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Abstract: In this paper, a numerical technique for a
general form of nonlinear fractional-order differential
equations with a linear functional argument using Che-
byshev series is presented. The proposed equation with
its linear functional argument represents a general form
of delay and advanced nonlinear fractional-order dif-
ferential equations. The spectral collocation method is
extended to study this problem as a discretization
scheme, where the fractional derivatives are defined in
the Caputo sense. The collocationmethod transforms the
given equation and conditions to algebraic nonlinear
systems of equations with unknown Chebyshev co-
efficients. Additionally, we present a general form of the
operational matrix for derivatives. A general form of the
operational matrix to derivatives includes the fractional-
order derivatives and the operational matrix of an ordi-
nary derivative as a special case. To the best of our
knowledge, there is no other work discussed this point.
Numerical examples are given, and the obtained results
show that the proposed method is very effective and
convenient.

Keywords: Caputo fractional derivatives; Chebyshev
collocation method; functional argument; nonlinear
fractional-order differential equations.

1 Introduction

Fractional differential equations have been of great in-
terest for the past three decades. This is due to the
intensive development of the theory of fractional calculus
itself, as well as its applications. Apart from diverse areas
of puremathematics, fractional differential equations can
be used in modeling of various fields of science and en-
gineering such as rheology, self-similar dynamical pro-
cesses, porous media, fluid flows, viscoelasticity,
electrochemistry, control, electromagnetic and many
other branches of science [1–5]. Delay differential equa-
tions were initially introduced in the 18th century by
Laplace and Condorect [6]. However, the rapid develop-
ment of the theory and applications of those equations did
not come until after the Second World War and continues
till today. Additionally, the numerical solution of delay
and advanced differential equations of fractional order
have been reported by many researchers [7–15]. Differ-
ential equations of advanced argument had fewer con-
tributions in mathematics research, compared to delay
differential equations, which had a great development in
the last decade [16–20]. The equations with functional
form of argument represent mixed type equations delay,
proportional delay and advanced differential equation.
All reported works considered a generalization of equa-
tions with functional argument with integer-order deriv-
ative or with fractional derivative in the linear case.

In this work, we introduce a general form of nonlinear
fractional-order differential equations (GNFDEs) with
linear functional argument.

∑
n1

k�0
∑
n2

i�0
Qk, i(x)yk(x)y(νi)(pix + ξ i)+

∑
n3

h�1
∑
n4

j�0
Ph, j(x)y(h)(x)y(αj)(qjx + ζ j)� f(x),

(1)

where x ∈ [a, b], Qk,i(x), Ph,j(x), f(x) are well-defined known
functions, a, b, pi, ξ i, qj, ζ j ∈R, where pi, qj ≠ 0, νi ≥ 0, αj ≥ 0
and i−1 < νi ≤ i, j−1 < αj ≤ j, ni ∈ N, under the conditions

y(i)(ηi) � μi, i � 0, 1, 2...,m − 1, (2)

where ηi ∈ [a, b] and m is the greatest integer-order de-
rivative existing or the highest integer order greater than
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the fractional derivative. The GNFDE (1) contains at least
three different arguments, and then, the following cor-
ollary defines the interval that the independent variable
x belongs. Chebyshev polynomials of the first kind are
used here in this work to approximate the solution of
proposed Equation (1). The Chebyshev polynomials are
defined on [−1, 1].

Corollary 1.1. The independent variable x of (1) belongs to
[a, b], which is the intersection of the intervals of the
different arguments and [−1, 1],

i.e. x ∈ [a, b] � [−1+ξ i
pi

, 1+ξ ipi
]∩[−1+ζ j

qj
,
1+ζ j
qj

]∩ [ −1, 1]

2 General notations

In this section, some definitions and properties for the
fractional derivative are listed.

2.1 The fractional derivative definition

The Caputo fractional derivative operator Dυ of order υ is
defined in the following form:

DυG(x) � 1
Γ(n − υ) ∫

x

0

G(n)(t)
(x − t)υ−n+1 dt, υ > 0, (3)

where x > 0, n − 1 < υ ≤ n, n ∈ N0, and N0 � N − {0}.
– Dυ∑m

i�0 λiGi(x) � ∑m
i�0 λiDυGi(x), where λi and υ are

constants.
– The Caputo fractional differentiation of a constant is

zero.

