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Abstract We use configuration space methods to write
down one-dimensional integral representations for one- and
two-loop sunrise diagrams (also called Bessel moments)
which we use to numerically check on the correctness of the
second order differential equations for one- and two-loop
sunrise diagrams that have recently been discussed in the
literature.

1 Introduction

Sunrise-type diagrams have been under investigation since
many years. Exact analytical results can be obtained only
for special mass or kinematic configurations such as for the
equal or zero mass cases or for the threshold region. For
example, threshold expansions of the non-degenerate mas-
sive two-loop sunrise diagram have been studied in Refs.
[1, 2]. The construction of differential equations for the
corresponding correlator function provides some hope that
by solving these differential equations, a general analytical
solution can be obtained. Recently, mathematical methods
were used to construct the coefficients of such a differential
equation in a systematic way [3]. This work supplements
the work of Kotikov [4] and Remiddi et al. [5–7] on the
same subject. While traditionally the correlator is calculated
in momentum space, configuration space techniques allow
for a surprisingly simple solution for sunrise-type diagrams:
The correlator in configuration space is just a product of
single propagators which in turn can be expressed by modi-
fied Bessel functions of the second kind. Transforming back
to momentum space, one ends up with a one-dimensional
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integral over Bessel functions, known as Bessel moments
[8, 9]. As outlined in a series of papers [2, 10–16], the corre-
sponding one-dimensional integral can be easily integrated
numerically for an arbitrary number of propagators with
different masses in any space-time dimension. Therefore,
configuration space techniques can be used to numerically
check the differential equations for the correlator function
obtained by other means. This will be detailed in this note.

The paper is organized as follows: In Sect. 2 we intro-
duce the configuration space techniques which will be used
in Sect. 3 to check the differential equations for one-loop
sunrise-type diagrams. In Sect. 4 we check the differential
equations for the two-loop sunrise diagrams for the equal
mass case, while in Sect. 5 we will deal with nondegenerate
cases. Our conclusions can be found in Sect. 6. Even though
the configuration space techniques are well suited to treat
general D �= 4 space-time dimensions, we will mainly deal
with the case of D = 2 space-time dimensions in this paper.
For reasons of simplicity, throughout this paper we work in
the Euclidean domain. The transition to the Minkowskian
domain can be obtained as usual by a Wick rotation (or,
equivalently, by replacing p2 → −p2).

2 Configuration space techniques

In configuration space, the n-loop n-particle irreducible cor-
relation function

Π(x) = 〈0|T j̄(x)j (0)|0〉 (1)

connecting the space-time points 0 and x is given by the
product of the propagators,

Π(x) =
n+1∏

i=1

D(x,mi), (2)
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where the free propagator of a particle with mass m in D-
dimensional (Euclidean) space-time is given by

D(x,m) = 1

(2π)D

∫
ei(p·x) dDp

p2 + m2
= (mx)λKλ(mx)

(2π)λ+1x2λ
(3)

(D = 2λ + 2). Kλ(z) is the McDonald function (modi-
fied Bessel function of the second kind). Note that p and
x in the integral expression of Eq. (3) are D-dimensional
Lorentz vectors, i.e. p · x = pμxμ, while the quantity x in
the rightmost expression of Eq. (3) (and, therefore, also in
the argument of the propagator) denotes the absolute value
x = √

xμxμ. In the limit mx → 0 at fixed x, the propagator
simplifies to

D(x,0) = 1

(2π)D

∫
ei(p·x) dDp

p2
= �(λ)

4πλ+1x2λ
, (4)

where �(λ) is Euler’s Gamma function.
In this note we write the n-particle irreducible correlator

function in (Euclidean) momentum space. The momentum
space n-particle irreducible correlator function is given by
the Fourier transform of the n-particle irreducible correlator
function Π(x) in configuration space,

Π̃(p) =
∫

Π(x)ei(p·x) dDx. (5)

As a product of propagators, Π(x) in (5) depends only on
the absolute value x = √

xμxμ. Therefore, one proceeds by
first integrating the exponential factor over the D−1 dimen-
sional hypersphere. We write dDx = xD−1 dDx̂ dx where
dDx̂ denotes the D − 1 dimensional integration measure
over the D − 1 dimensional hypersphere. The integration
of the exponential factor over the unit sphere gives
∫

ei(p·x) dDx̂ = 2πλ+1
(

px

2

)−λ

Jλ(px). (6)

