess
different linear dispersion relations and conservation laws.

1This system of equations is also called the Green–Naghdi (GN) equations [14].
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Under the weakly nonlinear assumption that ζ/h = O(ε2) and ū/(gh)1/2 =
O(ε2), after dropping higher-order terms than O(ε4), the strongly nonlinear
system (8) becomes the Boussinesq equations

ζt + [(h + ζ )ū]x = 0,

ūt + ūūx + gζx = h2

3
ūxxt .

(10)

For uni-directional waves, these equations can be further reduced to the KdV
equation

ζt + c0ζx + 3c0

2h
ζ ζx + c0h2

6
ζxxx = 0, (11)

where c0 = √
gh.

The solitary wave solutions for the KdV equation (11) and the SG equa-
tions (8) are

ζKdV = 2h(c − c0)

c0
sech2

√
3(c − c0)(x − ct)√

2c0h
,

ζSG = c2 − c2
0

g
sech2

√
3
(
c2 − c2

0

)
(x − ct)

2ch
,

respectively, for given wave speed c. The explicit solitary wave solutions for the
Boussinesq equations are not known, and they must be calculated numerically.

3. Exact solitary wave solutions

We solve the surface Euler equations (7) for solitary waves of the Froude
number up to F = 1.27 with 2048 discrete Fourier modes, using the modified
Newton’s method (as described in the Appendix). Beyond F = 1.27, the
solitary wave requires more Fourier modes due to the steepening of wave
slope. Because our objective is to investigate the dynamics of solitary waves
(not to compute the highest solitary wave of F � 1.286), we only consider
solitary waves of F < 1.27.

In Figure 2, we compare solitary wave profiles of various models for three
different Froude numbers F = c/

√
gh =1.0838, 1.2012, and 1.2691. For the

Froude number close to 1, solitary wave solutions of the KdV, Boussinesq, and
SG equations are very close to those of the Euler equations, as expected.
However, as F increases, solitary waves of the KdV equation are quite different
from those of the Euler equations and, for given wave speed, the amplitude of
the KdV solitary wave is much smaller than that of the Euler solitary wave.
Solitary waves for the bi-directional SG and Boussinesq equations are slightly
wider and narrower, respectively, than those for the Euler equations but show a
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Figure 2. Solitary wave profiles at the Froude numbers of F = 1.0838, 1.2012, and 1.2691
for the Euler (solid curve), SG (dash-dotted curve), Boussinesq (dashed curve), and KdV
(dotted curve) equations. Notice that the solitary wave solutions of the KdV, Boussinesq, and
SG equations are very close to those of the Euler equations for Froude number close to 1.
However, the solitary waves of the KdV equation are quite different from those of the Euler
equations for larger Froude number.

little better agreement with the Euler solutions than what the KdV theory
predicts.

For more quantitative comparisons, the scaled mass of solitary waves
M = ∫

R
η dx/h2 and the scaled wave amplitude a/h as a function of the Froude

number are shown in Figures 3 and 4. Notice that our numerical solutions for
solitary waves for (7) agree well with the earlier results of Longuet-Higgins
[17] and Longuet-Higgins and Fenton [18] and the maximum difference is
0.16% for M and 0.35% for a/h.

When the Froude number is close to 1 (say, 1 ≤ F < 1.05), all the solitary
waves have almost the same mass, as shown in Figure 3. As F increases (1.05 <

F < 1.15), the mass of solitary wave of the strongly nonlinear long-wave
model (SG) is closer to that of the Euler wave than any other weakly nonlinear
models. Because the derivation of the SG equations did not assume the wave
amplitudes were small, it is not surprising that the SG equations are valid
for relatively larger F than any weakly nonlinear models. When F further
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Figure 3. The solitary waves increases in height and mass M as a function of the Froude
number F for the Euler (solid curve), SG (dash-dotted curve), Boussinesq (dashed curve),
KdV (dotted curve), and Longuet-Higgins and Fenton (circle) models.

increases (F > 1.15), none of the approximate models are accurate and the
fully nonlinear solutions of the Euler equations are required. It is well known
[18] that exact solitary wave steepens as wave amplitude increases so that the
slope at the crest becomes discontinuous at F ≈ 1.286, violating the long-wave
assumption, and therefore any long-wave models should be inapplicable for
large F. Similar observations can be made from the relationship between wave
amplitude and the Froude number, as shown in Figure 4.

