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The presence of a steady-state distribution is an important issue in the modelization of cell populations. In this paper, we

analyse, from a numerical point of view, the approach to the stable size distribution for a size-structured balance model

with an asymmetric division rate. To this end, we introduce a second order numerical method based on the integration

along the characteristic curves over the natural grid. We validate the interest of the scheme by means of a detailed analysis

of convergence. Copyright c
 0000 John Wiley & Sons, Ltd.
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1. Introduction

We consider the numerical integration of a model which is based on the one proposed by Ramkrishna [19]. It describes the

evolution of a size-structured cell population and takes the following form

ut(x; t) + (g(x) u(x; t))x = ��(x) u(x; t)� b(x) u(x; t) + 2

∫ 1

x

b(s)P (x; s)u(s; t) ds; xmin < x < 1; t > 0; (1.1)

u (xmin; t) = 0; t > 0; (1.2)

u(x; 0) = '(x); xmin � x � 1: (1.3)

The independent variables x and t represent size and time respectively, xmin stands for a nonnegative minimum cell-size and we

consider a maximal cell-size, normalized to 1. The dependent variable u(x; t) is the size-speci�c density of cells with size x at

time t. The size of any cell varies according to the following ordinary di�erential equation

dx

dt
= g(x);
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where g(x) is the growth rate with g > 0 on [xmin; 1). The nonnegative functions � and b represent the mortality and division

rates respectively. These are usually called the vital functions and de�ne the life history of cells. Finally, the distribution of sizes

between the two daughter cells at the moment of cell division (unequal division) is de�ned in terms of a conditional density

P (x; y), called the partitioning function, which gives the distribution of the size of a daughter-cell x , when the size of the mother

is equal to y . Thus,

∫ x2

x1

P (x; y) dx means the probability for a daughter cell to have size x in the interval (x1; x2) knowing that

the mother had size y . Such distribution should verify the following properties:∫ 1

xmin

P (x; y) dx = 1; P (x; y) = P (y � x; y); P (x; y) = 0; x � y:

As a particular (and extreme) case, mother cells could always divide into two identical daugther cells (equal division). In that

case, the partitioning function reduces to the Dirac delta function P (x; y) = �(x � y=2), and it turns into the model proposed

by Diekmann et al. [8]. In these models, the environment is assumed to have unlimited space and resources.

A remarkable feature is the existence of a maximum individual size. This is a biological truth: cells must divide or die before

reaching this value. Therefore, �(1) = 0 where

�(x) = exp

(
�

∫ x

xmin

�(s) + b(s)

g(s)
ds

)
; xmin � x � 1;

which represents the probability that an individual of size xmin reaches size x . If the division and mortality rates are bounded

functions, cells will not disappear at the maximum size and the previous condition cannot be satis�ed unless they do not reach

such a value. For this purpose, we consider a growth function that veri�es lim
x!1�

∫ x

xmin

ds

g(s)
= +1. Note that this hypothesis

implies g(1) = 0 if g is a continuous function de�ned in [xmin; 1]. Henceforth, in the present model, we assume that cell-size is

strictly increasing during lifetime of cells and always less than one. Moreover, if we assume that initially there are no cells of

maximum size, the solution to the problem satis�es u(1; t) = 0, t > 0 [7].

Cell population balance models were introduced in the early 1960s within the framework of particle dynamics in chemical and

cellular contexts [21, 5, 11]. Despite this early development, nowadays it is an area of increasing applications and it is used to

describe quite di�erent issues (see [20] and references therein). In recent years, they have evolved towards more complicated

models: several structuring variables, various populations (describing, for example, proliferating and quiescent cells or the di�erent

stages in a cell-cycle), nonlinear problems (with the consumption of a limited extracellular medium), inverse problems to compute

the vital functions [6, 9, 10, 22]. In our setting, we consider a cell population balance model structured by the cell-size in which

the reproduction is carried out by �ssion into two daughter cells with di�erent sizes. Cell-size is an attractive variable as a

result of the relative ease and precision with which it can be measured because the instrumentation to obtain it has improved

considerably. The model that arises because of this simpli�cation is still useful in order to analyse and understand cell population

dynamics.

From a theoretical point of view, a general survey of the main mathematical problems solved and the principal techniques

employed in this context is given in [17, 16, 4, 18]. Properties such as existence, uniqueness, etc., could be studied without an

explicit expression for the solution. However, the knowledge of their qualitative or quantitative behaviour in a more tangible way

sometimes becomes necessary. Therefore, numerical methods provide a valuable tool to obtain such information.

