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A Numerically Stable, Structure Preserving Method forComputing the Eigenvalues of Real Hamiltonian or SymplecticPencilsPeter Benner� Volker Mehrmann� Hongguo XuyApril 2, 1996AbstractA new method is presented for the numerical computation of the generalized eigen-values of real Hamiltonian or symplectic pencils and matrices. The method is stronglybackward stable, i.e., it is numerically backward stable and preserves the structure (i.e.,Hamiltonian or symplectic). In the case of a Hamiltonian matrix the method is closelyrelated to the square reduced method of Van Loan, but in contrast to that method whichmay su�er from a loss of accuracy of order p", where " is the machine precision, the newmethod computes the eigenvalues to full possible accuracy.Keywords. eigenvalue problem, Hamiltonian pencil (matrix), symplectic pencil (matrix),skew-Hamiltonian matrixAMS subject classi�cation. 65F151 IntroductionThe eigenproblem for Hamiltonian and symplectic matrices has received a lot of attentionin the last 25 years, since the landmark papers of Laub [13] and Paige/Van Loan [20]. Thereason for this is the importance of this problem in many applications in control theory andsignal processing, [17, 12] and also due to the fact that the construction of a completelysatisfactory method is still an open problem. Such a method should be numerically backwardstable, have a complexity of O(n3) or less and at the same time preserve the Hamiltonian orsymplectic structure. Many attempts have been made to tackle this problem, see [8, 15, 17]and the references therein, but it has been shown in [2] that a modi�cation of standard QR-like methods to solve this problem is in general hopeless, due to the missing reduction to aHessenberg{like form. For this reason other methods like the multishift-method of [1] weredeveloped that do not follow the direct line of a standard QR-like method. The structureof the multishift method is at �rst a computation of the eigenvalues followed by a sequence�Fakult�at f�ur Mathematik, TU Chemnitz-Zwickau, D-09107 Chemnitz, FRG. e-mail:benner@mathematik.tu-chemnitz.de, mehrmann@mathematik.tu-chemnitz.de. These authors were sup-ported by Deutsche Forschungsgemeinschaft, Research Grant Me 790/7{1.yDepartment of Mathematics, Fudan University, Shanghai, 200433, PR China. Current address: Fakult�atf�ur Mathematik, TU Chemnitz-Zwickau, D-09107 Chemnitz, FRG. Research supported by Alexander vonHumboldt Foundation and Chinese National Natural Science Foundation1



of exact-shift steps of a QR method that is based on the non-Hessenberg reduction of Paigeand Van Loan [20]. The method is backward stable and structure preserving but it maysu�er from loss of convergence, in particular for large problems and furthermore it needsgood approximations for the eigenvalues �rst. These can for example be obtained via thesquare-reduced method of Van Loan [25]. In the symplectic case a similar method has beenproposed by Lin [16] and improved by Patel [21]. Both methods are structure preserving andbackward stable for a modi�ed problem which involves the square of the original matrix. Butsquaring a matrix, computing the eigenvalues of the square, and taking square roots to obtainthe eigenvalues of the original matrix can lead to a loss of half of the possible accuracy. Thiswas shown by the worst-case error analysis in [25].In this paper we will present a new method which does not su�er from this loss of accuracyand it is constructed in such a way that the same method can be used for Hamiltonianmatrices, symplectic matrices, Hamiltonian pencils, or symplectic pencils. The method isstructure preserving, backward stable, and needs O(n3) oating point operations. There arethree main ingredients for this new method, a new matrix decomposition, which can be viewedas a symplectic URV decomposition, a periodic Schur decomposition for a product of two orfour matrices [6, 10, 11] and the generalized Cayley transformation which allows a uni�edtreatment of Hamiltonian and symplectic problems, [14, 18].The paper is organized as follows: In Section 2 we introduce the notation and reviewsome basic results. In Section 3 we develop the theoretical basis for the new algorithm andin Section 4 we then describe the new procedure. An error analysis is given in Section 5 andnumerical examples are presented in Section 6.2 Notation and PreliminariesIn this section we introduce some notation, important de�nitions and also some preliminaryresults.We will be concerned with the computation of eigenvalues of special matrices and matrixpencils. To simplify the notation we use in the following the expression eigenvalue for eigen-values of matrices and also for pairs (�; �) 6= (0; 0) for which the determinant of a matrixpencil �E � �A vanishes. These pairs are not unique, since they can be scaled by a nonzerofactor and still the determinant vanishes. So if � 6= 0 then we identify (�; �) with (�� ; 1) or� = �� . Pairs (�; 0) with � 6= 0 are called in�nite eigenvalues.We now introduce the classes of matrices and matrix pencils that are discussed in thispaper.De�nition 1 Let J := " 0 In�In 0 #, where In is the n� n identity matrix.a) A pencil �E � �A 2 R2n�2n is called Hamiltonian i� EJAT = �AJET . The set ofHamiltonian pencils in R2n�2n is denoted by Hp2n.b) A matrix H 2 R2n�2n is called Hamiltonian i� (HJ)T = HJ. The Lie Algebra ofHamiltonian matrices in R2n�2n is denoted by H2n.c) A matrix Hs 2 R2n�2n is called skew-Hamiltonian i� (HsJ)T = �HsJ. The set ofskew-Hamiltonian matrices in R2n�2n is denoted by SH2n.d) A pencil �E � �A 2 R2n;2n is called symplectic i� EJET = AJAT .The set of symplecticpencils in Rn�n is denoted by Sp2n. 2



e) A matrix S 2 Rn�n is called symplectic i� SJST = J. The Lie group of symplecticmatrices in Rn�n is denoted by S2n.f ) A matrix U 2 R2n�2n is called orthogonal symplectic i� UJUT = J and UUT = I2n.The Lie group of orthogonal symplectic matrices in R2n�2n is denoted by US2n.In this paper we will mainly discuss regular Hamiltonian and symplectic pencils, (a pencil�E � �A is called regular if det(�E � �A) does not vanish identically for all complex pairs(�; �).) The main reasons for this are �rst that we do not know of any application forsingular Hamiltonian or symplectic pencils and second that for singular pencils no eigenvaluecomputation is necessary, since every complex number is an eigenvalue. We will, however,point out in our algorithm when we detect singularity or near singularity of the pencil.We have the following well-known properties of Hamiltonian and symplectic pencils:Proposition 1a) Let �E ��A be a real Hamiltonian pencil. If � = �� is a �nite eigenvalue of �E ��A, thenalso ���, ��, �� are eigenvalues of �E � �A.b) Let �E � �A be a real symplectic pencil. If � = �� is an eigenvalue of �E � �A, then also1=��, ��, 1=� are eigenvalues of �E � �A. This includes the eigenvalue 0 corresponding to(�; �) = (0; 1) with in�nite eigenvalue (�; �) = (1; 0) as counterpart.c) Any matrix H 2 H2n can be written as H = " F GH �FT #, where F , G, H 2 Rn�n andG = GT , H = HT .d) Any matrix U 2 US2n can be written as U = " U1 U2�U2 U1 #, where U1; U2 2 Rn�n.Proof. See, e.g., [15, 17].There is a well-known relationship between Hamiltonian and symplectic pencils, which isgiven via the generalized Cayley transformation, e.g., [14, 18] and there is also an interestingrelationship between Hamiltonian and skew-Hamiltonian matrices, which, however, does notextend to pencils.Lemma 2a) Let �Es � �As be a real symplectic pencil and let �1 = 1 or �1 = �1.Then �EH � �AH := �(Es � �1As)� �(�1Es +As) (1)is a real Hamiltonian pencil.b) Let �EH � �AH be a real Hamiltonian pencil and let �1 = 1 or �1 = �1. Then�Es � �As = �(�1AH + EH)� �(AH � �1EH) (2)is a real symplectic pencil.c) Let H be a Hamiltonian matrix, then H2 is skew Hamiltonian.Proof. For a) and b) see [14, 18], for c) see [25].Further properties of symplectic and Hamiltonian pencils are discussed in [14, 15, 17, 18].3