– Dυxk �
⎧⎪⎪⎨⎪⎪⎩

0, for k ∈ N0  and k < ⌈υ⌉

Γ(k + 1)xk−υ
Γ(k + 1 − υ),  for k ∈ N0  and k ≥ ⌈υ⌉

,

where ⌈υ⌉ denotes to the smallest integer greater than
or equal to υ.

3 Procedure solution using the
collocation method

The solution y(x) of (1) may be expanded by Chebyshev
polynomials series of the first kind as follows [21]:

y(x) � ∑
∞

n�0
cnTn(x), (4)

by truncate the series (4) to N, where N < ∞, and then, the
approximate solution is expressed in the following form:

y(x) ≅ ∑
N

n�0
cnTn(x)

� T(x)C,
(5)

where T(x) and C are matrices given by the following
equation:

T(x) � [T0(x) T1(x)… TN(x)], C � [1
2
c0, c1, c2,…, cN]T .

Now, relation (5) may written in the following form:

y(x) � X(x)WTC, (6)

where W is square lower triangle matrix with size
(N + 1) × (N + 1) given by the following equation:

Wij �

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1, if i � j � 0

( − 1)k2i−2k i
i−k⎛⎝ i − k

k
⎞⎠, if i + j even and j ≤ i,

0, if j > i, i + j odd.

(7)

where

k �
⎧⎪⎪⎪⎨⎪⎪⎪⎩

i
2
,…, 1,0, for even i

i − 1
2

,…, 1,0, for odd i

For example, if N = 4 and N = 5,

W �
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0
0 1 0 0 0
−1 0 2 0 0
0 −3 0 4 0
1 0 −8 0 8

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ 

N�4

,

W �

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 1 0 0 0 0
−1 0 2 0 0 0
0 −3 0 4 0 0
1 0 −8 0 8 0
0 5 0 −20 0 16

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
N�5

.

Then, by substituting from (5) in (1), we get the
following equation:

∑
n1

k�0
∑
n2

i�0
Qk, r(x)(T(x)C)k  DνiT(pix + ξ i)C+

∑
n3

k�1
∑
n4

i�0
Ph, j(x)(T(h)(x)C)DαjT(qjx + ζ j) C � f(x),

(8)

we can write (8) as follows:

[ ∑
n1

k�0
∑
n2

i�0
Qk, r(x)(T(x)C)k  Dνi T(pix + ξ i)+

∑
n4

h�1
∑
n4

j�0
Ph, j(x)(T(h)(x)C)DαjT(qjx + ζ j)]C � f(x),

(9)

the collocation points is defined in the following form:
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xl � lh + a, (10)

where

h � b − a
N

, l � 0, 1, 2,…,N .

By substituting the collocation points (10) in (9), we get
the following equation:

[ ∑
n1

k�0
∑
n2

i�0
Qk, i(xl)(T(xl)C)k  DνiT(pix + ξ i)+

∑
n4

h�1
∑
n4

j�0
Ph, j(xl)(T(h)(xl)C)DαjT(qjx + ζ j)]C � f(xl).

(11)

In the following theorem, we introduce a general form
of operational matrix of the row vector T(x) in the repre-
sentation as (6), such that the process includes the
fractional-order derivatives, and ordinary operational
matrix given as a special case when αi →⌈ αi⌉.

Theorem 1. Assume that, the Chebyshev row vector T(x) is
represented as (6), then the order fractional derivative of
the vector DαiT(x) is given as follows:

DαiT(x) � Xαi(x)BαiW
T , (12)

where

Xαi(x) � [x−αi+ix1−αi+ix2−αi+i … xN−1−αi+i], i − 1 < αi ⩽ i, (13)

where Bαi is (N + 1) × (N + 1) square upper diagonal matrix,
and the elements br,s of Bαi can be written as follows:

⎧⎪⎪⎨⎪⎪⎩
br, r+i � Γ(r + i + 1)

Γ(r + i − αi) r, s � 0, 1, 2,…,N

0 otherwise

, (14)

where i − 1 < αi ⩽ i,N ⩾ αi.
Proof. since

DαiT(x) � Dαi[1 x x2  …  xN]WT ,

� XαiBαiW
T ,

(15)

if 0 < α1 ⩽ 1, using Caputo’s fractional properties, then we
get

Xα1 � [x1−α1  x2−α1  x3−α1  …  xN+1−α1], (16)

Bα1 �

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
2

Γ2 − α1) 0... 0

0 0
Γ(3)

Γ(3 − α1)… 0

⋮ ⋮ ⋮ ⋮

0 0 0..
Γ(N)

Γ(N − α1)
0 0 0.. 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,    (17)

as α1→ 1, the system reduced to the ordinary case (Bα1→ B),
see [21].

