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1 Lattice formulation of QCD

Today, we believe that the world of quarks and gluons is described theoreti-

cally by quantum chromodynamics (QCD). This model shows a number of non-

perturbative aspects that cannot be adequately addressed by approximation schemes

such as perturbation theory. The only way to evaluate QCD, addressing both its

perturbative and non-perturbative aspects at the same time, is lattice QCD. In

this approach the theory is put on a 4-dimensional Euclidean space-time lattice

of finite physical length L, with a non-vanishing value of the lattice spacing a.

Having only a finite number of grid points, physical quantities can be computed

numerically by solving a high-dimensional integral by Monte Carlo methods, mak-

ing use of importance sampling.

The introduction of a lattice spacing regularizes the theory and is an intermediate

step in the computation of physical observables. Eventually, the regularization

has to be removed and the value of the lattice spacing has to be sent to zero to

reach the target theory, i.e. continuum QCD. In fact, in conventional formulations

of lattice QCD [1], the introduction of the lattice spacing renders the theory

on the lattice somewhat different from the continuum analogue and a number

of properties of the continuum theory are only very difficult and cumbersome

to establish in the lattice regularized theory. One of the main reasons for this

difficulty is that in conventional lattice QCD the regularization breaks a particular

symmetry of the continuum theory, which plays a most important role there,

namely chiral symmetry.

However, the last few years have seen a major breakthrough in that we now have

formulations of lattice QCD that have an exact lattice chiral symmetry [5]. In

this approach, many properties of continuum QCD are preserved even at a non-

vanishing value of the lattice spacing [2, 3, 4, 5, 6]. This development followed

the rediscovery [7] of the so-called Ginsparg–Wilson (GW) relation [8] which is

fulfilled by any operator with the exact lattice chiral symmetry of [5]. It is not the

aim of this contribution to discuss the physics consequences of the GW relation.

We have to refer the interested reader to reviews [9, 10] about these topics. Here

we would like to discuss the numerical treatment of a particular lattice operator

that satisfies the GW relation, namely Neuberger’s solution [4]. This solution has

a complicated structure and is challenging to implement numerically. Thus, the
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large theoretical advantage of an operator satisfying the GW relation must be

weighed against the very demanding computational effort required to implement

it.

This contribution is organized as follows. After discussing Neuberger’s lattice

Dirac operator we want to show how we evaluated the operator in our practi-

cal application [11] and what kind of improvements we found to accelerate the

numerical computations. For alternative ideas for improvements, see the contri-

butions of H. Neuberger [12] and A. Borici [13] to this workshop. We finally give

some estimates of the computational expense of using Neuberger’s operator.

2 Neuberger’s lattice Dirac operator

The operator we have used acts on fields (complex vectors) Φ(x) where x =

(x0, x1, x2, x3) and the xµ, µ = 0, 1, 2, 3, are integer numbers denoting a 4-dimensional

grid point in a lattice of size N4 with N = L/a. The fields Φ(x) carry in addition

a “colour” index α = 1, 2, 3 as well as a “Dirac” index i = 1, 2, 3, 4. Hence, Φ is

a N4 · 3 · 4 complex vector.

In order to reach the expression for Neuberger’s operator we first introduce the

matrix A

A = 1 + s− a

2

{
γµ

(∇∗
µ +∇µ

)− a∇∗
µ∇µ

}
, (1)

where ∇µ and ∇∗
µ are the nearest-neighbour forward and backward derivatives,

the precise definition of which can be found in the Appendix. The parameter

s is to be taken in the range of |s| < 1 and serves to optimize the localization

properties [14] of Neuberger’s operator, which is then given by

D =
1

a

{
1− A

(
A†A

)−1/2
}

. (2)

Through the appearance of the square root in eq. (2), all points on the lattice are

connected with one another, giving rise to a very complicated, multi-neighbour

action. However, the application of D to a vector Φ will only contain applications

of A or A†A on this vector. Since these matrices are sparse, as only nearest-

neighbour interactions are involved, we will never have to store the whole matrix.

In the computation of physical quantities, the inverse of D, applied to a given

vector, is generically needed. Hence one faces the problem of having to compute
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a vector X = D−1η, with η a prescribed vector (the “source”) as required by the

particular problem under investigation. Fortunately, a number of efficiently work-

ing algorithms for computing X = D−1η are known, such as conjugate gradient,

BiCGstab, or variants thereof [16]. In conventional approaches to lattice QCD an

operator D̃ is used that is very similar to the matrix A in eq. (1). Computing the

vector X̃ = D̃−1η requires a number niter of iterations of some particular method,

say BiCGstab. Employing Neuberger’s operator D in computing X = D−1η, it

turns out that the number of iterations needed is of the same order of magnitude

as when using D̃. At the same time, in each of these iterations, the square root

has to be evaluated. When this is done by some polynomial approximation, it is

found that the required degree of this polynomial is roughly of the same order as

the number of iterations needed for computing the vector X. Hence, with respect

to the conventional case, the numerical effort is squared and the price to pay for

using the operator D is high.