Remark 1 For Hamiltonian pencils �E ��A with E invertible, Part c) of Lemma 2 suggeststhat the pencil �EJET � �AJTAT (3)might be a skew-Hamiltonian pencil, i.e.,EJETJAJAT = AJAT JEJET : (4)However, in general this is not the case, since to show this we would also need that ETJA =�AT JE for the Hamiltonian pencil. But this holds only in some special cases. If, for example,one of the matrices E or A is symplectic or if E�1 and A commute, then (3) is a skew-Hamiltonian pencil. In general this is not true as the following example shows.Example 1 Let E = 26664 2 0 2 12 4 1 4�1 �1 2 2�1 �2 0 4 37775 ; A = 26664 0 0 2 1�2 �2 1 41 1 0 21 2 0 2 37775 :The pencil �E � �A is Hamiltonian according to De�nition 1 as can easily be checked bycomputing AJET + EJAT , butATJE + ETJA = 26664 0 4 0 0�4 0 0 00 0 0 120 0 �12 0 37775and EJETJAJAT �AJAT JEJET = 26664 0 �48 �32 �3248 �96 �8 32�32 �8 �32 �16�32 32 �16 0 37775 :On the other hand, as we will show below, this does not harm the spectral properties, i.e.,we can still use (3) to compute the eigenvalues of �E � �A.3 Theoretical BackgroundWhen one does eigenvalue computations one is usually restricted to similarity transformationsfor matrices and equivalence transformations for pencils, since only these preserve all thespectral properties.The basis for our new algorithm, however, is a non-equivalence transformation for theoriginal Hamiltonian pencil, which leads to an equivalence transformation for the pencil (3).From the eigenvalues of (3) we can then easily compute the eigenvalues of �E � �A.Lemma 3a) Let �E � �A be a regular real Hamiltonian pencil. The pair (�; �) is an eigenvalue of thepencil �EJET � �AJTAT if and only if the pairs (p�;p�), (�p�;p�) are eigenvalues of�E � �A.b) If � 6= 0 is a simple eigenvalue of a Hamiltonian matrix H then �2 is a nondefectiveeigenvalue of H2 of multiplicity 2. 4



Proof. The eigenvalues of �E ��A are the pairs (�; �) 6= (0; 0) for which det(�E � �A) = 0.Now det(�E � �A) = 0 if and only ifdet[(�E � �A)J(�E � �A)T ] = det(�2EJET � ��(EJAT + AJET )� �2AJTAT )= det(�2EJET � �2AJTAT ) = 0;and hence a) follows.For b) observe that if � 6= 0 is a simple �nite eigenvalue of H, then also �� is a simpleeigenvalue. Let x1; x2 be the corresponding right eigenvectors, which are clearly independentif � 6= 0. Any linear combination of x1 and x2 then is a right eigenvector of H2, and hencethe dimension of the eigenspace is two and �2 is a nondefective double eigenvalue.Remark 2 From the proof of Lemma 3 b), we see that the eigenvalue condition number1=s(�) is not uniquely de�ned for the eigenvalues �2 of H2. Since s(�) = yHx, where y andx are the left and right eigenvectors of H corresponding to �, 1=s(�) can also be consideredas a condition number of �2 with respect to H2 is given by. But since any linear combinationof x1 and x2 from the proof of Part b) de�nes a right eigenvector of H2 corresponding to �2and any linear combination of the left eigenvectors y1 and y2 of H corresponding to � and��, respectively, de�nes a left eigenvector of H2 corresponding to �2, many other values fors(�2) with respect to H2 are possible.Lemma 3 indicates a way to compute the eigenvalues of a Hamiltonian pencil via the squareroots of the eigenvalues of another pencil. This is the direct generalization of the squarereduced method of Van Loan [25] to Hamiltonian pencils. If we apply this trick explicitly orimplicitly as in the square reduced method, we will su�er from the same p" perturbation inthe computed eigenvalues as in Van Loan's method.But in this situation we can apply a trick which is based on a non-equivalence transforma-tion applied to the Hamiltonian pencil. This transformation can be viewed as a symplecticversion of the URV-decomposition. URV-decompositions of a matrix into a product of twounitary matrices U , V and an upper triangular matrix R, were �rst introduced by Stewartin order to achieve a compromise between accuracy and computational cost between the QRdecomposition and the singular value decomposition for rank and nullspace computations, see[23, 22].In general such decompositions are not useful for the computation of eigenvalues, but aswe will see, in the case of Hamiltonian and symplectic pencils or matrices the situation isdi�erent.Lemma 4 Let �E��A be a real 2n� 2n pencil. Then there exist orthogonal transformationmatrices Q3 2 R2n�2n and Q1; Q2 2 US2n, (which can be obtained via a �nite eliminationprocedure), such that QT3EQ1 = " E11 E120 E22 # ; (5)QT3AQ2 = " A11 A120 A22 # ; (6)where Eij ; Aij 2 Rn�n, E11, A11, ET22 are upper triangular, and AT22 is upper Hessenberg.5



Proof. The proof is given in a constructive way by Algorithm 3 in the next section.Lemma 4 describes a �nite step non-equivalence transformation to a condensed form. Thisform is a mixture between the Hessenberg and the triangular form for real 2n � 2n pencils.The second result that we need is that the Hessenberg matrix A22 in Lemma 4 can also betransformed to quasi-upper triangular form with the same type of transformations.Theorem 5 Let �E��A be a real 2n�2n pencil. Then there exist orthogonal transformationmatrices Q3 2 R2n�2n and Q1; Q2 2 US2n, such thatQT3EQ1 = " E11 E120 E22 # ; QT3AQ2 = " A11 A120 A22 # ; (7)where Eij ; Aij 2 Rn�n, E11, A11, ET22 are upper triangular and AT22 is quasi-upper triangular,i.e., block upper triangular with diagonal blocks of size 1� 1 and 2� 2.Proof. By Lemma 4 we may assume, w.l.o.g., that the blocks E11, A11, ET22 are upper trian-gular and AT22 is upper Hessenberg. We then apply the generalized real Schur decomposition,[[9], p.396] to the pencil �E11ET22 � �A11AT22. It follows that there exist real orthogonal ma-trices U; V 2 Rn�n such that UTE11ET22V is upper triangular and UTA11AT22V is quasi-uppertriangular. Let U1; U2 2 Rn�n be orthogonal matrices such that UT1 ET22V and UTA11U2are upper triangular (these always exist from the QR factorization). Then it follows thatUTE11U1 is upper triangular and UT2 AT22V is quasi-upper triangular. Thus,� " UT 00 V T #E " U1 00 U1 #� � " UT 00 V T #A " U2 00 U2 #yields the required decomposition.For real 2n� 2n matrices we have the following obvious corollary:Corollary 6 Let A 2 R2n�2n. Then there exist matrices Q1; Q2 2 US2n, such thatQT1AQ2 = " A11 A120 A22 # ; (8)where Aij 2 Rn�n, A11 is upper triangular and AT22 is quasi-upper triangular.Proof. The proof follows directly from Theorem 5 by inverting QT3AQ1.At �rst sight it is not clear how the above non-equivalence transformation can be usedfor eigenvalue computation, but when we apply the transformation to a Hamiltonian pencil�E � �A and then consider the impact of this transformation on the pencil�EJET � �AJTAT (9)then we obtain the following result.Theorem 7 Let �E � �A be a real Hamiltonian pencil. Then there exists an orthogonalmatrix Q3 such that QT3 EJETQ3J = " E11 E120 E22 # " �ET22 ET120 �ET11 # ; (10)6



