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Abstract. A numerical technique for the solution of singular integral equations of the

second kind is presented. The technique extends the piecewise quadratic method used by

Gerasoulis [6], to solve singular integral equations of the first kind. Quadrature formulae

are derived in terms of infinite series and are used to reduce the integral equation to a set

of linear algebraic equations. Two numerical examples are given, and the results are

compared with exact solutions.

Introduction. Singular integral equations often arise in mathematical models of physical

phenomena, specifically in various kinds of mixed boundary value problems. Since

closed-form solutions to these integral equations are generally not available, much

attention has been focused on numerical methods of solution. Generally, these methods

are based on Gaussian quadrature techniques chosen such that the singular behavior of

the solution is handled implicitly (see, e.g., [1]—[3]). Gerasoulis and Srivastov (see [4], [5]

and [6]) present a somewhat different approach using a piecewise polynomial method.

Although the singular behavior of the solution is still contained implicitly, the selection of

node points can be performed arbitrarily. This has the advantages both of eliminating the

need for interpolation at the endpoints and of making it possible to model with higher

accuracy solutions with localized erratic behavior.

This paper extends the method used by Gerasoulis in [6] to solve singular integral

equations of the first kind, to the case of singular integral equations of the second kind.

This type of equation has the form

Rf(x) + ^-j1 dt + C K(x,t)f(t) dt = g(x), -1<x<1, (1)
7T J t — X J —\

In Eq. (1), R and P are constants which may be complex in general, and the kernel K{x,t)

is assumed bounded for — 1 < (x, f) < 1. The function g(x) is known, and f(x) is the

function to be determined.
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Using results in [7], the singular behavior of the solution may be characterized by a

fundamental function given by

w(0 = (l-0°(l+>/, (2)

2 777 \ R + iP

"-+2^M frf)-"' <3>
where N and M are integers determined such that the index k = (a + (i) = —(N+M)is

restricted to -1, 0, 1 to insure integrable singularities. In the case k = -1 an additional

condition is needed to render the solution unique. This condition is of the form:

f(x) dx = A. (4)
lL

For k = 1 the solution must satisfy a consistency condition [7]:

R .. W1 ri f(t)dt(1 — -/u)+1rfA
J-l w(x) P It J-1 t

dx = 0. (5)

Following [l]/(0 is written as the quotient

f(') = 4>(t)/w(t). (6)

This insures the proper behavior at the endpoints, and the unknown function is now <j>(t),

which is regular on — 1 < / < 1. The function (j>(t) is to be approximated by piecewise

quadratic polynomials leading to a numerical collocation scheme similar to that obtained

in [6],

The method is used to solve the integral equations corresponding to a rigid indenter

sliding on an elastic halfplane with friction, and to the problem of an interface crack. The

known exact solutions to these problems are compared with the numerical results. The

method is found effective for both real and complex singularities, with an observed rate of

convergence of 0(h3). This rate of convergence is the same as in [6], and is consistent with

the piecewise quadratic approximation.

Preliminary results. To develop a piecewise method it is first necessary to obtain

expressions for the following indefinite integrals:

1. I , (7)
' (1 -()•<!+()'

2.
(    /gv

1 (t-x)(l-/)'(! +I)''

This can be accomplished by expanding the weight functions according to the binomial

expansion theorem:

00

(1 -/)-"(! + ,)-'= ZAn(a)(t-a)"; M<1, (9)
n = 0
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in which

1 t \ fi \-<7i , \~P vAn(a) = {l-a) (1+a) L ~T 1 TT       (10)
j-o J' (" -y)! (1 - a)y(l + a)" y

and following Hansen's notation [8],

(«)y = r (j + a)/T(a).

The constant "a" will be specified later in the analysis, its choice being based on

numerical considerations.