Jλ(z) is the Bessel function of the first kind. As before, p

and x on the right hand side of Eq. (6) stand for the absolute
values p = √

pμpμ and x = √
xμxμ. Therefore, the correla-

tor in momentum space depends only on the absolute value
of the momentum,

Π̃(p) = 2πλ+1
∫ ∞

0

(
px

2

)−λ

Jλ(px)Π(x)x2λ+1 dx. (7)

This is the central formula for our numerical verification of
the correctness of the differential equations.

3 The one-loop case

In Ref. [5], Remiddi explains how to obtain the differential
equation for the one-loop sunrise-type diagram with arbi-
trary masses and dimensions. By applying the integration-
by-parts technique to the correlator in momentum space,
recurrence relations can be obtained. Finally, Euler’s theo-
rem for homogeneous functions connects the loose ends of

the iterative steps involving partial derivative with respect
to p2. We have numerically checked all these steps and have
found numerical consistency—up to Stokes’ contributions
due to surface terms in integer space-times dimensions.

To be more precise, the integral
∫

dDk

(2π)D

∂

∂kμ

(
vμ

(k2 + m2
1)((p − k)2 + m2

2)

)
(8)

for v = k,p (or a linear combination of both) leads to a sur-
face term which can be assumed to vanish (up to Stokes’
contributions). The integration-by-parts technique consists
in calculating the integral explicitly and one then expresses
the result in terms of scalar integrals

S(α1, α2) :=
∫

dDk

(2π)D

1

(k2 + m2
1)

α1((p − k)2 + m2
2)

α2
. (9)

The (two) resulting recurrence relations read

0 = DS(α1, α2) + 2α1
(
m2

1S(α1 + 1, α2) − S(α1, α2)
)

+ α2
((

p2 + m2
1 + m2

2

)
S(α1, α2 + 1)

− S(α1 − 1, α2 + 1) − S(α1, α2)
)
, (10)

0 = −α1
((

p2 − m2
1 + m2

2

)
S(α1 + 1, α2)

− S(α1 + 1, α2 − 1) + S(α1, α2)
)

+ α2
((

p2 + m2
1 − m2

2

)
S(α1, α2 + 1)

− S(α1 − 1, α2 + 1) + S(α1, α2)
)
. (11)

Equation (11) can be replaced by Eq. (10) with the two lines
interchanged,

0 = DS(α1, α2) + 2α2
(
m2

2S(α1, α2 + 1) − S(α1, α2)
)

+ α1
((

p2 + m2
1 + m2

2

)
S(α1 + 1, α2)

− S(α1 + 1, α2 − 1) − S(α1, α2)
)
. (12)

It is obvious that Eq. (11) is reproduced as difference of
Eq. (10) and Eq. (12). Therefore, one has to check only
Eq. (10). We will perform this numerical check for the pa-
rameter choice α1 = α2 = 1 which is relevant for the dif-
ferential equation, and for D = 2 space-time dimensions.
As mentioned in Ref. [3], even though other dimensions are
feasible, this choice avoids singular contributions and serves
for the simplest integrand. The equation to be checked is

2m2
1S(2,1) + (

p2 + m2
1 + m2

2

)
S(1,2)

= S(1,1) + S(0,2). (13)

Starting from

S(1,1) =
∫

d2k

(2π)2

1

(k2 + m2
1)((p − k)2 + m2

2)

= 1

2π

∫ ∞

0
J0(px)K0(m1x)K0(m2x)dx, (14)

the integrals S(α1, α2) with higher (integer) values of αi can
be obtained as partial derivatives with respect to the masses,
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−1

2m1

∂

∂m1
S(1,1)

= − ∂

∂m2
1

S(1,1)

= − ∂

∂m2
1

∫
d2k

(2π)2

1

(k2 + m2
1)((p − k)2 + m2

2)

=
∫

dk

(2π)2

1

(k2 + m2
1)

2((p − k)2 + m2
2)

= S(2,1) (15)

and accordingly

−1

2m2

∂

∂m2
S(1,1) = S(1,2). (16)

In addition one has

S(2,0) =
∫

d2k

(2π)2

1

(k2 + m2
1)

2
= 1

4πm2
1

,

S(0,2) =
∫

d2k

(2π)2

1

((p − k)2 + m2
2)

2
= 1

4πm2
2

.