One of the most important issues in the formulation of cell population balance models from both a qualitative and quantitative

point of view is to establish the existence of a size pyramid. The main purpose in the study of system (1.1)-(1.3) has been to

set the experimental evidence of a stable size distribution. A size distribution is represented as

u(x; t)∫ 1

xmin
u(x; t) dx

: (1.4)

A stable steady distribution is achieved if there exists a function �(x) such that the size distribution tends to �(x), as time t

tends to +1. The existence of � implies a solution of (1.1)-(1.3) of the type C e� t �(x) where � is an asymptotic value of the

relative growth rate of the population, when it exits it is unique and known as the Malthusian parameter of the problem, and only

C depends on the initial condition. An interesting property of the stable size distribution is that whatever the initial distribution
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may be, it is shaped asymptotically as the function u�, this property is called asynchronicity. Even if the initial distribution has a

very narrow support, it will tend to occupy asymptotically the whole support of �, therefore we can generate a large population

(a clone) from a single cell. From a theoretical point of view, several authors have proved the existence of stable size distribution

with di�erent hypotheses [8, 13].

From a numerical point of view, in the last twenty years, several studies have addressed their numerical solution with di�erent

techniques: analytical solutions based on a successive generations approach, classical �nite di�erence schemes, �nite element or

spectral methods or the use of the integration along the characteristics (see [2] and references therein). However, the analysis

of most of these numerical proposals is not �nished yet and its convergence to the theoretical solution has been ensured only

in a few of them [3]. In the present paper, we present a second-order characteristics method, based on the numerical scheme

developed and analysed in [3] for the symmetric division case. Second-order methods maintain a good compromise between the

required smoothness of the vital functions based on realistic biological data and the e�ciency of the numerical schemes. We

employ a numerical approximation to an invariant grid on the state variable and the discretization of the integral representation

of the solution to the problem along the characteristic curves. We also prove the optimal rate of convergence under appropriate

regularity assumptions.

The paper is organized as follows. In Section 2, we introduce the proposed numerical method. Section 3 is devoted to a

representative numerical simulation which shows how we use the new method to approximate the stable size distribution of the

model. Finally, we strengthen the rationale for the scheme with an appendix where we analyse the convergence of the numerical

solution.

2. Numerical Method

We rewrite (1.1) as

ut(x; t) + g(x) ux(x; t) = ���(x) u(x; t) + 2

∫ 1

x

b(s)P (x; s)u(s; t) ds; xmin < x < 1; t > 0; (2.1)

where we have de�ned ��(x) = g0(x) + �(x) + b(x). We denote by x(t; t�; x�) the characteristic curve of the equation (2.1)

(and (1.1)) that takes the value x� at the time instant t�, and de�ne w(t; t�; x�) = u(x(t; t�; x�); t), t � t�. Thus,
d

dt
x(t; t�; x�) = g(x(t; t�; x�)); t > t�;

x(t�; t�; x�) = x�;
(2.2)

and 
d

dt
w(t; t�; x�) = ���(x(t; t�; x�))w(t; t�; x�) + 2

∫ 1

x(t;t�;x�)

b(s)P (x(t; t�; x�); s)u(s; t) ds; t > t�;

w(t�; t�; x�) = u(x�:t�):

(2.3)

We will obtain a numerical approximation to the solution u of (2.1) and (1.2)-(1.3) on a �xed time interval [0; T ]. The numerical

method comprises two basic steps. The �rst one is to build a grid f(xj ; t
n) : 0 � j � J + 1; 0 � n � Ng, on [xmin; 1]� [0; T ],

with xmin = x0 < x1 < � � � < xJ < xJ+1 = 1, such that points (xj ; t
n) and (xj+1; t

n+1), 0 � j � J + 1, 0 � n � N, belong to the

same characteristic curve. This time-invariant grid is usually known as the natural grid and was �rst introduced in [15]. Its

invariance allows us to study the long-term behaviour of the model which has proven to be one of the easiest ways to discretise

the population states (cell-sizes). With this aim, we solve numerically (2.2) with an integrator for ordinary di�erential equations.