and QT3AJTATQ3J = " A11 A120 A22 # " AT22 �AT120 AT11 # ; (11)where Eij ; Aij 2 Rn�n, E11, A11, ET22 are upper triangular and AT22 is quasi-upper triangular.Proof. Applying the transformation from Theorem 5 we obtainQT3 EJETQ3J = QT3 EQ1JQT1 ETQ3J= " E11 E120 E22 # J " E11 E120 E22 #T J (12)= " �E11ET22 E11ET12 �E12ET110 �(E11ET22)T #QT3AJTATQ3J = QT3AQ2JTQT2ATQ3J= " A11 A120 A22 #JT " A11 A120 A22 #T J (13)= " A11AT22 �A11AT12 + A12AT110 (A11AT22)T # :An obvious corollary is obtained for Hamiltonian matrices.Corollary 8 Let H 2 H2n then there exist Q1; Q2 2 US2n such thatQT1H2Q1 = " �H11HT22 H11HT12 �H12HT110 �H22HT11 # ; (14)QT2H2Q2 = " �HT22H11 HT12H22 �HT22H120 �HT11H22 # ; (15)with Hij 2 Rn�n, H11 is upper triangular and HT22 is quasi-upper triangular.Proof. Using the Hamiltonian structure and Q1; Q2 from Corollary 6 we obtain thatQT1H2Q1 = QT1HQ2QT2 JHT JQ1 = (QT1HQ2)J(QT1HQ2)TJ;which has the required form. The proof for (15) follows analogously.From these two results we see that in order to compute the eigenvalues of �E��A it su�cesto compute the eigenvalues of the pencil�E11ET22 + �A11AT22 (16)as it arises from (10) and (11), and to compute the eigenvalues of a Hamiltonian matrix itsu�ces to compute the eigenvalues of�H11HT22 or �HT22H11 (17)as in (14), (15). 7



Now fortunately we can compute the eigenvalues of (16), (17) from the condensed form ofLemma 3 without forming the products. To do this we can directly employ the periodic Schurdecomposition for products of matrices or pencils of products of matrices [6, 10, 11] withoutforming the products. The periodic QR algorithm applied to (17) yields real orthogonaltransformation matrices U; V 2 Rn�n such thatĤ := UTH11V V THT22U; ĤT22 := (UTH22V )T (18)are quasi-upper triangular, while Ĥ11 := UTH11V (19)is upper triangular. Analogously the periodic QZ-algorithm applied to (16) yields real or-thogonal transformation matrices U; V; Y; Z 2 Rn�n such thatÊ := UTE11V V TET22Z; Ê11 := UTE11V;ÊT22 := (ZTE22V )T ; Â11 := UTA11Y (20)are upper triangular and̂A := UTA11Y Y TAT22Z; ÂT22 := (ZTA22Y )T (21)are quasi-upper triangular. After these forms have been computed, we can compute theeigenvalues of Ĥ or �Ê � �Â, respectively by solving 1 � 1 or 2 � 2 eigenvalue problems.We present here the formulas for the pencil situation, the matrix case is obtained by settingÊ = In. Let Ê11 := UTE11V =: [eij ];Ê22 := ZTE22V =: [fij ]; (22)Â11 := UTA11Y =: [aij ];Â22 := ZTA22Y =: [bij ]:In the case of a 1� 1 diagonal block in Â22 the corresponding eigenvalue is a solution of theequation �(eiifii) + �(aiibii) = 0; (23)i.e., (�; �) = (�aiibiieiifii ; 1) if eiifii 6= 0 or (�; �) = (1; 0) � 1 if eiifii = 0 and aiibii 6= 0. Ifboth products are 0 then the pencil is singular, and thus clearly if both products are closeto 0, then the pencil is near to a singular pencil, see [24]. The eigenvalues of the originalHamiltonian pencil are then obtained via Lemma 3.In the case of an unreduced 2� 2 diagonal block in Â22 the corresponding eigenvalue is aneigenvalue of the pencil� " eii ei;i+10 ei+1;i+1 #" fii fi;i+10 fi+1;i+1 # + � " aii ai;i+10 ai+1;i+1 # " bii bi;i+1bi+1;i bi+1;i+1 # ; (24)which has the characteristic polynomial�2a+ ��b + �2c (25)8



where the coe�cients are given bya = eiiei+1;i+1fiifi+1;i+1;b = eiifiiai+1;i+1bi+1;i+1 + (aiibii + ai;i+1bi+1;i)ei+1;i+1fi+1;i+1�ai+1;i+1bi+1;i(eiifi;i+1 + ei;i+1fi+1;i+1);c = aiiai+1;i+1(biibi+1;i+1 � bi+1;ibi;i+1):We obtain that the pencil is singular if a = b = c = 0 and it is near to a singular pencil ifall three coe�cients are close to 0. If this is not the case, then we have the following cases:There exists one eigenvalue in�nity if a = 0 and b 6= 0 and two in�nite eigenvalues ifa = b = 0 and c 6= 0. If a = 0 and b 6= 0 then the other eigenvalue is (�; �) = ( cb ; 1). If a 6= 0then the eigenvalues are both �nite, of the form (�; �) = (�i; 1), where �i, i = 1; 2, are thesolutions of the quadratic equation �2 + �ba + ca = 0:The eigenvalues of the original Hamiltonian pencil are again obtained via Lemma 3.In this section we have described a new method to compute the eigenvalues of Hamiltonianpencils. We can apply the same idea to symplectic pencils by using the generalized Cayleytransformation of Lemma 2 b) to transform the symplectic pencil to a Hamiltonian pen-cil, applying the described procedure and computing the eigenvalues via the inverse Cayleytransformation applied to the eigenvalues.If (�; �) is an eigenvalue of the Hamiltonian pencil obtained via the Cayley transformationwith shiftpoint �1, then (�1�+�; ���1�) is the associated eigenvalue of the original symplecticpencil.Remark 3 The method described above can in principle also be applied to a pencil �E��Awhere E;A 2 R2n�2n are skew-symmetric since every skew-symmetric matrix B 2 R2n�2ncan be factored as B = CJCT .Remark 4 Note that the described procedure cannot be applied to complex symplectic orHamiltonian pencils. The reason for this is that the reduction to condensed form via unitarysymplectic matrices cannot be carried out in the same way, since with unitary symplecticmatrices less eliminations are possible. The same problem already occurs in the square reducedmethod of Van Loan [25].Remark 5 If we apply Lemma 4 to a symplectic matrix S, i.e., we set E = I2n and chooseQ1 = Q3, then QT1 SQ2 = " S1 S20 S�T1 # (26)where S1 is an upper triangular matrix and S1ST2 �S2ST1 = 0, i.e., QT1 SQ2 is symplectic trian-gular [17]. In addition, Q2 = I2n and (26) is equivalent to the symplectic QR decompositionof a symplectic matrix (see [7]). 9