(17)

The derivative can be expressed by K ′
0(z) = −K1(z). The

higher order integrals in the configuration space representa-
tion are given by

S(2,1) = −1

2m1

∂

∂m1
S(1,1)

= 1

4πm2
1

∫ ∞

0
J0(px)(m1x)K1(m1x)K0(m2x)x dx,

S(1,2) = −1

2m2

∂

∂m2
S(1,1)

= 1

4πm2
2

∫ ∞

0
J0(px)K0(m1x)(m2x)K1(m2x)x dx.

(18)

Therefore, Eq. (13) in the configuration space representation
reads

1 =
∫ ∞

0
J0(px)

[
2(m2x)2(m1x)K1(m1x)K0(m2x)

+ (
(px)2 + (m1x)2 + (m2x)2)

× K0(m1x)(m2x)K1(m2x)

− 2(m2x)2K0(m1x)K0(m2x)
]dx

x
. (19)

We were able to check this equation numerically for differ-
ent values of p as function of m1 and m2. The 3D-plot in
MATHEMATICA shows stochastic fluctuations around the
expected value of 1 of the order of 10−9.

Euler’s theorem of homogeneous functions leads to the
differential equation

(
p2 ∂

∂p2
+ m2

1
∂

∂m2
1

+ m2
2

∂

∂m2
2

+ 1

)
S(1,1) = 0. (20)

Because of J ′
0(z) = −J1(z), Eq. (20) can be translated to

0 =
∫ ∞

0
(px)2[(px)J1(px)K0(m1x)K0(m2x)

+ J0(px)(m1x)K1(m1x)K0(m2x)

+ J0(px)K0(m1x)(m2x)K1(m2x)

− 2J0(px)K0(m1x)K0(m2x)
]dx

x
. (21)

We checked on the latter relation with an even better preci-
sion of the order of 10−13.

The differential equation

(
p2 + (m1 + m2)

2)(p2 + (m1 − m2)
2) ∂

∂p2
S(1,1)

= −(
p2 + m2

1 + m2
2

)
S(1,1) (22)

in Ref. [5] is obtained by inserting the recurrence relations
into Euler’s differential equation (20). Using the configura-
tion space representation, Eq. (22) reads

1 =
∫ ∞

0

[ −1

2(px)2

(
(px)2 + (m1x + m2x)2)

× (
(px)2 + (m1x − m2x)2)(px)J1(px)

+ (
(px)2 + (m1x)2 + (m2x)2)J0(px)

]

× K0(m1x)K0(m2x)
dx

x
. (23)

This equation could be checked with a precision of the order
of 10−8.

While Euler’s differential equation can be derived from
general principles also for the configuration space represen-
tation, the recurrence relations can be derived only via the
momentum space representation. If one does not use this
technique, it remains unclear why such integral identities ex-
ist for general parameters p, m1 and m2. In order to check
whether one can derive further relations by using integral
identities in configuration space, we have used the general
ansatz

1 =
∫ ∞

0
J0(px)

[
A0(px,m1x,m2x)K0(m1x)K0(m2x)

+ A1(px,m1x,m2x)(m1x)K1(m1x)K0(m2x)

+ A2(px,m1x,m2x)K0(m1x)(m2x)K1(m2x)
]dx

x
,

(24)

where Ai(p,m1,m2) = ai0p
2 +ai1m

2
1 +ai2m

2
2 (i = 0,1,2).