The second step is to compute an approximation to u(xj+1; t
n+1) starting from a numerical approach to u(xj ; t

n). To this end,

we discretize the solution to (2.3), which is given by

w(t; t�; x�) = u(x�; t�) exp

{
�

∫ t

t�

�� (x(� ; t�; x�)) d�

}
+ 2

∫ t

t�

exp

{
�

∫ t

�

�� (x(s; t�; x�)) ds

} (∫ 1

x(� ;t�;x�)

b(�)P (x(� ; t�; x�); �) u(�; �)d�

)
d�; t � t�: (2.4)
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This approximation technique has been applied to di�erent models in [2] and [3]. On the one hand, a useful �rst-order scheme

was proposed to obtain the solution to a nonlinear generalization of (1.1)-(1.3) when the vital functions involved in the problem

depend on an abiotic environment that changes with time [2]. It is known that low-order of convergence would produce a lack

of e�ciency which could be reduced with higher order methods. However, the smoothness of the solution to (1.1)-(1.3) is not

as high as these last schemes demand. Thus, second-order methods present a good balance: they enhance the e�ciency even

with a lack of regular data. On the other hand, a novel second-order method was introduced for the equal �ssion model in [3].

In this work, we present an adaptation of this method to the more general asymmetric division case.

2.1. The grid points

Let N be a positive integer. We de�ne k = T
N
and introduce the discrete time levels tn = n k, 0 � n � N. As we have mentioned,

we want to introduce a state variable grid

xmin = x0 < x1 < � � � < xJ < xJ+1 = 1; (2.5)

such that points (xj ; t
n) and (xj+1; t

n+1), 0 � j � J + 1, 0 � n � N, belong to the same characteristic curve. This grid is

nonuniform and invariant with time because the growth rate function is, explicitly, independent of the time variable. We want

to stress that J is an a posteriori chosen integer and represents the last grid point computed. In general, we are unable to

solve (2.2) analytically, hence we integrate it numerically. We consider the grid points de�ned by the equations

x0 = xmin; xj+1 = xj +
k

2
(g(xj) + g(xj + kg(xj))); 0 � j � J � 1; xJ+1 = 1; (2.6)

where we employ the modi�ed Euler method, a second order Runge-Kutta method. In [1], it is stated that we need the continuity

and positivity of function g on [0; 1) to satisfy (2.5) and ensure the existence of xJ , such that K0 k < 1� xJ � K1 k, with K0

and K1 suitable constants. It also establishes estimates for the local error when g is smooth enough. Note that actually the

points (xj ; tn) and (xj+1; tn+1), 0 � j � J � 1, 0 � n � N � 1, belong to the same numerical characteristic curve.

2.2. Numerical integration along the characteristics

We refer to the grid point xj by a subscript j and to the time level tn by a superscript n. Let Un
j be a numerical approximation to

un
j = u(xj ; t

n), 0 � j � J � 1, 0 � n � N � 1. The next stage is to propose a one-step method in order to obtain an approximation

Un+1
j+1 to un+1

j+1 . To this end, we use, with step size k, the following second-order discretization of (2.4). For 0 � n � N � 1,

Un+1
j+1 = exp

{
�
k

2
(�� (xj) + �� (xj+1))

}(
Un
j + k Qj

k(b�P
j �Un)

)
+ k Qj+1

k (b � Pj+1 �Un+1); 0 � j � J � 1: (2.7)

In this formula, Ql
k(V) represents a quadrature rule to approximate the integral over the interval [xl ; 1], 0 � l � J, of the function

with grid values V = [V0; : : : ; VJ+1]. In this case b, Pl and Um, represent the vectors with components [b(x0); : : : ; b(xJ+1)],

[P (xl ; x0); : : : ; P (xl ; xJ+1)] and [U
m
0 ; : : : ; U

m
J+1], respectively, and products b � P

l �Um, 0 � l � J, 0 � m � N, must be interpreted

component-wise. The approximating values at the minimum and maximum sizes are

Un+1
0 = Un+1

J+1 = 0: (2.8)

With regard to the nonlocal terms, we consider the composite trapezoidal quadrature rule on the grid inside the interval [xl ; 1]

Ql
k(V) =

J∑
j=l

xj+1 � xj
2

(Vj + Vj+1) ; l = 0; : : : ; J: (2.9)

The numerical procedure seems to be implicit. However, if we compute the approximations at the new time level tn+1 downwards

(that is, �rst Un+1
J+1 using (2.8), then Un+1

j+1 from J � 1 to 0 using (2.7), and �nally Un+1
0 using (2.8) again), it results in an explicit

procedure.
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Assuming suitable regularity conditions in the vital functions and the solution to problem (1.1)-(1.3), we can prove the second

order convergence of the numerical approximation to the exact solution u. We want to emphasise that the number of nodes in

the natural grid is not determined with respect to N (and therefore, with respect to k), but even so we obtain the convergence

of the quadrature rule under this premise. In [1], conversely, a subgrid of the natural grid is introduced to overcome this di�culty.