The series in (9) is absolutely convergent in the open interval (-1,1). Thus, the series

may be substituted into (7) and (8), and the integration performed term by term. In the

case of the first integral (7), this gives

f {'~a) d' =(?-a)/+\(g) + C1 (11)
; (i - f)a(i + o

where

0 (» + /+l)

and C\ is some constant. The singularities a, [1 are integrable, and thus the series in (11)

converges over the closed interval [ — 1,1], as can be shown by Raabe's test (see, e.g., [9]).

At |r| = 1, however, the convergence is extremely slow; too slow to be of practical use. But

S\ may be rewritten using (10) as

rwi \ i \~P V 1 — a V' V (a)y /tSAD-(l-a) (1+.) (12)

The inner sum is given by Hansen (Eq. 6.6.2) in closed form [8]:

£ (a)J r(l - a)r(« + / + 1)

J=oj-(n+j + l+1) P(2 — a — n — I)

Thus, S^l) becomes

^ (l-aya(l+ayp " (i8)„(-l)"/l-fl\"(« + /)!

5l(1)" (l-«) h(2-a)n + l\l+aj nl ^

which converges quite quickly for a > 0. A similar procedure at / = -1 gives

(1 -a)""(l + a)""f («)»(-l)'/l + fl\"(n + /)! . v

l( (1 -fi) ~a) »! ' °5)

Thus Eqs. (11), (14) and (15) enable the evaluation of the indefinite integral (7) on the

interval [ — 1,1].

Consider next the second integral. Proceeding in analogous fashion, the series expansion

(9) is substituted into (8) and the resulting integrations performed term by term. This

results in the following expression:

[ ^

' </-l)(l-!)"(l+0' (16)

= —(1-jc) "(1 + x) ^log|/ - x\ + S2(t, x) + C2; |jc| < 1,
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where

S2(',*)= t An(a')(x - a')" L )*. (17)
n=l 7-1 J

In Eq. (16) C2 is an arbitrary constant, X = (t — a')/(x — a'), and "a"' is an unspecified

point between —1 and 1. As in the previous case, the infinite series converges absolutely

on the closed interval — 1 < t < 1, but very slowly at the endpoints, +1. Again, this latter

difficulty can be removed by proper manipulation of the series.

To accomplish this, S2(t, x) is first written as
OO-J 00

S2(t, x) = E -X> E A„(a')(x - a')" (18)
j-1 ■> n =7

which may be rewritten further as

00 1 I J~l

S2(t, x) = E 7Xj\ (1 - *)"a(l + x)~P - E A„(a')(x - a')"
n-0

oo-i k
p. x - a

J-!•>

= (1 - x)"a(l + x)~"log xL -j^¥\Xk E An{a'){x - a')".
k=0 n=0

X - t
k — kj n = \j

(19)

Evaluating this expression at +1 and — 1 and using (10) as before leads to

(i } nh ^ V Xkk\ y / 1\n(^)n/l— a ^ y„

Xkk\ £ («)„/1 + a'Y vn
V-^x) = Vy-.,x)-—

in which

r, (20)

Q(t,x)=(I - x) "(1 + x) ^Xog^x - a'\/\x - t\\. (21)

As a final preliminary, note that in the case a' = x, S2(t, x) becomes
00

S2(t, x) = Y,j~lAj(x)(t - x)J. (22)

j-1

At the endpoints the identity

00 J 00 00 00

E E f(j,k) = E E /(; + *,*)+ T, f(k,k)
7-1 *-0 7-1 i-0 <t = 0

used in conjunction with Eq. (10) makes it possible to express S2(l, x) in this case as

s*n x)= y HMzil /1 ~ "M" + £ (23)
ll,) »r, »(i-«). w + *J fruw

and S2( —1, x) as

S,•(-!.«)- I (4r „\'"(Tjt4)"+ £ 7^7- (24>
„_1 "(1 - P)n v1 - X/ (;');'!
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The final sum in Eqs. (23) and (24) may be effectively computed by using a truncated

expansion of the digamma function (see [10]). Thus

7 (25)

+ am( — 1)m £ {l/[[nm+\a + «)] - l/nm + 2} '

n-1 1

where Q* = LjLi J ~k- The values of the sums of reciprocal powers Qk may be found

tabulated in [11]. The calculations presented later use m = 6.