By choosing random values for p, m1 and m2, and solving
the resulting system of equations, one obtains

a00 = 0, a01 = −2a, a02 = −2 + 2a,

a10 = a, a11 = a, a12 = 2 − a,

a20 = 1 − a, a21 = 1 + a, a22 = 1 − a,

(25)
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where a is an arbitrary parameter. This leads to Eq. (19) and

0 =
∫ ∞

0
J0(px)

[
2
(
(m2x)2 − (m1x)2)K0(m1x)K0(m2x)

+ (
(px)2 + (m1x)2 − (m2x)2)(m1x)

× K1(m1x)K0(m2x)

− (
(px)2 − (m1x)2 + (m2x)2)

× K0(m1x)(m2x)K1(m2x)
]dx

x
, (26)

which is the difference of Eq. (19) and the same equation
with m1 and m2 interchanged. We conclude that no more
recurrence relations can be found that go beyond Eq. (19).

4 The two-loop case with equal masses

The differential equation for the two-loop degenerate sunrise
diagram has been given in Ref. [7]. It reads
(

2p2(p2 + m2)(p2 + 9m2)
(

d

dp2

)2

+ (
3(4 − D)p4 + 10(6 − D)m2p2 + 9Dm4) d

dp2

+ (D − 3)
(
(D − 4)p2 − (D + 4)m2)

)
S(1,1,1)

= 3

(D − 4)2π2
, (27)

which simplifies to
(

p2(p2 + m2)(p2 + 9m2)
(

d

dp2

)2

+ (
3p4 + 20m2p2 + 9m4) d

dp2

+ (
p2 + 3m2)

)
S(1,1,1) = 3

8π2
(28)

in D = 2 space-time dimensions. We write S(1,1,1) in a
form which is easily adapted to the non-degenerate mass
case to be discussed later on. One has

S(1,1,1)

= 1

(2π)2

∫ ∞

0
J0(px)K0(m1x)K0(m2x)K0(m3x)x dx.

(29)

Differentiation of Eq. (29) gives

d

dp2
S(1,1,1)

= 1

2p

d

dp
S(1,1,1)

= −1

2(2π)2p2

∫ ∞

0
(px)J1(px)K0(m1x)K0(m2x)

× K0(m3x)x dx (30)

and
(

d

dp2

)2

S(1,1,1)

= 1

4(2π)2p4

∫ ∞

0

[
(px)J1(px)

+ 1

2
(px)2(J2(px) − J0(px)

)]

× K0(m1x)K0(m2x)K0(m3x)x dx. (31)

Returning to the degenerate mass case the differential equa-
tion (28) can be translated to

3

2
= 1

4p2

∫ ∞

0

[(
p2 + m2)(p2 + 9m2)

×
(

(px)J1(px) + 1

2
(px)2(J2(px) − J0(px)

))

− 2
(
3p4 + 20m2p2 + 9m4)(px)J1(px)

+ 4p2(p2 + 3m2)J0(px)

]
K0(mx)3x dx, (32)

where J ′′
0 (z) = −J ′

1(z) = (J2(z) − J0(z))/2 is used. Be-
cause the result contains the second derivative of the Bessel
function, one can use Bessel’s differential equation

z2J ′′
λ (z) + zJ ′

λ(z) + (
z2 − λ2)Jλ(z) = 0 (33)

for λ = 0 to compactify the result,

3

2
= 1

4p2

∫ ∞

0

[(
4p2(p2 + 3m2)

− (
p2 + m2)(p2 + 9m2)(px)2)J0(px)

− 2p2(p2 + 5m2)J1(px)
]
K0(mx)3x dx. (34)

These results have been checked with a precision of the or-
der of 10−8.

5 The two-loop case with arbitrary masses

The final section of this paper is devoted to the second or-
der differential equation, derived for the two-loop sunrise
diagram with arbitrary masses in Ref. [3]. After adjust-
ing the normalization, the differential equation can be writ-
ten as
[
p0

(−p2)
(

d

dp2

)2

+ p1
(−p2) d

dp2
+ p2

(−p2)
]
S(1,1,1)

= p3(−p2)

4(2π)2
, (35)

where the coefficients pi(t) (i = 0,1,2,3) are given by
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p0(t) = t
(
t − (m1 + m2 + m3)

2)(t − (−m1 + m2 + m3)
2)

× (
t − (m1 − m2 + m3)

2)(t − (m1 + m2 − m3)
2)