In Appendix A, we provide the demonstration based on the consistency property of the method. This result has been validated by

means of an extensive numerical simulation carried out with di�erent text problems, �nal-times T and step-sizes k, not included

in this paper.

3. Numerical study on the Stable Size distribution

Taking into account the interest of the discretization method in the numerical approximation of problem (1.1)-(1.3), we use it

for the analysis of the associated stable size distribution. The model has a stable size distribution if there exists a function �(x)

and a value � such that

� �(x) = �(g(x)�(x))0 � (�(x) + b(x))�(x) + 2

∫ 1

x

b(s)P (x; s)�(s) ds; �(xmin) = 0:

And, if we denote

P (t) =

∫ 1

xmin

u(x; t) dx;

the function u(x; t)=P (t) tends to �(x), as time t tends to +1. The existence of a distribution �(x) implies the existence of a

solution of (1.1)-(1.3) of the type e� t �(x). The number � is unique and known as the malthusian parameter of system (1.1)-

(1.3). A remarkable feature is the asynchonicity [4], i.e., it is possible to start from a single cell and generate a large population.

The existence of a stable-size distribution for our problem could be studied in two di�erent ways following the techniques

employed in [13, 12, 14]. Firstly, by means of a change of variable that transforms the problem into an age-structured one.

Secondly, with the use of speci�c division rate functions as, for example, (3.10).

The following simulation shows the appearance of the asynchronous exponential growth with one of the experiments introduced

in [2]. We introduce a minimum size a at which a cell divides, xmin � a < 1, to incorporate a more realistic behaviour. So, we

assume that the division rate b vanishes at the interval [xmin; a]. We consider xmin = 0, a = 1
4
, �(x) = 0, g(x) = 0:1 (1� x). We

use the size-speci�c division rate function

b(x) =


0; if x 2

[
0; 1

4

]
;

g(x)
�b(x)

1�
∫ x

1=4
�b(s) ds

; if x 2
[
1
4
; 1
]
;

(3.10)

where we have considered that each cell has a stochastically predetermined size at which �ssion has to occur, which is given by

a probability density �b [17]. In this case

�b(x) = �


(
x � 1

4

)3
; if x 2

[
1
4
; 5
8

]
;

459
4096

� 9
4

(
x � 13

16

)2
+16

(
x � 13

16

)4
; if x 2

[
5
8
; 1
]
;

and � = 81920
3159

. We take the same partitioning function as in [2],

P (x; y) =


1

�(40; 40)

1

y

(
x

y

)39 (
1�

x

y

)39

; if x < y;

0; if x � y;

(3.11)

where �(x; y) is the classical Euler beta function. Finally, the initial condition will be chosen to avoid discontinuities caused by

an incompatibility with the boundary one.
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Hence, we compute an approximation to the stable size distribution by using the numerical solution obtained with the numerical

method. We describe the evolution of the size-distribution with a numerical counterpart of (1.4), that is

Un
j

Q0
k(U

n)
; 0 � j � J + 1;

that will converge to U�j , 0 � j � J + 1, an approximation of the stable size distribution if it exists. We observe that a good

approximation to the stable size distribution is reached with moderate values of T (we observe that T = 100 is enough). Once

we reach such values, assuming Un
j � C e� tn U�j , we estimate � by means of the comparison of consecutive time steps (using

the total populations, for instance) and C.