4. Numerical simulations

We compare the numerical solutions of the exact evolution equations with
those of approximate evolution equations to demonstrate the effectiveness of
the numerical method on this class of equations. The examples also illustrate
validity of the approximate long-wave models in head-on and overtaking
collisions of solitary waves, as well as the disintegration of an elevation.
These simulations add to the previous investigations of these approximate
models using different approaches [19–23]. Throughout this section, time t is
nondimensionalized by h/c0.



Free Surface Waves in Water of Finite Depth 313

1 1.05 1.1 1.15 1.2 1.25 1.3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Froude number

a/h

Figure 4. Wave amplitude (a/h) versus the Froude number (F): Euler (solid curve), SG
(dash-dotted curve), Boussinesq (dashed curve), KdV (dotted curve), and Longuet-Higgins
and Fenton (circle). Notice that the KdV solitary wave of given wave amplitude is moving
much faster than the Euler solitary wave with the same amplitude.

4.1. Head-on collision of solitary waves

In the head-on collision shown in Figure 5, two solitary waves with F = 1.172
and 1.084 propagating in the opposite directions collide and re-emerge with
oscillating tails. We match wave speeds, and thus wave amplitudes for different
models are different, as discussed in Section 3. Initially, the amplitudes of the
larger waves are aE/h = 0.3847, aS/h = 0.3727, and aB/h = 0.3991 and
those of the smaller waves are aE/h = 0.1765, aS/h = 0.1744, and aB/h =
0.1801 for the Euler, Su–Gardner, and Boussinesq equations, respectively.
Because the KdV model is for unidirectional waves, it is not included in this
example. Notice that the amplitudes of the larger waves are not in the weakly
nonlinear regime.

As shown in Figure 5, two solitary waves collide to form a single peak at t =
25.9 with amplitudes of aE/h = 0.5991, aS/h = 0.5802, and aB/h = 0.6052.
The height of the peak during the collision is always greater than the sum of
two wave amplitudes. After the head-on collision, small dispersive waves are
shed behind solitary waves and the amplitudes of both waves slightly decrease.
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Figure 5. (a) The head-on collision of two solitary waves of the Euler equations (solid
curve) is compared with numerical solutions of the SG equations (dash-dotted curve) and the
Boussinesq equations (dashed curve), respectively, with the Froude numbers of F = 1.084
and 1.172. Two solitary waves collide to form a single peak greater than the sum of two wave
amplitudes. (b) The trailing tails of solitary waves after the head-on collision. (c) The final
solitary wave profiles after the head-on collision show that small-dispersive waves are shed
behind solitary waves and the amplitudes of both waves slightly decrease.

The dispersive tails generated after the collision (enlarged in Figure 5(b))
show that the SG equations more accurately approximate the Euler equations
than the Boussinesq equations in terms of wave amplitude and phase. As
expected, our numerical results verify that solitary waves of these three systems
are not true solitons, i.e., they do not maintain the same shape after interactions,
and dispersive tails become larger as solitary wave amplitudes increase.
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After the collision, both solitary waves are retarded from their own pathlines
and this phase shift is known to be a salient feature of the nonlinear interaction
of solitary waves. The decay of kinetic energy by the retardation upon merging
is compensated for by the increase of potential energy, or the increase of the
peak height [23]. For weakly nonlinear waves, the phase shift of one wave is
known to be proportional to the square root of amplitude of the other wave.
This phase shift is too small to be accurately measured in our numerical
solutions, but the finite amplitude effect on the phase shift can be identified
from the relative positions of different solitary waves. As shown in Figure 5(c),
the weakly nonlinear model (Boussinesq equations) underpredicts the phase
shift after the collision, while the phase shift for the SG equations is very close
to that for the Euler equations.

The phase shift is more noticeable in the head-on collision of higher amplitude
waves with F = 1.172 and 1.201, as shown in Figure 6. The differences in
dispersive tails and phase shifts are greater in this highly nonlinear regime. The
strong nonlinearity in the Euler and SG equations induces a larger phase shift.

In our numerical experiments, we match wave speeds by choosing different
wave amplitudes for different models. When we use solitary waves of same
amplitude for all models, the difference among various models will be even
greater than the results shown here. From Figure 4, it is expected that the
interaction of SG solitary waves will be closer to that of Euler solitary waves
because the wave speed of the SG model is much closer to that of the Euler
equations than any other models (up to intermediate wave amplitude). When
we further increase wave amplitude, no asymptotic theory will be valid and
fully nonlinear simulation is required.