Also 1 < α2 ⩽ 2, then

Xα2 � [x2−α2  x3−α2  x4−α2  …  xN+2−α2], (18)

Bα2 �

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0
3

(Γ3 − α2)… 0 0

0 0 0
Γ(4)

Γ(4 − α2)… 0

⋮ ⋮ ⋮ ⋮ ⋮

0 0 0.. 0
Γ(N)

Γ(N − α2)
0 0 0.. 0 0

0 0 0.. 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(19)

as α2 → 2, the system reduced to the ordinary case
(Bα2 → B2), see [21].

By the same way, if we take 2 < α3 ⩽ 3, then

Xα3 � [x3−α3  x4−α3  x5−α3  …  xN+3−α3], (20)

Bα3 �

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0
4

(Γ4 − α3)… 0 0

0 0 0 0
Γ(5)

Γ(5 − α3) 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

0 0 0.. 0 0
Γ(N)

Γ(N − α3)
0 0 0.. 0 0 0

0 0 0.. 0 0 0

0 0 0.. 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(21)

as α3 → 3, the system reduced to the ordinary case
(Bα3 → B3), see [21]. By induction, i − 1 < αi ⩽ i, then

Xαi(x) � [x−αi+i  x1−αi+i  x2−αi+i …  xN−1−αi+i], i − 1 < αi ⩽ i, (22)

and Bαi as in (14), where the proposed operational matrix
represents a kind of unification of ordinary and fractional
case.

Now, we give the matrices representation for all terms
in (11) as the representation (12).

*The first nonlinear term in (11) can be written as
follows:

∑
n1

k�0
∑
n2

i�0
Qk, i(xl)(T(xl)C)kDνiT(pixl + ξ i) �

∑
n1

k�0
∑
n2

i�0
Qk, i(xl)(XWTC)kXνiBνiHpiEξ iW

TC,
(23)
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where

and Hpi is the square diagonal matrix of the coefficients for
the linear argument, and the elements ofHpi can be written
as follows:

hrs � { 0 if r ≠ s;

pr
i if r � s

And Eξi is the square upper triangle matrix for the shift of
the linear argument, and the form of Eξi is given as follows:

Eξ i �

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(0
0
)(ξ i)0 ( 1

0
)(ξ i)1−0 ( 2

0
)(ξ i)2−0… (N

0
)(ξ i)N−0

0 ( 1
1
)(ξ i)1−1 ( 2

1
)(ξ i)2−1… (N

1
)(ξ i)N−1

0 0 ( 2
2
)(ξ i)2−2… (N

2
)(ξ i)N−2

⋮ ⋮ ⋮ ⋮

0 0 0 …(N
N

)(ξ i)N−N

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

*The second nonlinear term in (11) can bewritten as follows:

∑
n3

h�1
∑
n4

j�0
Ph, j(xl)(T(h)(xl)C)DαjT(qjxl + ζ j) �

∑
n3

h�1
∑
n4

j�0
Ph, j(xl)(XBhW

T
C)XαjBαjHPiEζ jW

TC,
(24)

where

Bh �
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 Bh 0... 0
0 0 Bh… 0
⋮ ⋮ ⋮ ⋮
0 0 0.. Bh

0 0 0.. 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

and Bh is the same as Bαi when h = ⌈αi⌉.
The matrix representation for the variable coefficients

takes the following form:

Qi, j �
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Qi, j(x1) 0 0 … 0
0 Qi, j(x2) 0 … 0
⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 … Qi, j(xN)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

Now, by substituting from (23), (24) into (11) and then, we
have the following fundamental matrix equation:

[ ∑
n1

k�0
∑
n2

i�0
Qk, i(x)(XWT

C)kXνiBνiHPiDξ iW
T

+ ∑
n3

h�1
∑
n4

j�0
Ph, j(x)(XBhW

T
C)XαjBαjHqjEζ jW

T]C � F.
(25)

We can write (25) in the following form:

UC � F, or [U ; F], (26)

where

U � ∑
n1

k�0
∑
n2

i�0
Qk, i(x)(XWT

C)kXνiBνiHPiEξ iW
T

+ ∑
n3

h�1
∑
n4

j�0
Ph, j(x)(XBhW

T
C)XαjBαjHqjEζ jW

T ,
(27)

F � ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
f(x0)
f(x1)
⋮

f(xN)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

Corollary 3.1. Suppose k ⩾ 2, then thematrix representation
for the terms free of derivatives in (1), by using (5), we
obtain the following term:

yk(x) � yk−1(x)y(x) � (X(x)WTC)k−1X(x)WTC. (28)

we can obtain the matrix form for (28) by using the collo-
cation points as follows:

yk(x) � (XWT
C)k−1XWTC. (29)

*we can obtain the matrix form for the conditions (2) by
using (5) on the form:

X̄ �
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

X(x0) 0 0... 0
0 X(x1) 0... 0
0 0 X(x2)… 0
⋮ ⋮ ⋮ ⋮
0 0 0... X(xN)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, W̄
T �

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
WT 0 0... 0
0 WT 0... 0
0 0 WT… 0
⋮ ⋮ ⋮ ⋮
0 0 0... WT

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

C̄ �
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

C 0 0... 0
0 C 0... 0
0 0 C… 0
⋮ ⋮ ⋮ ⋮
0 0 0... C

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.
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X(ηi)BiW
TC � μi, i � 0, 1, 2...,m − 1, (30)

or

MiC � [μi], (31)

where

Mi � X(ηi)BiW
T .

Consequently, replacing m rows of the augmented matrix
[U;F] by rows of the matrix [Mi;μi], we have [U ; F] or

UC � F.

The system (25), together with conditions, give (N + 1)
nonlinear algebraic equations which can be solved, for the
unknown cn, n = 0, 1, 2, …, N. Consequently y(x) given as
Equation (5) can be calculated.

4 Numerical results

In this section, five examples are given to demonstrate the
applicability and the accuracy of the present method. All
results are obtained by usingMathematica 7 programming.

Example 1. Consider the following nonlinear fractional
differential equation (NFDE) with linear functional
argument:

y2(x)Dν2y(x) + y2(x)y(2x + 1) + y4(x) + y′(x)Dα2y(x)
� f(x), x ∈ [0, 1]. (32)

The initial conditions are y(0) = 0, y′(0) = 1, and the
exact solution is y(x) = x2+x at ν2 = 1.7, α2 = 1.5
where f(x) = 2.25676x0.5 (1 + 2x) + 2.22849x0.3

(x + x2)2 + (x + x2)4 + (x + x2)2 (2 + 4 (1 + 2x)). We apply the
suggested method with N = 3, and by the fundamental
matrix equation of the problem defined in (25), we have the
following equation:

[Q2,2(XWT
C)2Xν2Bν2W

T + Q2,0(XWT
C)2XH2E1(W)T

+Q3,0(XWT
C)3XWT + P1,2(XWT

B1C)Xα2Bα2W
T]C � F.

(33)

Equation (33) and the initial conditions present nonlinear
system of (N + 1) algebraic equations in the coefficients ci.
By solving it by using the Newton iteration method with
suitable initial solution we obtain the following equation:

c0 � 1
2
, c1 � 1, c2 � 1

2
, c3 � 0.

Therefore, the approximate solution of this example using
(5) is given as follows:

y3(x) �
1
2
T0(x) + T1(x) + 1

2
T2(x) � x2 + x, (34)

which is the exact solution of the problem (32)
where

X �

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0

1
1
3

1
9

1
27

1
2
3

4
9

8
27

1 1 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,B1 �

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,W

� ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 0 0 0
0 1 0 0
−1 0 2 0
0 −3 0 4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

F � ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0

4.23912
22.2515
87.6842

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

Xα2 �
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0
0.57735 0.19245 0.06415 0.0213833
0.816497 0.544331 0.362887 0.241925

1 1 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

H2 �
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 0 0 0
0 4 0 0
0 0 8 0
0 0 0 16

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

Bα2 �
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 2.25676 0
0 0 0 4.51352
0 0 0 0
0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

E1 �
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1
0 1 2 3
0 0 1 3
0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,Bν2 �
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 2.22849 0
0 0 0 5.14266
0 0 0 0
0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

X �

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1
1
3

1
9

1
27

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1
2
3

4
9

8
27

0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

Xν2 �
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0
0.719223 0.239741 0.0799137 0.0266379
0.885467 0.590312 0.393541 0.262361