First, we show how the problem reaches the stable size distribution. We have made an extensive numerical experimentation

with di�erent initial conditions with the same conclusion but we show the results we obtain with a compatible initial condition

with some oscillations which could have introduced a di�erent behaviour,

'(x) =

 0; if x 2
[
0; 1

8

]
;

'1

(
x � 1

8

)3
(1� x) (sin(m� x + �) + 1); if x 2

[
1
8
; 1
]
;

(m is an integer, the higher the larger number of oscillations, and coe�cient '1 is chosen in order to assure that the maximum

value of '(x) is 1). We have employed di�erent values of m but, in Figure 1, we present the simulation with step-size k = 0:01

and m = 20. In the left-hand picture, we show the evolution of the size distribution and, in the right-hand picture, the arising

approximation to the stable size distribution. The estimated values of the parameters are � = 6:151916e-2 and C = 2:205377.

x
0 0.2 0.4 0.6 0.8 1

u
*(

x)

0

0.5

1

1.5

2

2.5

Figure 1. Left-hand picture: Evolution of the size distribution. Right-hand picture: Numerical stable size distribution u
� with division rate b given in (3.10)

In order to analyse the behaviour of the solution depending on the initial distribution, we have checked with various initial

conditions, however here we present only the results obtained with

'�(x) =

 0; if x 2
[
0; 1

8

]
;

�'1

(
x � 1

8

)3
(1� x) ; if x 2

[
1
8
; 1
]
;

(3.12)

(� 2 R, coe�cient '1 is chosen in order to assure that the maximum value of '(x) is �). Of course, in all cases, we obtain the

same numerical stable size distribution as presented in Figure 1 (right-hand picture). Table 1 shows the computed values of C

and � for di�erent values of �. We clearly observe the independence of the initial data of the Malthusian parameter, while the

constant C shows its dependence on it: C is multiplied by the same factor as the initial data.

Now, we are interested to know the in
uence on the stable size distribution due to changes in data functions. As we pointed

out previously, the existence of a unique stable size distribution has been established theoretically. Thus any change to the
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� C �

1 4.408119e-1 6.151916e-2

2 8.816239e-1 6.151916e-2

4 1.763248e0 6.151916e-2

8 3.526495e0 6.151916e-2

Table 1. Computed values C and � for di�erent initial conditions '�. T = 100.

data functions will modify it and, likewise, the Malthusian parameter and the constant C. With this purpose, we use again the

following data input: xmin = 0, a = 1
4
, �(x) = 0, g(x) = 0:1 (1� x), P (x; y) and the initial data as given in (3.11) and (3.12),

� = 1, respectively, but now the size-speci�c division rate is modi�ed as follows,

b
(x) = b
1

(
x �

1

4

)3

(1� x)
 ;
1

4
� x � 1; 
 � 0;

(coe�cient b
1 is chosen in order to assure that the maximum value of b
(x) is 1). As parameter 
 grows, the maximum value

in the division rate is reached at smaller sizes and, then, we expect that the density of larger cells decreases.

The change in the division rate, which we have plotted on the right-hand picture of Figure 2 for di�erent values of 
, implies

signi�cant di�erences in the arising steady state (left-hand picture of Figure 2). We observe how the increase of parameter


 a�ects its shape. This in
uence appears at the locus and value of the maximum of the stable size distribution and, also,

at signi�cant densities in the size variable. When the parameter 
 induces an earlier division, the maximum of the stable size

distribution increases and it is obtained at a smaller size (it seems to be at the half value of the corresponding maximum locus

in the division rate). Consequently, the domain given by signi�cant densities decreases.

x
0 0.2 0.4 0.6 0.8 1

u
* (x

)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

γ=0

γ=2

γ=5

x
0 0.2 0.4 0.6 0.8 1

b
γ
(x

)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
γ=0γ=2γ=5

Figure 2. Stable size distribution (left-hand picture) for di�erent division rates b
 (right-hand picture).

Finally, in Table 2, we display the computed values of � and C for di�erent values of 
. We observe, as expected, di�erent

values of � for di�erent values of 
.

4. Conclusions

This work focuses on a population balance model applied to cell dynamics. Nowadays, this is an area in which an increasing

number of applications are widely used. We consider a cell-size structured population model that describes the dynamics of a cell

population when the reproduction process is achieved by division in two unequal parts. We provide a numerical approximation to

the analytical solution of the problem because it is di�cult to obtain in a general situation. There is a lack of numerical methods
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 C �

0 5.252692d-1 8.823196d-2

1 6.285650d-1 1.408027d-1

2 6.082363d-1 1.680984d-1

3 5.252993d-1 1.875407d-1

4 4.285544d-1 2.024306d-1

5 3.417059d-1 2.142341d-1

Table 2. Computed values C and � for di�erent b
 . T = 100.

adapted to solve this problem and it is di�cult to �nd theoretical studies that validate them, therefore to design and analyse

innovative numerical procedures is really important.