4 The Numerical AlgorithmWe have already described the main features of the new algorithm in Section 3.Algorithm 1 A structure preserving method for the computation of the eigenvalues of Hamil-tonian and symplectic pencils.Input: Hamiltonian pencil �EH � �AH or symplectic pencil �Es � �As.Output: Eigenvalues of the pencil.Step 0: If the pencil is symplectic, choose �1 2 f1;�1g and form�EH � �AH := �(Es � �1As)� �(�1Es +As):Step 1: Determine orthogonal transformation matrices Q3 2 R2n�2n and Q1; Q2 2 US2n,such that QT3 EHQ1 = " E11 E120 E22 # ; QT3AHQ2 = " A11 A120 A22 # ;where Eij ; Aij 2 Rn�n, E11, A11, ET22 are upper triangular and AT22 is upper Hessenberg (seeAlgorithm 3).Step 2: Apply the periodic QZ algorithm of [11] to the product pencil�E11ET22 + �A11AT22; (27)i.e., compute orthogonal transformation matrices U1; U2; U3; U4 2 Rn�n such thatUT1 E11U2; (UT3 E22U2)T ; UT1 A11U4 (28)are upper triangular and (UT3 A22U4)T (29)is quasi-upper triangular.Step 3: Solve the 1� 1 or 2� 2 eigenvalue problems arising from explicitly multiplying outthe diagonal blocks in (27), i.e., determine pairs (�i; �i) for i = 1; : : : ; n via (24) or (25),respectively.Step 4: Compute the �nite eigenvalues (�i; �i) of �E � �A as(�i; �i) = (p�i;p�i);(�n+i; �n+i) = (�p�i;p�i); ) i = 1; : : : ; n: (30)Step 5: If the original pencil was symplectic, then compute the eigenvalues of �Es � �As as(�si ; �si ) = (�1�i + �i; �i � �1�i); i = 1; : : : ; 2n: (31)EndThe main computational work lies in Steps 1. and 2. of this procedure. While Step 2. iswell analyzed, and di�erent procedures for this problem have been described [6, 11], Step 1is new and we describe it in more detail below.If we want to apply Algorithm 1 to a Hamiltonian matrix it simpli�es signi�cantly. Notethat for symplectic matrices we still need to use the pencil formulation, since the associatedHamiltonian problem arising from the Cayley transformation is in general a Hamiltonianpencil. 10



Algorithm 2 A structure preserving method for the computation of the eigenvalues of aHamiltonian matrix.Input: Hamiltonian matrix H.Output: The eigenvalues f1; : : : ; 2ng of H.Step 1: Determine orthogonal transformation matrices Q1; Q2 2 US2n, such thatQT1HQ2 = " H11 H120 H22 # ; (32)where Hij 2 Rn�n, H11 is upper triangular, and HT22 is upper Hessenberg.Step 2: Apply the periodic QR algorithm of [10] to the product matrix�HT22H11; (33)i.e., compute orthogonal transformation matrices U1; U2 2 Rn�n such thatUT1 H11U2; (34)is upper triangular and (UT1 H22U2)T (35)is quasi-upper triangular.Step 3: Solve the 1� 1 or 2� 2 eigenvalue problems arising from explicitly multiplying outthe diagonal blocks in (34), (35), i.e., determine eigenvalues �i, i = 1; : : : ; n, via the solutionof the 1� 1 or 2� 2 eigenvalue problems arising in the block diagonal of this product.Step 4: Compute the eigenvalues of H by i = p�i; n+i = �p�i; i = 1; : : : ; n.EndWe now describe the reduction to the condensed form (5), (6). For this reduction we need�ve basic transformations. These are transformations with Givens rotations and Householderreections from the left and transformations with three types of orthogonal symplectic matri-ces from the right. Standard Givens rotations in R2n�2n operating in rows i; j 2 f1; : : : ; 2ngare of the form J(i; j; �) := 2666664 Ii�1 cos(�) sin(�)Ij�i�1� sin(�) cos(�) I2n�j 3777775 ; (36)while symplectic Givens rotations take the same form but operate in rows i; n + i, i 2f1; : : : ; ng, i.e., Js(i; �) := J(i; n+ i; �): (37)The third type of transformations consists of the direct sum of two n � n Givens rotations.Such matrices operate in rows i; j; n+ i; n+ j, where i; j 2 f1; : : : ; ng and have the formGs(i; j; �) := " J(i; j; �) 00 J(i; j; �) # : (38)11



Besides the transformations that carry out rotations, we need two types of Householder re-ection matrices. A standard Householder reection in Rn�n is given byP (k; v) = In � 2vvTvTv (39)where vi = 0 for i = 1; : : : ; k � 1. A symplectic Householder matrix is de�ned in [20] as thedirect sum of two Householder reections in Rn�n, i.e.,Ps(k; v) = " P (k; v) 00 P (k; v) # : (40)Numerical procedures that implement these transformations and their numerical propertiesare well studied and need not be repeated here, [20, 9, 17]. The condensed form of Lemma 4is obtained via a sequence of transformations and described in the following Algorithm.Algorithm 3 Reduction of a general real 2n� 2n pencil to the condensed form of Lemma 4.Input: Real 2n� 2n pencil �E � �A = � " E11 E12E21 E22 #� � " A11 A12A21 A22 #.Output: Orthogonal matrices Q3 2 R2n�2n and Q1; Q2 2 US2n, and transformed pencil�Ê � �Â := �QT3EQ1 � �QT3AQ2 = �" Ê11 Ê120 Ê22 #� � " Â11 Â120 Â22 # ;where Êij ; Âij 2 Rn�n, Ê11, Â11, ÊT22 are upper triangular and ÂT22 is upper Hessenberg.Step 1:Compute a QR factorization " E11E21 # = Q0 " Ê110 # where Ê11 2 Rn�n is upper triangularand Q0 2 U2n and set Ê := QT0E =: " Ê11 Ê120 Ê22 #.Compute a QL factorization Ê22 = ~QL and set ~Q0 := " In 00 ~Q #,Ê := ~QT0 Ê = " Ê11 Ê120 Ê22 # = 264@ @ 375,Â := ~QT0QT0A =: " Â11 Â12Â21 Â22 #,Q3 := Q0 ~Q0; Q1 := I2n; Q2 := I2n.Step 2:For k = 1; : : : ; n� 1% Annihilate Ân+k:2n;k.For j = k; : : : ; n� 1Use J(n+ j; n+ j+ 1; �k;j;1) to eliminate ân+j;k from the left. SetÊ := J(n + j; n+ j + 1; �k;j;1)T Ê,Â := J(n + j; n+ j + 1; �k;j;1)T Â,Q3 := Q3J(n + j; n+ j + 1; �k;j;1)12



Use Gs(j; j + 1; �k;j;2) to eliminate ên+j;n+j+1 from the right. SetÊ := ÊGs(j; j + 1; �k;j;2),Q1 := Q1Gs(j; j + 1; �k;j;2),Use J(j; j + 1; �k;j;3) to eliminate êj+1;j from the left. SetÊ := J(j; j + 1; �k;j;3)T Ê,Â := J(j; j + 1; �k;j;3)T Â,Q3 := Q3J(j; j + 1; �k;j;3).Endfor jUse Js(n; �k;n;1) to eliminate â2n;k from the left. SetÊ := Js(n; �k;n;1)T Ê,Â := Js(n; �k;n;1)T Â,Q3 := Q3Js(n; �k;n;1).Use Js(n; �k;n;2) to eliminate ê2n;n from the right. SetÊ := ÊJs(n; �k;n;2),Q1 := Q1Js(n; �k;n;2).% Annihilate Âk+1:n;k.For j = n; n� 1; : : : ; k+ 1Use J(j � 1; j; �k;j;1) to eliminate âj;k from the left. SetÊ := J(j � 1; j; �k;j;1)T Ê,Â := J(j � 1; j; �k;j;1)T Â,Q3 := Q3J(j � 1; j; �k;j;1).Use Gs(j � 1; j; �k;j;2), to eliminate êj;j�1 from the right. SetÊ := ÊGs(j � 1; j; �k;j;2),Q1 := Q1Gs(j � 1; j; �k;j;2).Use J(n + j � 1; n+ j; �k;j;3) to eliminate ên+j�1;n+j from the left. SetÊ := J(n + j � 1; n+ j; �k;j;3)T Ê,Â := J(n + j � 1; n+ j; �k;j;3)T Â,Q3 := Q3J(n + j � 1; n+ j; �k;j;3).Endfor j% Annihilate Ân+k;k+1:n and Ân+k;n+k+2:2n.Use Ps(k+ 1; uk) to eliminate Ân+k;k+2:n from the right. SetÂ := ÂPs(k + 1; uk),Q2 := Q2Ps(k + 1; uk).Use Js(k+ 1;  k) to eliminate ân+k;k+1 from the right. SetÂ := ÂJs(k + 1;  k),Q2 := Q2Js(k + 1;  k).Use Ps(k+ 1; vk) to eliminate Ân+k;n+k+2:2n from the right. SetÂ := ÂPs(k + 1; vk),Q2 := Q2Ps(k + 1; vk).Endfor k% Annihilate â2n;n.Use Js(n; �n;n;1) to eliminate â2n;n from the left. SetÊ := Js(n; �n;n;1)T Ê,Â := Js(n; �n;n;1)T Â,Q3 := Q3Js(n; �n;n;1). 13