1 1 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,
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Example 2. Consider the following nonlinear fractional
delay differential equation [22, 23]:

Dνy(x) − y(x − 0.5) + y3(x) � 2
Γ(1.5)x

0.5 − (x − 0.5)2

− x6, x ∈ [0,0.5].
(35)

The initial conditions are y(0) = 0, y′(0) = 0, and the exact
solution is y(x) = x2, at ν = 1.5 and
f(x) � 2

Γ(1.5)x
0.5 − (x − 0.5)2 − x6. We apply the suggested

method with N = 9, and by the fundamental matrix equa-
tion of the problem defined in (25), we have the following
equation:

[Q0,2Xν2Bν2W
T + Q0,0XE0.5W

T + Q2,0(XWT
C)2.XWT]C � F.

(36)

Equation (36) and the subjected conditions present non-
linear system of (N + 1) algebraic equations in the co-
efficients ci. By solving it by using the Newton iteration
method with suitable initial solution, we obtain the
following equation:

c0 � 1
2
, c1 � −2.9399 × 10−12, c2 � 1

2
, c3 � −2.24153 × 10−12

c4 � 1.61475 × 10−12, c5 � −9.54298 × 10−13, c6 � 4.35992 × 10−13,

c7 � −1.45438 × 10−13, c8 � 3.1698 × 10−14, c9 � −3.47446 × 10−15.

(37)

therefore, the approximate solution of this example using
(5) is given as follows:

y9(x) �
1
2
T0(x) − 2.9399 × 10−12T1(x) + 1

2
T2(x)

+…… −3.47446 × 10−15T9(x).
(38)

The comparison between maximum absolute errors
for the proposed method and the results obtained by Haar
wavelet [23] listed in Table 1.

Example 3. Consider the following linear initial value
problem [24, 25]:

Dνy(x) + 2y2(x
2
) � 1. (39)

The subjected initial conditions are y(0) = 1, y′(0) = 0, and
the exact solution is given by: y(x) = cos(x) at ν = 2. The
fundamental matrix equation of the problem is defined as
follows:

[Q0,2(x)Xν2Bν2W
T + Q2,0(XH0.5W

T
C)X WT]C � F. (40)

The approximate solution yN(x) introduced by the present
method with N = 10 is given as follows:

C � ⎡⎢⎢⎢⎢⎢⎢⎣ 0.76519 −1.71389 × 10−7 −0.22980 −1.034 × 10−7 0.00495
−3.602 × 10−8 −0.000041 −6.439 × 10−9

1.9040 × 10−7 −4.315 × 10−10 −4.707 × 10−10
⎤⎥⎥⎥⎥⎥⎥⎦.
(41)

W̄
T �

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 −3 0 0 0 0 0 0 0 0 0 0 0 0
0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 −1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 −3 0 0 0 0 0 0 0 0
0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 −1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 −3 0 0 0 0
0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 −1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 −3
0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Table : Comparison between maximum absolute errors for our
proposed method and the results obtained by Haar wavelet [].

N Maximum absolute
errors of the

proposed method

Maximum absolute
errors (Haar wavelet [])

 . × 
−

. × 
−

 . × 
−

. × 
−

 . × 
−

. × 
−
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Then, the solution of the problem (39) is given as
follows:

y10(x) �0.76519T0(x) − 1.71389 × 10−7T1(x)
− 0.22980T2(x) − 1.034 × 10−7T3(x)
+ 0.00495T4(x) − 3.602 × 10−8T5(x)
− 0.000041T6(x) − 6.439 × 10−9T7(x)
+ 1.9040 × 10−7T8(x) − 4.315 × 10−10T9(x)
− 4.707 × 10−10T10(x).

(42)

Table 2 displays the comparison of the absolute errors of
the present method for N = 10 and ν = 2 with the modified
Laguerre wavelets method of Iqbal et al [25] for N = 20 and
the Muntz–Legendre wavelet method of Rahimkhani et al
[24] for N = 5. We see that the present method is more
accurate than the modified Laguerre wavelets and Muntz–
Legendre wavelet methods. The computational results for
N = 10 and different values of ν are given in Figure 1.