The preceding preliminary results provide the necessary expressions to evaluate the

indefinite integral (8) over the closed interval — 1 < f < 1.

General quadrature formula. Following [6], the interval [ — 1,1] is partitioned into a

series of subintervals over which the unknown function, </>, and the kernel function are

approximated by quadratic Lagrange interpolation polynomials. Thus, divide the interval

[ — 1,1] into N subintervals, and define integration points, tt, at the ends and midpoint of

each subinterval. Further define collocation points Xj - (ij + tj+l)/2, j — 1,2N. Over

each subinterval k (t2k-1 < t < hk + i) approximate by

« «#>2A: — 1 [(' l2k) /^h2k (t t2k)/^hk\ +<#>2^[l (< <2k)

<^2 A: + 1 [ ( ' ~ r2 k) /^h2k +(f — ?2A:)/2^Ar]

(26)

where = <t>(tj) and hk = (t2k +1 - hk-\)/^- The product 4>(t)K(x, t) may be ap-

proximated in analogous fashion.

The integrals over the interval [ — 1,1] in (1) can now be approximated by the sums of

integrals over the sub-intervals. Define

r 1 1 1 \   + l ' — '2 k) dt
7i (l>k' = J 7 777 77 > (27)

'2k-l (1 — t) (1 + ')

dt

(<-*)(! -<)*(! + ')'
/,(*, k) =  77 (28)

hk-l

and note that these integrals may be evaluated from the expressions obtained earlier. The

integals in Eq. (1) are then approximated by

/' (29)•'-I t-X jf=1

and

2N+1

f K(x,t)f(i)di*> E *(*,',)m- ^3°)
y-i 1
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in which the variable weights are given by

+~2

+~2

WL\l-A^-,x\ ; = 1,

WL\ , jc) + I i odd.

*,(*) =

WM\ x | / even,

»T?|^-^,x| / = 2 AT + 1,

and the constant weights by

nil 2

+~2

VLl'^r1] ' = 1.

VL\+ Vr('—- | / odd.

».■ =

Km(^) /'even,

i = 2N + 1,

(31)

(32)

2

The functions used above are as follows:

WL(r, x) = \W{r, x) - q(r, x)] 72(x, r) - [l - q(r,x)\ 7,(0, r)/2/ir

+ 7,(l,r)/2A?,

PFM(r, x) = [l - q2(r, x)]l2(x, r) - [q(r, x)7,(0, r) + 7,(1, r)/hr]/hr,

WR{r, x) = [<?2(a\ x) + q(r, x)] I2(x, r)/2 + [l + q{r, x)] 7,(0, r)/2hr

+ 7j(l, r)/2h2r, (33)

with q(r, x) = (x - t2r)/hr, and

VL(r)= [7,(2, r)- 7,(1, r)]/2hr,

VM(r) = 7,(0, r) — Ix(2, r)/hj, (34)

VR(r)= [7,(2, r) +7,(1, r)]/2hr.

Equations (29) and (30) thus make it possible to reduce Eqs. (1) and (4) to the following

system of linear algebraic equations (assuming here k = — 1; the other cases can be

handled in analogous fashion):

d 3 2W+1R V D . , V P

(l - X ) (l 4- X ) m-1
0 E 5m</>/ + m + L -w/(Xy) + K(Xj, ti)vi <t>,■ = g(Xj),

1=1

j = 1,2N,
2N+ 1

£ v^i = A. (35)
= i
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The first sum on the left-hand side of Eq. (35) is needed to transform the values of

evaluated at the collocation points, xJt to the values of <p at the integration points, tj. The

terms in this sum may be written

B = I 3/8, j odd,

1 \-1/8, j even,

B2 = 3/4 allj, (36)

B = I ~1//8, -/ odd'

3 \ 3/8, y'even,

and

I j - I, j odd, . .
/= ' 37

\j - 2, j even.