Use Js(n; �n;n;2) to eliminate ê2n;n from the right. SetÊ := ÊJ(n; �n;n;2),Q1 := Q1Js(n; �n;n;2).EndIf only the condensed form is required (i.e., the orthogonal transformations are not accumu-lated) then the algorithm requires about 84n3 ops which is less than the initial Hessenberg{triangular reduction in the standard QZ algorithm which requires 9023n3 ops. Although Al-gorithm 3 generates more zeros than the Hessenberg-triangular reduction, it is cheaper as faras the computational cost is concerned. This is due to the fact that we can apply Householdermatrices to A from the right during the reduction process whereas the Hessenberg-triangularreduction relies on 2� 2 rotations (or reections).We demonstrate how the algorithm works using a 6� 6 example (i.e., n = 3). Suppose wehave reduced E to triangular form and updated A as in Step 1 of Algorithm 3, i.e.,Ê = 266666664 x x x x x x0 x x x x x0 0 x x x x0 0 0 x 0 00 0 0 x x 00 0 0 x x x 377777775 ; Â = 266666664 x x x x x xx x x x x xx x x x x xx x x x x xx x x x x xx x x x x x 377777775 :The �rst Givens rotation J1 := J(n+1; n+2; �1;1;1) = J(4; 5; �1;1;1) is then used to eliminateân+1;1 = â4;1 from the left, resulting inÊ := JT1 Ê = 266666664 x x x x x x0 x x x x x0 0 x x x x0 0 0 x 
 00 0 0 x x 00 0 0 x x x 377777775 ; Â := JT1 Â = 266666664 x x x x x xx x x x x xx x x x x x0 x x x x xx x x x x xx x x x x x 377777775 :We have introduced a nonzero element ên+1;n+2 = ê4;5 (denoted by 
) which is now annihi-lated by G1 := Gs(1; 2; �1;1;2) from the right,Ê := ÊG1 = 266666664 x x x x x x
 x x x x x0 0 x x x x0 0 0 x 0 00 0 0 x x 00 0 0 x x x 377777775 ; Â = 266666664 x x x x x xx x x x x xx x x x x x0 x x x x xx x x x x xx x x x x x 377777775 ;resulting in a nonzero element e2;1. This is eliminated applying J2 := J(1; 2; �1;1;3) from theleft, Ê := JT2 Ê = 266666664 x x x x x x0 x x x x x0 0 x x x x0 0 0 x 0 00 0 0 x x 00 0 0 x x x 377777775 ; Â := JT2 Â = 266666664 x x x x x xx x x x x xx x x x x x0 x x x x xx x x x x xx x x x x x 377777775 :14



Thus, we have annihilated the (n+ 1; 1) = (4; 1) entry of Â, while keeping the zero structureof Ê. Analogously, the entries ân+j;1, j = 1; : : : ; n� 1, are eliminated while at the same timerestoring the destroyed zeros in Ê such thatÊ = 266666664 x x x x x x0 x x x x x0 0 x x x x0 0 0 x 0 00 0 0 x x 00 0 0 x x x 377777775 ; Â = 266666664 x x x x x xx x x x x xx x x x x x0 x x x x x0 x x x x xx x x x x x 377777775 :Next, the (2n; 1) = (6; 1) entry of Â is eliminated employing a Givens symplectic matrix J3 :=Js(n; �1;n;1) = Js(3; �1;3;1) which introduces a nonzero element in position (2n; n) = (6; 3) ofÊ, Ê := JT3 Ê = 266666664 x x x x x x0 x x x x x0 0 x x x x0 0 0 x 0 00 0 0 x x 00 0 
 x x x 377777775 ; Â := JT3 Â = 266666664 x x x x x xx x x x x xx x x x x x0 x x x x x0 x x x x x0 x x x x x 377777775 :Now ê2n;n = ê6;3 is annihilated by applying J4 := Js(n; �1;n;2) = Js(3; �1;3;2) from the right.Hence, we obtainÊ := ÊJ4 = 266666664 x x x x x x0 x x x x x0 0 x x x x0 0 0 x 0 00 0 0 x x 00 0 0 x x x 377777775 ; Â = 266666664 x x x x x xx x x x x xx x x x x x0 x x x x x0 x x x x x0 x x x x x 377777775 :To eliminate the upper part of the �rst column of Â, we use a similar sequence of transforma-tions as for the lower part, but this time we start from the bottom element ân;1 = â3;1 whichis eliminated by using a Givens rotation J5 := J(n � 1; n; �1;n;1) = J(2; 3; �1;3;1).Ê := JT5 Ê = 266666664 x x x x x x0 x x x x x0 
 x x x x0 0 0 x 0 00 0 0 x x 00 0 0 x x x 377777775 ; Â := JT5 Â = 266666664 x x x x x xx x x x x x0 x x x x x0 x x x x x0 x x x x x0 x x x x x 377777775 :To restore the triangular structure of Ê, we �rst employ G2 := Gs(2; 3; �1;3;2),Ê := ÊG3 = 266666664 x x x x x x0 x x x x x0 0 x x x x0 0 0 x 0 00 0 0 x x 
0 0 0 x x x 377777775 ; Â = 266666664 x x x x x xx x x x x x0 x x x x x0 x x x x x0 x x x x x0 x x x x x 37777777515



Then ê5;6 can be eliminated using J6 := J(5; 6; �1;3;3) such thatÊ := JT6 Ê = 266666664 x x x x x x0 x x x x x0 0 x x x x0 0 0 x 0 00 0 0 x x 00 0 0 x x x 377777775 ; Â := JT6 Â = 266666664 x x x x x xx x x x x x0 x x x x x0 x x x x x0 x x x x x0 x x x x x 377777775 :With the same sequence of rotations we can annihilate the entries âj;1, j = n� 1; n� 2; : : : ; 2(here, this is only â2;1) and retain the triangular structure of Ê. We then obtainÊ = 266666664 x x x x x x0 x x x x x0 0 x x x x0 0 0 x 0 00 0 0 x x 00 0 0 x x x 377777775 ; Â = 266666664 x x x x x x0 x x x x x0 x x x x x0 x x x x x0 x x x x x0 x x x x x 377777775 :The next step involves only the application of three symplectic transformations from theright to Â which do not a�ect Ê. First, a symplectic Householder matrix is used to annihilateÂn+1;3:n = Â4;3:3,Ê = 266666664 x x x x x x0 x x x x x0 0 x x x x0 0 0 x 0 00 0 0 x x 00 0 0 x x x 377777775 ; Â := ÂPs(2; u1) = 266666664 x x x x x x0 x x x x x0 x x x x x0 x 0 x x x0 x x x x x0 x x x x x 377777775 :Second, ân+1;2 = â4;2 is eliminated by a symplectic Givens rotation,Ê = 266666664 x x x x x x0 x x x x x0 0 x x x x0 0 0 x 0 00 0 0 x x 00 0 0 x x x 377777775 ; Â := ÂJs(2;  1) = 266666664 x x x x x x0 x x x x x0 x x x x x0 0 0 x x x0 x x x x x0 x x x x x 377777775 :Last, another symplectic Householder reection yieldsÊ = 266666664 x x x x x x0 x x x x x0 0 x x x x0 0 0 x 0 00 0 0 x x 00 0 0 x x x 377777775 ; Â := ÂPs(2; u2) = 266666664 x x x x x x0 x x x x x0 x x x x x0 0 0 x x 00 x x x x x0 x x x x x 377777775 :That is, we have generated the required structure in rows and columns 1 and n + 1 = 4. Inthe next execution of the outer (k) loop, the same sequence of transformations is used in rows16