On the other hand, any solution of the Ginsparg–Wilson relation gives us a tool

by which particular problems in lattice QCD can be studied, which would be

extremely hard to address with conventional approaches. It is for these cases

that the large numerical effort is justified, but clearly, we would like to have

clever ideas coming from areas such as Applied Mathematics, to decrease the

numerical expense or even overcome this bottleneck.

3 Approximation of
(
A†A

)−1/2

For computing the square root that appears in eq. (2), we have chosen a Cheby-

shev approximation [15] by constructing a polynomial Pn,ε(x) of degree n, which

has an exponential convergence rate in the interval x ∈ [ε, 1]. Outside this inter-

val, convergence is still found but it will not be exponential. The advantages of

using this Chebyshev approximation are the well-controlled exponential fit accu-

racy as well as the possibility of having numerically very stable recursion relations

[17] to construct the polynomial, allowing for large degrees. In order to have an

optimal approximation, it is desirable to know the lowest and the highest eigen-

value of A†A. A typical example of the eigenvalues of A†A is shown in fig. 1,

where we show the 11 lowest eigenvalues as obtained on a number of configu-
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Figure 1: Monte Carlo time evolution of the eleven lowest eigenvalues of A†A at

β = 5.85. The lowest eigenvalue for each configuration is the open square.

rations using the Ritz functional method [19]. There is a wide spread and very

low-lying eigenvalues appear. Choosing ε to be the value of the lowest of these

eigenvalues would result in a huge degree n of the polynomial Pn,ε. We therefore

computed O(10) lowest-lying eigenvalues of A†A as well as their eigenfunctions

and projected them out of the matrix A†A. The approximation is then only per-

formed for the matrix with a reduced condition number, resulting in a substantial

decrease of the degree of the polynomial. In addition, we computed the highest

eigenvalue of A†A and normalized the matrix A such that ‖A†A‖ . 1.

Since our work [11], aiming at the physical question of spontaneous chiral sym-
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metry breaking in lattice QCD, has been one of the first of its kind, we wanted

to exclude possible systematic errors and demanded a very high precision for the

approximation to the square root:

‖X − Pn,ε(A
†A)A†APn,ε(A

†A)X‖2/‖2X‖2 < 10−16 (3)

where X is a gaussian random vector. In our practical applications we fixed this

precision beforehand and set ε to be the 11th lowest eigenvalue of A†A. This then

determines the degree of the polynomial n and hence our approximation Dn to

the exact Neuberger operator D. We checked that the precision we required for

the approximation of the square root is directly related to the precision by which

the GW relation itself is fulfilled. Choosing n such that the accuracy in eq. (4)

is reached results in

‖ [γ5Dn + Dnγ5 −Dnγ5Dn] X‖2/‖X‖2 ≈ 10−16 . (4)

In addition, we find that the deviations from the exact GW relation decrease

exponentially fast with increasing n.

4 The inverse of Neuberger’s operator

As mentioned above, in physics applications a vector D−1η has to be computed,

with η a prescribed source vector. Not only is the computation of this vector very

costly, there also appears to be a conceptual problem: in inspecting the lowest

eigenvalue of D†
nDn, very small eigenvalues are often found as shown in fig. 2.

These very small eigenvalues belong to a given chiral sector of the theory, i.e.

their corresponding eigenfunctions χ are eigenfunctions of γ5 with γ5χ = ±χ. In

fact, these modes play an important physical role as they are associated with

topological sectors of the theory [3, 2, 5, 4].

As far as the practical applications are concerned, it is clear that in the presence

of such a small eigenvalue, the inversion of Dn will be very costly, as the condition

number of the problem is then very high. In order to address this problem, we

followed two strategies:

(i) We compute the lowest eigenvalue of D†
nDn and its eigenfunction (using

again the Ritz functional method [19]) and if it is a zero mode –in which
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Figure 2: Monte Carlo time evolution of the lowest eigenvalue of D†
nDn. The

eigenvalues belong to given chiral sectors of the theory denoted as ±χ for chirality

plus (full squares) and minus (open squares). Data are obtained at β = 5.85

choosing s = 0.6. Whenever there is a zero mode of D†
nDn, the value of the

lowest eigenvalue is set to 10−8.
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case it is also a zero mode of Dn– we project this mode out of Dn and

invert only the reduced matrix; this is then well conditioned, as the very

small eigenvalues appear to be isolated. In this strategy, the knowledge of

the eigenfunction must be very precise and an accuracy of approximating

the square root as indicated in eq. (3) is mandatory.

(ii) Again we determine the lowest eigenvalue of D†
nDn and the chirality of the

corresponding zero mode, if there is any. We then make use of the fact that

D†
nDn commutes with γ5. This allows us to perform the inversion in the

chiral sector without zero modes. In this strategy, the accuracy demanded in

eq. (3) could be relaxed and this strategy, which essentially follows ref. [18],

is in general much less expensive than following strategy (i).

However, even adopting strategy (ii), solving the system DnX = η is still costly.

We therefore tried two ways of improving on this. We first note that instead of

solving [
1− A/

√
A†A

]
X = η (5)

we can equally well solve [
A† −

√
A†A

]
X = A†η . (6)

In practice, however, we found no real advantage in using the formulation of

eq. (6). We have further considered two acceleration schemes.