This gives 2N 4- 1 equations with which to solve for the 2N + 1 values of the unknown

function, fy.

The convergence of the method can be proved, but as the proof is entirely analogous to

that in [6], it is omitted here.

Numerical examples and conclusions. Consider the problem of a rigid punch sliding with

friction on a half-plane. The integral equation corresponding to this is

, 1 !' f(it

with the condition (assuming sharp corners)

f1 f(t)dt = L. (39)
J-l

In (38), k and ju. are elastic constants, 17 is the coefficient of friction, L is the external load,

g(x) represents the shape of the indenter, and = 4/i(l — /t])/(k -I- 1). For Klg'(x) =

- x, the solution to (39) is

/(■*) = (7 +1-^2 +(! - 2a)x + 2«(« - !)])———r« (4°)

with

' (k + 1)1
a = — tan

7T T)(k - 1)

(1 - jc)"(1 + jc)'

1 — a.

The solution to (38) was computed numerically with a = 0.34, /? = 0.66, and L =

7r/sin aw, using the piecewise quadratic method. The results of this computation are

compared with the exact solution in Table 1. (Note that the singular part of the solution

has been factored out.) The results show that the method is exact in this case as it should

be, since the analytic solution is quadratic.
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-1.0

-0.75

-0.50

-0.25

0.0
0.25

0.50

0.75

1.0

n = 9

1.202602104

0.889322466

0.685581163

0.591378195

0.606713562

0.731587264

0.96599301

1.309949673

1.76343838

Exact

1.202602104

0.889322466

0.685581163

0.591378195

0.606713562

0.731587264

0.965999301

1.309949673

1.76343838

Table 1

n = 17 n = 33 Exact

0.0

0.25

0.5

0.75

1.0

(0.02653,0(10 ~14))

(0.01682, -.15533)

(-0.01229, -0.17939)

(-0.06082,0.05907)

(-0.12886,0.69074)

(0.02623,0(10 ~14))

(.01653,-0.15531)

(-0.01258, -0.17934)

(-0.06109,0.05917)

(-0.12903,0.69143)

(0.02619,0.0)

(0.01649, -0.15531)

(-0.01262,-0.17934)

(-0.06113,0.05918)

(-0.12906,0.69153)

Table 2

Consider next the mathematical representation of an interface crack. Here the integral

equation is given by

[(*i - 1)/4Mi -(*2 - 1 )/4M2]/(*)

+ [(Ki + !)/4Mi + («2 + 1)/4m2] f1 = *2/>(*)
7T / — 1 ®

subject to

f f(t)dt = 0. (42)

Again, k and /x are elastic constants with subscripts referring to material 1 and 2, p(x)

corresponds to the applied stress distribution in the crack, and

K2 = (2n1/j,2)~2(K1fj,2 + Hx )(k2Mi + fi2)-

For K2p(x) = x2, the solution to (41) is

1
f(x) = -pr x3 +(l - 2a)x2 + 2a(a - l)x - vC4"2 ~ 6a + 2)

Q

in which

KlM2 Ml

3

sin 77a

<1 -*)"(!+*>'

(43)

1 ' i
P = 1 - «,

"2Mi m2

e= -/[(«! + 1)/ 4Mi +(<c2 + 1)/4M2]. (44)
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The piecewise quadratic method was used to compute numerical solutions to Eqs. (41)

and (42) with K2p(x) = x2, ju1/jh2 = 0.10, k1 = 1.6 and k2 = 2.0. The results of these

calculations are presented in Table 2, where again the singular part of the solution has

been factored out. It can be seen that the method is applicable in the case of complex

singularities. The rate of convergence can be calculated from Table 2 using the formula

-p log 2 = log -In
en=f{x)-f„{x) (45)

where the rate is defined by 0(hp). Since the approximation is quadratic, the rate should

be 0(h3), which indeed is the value calculated using Eq. (45) and Table 2.