and columns 2 and n + 2 = 5 and we obtainÊ = 266666664 x x x x x x0 x x x x x0 0 x x x x0 0 0 x 0 00 0 0 x x 00 0 0 x x x 377777775 ; Â = 266666664 x x x x x x0 x x x x x0 0 x x x x0 0 0 x x 00 0 0 x x x0 0 x x x x 377777775 :The �nal step consists of eliminating â2n;n = â6;3 using J7 := Js(n; �n;n;1) = Js(3; �3;3;1) suchthat Ê = JT7 Ê 266666664 x x x x x x0 x x x x x0 0 x x x x0 0 0 x 0 00 0 0 x x 00 0 
 x x x 377777775 ; Â := JT7 Â = 266666664 x x x x x x0 x x x x x0 0 x x x x0 0 0 x x 00 0 0 x x x0 0 0 x x x 377777775and then restoring the triangular structure of Ê by applying J8 := Js(n; �n;n;1) = Js(3; �3;3;2)from the right to Ê which yields the desired formÊ := ÊJ8 = 266666664 x x x x x x0 x x x x x0 0 x x x x0 0 0 x 0 00 0 0 x x 00 0 0 x x x 377777775 ; Â = 266666664 x x x x x x0 x x x x x0 0 x x x x0 0 0 x x 00 0 0 x x x0 0 0 x x x 377777775 :Again the algorithm simpli�es substantially if we have a matrix rather than a pencil.Algorithm 4 Reduction of a general real 2n � 2n matrix to the condensed form analogousto (6).Input: Real 2n� 2n matrix A.Output: Orthogonal matrices Q1; Q2 2 US2n, and transformed matrixÂ := QT1AQ2 = " A11 A120 A22 #where Aij 2 Rn�n, A11 is upper triangular and AT22 is upper Hessenberg.Set Â := A; Q1 := I2n; Q2 := I2n.For k = 1; : : : ; n� 1% Annihilate Âk+1:2n;k.Use Ps(k; uk;1) to eliminate Ân+k+1:2n;k from the left. SetÂ := Ps(k; uk;1)Â,Q1 := Q1Ps(k; uk;1).Use Js(k; �k) to eliminate ân+k;k from the left. SetÂ := Js(k; �k)T Â,Q1 := Q1Js(k; �k). 17



Use Ps(k; uk;2) to eliminate Âk+1:n;k from the left. SetÂ := Ps(k; uk;2)Â,Q1 := Q1Ps(k; uk;2).% Annihilate Ân+k;k+1:n and Ân+k;n+k+2:2n.Use Ps(k+ 1; vk;1) to eliminate Ân+k;k+2:n from the right. SetÂ := ÂPs(k + 1; vk;1),Q2 := Q2Ps(k + 1; vk;1).Use Js(k+ 1; �k) to eliminate ân+k;k+1 from the right. SetÂ := ÂJs(k + 1; �k),Q2 := Q2Js(k + 1; �k).Use Ps(k+ 1; vk;2) to eliminate Ân+k;n+k+2:2n from the right. SetÂ := ÂPs(k + 1; vk;2),Q2 := Q2Ps(k + 1; vk;2).Endfor k% Annihilate â2n;n.Use Js(n; �n) to eliminate â2n;n from the left. SetÂ := Js(n; �n)T Â,Q1 := Q1Js(n; �n).EndIf only eigenvalues are required, the orthogonal transformations need not be accumu-lated. In that case, Algorithm 4 requires 80n3=3 + 20n2 ops. This is comparable to re-ducing the Hamiltonian matrix to Hessenberg form by Householder reections which requires80n3=3 � 10n2 ops. That is, the initial reductions necessary for either Algorithm 2 or thestandard Hessenberg QR algorithm are equally expensive as far as oating point operationsare concerned. Besides the O(n2) di�erence in the op count, Algorithm 4 is more compli-cated than the standard Householder Hessenberg reduction as far as indexing, subroutinecalls, and updating the transformations are concerned. This will in practise lead to a slightlyhigher execution time than for the Householder Hessenberg reduction.We will illustrate the reduction of a 2n�2n to the condensed form (6) using a 6�6 example.First, we have to annihilate the �rst column of A. Using a symplectic Householder reectionwe can eliminate all entries below the diagonal in the �rst column of the lower left block ofA. Â := Ps(1; u1;1)A = 266666664 x x x x x xx x x x x xx x x x x xx x x x x x0 x x x x x0 x x x x x 377777775 :The entry in position (n+1; 1) = (4; 1) is then eliminated using a symplectic Givens rotationsuch that Â := Js(1; �1)T Â = 266666664 x x x x x xx x x x x xx x x x x x0 x x x x x0 x x x x x0 x x x x x 377777775 :18



Now the elements below the diagonal of the upper left block of Â are annihilated using againa symplectic Householder reection.Â := Ps(1; u1;2)A = 266666664 x x x x x x0 x x x x x0 x x x x x0 x x x x x0 x x x x x0 x x x x x 377777775 :The next three steps reduce the (n + 1)st = 4th row of Â to the desired form. Applying asymplectic Householder reection form the right, we can annihilate Ân+1;3:n = Â4;3:3, resultingin Â := ÂPs(2; v1;1) = 266666664 x x x x x x0 x x x x x0 x x x x x0 x 0 x x x0 x x x x x0 x x x x x 377777775 :Then, ân+1;2 = â4;2 is eliminated by a symplectic Givens rotation,Â := ÂJs(2; �1) = 266666664 x x x x x x0 x x x x x0 x x x x x0 0 0 x x x0 x x x x x0 x x x x x 377777775 :Next, another symplectic Householder reection yieldsÂ := ÂPs(2; v1;2) = 266666664 x x x x x x0 x x x x x0 x x x x x0 0 0 x x 00 x x x x x0 x x x x x 377777775 :That is, we have generated the required structure in rows and columns 1 and n + 1 = 4. Inthe next execution of the outer loop, the same sequence of transformations is used in rowsand columns 2 and n + 2 = 5 and we obtainÂ = 266666664 x x x x x x0 x x x x x0 0 x x x x0 0 0 x x 00 0 0 x x x0 0 x x x x 377777775 :19