Scheme (a)

We choose two different polynomials (now approximating
√

A†A and not the

inverse) Pn,ε and Pm,ε, m < n, such that

Pn,ε = Pm,ε + ∆ (7)

with ∆ a “small” correction. Then we have[
A† − Pn,ε

]−1
=

[
A† − Pm,ε −∆

]−1

≈
[
1 +

(
A† − Pm,ε

)−1
∆
] (

A† − Pm,ε

)−1
. (8)

This leads us to the following procedure of solving DnX = η:
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(1) first solve

(
A† − Pm,ε

)
Y = η ; (9)

(2) then solve

(
A† − Pm,ε

)
X0 = η + ∆Y ; (10)

(3) use X0 as a starting vector to finally solve

(
A† − Pn,ε

)
X = η . (11)

The generation of the starting vector X0 in steps (1) and (2) is only a small

overhead. In fig. 3 we plot the relative residuum ε2
stop = ‖DnX − η‖2/‖X‖2 as a

function of the number of applications of Dn. In this case n = 100 and m = 30.

We show the number of applications of the matrix Dn for the case of a random

starting vector (dotted line) and the case where X0 was generated according to

the above procedure (solid line). The gain is of approximately a factor of two.

Scheme (b)

In the second approach, we use a sequence of polynomials to solve DnX = η. To

this end we first solve [
A† − Pm1,ε

]
X1 = A†η (12)

by choosing a polynomial Pm1,ε and a stopping criterion for the solver ε
(1)
stop such

that

m1 < n, ε
(1)
stop > εstop . (13)

The value of ε
(1)
stop is chosen such that it is roughly of the same order of magnitude

as the error that the polynomial of degree m1 itself induces. The solution X1
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Figure 3: The residuum as a function of the number of applications of the matrix

Dn. The dotted line corresponds to a random starting vector. The solid line to

a starting vector generated following scheme (a).
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is then used as a starting vector for the next equation, employing a polynomial

Pm2,ε and stopping criterion ε
(2)
stop with

m1 < m2 < n, ε
(1)
stop > ε

(2)
stop > εstop . (14)

This procedure is then repeated until we reach the desired polynomial Pn,ε and

stopping criterion εstop to solve the real equation

[
A† − Pn,ε

]
X = A†η . (15)

As for scheme (a), we gain a factor of about two in the numerical effort. We

finally remark that some first tests using the scheme proposed in [13] resulted in

a similar performance gain as the two schemes presented above.

In table 1 we give a typical example of the expense of a simulation following

strategy (ii). We list both the cost of computing the lowest eigenvalue of D†
nDn

in terms of the number of iterations to minimize the Ritz functional [19] and the

number of iterations to solve DnX = η. In both applications, a polynomial of

degree n is used to approximate the square root. The numbers in table 1 indicate

that a quenched calculation, employing Neuberger’s operator, leads to a compu-

tational cost that is comparable with a dynamical simulation using conventional

operators.

N n nev ninvert

8 190 170 80

10 250 325 200

12 325 700 300

Table 1: N is the number of lattice sites along a side of the hypercube; n, the

degree of polynomial; nev, the number of iterations required to obtain the lowest

eigenvalue of D†
nDn; and ninvert, the number of iterations necessary to compute

X = D−1
n η.
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5 Conclusions

The theoretical advance that an exact chiral symmetry brings to lattice gauge

theory is accompanied by the substantial increase in numerical effort that is

required to implement operators satisfying the GW relation. Thus, while the

Nielsen–Ninomiya theorem has been circumvented, the “no free lunch theorem”

has not. Whether alternative formulations, such as domain wall fermions, can

help in this respect remains to be seen.

Appendix

We give here the explicit definitions needed in eq. (1). The forward and backward

derivatives ∇µ, ∇∗
µ act on a vector Φ(x) as

∇µΦ(x) =
1

a
[U(x, µ)Φ(x + aµ̂)− Φ(x)]

∇∗
µΦ(x) =

1

a

[
Φ(x) − U(x− aµ̂, µ)−1Φ(x− aµ̂)

]
,

where µ̂ denotes the unit vector in direction µ. The (gauge) field U(x, µ) ∈ SU(3)

lives on the links connecting lattice points x and x + aµ̂ and acts on the colour

index α = 1, 2, 3 of the field Φ. Finally, the Dirac matrices γµ, µ = 0, 1, 2, 3 are

hermitean 4×4 matrices acting on the Dirac index i of the field Φ. Their explicit

form is given by

γµ =

(
0 eµ

e†µ 0

)
(16)

with

e0 = 1, ek = −iσk (17)

and

σ1 =

(
0 1

1 0

)
σ2 =

(
0 −i

i 0

)
σ3 =

(
1 0

0 −1

)
. (18)
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With the choice of the γ matrices given above, the matrix γ5 = γ0γ1γ2γ3 is

diagonal and given by

γ5 =

(
1 0

0 −1

)
. (19)

We finally note that whenever repeated indices appear, they are summed over.
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