In the event that one value of <j> is of particular importance, unequal spacing of the

integration intervals can be used to obtain higher local accuracy without introducing

additional integration points. Thus, in computing stress intensity factors, it is possible to

obtain somewhat better accuracy than is immediately apparent from Table 2. In practice

one to two additional significant figures can be gained, depending on the behavior of the

kernel and the right-hand side of the equation, and on the number of points being used.

It is evident, then, that the piecewise method can be used to solve equations of the type

(1), including the case where complex singularities arise. Since the quadrature formulae

were derived independently of the exact form of the integral equation, it would appear in

addition that the expressions presented here could be useful in solving other classes of

singular integral equations in which general singularities appear in the solution. Finally,

extending the quadrature formulae to higher order piecewise approximations (i.e., cubic,

quartic, etc.) could be performed fairly easily, were it so desired.

Appendix. The largest proportion of computer time is spent computing the values

/j(/, k) and I2(Xj, k), and so it is most efficient to compute these values once and store

them in arrays. Through proper choice of the expansion points a and a', the various sums

derived earlier can be made to converge quite rapidly. For Ix(l, k) ii has been assumed

implicitly that a = t2k. This gives good convergence, and leads to the following expres-

sions for lx:

00 A (t H"+/+1

2 £ ; k* i,n
n-n n n ( + / + 1)n — nh,nh + 2inb+4' ■ ■ ■ v 7

£ AJt2)h?+'+1 . .
I „ + ,+ ! -*■(-'): *-l.

>7 = 0

s'(1)-£„ , + i+i ■ k~N-
n = 0

where

. -10, / = 0,2,
"'-\1, / = !•



464 G. R. MILLER AND L. M. KEER

Computing I2(Xj, k) is more complicated as the best choice of a' depends on Xj.

Introducing the notation

WF{x, plt p2) = f"2- —— —.

12 may be expressed as follows:

t WF(xu-l, tm) + WF(Xl, tm, t3), j,k = 1,

I2(xj, k) = I WF(xn, t2N_l, tm) + WF{xn, tm, 1), j, k = N,

\WF{xN,t2k_l,t2k + l), otherwise.

The point tm is an intermediate point chosen such that convergent forms of the sums are

obtained. Thus,

=
\(x\ + t2), j,k= 1,

N xn)' J' k = N.

Explicit expressions for IVF are summarized below:

Case 1. \px\ ¥= 1, \p2\ ¥= 1; x < px or x > p2.

00 1 / n - n' \ " + 1 "

WF{x,px,p2) = 2 £ ——- r H As(a')(x - a')'
»-o.2.4.... {n + \) \ X - a I s=0

with a' = (px + p2)/2

Case2.\px\ * \,\p2\ * 1 \px < x < p2.

Pi ~ x
WF(x, ply p2) = a '°S

(1 +X)P P 2~X

-1 pi-*)"}■
n = 1

Case 3.px = -1; \{px + p2) < x < -

— I — X
WF(x, px, p2) =   - log

(1 -x)a(\ +x)P P 2
+ S*(-1)

f An(x) , r

n=l

Case 4. p2 = 1; \ < x < \(pl + p2).

Pi ~ x

I — X
- s2*(l)

00 4 ^ V ^

—- *) •

n = 1
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Case 5. pl = — 1; — \ < x < 1.

irrr > f 1 f (-™)n(-iy(P2-"') f w ,wwr(x• "•ft) = -«" + D )(J< _''

-S2(-l)

with a' = (/»!+ p2)/2.

Case 6.p2 = 1; -1 c jc < i

- ~ ,»?o 2^ ,?o x — a

L ^,(a')(* - fl')P

p~0

with a' = (/>x+ /?2)/2.

Note. The sums in cases 5 and 6 correspond to Euler transformations [9] of the sum in

Eq. (19).
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