The �nal step consists of eliminating â2n;n = â6;3 using Js(3; �3) such thatÂ := Js(3; �3)T Â = 266666664 x x x x x x0 x x x x x0 0 x x x x0 0 0 x x 00 0 0 x x x0 0 0 x x x 377777775 :5 Error AnalysisIn this section, we will derive the error analysis for Algorithms 1 and 2.Since in both methods all transformations are performed with orthogonal and orthogonalsymplectic matrices we can apply the standard backward error analysis of Wilkinson, e.g.[27, 9]. To do this we need to analyse the backward error. We begin with an analysis of thecomputation of the eigenvalues of a Hamiltonian matrix H via Algorithm 2.Using the usual arguments in the analysis of orthogonal transformations, e.g., [27, 9], weobtain that there exists a 2n � 2n matrix E, with jjEjj � " jjHjj, where " is a small numberequivalent to the machine precision, and Q̂1; Q̂2 2 US2n such that the computed factorizationsatis�es Ĥ := " H11 H120 H22 # = Q̂T1 (H +E)Q̂2: (41)Note that if �̂ is a computed eigenvalue of H, we have that �̂2 is an eigenvalue of" �HT22 HT120 �HT11 # " H11 H120 H22 # = JĤT JĤ;and by (41) �̂2 is also an eigenvalue of (H + JETJ)(H+ E).The condition of a simple eigenvalue � of a matrix A 2 Rn�n as de�ned in [27] is given by1s(�) = 1jyHxj (42)where x and y with jjxjj2 = jjyjj2 = 1 are the right and left, respectively, eigenvectors of Acorresponding to �.Theorem 9 Let � be a nonzero and simple eigenvalue of a real Hamiltonian matrix H 2 H2n,and let 1=s(�) be its condition number as given in (42). Let " be the machine precision. If thematrix E in (41) satis�es jjEjj < " jjHjj, and 2jjHjj"j�js(�) < 1, then Algorithm 2 yields a computedeigenvalue �̂ such thatj�̂� �j � jjHjj "(1� jjHjj"j�js(�))s(�) + O("2) � 2 jjHjj "s(�) +O("2): (43)Proof. Since we have assumed that � is simple, from Lemma 3 b) we obtain that �2 is anondefective eigenvalue of H2 of multiplicity two. Furthermore, if y, x with jjxjj = 1, jjyjj = 1are the left and right eigenvectors of H to � then they are also eigenvectors of H2 to theeigenvalue �2. 20



Now consider perturbations in the matrix (H + JETJ)(H +E). Clearly(H + JETJ)(H + E) = H2 +HE + JETJH + JETJE; (44)which is H2 perturbed with a matrix of order O("). From the analytical properties of simpleeigenvalues and its eigenvectors and the discussions given above, it follows that when " issu�ciently small, there exists an eigenvalue �̂2 of (H+JETJ)(H+E), such that its unit leftand right eigenvectors ŷ, x̂ can be expanded as ŷ = y + "y1 + O("2), x̂ = x + "x1 + O("2).Multiplying by yH on the left and by x on the right hand sides of (44), and using yHH = �yH ,Hx = �x, we obtainyH(H+ JETJ)(H +E)x = yH(H2 +HE + JETJH + JETJE)x= �2yHx+ �yH(E + JETJ)x+O("2):On the other hand,yH(H+ JETJ)(H +E)x = �ŷH � "yH1 + O("2)� (H + JETJ)(H + E) �x̂� "x1 + O("2)�= �̂2 �ŷH x̂� "(ŷHx1 + yH1 x̂)�+O("2)= �̂2yHx+ O("2):Therefore �̂2 � �2 = �yH(E + JETJ)xyHx + O("2);and with the reciprocal eigenvalue condition number s(�) = jyHxj, we obtainj�̂+ �j j�̂� �j � 2 jjHjj j�j"s(�) +O("2): (45)Using the inequality j�̂ + �j > 2j�j � j�̂ � �j together with the inequality 2jjHjj"j�js(�) < 1 andomitting the second order perturbations, we obtain (43) by solving the quadratic inequalityj�̂� �j2 � 2j�j j�̂� �j+ 2 jjHjj j�j"s(�) � 0:As a consequence of Theorem 9 we have that Algorithm 2 is numerically backward stable.Remark 6 From the error analysis in Theorem 9 we see the major di�erence between thenew method and the square reduced method of Van Loan for which the perturbation analysisyields that the computed eigenvalues are the exact eigenvalues ofH2+F , and the perturbationsatis�es jjF jj < " ����H2����. In our new approach we can avoid squaring the matrix, but as wehave seen in Section 4, the prize is an increase in computational cost.Now we give an error analysis for the eigenvalues of a Hamiltonian pencil.Let (�; 1) be a nonzero �nite simple eigenvalue of a real regular Hamiltonian pencil �E��A;then by Proposition 1 a), (��; 1) is also a simple eigenvalue of �E � �A. Furthermore, if y,x with jjyjj ; jjxjj = 1 are the left eigenvectors corresponding to (�; 1) and (��; 1), respectively,then we have yH(�E � A) = 0; (�E � A)JET �x = 0; (46)21



xH(��E � A) = 0; (��E � A)JET �y = 0: (47)If we take the chordal distance (see [24, page 283]) as a metric for the complex numbers, i.e.,�((�; �); (; �)) = j�� � �jpj�j2 + j�j2pjj2+ j�j2then the condition numbers of (�; 1) and (��; 1) are [9, 24]�(�) := ������ET �x������qjyHEJET �xj2 + jyHAJET �xj2 ; (48)�(��) := ������ET �y������qjxHEJET �yj2 + jxHAJET �yj2 : (49)Since EJAT = �AJET = AJTET we have�2EJET � �2AJTAT = (�E � �A)J(�E � �A)T= (�E + �A)J(�E + �A)T :It is clear that (�2; 1) is a double eigenvalue of �EJET � �AJTAT , andyH(�2EJET �AJTAT ) = 0; (�2EJET �AJTAT )�x = 0 (50)which means that y and �x are left and right eigenvectors of �EJET ��AJTAT correspondingto (�2; 1).Similar to the matrix case, the eigenvalue (�̂2; 1), where (�̂; 1) is computed by Algorithm 1,can be considered as an eigenvalue of the matrix pencil�(E +E)J(E +E)T � �(A+ F )JT (A+ F )T ;where E and F are real small perturbation matrices satisfyingjj[E; F ]jj � " jj[E ; A]jj (51)(see [9, 19]). We then getTheorem 10 Let (�; 1) be a nonzero simple eigenvalue of a real regular Hamiltonian pencil�E � �A. If p1 + j�j2j�j �������ET �y������+ ������ET �x�������yHEJET �x jj[E ; A]jj " < 1 (52)where y, x are de�ned in (46), (47), and if we set �(�;��) := �(�) + �(��) where �(�)and �(��) are de�ned as in (48) and (49), then there is an eigenvalue (�̂; 1) computed byAlgorithm 1 such that �((�̂; 1); (�; 1))� " jj[E ; A]jj�(�;��) + O("2): (53)22