× (
3t2 − 2M100t − M200 + 2M110

)
, (36)

p1(t) = 9t6 − 32M100t
5 + (37M200 + 70M110)t

4

− (8M300 + 56M210 + 144M111)t
3

− (13M400 − 36M310 + 46M220 − 124M211)t
2

− (−8M500 + 24M410 − 16M320 − 96M311

+ 144M221)t − (M600 − 6M510 + 15M420

− 20M330 + 18M411 − 12M321 − 6M222), (37)

p2(t) = 3t5 − 7M100t
4 + (2M200 + 16M110)t

3

+ (6M300 − 14M210)t
2 − (5M400

− 8M310 + 6M220 − 8M211)t + (M500 − 3M410

+ 2M320 + 8M311 − 10M221), (38)

p3(t) = −18t4 + 24M100t
3 + (4M200 − 40M110)t

2

+ (−8M300 + 8M210 + 48M111)t

+ (−2M400 + 8M310 − 12M220 − 8M211)

+ 2c(t,m1,m2,m3) ln
(
m2

1/μ
2)

+ 2c(t,m2,m3,m1) ln
(
m2

2/μ
2)

+ 2c(t,m3,m1,m2) ln
(
m2

3/μ
2), (39)

and where

Mλ1λ2λ3 =
∑

σ

(
m2

1

)σ(λ1)
(
m2

2

)σ(λ2)
(
m2

3

)σ(λ3) (40)

are monomial symmetric polynomials in m2
1, m2

2 and m2
3 and

where

c(t,m1,m2,m3)

= (−2m2
1 + m2

2 + m2
3

)
t3 + (

6m4
1 − 3m4

2

− 3m4
3 − 7m2

1m
2
2 − 7m2

1m
2
3 + 14m2

2m
2
3

)
t2

+ (−6m6
1 + 3m6

2 + 3m6
3 + 11m4

1m
2
2 + 11m4

1m
2
3

− 8m2
1m

4
2 − 8m2

1m
4
3 − 3m4

2m
2
3 − 3m2

2m
4
3

)
t

+ (
2m8

1 − m8
2 − m8

3 − 5m6
1m

2
2 − 5m6

1m
2
3

+ m2
1m

6
2 + m2

1m
6
3 + 4m6

2m
2
3 + 4m2

2m
6
3

+ 3m4
1m

4
2 + 3m4

1m
4
3 − 6m4

2m
4
3 + 2m4

1m
2
2m

2
3

− m2
1m

4
2m

2
3 − m2

1m
2
2m

4
3

)
(41)

(for details, cf. Ref. [3]). Using Eqs. (29), (30) and (31), one
obtains

p3
(−p2) =

∫ ∞

0

[
p0(−p2)

p4

(
(px)J1(px) + 1

2
(px)2

× (
J2(px) − J0(px)

))

− 2
p1(−p2)

p2
(px)J1(px) + 4p2

(−p2)J0(px)

]

× K0(m1x)K0(m2x)K0(m3x)x dx

=
∫ ∞

0

[(
4p2

(−p2) − p0(−p2)

p4
(px)2

)
J0(px)

− 2
p∗

1(−p2)

p2
(px)J1(px)

]

× K0(m1x)K0(m2x)K0(m3x)x dx, (42)

where p∗
1(t) = p1(t)+p0(t)/t . Using different values for p

and m3, in terms of m1 and m2 we obtain a 3D-plot with
MATHEMATICA which shows again stochastic fluctua-
tions of the order of 10−4. In the course of our numerical
checks we were able to identify two typos in the coefficients
of c(t,m1,m2,m3) in the preprint version of Ref. [3] which
we have corrected.

6 Conclusions

Using configuration space techniques, we were able to check
numerically the differential equations for sunrise-type dia-
grams found in the literature. The precision of our numeri-
cal test is still quite moderate, but gives sufficient confidence
in the validity of the differential equations derived by other
means. For example, the introduction of artificial “typos” in
the coefficients of the differential equations are easily dis-
covered. More rigorous tests would require the use of more
stable integration routines than those provided by MATHE-
MATICA. For the future we hope to find independent routes
to discover further relations between Bessel moments which
may lead to generalizations of the present findings to cases
involving three-loop or even higher order sunrise-type dia-
grams.
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