4.2. Overtaking collision of solitary waves

For the overtaking collision of two KdV solitons, it is well known [15, 23]
that, depending on the amplitude ratio, two waves can either remain separated
or merge into a single peak during their interaction. From the weakly nonlinear
analysis, the critical amplitude ratio is known to be 3 and the larger solitary
wave overtaking the smaller one experiences a forward phase shift, while the
smaller wave shifts backward.

Figure 7 shows the overtaking collision of two solitary waves with the
Froude numbers of F = 1.156 and 1.09 in a frame moving with the speed F =
1.123. Initially, the amplitudes of the larger waves are aK/h = 0.3114, aE/h =
0.3441, aS/h = 0.3356, and aB/h = 0.3561, and the amplitudes of the smaller
waves are aK/h = 0.1808, aE/h = 0.1911, aS/h = 0.1889, and aB/h =
0.1952 for the KdV, Euler, SG, and Boussinesq equations, respectively. With
this amplitude ratio (about 1.8), two waves never merge into a single peak.

Unlike the case of head-on collision, the overtaking collision of solitary
waves of all models are nearly elastic (except the KdV equation, for which
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Figure 6. (a) The head-on collision of two solitary waves of the Euler (solid curve), the SG
(dash-dotted curve), and Boussinesq equations (dashed curve), respectively, with the Froude
numbers F = 1.172 and 1.201. (b) The trailing tails after the head-on collision. There is a
noticeable difference between the exact solution and the Boussinesq solution in this highly
nonlinear regime. (c) The wave profiles for F = 1.172 after the head-on collision. Notice that
the head-on collisions of higher amplitude waves have a greater phase shift.

the collision is perfectly elastic) and the emerging solitary waves are almost
identical to the incident waves.

In Figure 8, we show the overtaking collision of two solitary waves with a
large amplitude ratio, which is about 7.8. The Froude numbers are F = 1.172
and 1.024 for large and small waves, respectively. In this case, the larger wave
merges into the smaller wave to form a single peak during the interaction.
The amplitude of the merged peak is, for example, about aE/h = 0.3208
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Figure 7. Overtaking collision of two solitary waves of the Euler (solid curve), SG (dash-dotted
curve), Boussinesq (dashed curve), and KdV (dotted curve) equations, respectively, with F =
1.156 and 1.0904. The solutions are shown in a frame moving with F = 1.123. Unlike the
case of head-on collision, the solitary waves of all the models emerge almost unchanged after
an overtaking collision. This collision is perfectly elastic for the KdV equation.

for the Euler equations, which is smaller than the amplitude of the larger
wave, aE/h = 0.3847. This is what the weakly nonlinear theory predicts. It is
interesting to notice that, for the overtaking collision, the weakly nonlinear
theory holds qualitatively even for large amplitude waves.

4.3. Disintegration of an initial elevation into solitary waves

In this section, we investigate the evolution of a single (Gaussian) elevation
and compare numerical solutions of different models.

As shown in Figure 9(a), a single elevation of amplitude a/h = 0.3 quickly
breaks into a higher wave of elevation traveling to the right and a smaller
depression wave traveling to the left for the Euler equations, the SG equations,
and the Boussinesq equations. For these bi-directional models, the relation
between ζ and u for traveling solitary waves is used to fix u at t = 0. The wave
of elevation traveling to the right further breaks into three solitary waves.
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Figure 8. When a fast wave overtakes a slow wave, the slower wave is swallowed by the fast
wave creating a single pulse wider and lower than the fast wave. The solutions of the Euler
(solid curve), SG (dash-dotted curve), Boussinesq (dashed curve), and KdV (dotted curve)
equations with the Froude numbers F = 1.172 and 1.024 are all in close agreement. The
solutions are shown in a frame moving with F = 1.098. The larger wave overtakes the
smaller wave to form a single peak. The amplitude of the merged peak for the Euler equations
is smaller than the amplitude of the larger wave.

Although the (uni-directional) KdV equation does not shed off any small
waves traveling to the left, the KdV solutions are similar to those of other
models in terms of phase. As shown in Figure 9(b), the wave amplitude of the
Boussinesq equations is always higher than those of the other three systems,
while the KdV wave amplitude is always smaller than the others. The SG
waves keep closer approximation to the Euler equations, in terms of wave
amplitude, than weakly nonlinear systems. As we discussed previously, these
results are consistent with the observation for solitary wave interactions.