In this study, an important issue in the modelization of cell population balance models has been addressed: the evolution

of the size-distribution. We have proposed a suitable scheme to attain the solution of this model which allows us to analyse

and approximate the stable size distribution if it exists. We have shown the behaviour of the steady-state distribution in two

experiments. The �rst one aimed corroborating its independence of the initial size distribution. The second one at exploring

its behaviour when the division rate changes. We have observed di�erent stable size distributions for each problem and a clear

in
uence on its maximum, the point at which this maximum is reached and the domain of signi�cant densities.

The convergence of the numerical method was analysed: second order of convergence under suitable smoothness hypotheses.

A. Convergence Analysis

In this appendix, we carry out the convergence analysis of the scheme introduced in Section 2. From now on, C will denote a

positive constant which is independent of k, n (0 � n � N) and j (0 � j � J + 1); C possibly has di�erent values in di�erent

places. We denote the maximum norm of v = (v0; v1; : : : ; vJ+1) with jjvjj1.

If u is the solution to problem (1.1)-(1.3), we de�ne

u
n = (un

0 ; u
n
1 ; : : : ; u

n
J+1); u

n
j = u(xj ; t

n); 0 � j � J + 1; 0 � n � N:

The local discretization error, � n+1 = (�n+1
0 ; �n+1

1 ; : : : ; �n+1
J+1 ); 0 � n � N � 1, is given by

�n+1
j+1 =

1

k

(
un+1
j+1 � exp

{
�
k

2
(�� (xj) + �� (xj+1))

}(
un
j + k Qj

k(b � P
j � un)

)
� k Qj+1

k (b � Pj+1 � un+1)

)
; (A.1)

0 � j � J � 1, �n+1
0 = �n+1

J+1 = 0.

First of all, note that the magnitude of J is not determined with respect to k. However, we prove the convergence of the

composite quadrature rule over such a grid.

Lemma 1 Let f be two times continuously di�erentiable, fxjg
J+1
j=0 a nonuniform grid satisfying xj+1 � xj � C k, 0 � j � J, x0 = 0,

xJ+1 = 1; and denote with fl = f (xl), 0 � l � J + 1 the grid values of the function f and with Ql
k , 0 � l � J, the composite

trapezoidal quadrature rules given in (2.9). Then, as k ! 0, the following estimates hold∣∣∣∣∫ 1

xl

f (�) d� �Ql
k(f)

∣∣∣∣ = O(k2); 0 � l � J: (A.2)

Proof: From (2.9), we obtain

∫ 1

xl

f (�) d� �Ql
k(f) =

J∑
j=l

(∫ xj+1

xj

f (�) d� �
xj+1 � xj

2
(f (xj) + f (xj+1))

)
; (A.3)
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0 � l � J. Taking into account the convergence properties of the trapezoidal cuadrature rule,∫ xj+1

xj

f (�) d� �
xj+1 � xj

2
(f (xj) + f (xj+1)) = �

(xj+1 � xj)
3

12
f 00(�j); �j 2 [xj ; xj+1]; (A.4)

we have ∫ 1

xl

f (�) d� �Ql
k(f) = �

J∑
j=l

(xj+1 � xj)
3

12
f 00(�j); (A.5)

0 � l � J. Thus ∣∣∣∣∫ 1

xl

f (�) d� �Ql
k(f)

∣∣∣∣ � C

J∑
j=l

(xj+1 � xj)
3 � C k2

J∑
j=l

(xj+1 � xj) = C (1� xl) k
2: (A.6)

And the estimative (A.2) holds.

Lemma 2 Let g be three times continuously di�erentiable, functions �, b � P and u be two times continuously di�erentiable.

Then, as k ! 0, the following estimates hold for the local discretization error (A.1)

jj� n+1jj1 = O(k2); 0 � n � N � 1: (A.7)

Proof: From (A.1), we obtain

j�n+1
j+1 j �

1

k

∣∣un+1
j+1 � u

(
x
(
tn+1; tn; xj

)
; tn+1

)∣∣
+

1

k

∣∣∣∣u (x (tn+1; tn; xj) ; tn+1)� k Qj+1
k (b � Pj+1 � un+1)� exp

{
�
k

2
(�� (xj) + �� (xj+1))

}(
un
j + k Qj

k(b � P
j � un)

)∣∣∣∣ ;
(A.8)

0 � j � J � 1, 0 � n � N � 1. The smoothness of u and g, and the local error estimate for the modi�ed Euler method [1] allow

us to conclude ∣∣un+1
j+1 � u

(
x
(
tn+1; tn; xj

)
; tn+1

)∣∣ � C k3: (A.9)