Example 4. Consider the following nonlinear fractional
differential equation with argument:

y″(x)Dα2y(x) + y2(x)Dν2y(2x − 1) + y′(x) � f(x), x ∈ [0, 1].
(43)

The initial conditions are y(0) = 1, y′(0) = 1, and the exact
solution is y(x) = x3+1 at α2 = 1.5, ν2 = 2 where
f(x) = 27.0811x2.5+ 6 (−1+ 2x)2+ 24 (−1+ 2x) (1+ x3)2. We apply
the suggested method with N = 3, and approximating the
solution as in (5) and by the same procedure in the previous
section and by using (25), we have the following equation:

[P2,2(XWT
C)2Xα2Bα2W

T + Q2,2(XWT
C)2Xν2Bν2H2E1W

T

+ P1,0(XBWT
C)X1B1H3W

T]C � F.

(44)

Equation (44) and the subjected initial conditions present
non-linear system of (N + 1) algebraic equations in the
coefficients ci. By solving it by using the Newton iteration
method with suitable initial solution, we obtain the
following equation:

c0 � 3
4
, c1 � 0, c2 � 1

4
, c3 � 0.

Therefore, the approximate solution of this example using
(5) is given as follows:

y4(x) �
3
4
T0(x) + 1

4
T2(x) � x3 + 1, (45)

which is the exact solution of the problem (43)

Example 5. Consider the fractional nonlinear neutral delay
differential equation [26]:

yν(x) − 1
2
y(x) − 1

2
y(x

2
)yν(x

2
) � f (x),

 0 < ν ≤ 1,  − 0.5 ≤ x ≤ 0.5, (46)

the initial conditions are y(0) = 1, and the exact solution is
y(x) = ex at ν=1, where f(x) � 1

4e
x. We apply the suggested

method with N = 10, and by approximating the solution as
in (5) and by the same procedure in the previous section
and by using (25), we have the following equation:

[Q0,1XνBνW
T + Q1,0X WT + Q1,1(X H0.5W

T
C).XνBνH0.5W

T]C � F .

(47)

Equation (47) and the initial condition present non-linear
system of (N + 1) algebraic equations in the coefficients ci.

0.0 0.2 0.4 0.6 0.8 1.0

0.5

0.6

0.7

0.8

0.9

1.0

x

y
x

1.6
1.7
1.8

Exact sol 2

Figure 1: The numerical results of yN(x) for N = 10 and ν = 2, 1.8, 1.7
and 1.6 for example 3.

Table : Comparison of the absolute errors for example  at N=.

x Our method HWM Reference []

 . × 
−

 

. . × 
−

. × 
−

. × 
−

. . × 
−

. × 
−

. × 
−

. . × 
−

. × 
−

. × 
−

. . × 
−

. × 
−

. × 
−

Table : Comparison of the absolute errors for example  at ν = .

x Present method
N = 

Reference []
N = 

Reference []
N = 

. . × 
−

. × 
−

. × 
−

. . × 
−

. × 
−

. × 
−

. . × 
−

. × 
−

. × 
−

. . × 
−

. × 
−

. × 
−

. . × 
−

. × 
−

. × 
−
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By solving it by using the Newton iteration method with
suitable initial solution, we obtain the following equation:

c0 � 1.26606, c1 � 1.13032, c2 � 0.271493, c3 � 0.0443388,
c4 � 0.00547301, c5 � 0.000543584, c6 � 0.0000446812,
c7 � 3.30673 × 10−6, c8 � 1.68806 × 10−7, c9 � −1.68675 × 10−8.

(48)

Therefore, the approximate solution of this example using
(5) is given as follows:

y9(x) � 1.26606 T0(x) + 1.13032T1(x) + 0.271493T2(x) +…

− 1.68675 × 10−8 T9(x).
(49)

Table 3 shows the comparison of the absolute errors be-
tween the exact and approximate solutions of our method
for N = 9, ν = 1 by the Hermite wavelets method (HWM) and
the method proposed in [26].

The comparison of the approximate values of y(x) for
N = 9 with different values of v and the exact solution given
in Figure 2.

5 Conclusion

In the end, we introduced a numerical study for a general
form of nonlinear fractional-order differential equations
with linear functional argument using Chebyshev series. In
this work, we have presented a general form of the opera-
tional matrix for derivatives. The fractional-order de-
rivatives and the ordinary operational matrix had been
obtained from the proposed general formof the operational
matrix for derivatives. There are no authors who have
discussed this point previously in their works. We have
presented many numerical examples that greatly illustrate
the accuracy of the study presented to the proposed

equation and also show how that the proposed method is
very effective and convenient.
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