Figure 10 shows the evolution of a single elevation of higher amplitude of
a/h = 0.57 for the Euler equations, the SG equations, and the Boussinesq
equations. The single wave splits into a higher wave of elevation moving to the
right and a smaller elevation moving to the left. Afterwards, the larger wave
moving to the right continues to shed small disturbances behind, all traveling
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Figure 9. (a) Disintegration of a single elevation of amplitude 0.3 moving to the right: Euler
(solid curve), SG (dash-dotted curve), Boussinesq (dashed curve), and KdV (dotted curve).
(b) A closer observation of the process of breaking into three waves. The wave amplitude of
the Boussinesq equations is always higher than those of other three systems, while the KdV
wave amplitude is always smaller than others. The amplitude of the SG waves is closest to the
Euler equations.
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Figure 10. Disintegration of a single elevation of amplitude 0.57 moving to the right: Euler
(solid curve), SG (dash-dotted curve), and Boussinesq (dashed curve). The single wave splits
into a taller wave moving to the right and a shorter wave moving to the left. The right moving
tall wave sheds small disturbances in its wake.
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to the right. Similar to the previous case of the smaller wave amplitude, the
Boussinesq waves are always slightly faster with larger amplitude, and the
SG waves are slightly slower with smaller amplitude than others. We do not
include the KdV solution because it does not approximate bi-directional waves,
noticeably different from other solutions.

5. Conclusion

The full Euler equations are difficult to simulate when the wave interactions are
highly nonlinear and the free surface constantly changes the domain boundary.
We demonstrate the effectiveness of an efficient numerical method to solve a
system of exact one-dimensional evolution equations for the motion of the
free surface governed by the highly nonlinear Euler equations.

We solved two integral–partial differential evolution equations (7) derived
from the Euler equations for the free surface elevation and the velocity
potential on the parameterized free surface. These equations are derived by
a time-dependent conformal mapping technique to map the fluid region of
interest to a strip. The system is explicit and can be solved with the only
slightly more effort than required to solve weakly nonlinear models such as
the KdV, Boussinesq, or Su–Gardner equations. The approach has advantages
over the boundary integral and other pseudo-spectral methods. The system is
closed and no intermediate step, such as finding the strengths of singularities,
is required. Also, Equations (7) were derived without assuming that the waves
were small and the interactions were weakly nonlinear.

We demonstrated that the numerical method is robust and effective in
simulating large amplitude long waves in water of finite depth. The maximum
error in conserving mass, momentum, and energy was below 0.43% even in
the long-time simulations (for example, t = 1700, as shown in Figure 7).
Although we only considered the dynamics of solitary waves in this paper, the
system given by (7) is useful to study periodic gravity–capillary waves of
arbitrary wavelength.

Surprisingly, in terms of solitary wave dynamics, the weakly nonlinear
models such as the Boussinesq equations and the KdV equation reasonably
well-approximate steady solitary wave solutions of the Euler equations and
their dynamics, even beyond the weakly nonlinear regime. The SG system
seems to have a wider range of validity than weakly nonlinear asymptotic
models, although the fully nonlinear Euler solutions are always necessary for
the large amplitude waves. To make a more conclusive statement on the validity
of the SG model, it is still necessary to investigate the behavior of the SG
model for more realistic physical problems such as the dynamics of solitary
waves over nonuniform bottom topography.
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Appendix: Numerical methods for traveling waves

By using the KdV scaling, Friedrichs and Hyers [24] and Beale [25] proved
the existence of solitary waves for the Euler equations in the weakly nonlinear
regime where the Froude number F = c/

√
gh is greater than but close to 1.

They also showed that the KdV solitary waves approximate those of the Euler
equations. Amick and Toland [26] showed the existence of solitary waves for
the Euler equations as the limit of periodic waves even beyond the weakly
nonlinear regime. Based on their results, we approximate the solitary waves of
(7), or equivalently, the Euler equations, by long wavelength periodic waves.

We look for traveling waves of the form

x = ξ + x̃(ξ − ct), y = y(ξ − ct),

φ = δ(ξ − ct) + φ̃(ξ − ct), ψ = ψ(ξ − ct),

where x̃(=T y), y, ψ , and φ̃ are periodic functions of s = ξ − ct with period l
and δ which are constants to be determined. The functions y and φ̃ satisfy the
boundary conditions y(l/2) = φ̃ξ (l/2) + δ = 0, and y is even and symmetric
with respect to s = 0. As l → ∞, y(s) converges to a solitary wave decaying
to zero [26].