In addition, we can use (2.4) to bound the second term on the right-hand side of (A.8) as∣∣∣∣u (x (tn+1; tn; xj) ; tn+1)� k Qj+1
k (b � Pj+1 � un+1)� exp

{
�
k

2
(�� (xj) + �� (xj+1))

}(
un
j + k Qj

k(b � P
j � un)

)∣∣∣∣
�

∣∣un
j

∣∣∣∣∣∣∣exp
{
�

∫ tn+1

tn
�� (x (� ; tn; xj)) d�

}
� exp

{
�
k

2
(�� (xj) + �� (xj+1))

}∣∣∣∣∣
+

∣∣∣∣∣2
∫ tn+1

tn
exp

{
�

∫ tn+1

�

�� (x (s; tn; xj)) ds

}(∫ 1

x(� ;tn ;xj )

b(�)P (x(� ; tn; xj); �) u(�; �) d�

)
d�

�k

(
exp

{
�
k

2
(�� (xj) + �� (xj+1))

}
Qj

k(b � P
j � un) +Qj+1

k (b � Pj+1 � un+1)

)∣∣∣∣ : (A.10)

Thus, we use the regularity of functions �, b � P and g, the convergence properties of the trapezoidal cuadrature rule and the

modi�ed Euler method to obtain∣∣∣∣∣exp
{
�

∫ tn+1

tn
�� (x (� ; tn; xj)) d�

}
� exp

{
�
k

2
(�� (xj) + �� (xj+1))

}∣∣∣∣∣
�

∣∣∣∣∣exp
{
�

∫ tn+1

tn
�� (x (� ; tn; xj)) d�

}
� exp

{
�
k

2

(
�� (xj) + ��

(
x
(
tn+1; tn; xj

)))}∣∣∣∣∣
+ exp

{
�
k

2
�� (xj)

} ∣∣∣∣exp{�k

2
��
(
x
(
tn+1; tn; xj

))}
� exp

{
�
k

2
�� (xj+1)

}∣∣∣∣
� C (k3 + k j��

(
x
(
tn+1; tn; xj

))
� �� (xj+1) j) � C k3: (A.11)
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With respect to the second term on the right-hand side of (A.10),∣∣∣∣∣2
∫ tn+1

tn
exp

{
�

∫ tn+1

�

�� (x (s; tn; xj)) ds

}(∫ 1

x(� ;tn ;xj )

b(�)P (x(� ; tn; xj); �) u(�; �) d�

)
d�

�k

(
exp

{
�
k

2
(�� (xj) + �� (xj+1))

}
Qj

k(b�P
j �un)+Qj+1

k (b�Pj+1 �un+1)

)∣∣∣∣
� 2

∣∣∣∣∣
∫ tn+1

tn
exp

{
�

∫ tn+1

�

�� (x (s; tn; xj)) ds

}(∫ 1

x(� ;tn ;xj )

b(�)P (x(� ; tn; xj); �) u(�; �) d�

)
d�

�
k

2

(
exp

{
�

∫ tn+1

tn
�� (x (s; tn; xj)) ds

} (∫ 1

xj

b(�)P (xj ; �) u(�; t
n) d�

)

+

∫ 1

x(tn+1;tn ;xj )

b(�)P (x(tn+1; tn; xj); �) u(�; t
n+1) d�

)∣∣∣∣∣
+ k

∣∣∣∣∣exp
{
�

∫ tn+1

tn
�� (x (s; tn; xj)) ds

} (∫ 1

xj

b(�)P (xj ; �) u(�; t
n) d�

)

� exp

{
�
k

2
(�� (xj) + �� (xj+1))

}
Qj

k(b � P
j � un)

∣∣∣∣
+ k

∣∣∣∣∣
∫ 1

x(tn+1;tn ;xj )

b(�)P (x(tn+1; tn; xj); �) u(�; t
n+1) d� �Qj+1

k (b � Pj � un+1)

∣∣∣∣∣ : (A.12)

The �rst term on the right-hand side of (A.12) is O(k3) as a result of the properties of the local error for the trapezoidal

quadrature rule. With respect to the second term on the right-hand side of (A.12), we have∣∣∣∣∣exp
{
�

∫ tn+1

tn
�� (x (s; tn; xj)) ds

} (∫ 1

xj

b(�)P (xj ; �) u(�; t
n) d�

)
� exp

{
�
k

2
(�� (xj) + �� (xj+1))

}
Qj

k(b � P
j � un)

∣∣∣∣∣
�

∣∣∣∣∣exp
{
�

∫ tn+1

tn
�� (x (s; tn; xj)) ds

}
� exp

{
�
k

2
(�� (xj) + �� (xj+1))

}∣∣∣∣∣
∣∣∣∣∣
∫ 1

xj

b(�)P (xj ; �) u(�; t) d�

∣∣∣∣∣
+ exp

{
�
k

2
(�� (xj) + �� (xj+1))

} ∣∣∣∣∣
∫ 1

xj

b(�)P (xj ; �) u(�; t
n) d� �Qj

k(b � P
j � un)

∣∣∣∣∣ :
Note that the numerical grid is computed by the modi�ed Euler method and then satis�es the hypotheses of Lemma 1 [1]. Thus,

taking into account the assumed regularity of the vital functions and solution, the second order convergence of the composite

quadrature rule (Lemma 1) and (A.11), we conclude that the previous term is O(k2).

Finally, the third term on the right-hand side of (A.12) is bounded as follows∣∣∣∣∣
∫ 1

x(tn+1;tn ;xj )

b(�)P (x(tn+1; tn; xj); �) u(�; t
n+1) d� �Qj+1

k (b � Pj � un+1)

∣∣∣∣∣
�

∣∣∣∣∣
∫ xj+1

x(tn+1;tn ;xj )

b(�)P (x(tn+1; tn; xj); �) u(�; t
n+1) d�

∣∣∣∣∣+
∣∣∣∣∣
∫ 1

xj+1

b(�)
(
P (x(tn+1; tn; xj); �)� P (xj+1; �)

)
u(�; tn+1) d�

∣∣∣∣∣
+

∣∣∣∣∣
∫ 1

xj+1

b(�)P (xj+1; �) u(�; t
n+1) d� �Qj+1

k (b � Pj+1 � un+1)

∣∣∣∣∣ :
And, we can conclude, as previously, that this term is O(k2).

Thus, we establish for the left term on (A.12)∣∣∣∣∣2
∫ tn+1

tn
exp

{
�

∫ tn+1

�

�� (x (s; tn; xj)) ds

}(∫ 1

x(� ;tn ;xj )

b(�)P (x(� ; tn; xj); �) u(�; �) d�

)
d�

�k

(
exp

{
�
k

2
(�� (xj) + �� (xj+1))

}
Qj

k(b � P
j � un)+Qj+1

k (b � Pj+1 �un+1)

)∣∣∣∣ � C k3; (A.13)
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and from (A.11), we observe that the right-hand side of (A.10) is O(k3). The substitution of this bound and (A.9) in (A.8)

produces the estimate (A.7).

Now, we prove the convergence of the numerical method. We denote the error produced by the numerical approximation as

E
n = (En

0 ; : : : ; E
n
J ; E

n
J+1); En

j = un
j � Un

j ; 0 � j � J + 1;

0 � n � N. Note that un
j are the nodal values of the theoretical solution and Un

j are the numerical approximations obtained by

means of the numerical method.

Theorem 3 Assuming the hypotheses of Lemma 2, if kE0k1 = O(k2), as k ! 0, then

kEnk1 = O(k2); 0 � n � N;

as k ! 0.

Proof: From equations (A.1) and (2.7), we have

En+1
j+1 = exp

{
�
k

2
(�� (xj) + �� (xj+1))

} (
En

j + k Qj
k(b � P

j � En)
)
+ k Qj+1

k (b � Pj+1 � En+1) + k �n+1
j+1 ;

0 � j � J � 1, 0 � n � N � 1.

Therefore, taking into account the smoothness properties of the functions �� and b we arrive at,

jEn+1
j+1 j � (1 + C k) jEn

j j+ C k
(
kEnk1 + kEn+1k1

)
+ k j�n+1

j+1 j;

0 � j � J � 1, 0 � n � N � 1, and then

kEn+1k1 � (1 + C k) kEnk1 + C k kEn+1k1 + k k� n+1k1:

0 � n � N � 1. By means of the discrete Gronwall's lemma, we arrive at

kEnk1 � C

{
kE0k1 +

n∑
l=1

k k� lk1

}
;

1 � n � N. Now, the estimative holds from (A.7).
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