Substituting the traveling wave into the kinematic equation ytxξ − xtyξ =
−ψξ [8], we obtain cys = ψ s . Because x̃ and φ are harmonic conjugates of y
and ψ , respectively, we have that φs(s) = c(x̃s(s) − x̃s(l/2)), i.e., δ = −cx̃s(l/2).
Substituting these relations into the third equation of (7) and assuming that the
surface tension S and the external pressure PE are negligible, the free surface
equation can be reduced to

x2
ξ + y2

ξ = x2
s (l/2)

1 − 2gy/c2
.

Substituting s = h̄ξ, x = h̄ x̂ , and y = h̄ ŷ into this equation leads to the
dimensionless-free surface equation

x̂2
ξ + ŷ2

ξ = x̂2
ξ

(
l/2

)
1 − 2gh̄ ŷ/c2

. (A.1)
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Because the Euler equations have a one-parameter scaling symmetry group
(λx, λy, λ

1
2 t, λ

3
2 φ) [13] for any λ > 0, without loss of generality, we set h̄ = 1

in the following analysis. Also, for simplicity, we will drop the accent ˆ over x
and y .

Let w and θ be real-valued functions such that zξ = xξ + iyξ = ew+iθ . Because
zξ is an analytic function of ξ + iη, w and θ satisfy the Cauchy–Riemann
equations. Using the KdV scaling [24], ξ ∗ = aξ , θ∗ = a−3θ , and w∗ = a−2w,
the equation for the free surface given by (A.1) can be expressed as

wξ = 1

a3
ea2(3w−2w(l/2)−1) sin a3θ at η = 0, (A.2)

where ea2 = c2/(gh̄) and we have dropped the asterisks for simplicity.
The exponent in (A.2) can be found using the Cauchy–Riemann relations as

3w − 2w(l/2) = 3Ta[θ ] − 2Ta[θ (l/2)] + 〈w〉 ≡ Ma[θ ], (A.3)

where T a[θ ] is the scaled complex T-transform (4),

Ta[θ ] = −ia
∑
k �=0

coth(2πak/ l)cke2π ikξ/ l .

Here 〈w〉 is the average value of w over one period,

〈w〉 = − 1

a2
log

[
1

l

∫ l

0
ea2Taθ cos(a3θ ) dξ

]
.

By using (A.3), Equation (A.2) can be written as

f [θ ] ≡ θ − (G[θ ] − I )−1

[
1

a3
ea2(Ma[θ ]−1) sin(a3θ ) − θ

]
= 0, (A.4)

where

G[θ ]
def= a

∑
k �=0

kl coth (2πak/ l)cke2π ikξ/ l .

To solve (A.4) with the Newton’s method, we express the (n + 1)st
approximation to θ as θn+1 = θn + vn, where θn is the approximation from
the previous iteration and vn is the correction. We then linearize (A.4) with
respect to vn to obtain fθn [vn] = − f [θn]. Here f θ is the functional derivative
of f with respect to θ

fθn [vn] ≡ vn − (G − I )−1

×
[

1

a
ea2(Ma[θn]−1) sin

(
a3θn

)δMa

δθn
+ ea2(Ma[θn]−1) cos

(
a3θn

) − 1

]
vn.

After we compute f θ , we define the N × N matrix, Fθ , as f θ modulus its
kernel using the discrete Fourier Transform for N Fourier modes. We then
solve Fθn [vn] = − f [θn] for vn and iterate until |vn| < 10−13.



Free Surface Waves in Water of Finite Depth 323

Because small-amplitude waves of the KdV equation are close approximations
to those of the Euler equations [24, 25], in the weakly nonlinear regime (small
a > 0), we use the KdV traveling waves as the initial guess to find traveling
wave solutions of (A.2). We then gradually increase the parameter a (thus,
increasing the speed c), and use solutions for the smaller waves as an initial
guess to compute higher amplitude waves as the solution of a fixed-point
problem. In the weakly nonlinear regime, if we increase a by 7%, it takes only
six iterations for this scheme to reduce the error to sup |θn+1 − θn| < 10−13

and sup | f [θn]| < 10−13.
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