Proof. If (�̂; 1) is the analogue of (�; 1), computed by Algorithm 1, then (�̂2; 1) is an exacteigenvalue of the matrix pencil�(E + E)J(E +E)T � �(A+ F )JT (A+ F )Twith E; F 2 R2n�2n satisfying (51), i.e., jj[E; F ]jj � " jj[E ; A]jj. This matrix pencil can beconsidered as the pencil �EJET � �AJTAT plus a perturbation of order ". Thus, from (50)and by using the result in [24, Theorem 2.2, p.293] we obtain(�̂2; 1) =  yH(A+ F )JT (A+ F )T �xyH(E + E)J(E +E)T �x ; 1!+O("2): (54)From (46), (47), and (50) we getyH(A+ F )JT (A+ F )T �x = �2yHEJET �x� �(yHEJFT �x� yHFJET �x) + O("2)and yH(E +E)J(E +E)T �x = yHEJET �x+ yHEJET �x+ yHEJET �x+O("2):(Note that by assumption (52) and without considering the O("2) terms,jyH(E +E)J(E +E)T �xj � jyHEJET �xj � "(������ET �y������+ ������ET �x������) jj[E ; A]jj > 0and hence, the right-hand side of (54) is well de�ned.)Therefore �̂2yH(E + E)J(E + E)T �x� yH(A+ F )JT (A+ F )T �x =(�̂2 � �2)yHEJET �x+ �̂2(yHEJET �x+ yHEJET �x)+ �(yHEJFT �x� yHFJET �x) =(�̂2 � �2)(yHEJET �x+ yHEJET �x+ yHEJET �x)+ �2(yHEJET �x+ yHEJET �x) + �(yHEJFT �x� yHFJET �x) = O("2)Hence, by omitting the second order terms, we have�2 � �̂2 � �2(yHEJET �x+ yHEJET �x) + �(yHEJFT �x� yHFJET �x)yHEJET �x+ yHEJET �x+ yHEJET �x� �n�(yHEJET �x+ yHEJET �x) + yHEJFT �x� yHFJET �xoyHEJET �x:Thus, j�̂� �jj�̂+ �j ' j�j �����[�yHEJ; yHEJ ] " ETFT # �x+ yH [E; F ] " �JET �x�JET �x #�����!jyHEJET �xj� j�jp1 + j�j2 jj[E; F ]jj (������ET �y������+ ������ET �x������)jyHEJET �xj:23



By using the condition "p1 + j�j2 jj[E ; A]jj (������ET �y������+ ������ET �x������)j�jjyHEJET �xj < 1and j�̂+ �j � 2j�j � j�̂� �j, we getj�̂� �j < "p1 + j�j2 jj[E ; A]jj (������ET �y������+ ������ET �x������)jyHEJET �xj :From (46) we have �yHEJET �x = yHAJET �x;and thus (1 + j�j2)jyHEJET �xj2 = jyHEJET �xj2 + jyHAJET �xj2Finally we get �((�; 1); (�̂; 1)) = j�� �̂jp1 + j�j2q1 + j�̂j2' j�� �̂j1 + j�j2< " jj[E ; A]jj (������ET �y������+ ������ET �x������)p1 + j�j2jyHEJET �xj= " jj[E ; A]jj�(�;��);which proves (53).Remark 7 Clearly, the bound (53) also holds for the eigenvalue (��; 1).Remark 8 Usually �(�) and �(��) are di�erent and thus, the eigenvalue condition number�(�;��) � 2maxf�(�); �(��)g is a combination of �(�) and �(��). This is the conditionnumber of our method both for (�; 1) and (��; 1). If we consider structured perturbations,i.e., E, F with jj[E F ]jj < " jj[E ; A]jj such that �(E+E)��(A+F ) is still a Hamiltonian pencil,then �(�) � �(��) In this case, (�; 1) and (��; 1) have equivalent perturbation properties.So we can assume that in general �(�) and �(��) have the same magnitude. If this is true,then the bound (53) is as good as the standard perturbation bound.6 Numerical ExamplesAlgorithm 2 was implemented in Fortran 77 and was tested for all examples given in thebenchmark collections for continuous-time algebraic Riccati equations [5], the examples givenin [25], and some randomly generated examples. Here, we present the most interesting resultsobtained by these experiments.The numerical tests were performed using IEEE double precision arithmetic with machineprecision " � 2:2204 � 10�16 on a HP Model 712/60 workstation with operating systemHP-UX 9.0. As compiler we used the HP-UX Fortran 77 compiler as invoked by f77. Theprograms were compiled using only minimal optimization.We compared the following methods: 24



� URVHQR, the symplectic URV decomposition given in Algorithm 4 and HessenbergQR iteration using LAPACK subroutine DHSEQR, i.e., the product �HT22H11 wasformed explicitly,� URVPSD, the symplectic URV decomposition given in Algorithm 4 and the periodicSchur decomposition [10] as implemented in [26],� SQRED, Van Loan's square reduced method as implemented in [4],� LAPACK, nonsymmetric eigenproblem solver DGEEVX from LAPACK [3].All subroutines use the BLAS and LAPACK [3] as far as possible.Example 2 [25, Example 2] LetF = diag(1; 10�2; 10�4; 10�6; 10�8 )then a Hamiltonian matrix H is obtained byH = UT " F 00 �FT #U ;with U 2 US2n randomly generated by �ve symplectic rotations and �ve reectors. Thus,�(H) = f�1;�10�2;�10�4;�10�6;�10�8g:Table 1 shows the absolute errors in the eigenvalue approximations computed by the fourmethods. � URVHQR URVPSD SQRED LAPACK1 0 0 0 7:8� 10�1610�2 5:5� 10�16 5:5� 10�16 5:5� 10�16 5:0� 10�1710�4 7:7� 10�14 1:6� 10�18 1:6� 10�14 2:6� 10�1810�6 4:1� 10�12 1:0� 10�18 1:5� 10�11 8:4� 10�1810�8 1:7� 10�9 3:1� 10�17 2:2� 10�9 4:7� 10�17Table 1: Example 2, absolute errors j�� ~�jFrom Table 1 the loss of accuracy of jjH jj =j�j for Van Loan's method is obvious. The sameloss of accuracy is observed as was to be expected when the symplectic URV decomposition isused but the product �HT22H11 is formed explicitly. Using the periodic Schur decompositionyields the exact eigenvalues with respect to machine precision as does the QR algorithmimplemented in LAPACK. 25



Example 3 [25, Example 3] The Frank matrix F 2 Rn�n is de�ned byF = 26666666666664 n n� 1 n� 2 : : : : : : 2 1n� 1 n� 1 n � 2 : : : : : : 2 10 n� 2 n� 2 : : : : : : 2 10 0 n� 3 .. . ... ...... ... . . . . . . ... ...... ... . . . 2 10 0 : : : 0 1 1 37777777777775 :All the eigenvalues are real and positive. For increasing n, the eigenvalue condition numberbecomes worse for the small eigenvalues. A Hamiltonian matrix having the same eigenvaluesas the Frank matrix together with their negative counterparts is generated as in Example 2,H = UT " F 00 �FT #U ;with U 2 US2n randomly generated by n symplectic rotations and n reectors.We tested all four methods for n = 12. Since exact eigenvalues are not known, we comparethe values computed by URVHQR, URVPSD, and SQRED with those obtained by DGEEVX(denoted by �QR). The results for the �ve eigenvalues of smallest absolute value (and worstcondition number) are shown in Table 2. (Here, ~� denotes the computed values by either ofthe three methods other than LAPACK.)� � s(�) URVHQR URVPSD SQRED0.2847 1:8� 10�6 1:8� 10�9 2:7� 10�11 2:8� 10�90.1436 1:8� 10�6 2:7� 10�8 9:9� 10�10 7:6� 10�80.08122 3:8� 10�8 1:4� 10�7 5:9� 10�9 5:6� 10�70.0495 2:6� 10�8 2:3� 10�7 9:8� 10�9 1:4� 10�60.03102 5:5� 10�8 1:2� 10�7 5:0� 10�9 1:1� 10�6Table 2: Example 3, j~�� �QRjAgain, the symplectic URV decomposition yields eigenvalue approximations according tothe accuracy to be expected by s(�) and Theorem 9 whereas both SQRED and URVHQRagain loose accuracy of order jjH jj =j�j.Example 4 We tested the four methods for randomly generated Hamiltonian matrices withentries distributed normally in the interval [�1; 1 ]. Since the eigenvalue distribution for theseexamples usually behaves nicely, the eigenvalues computed by either of the four methods arecomputed to almost the same accuracy. We give the CPU times for 2n � 2n examples forseveral sizes of n. For each size of n, we computed 100 examples. The values given in Table 3are the mean values of the CPU times measured on a HP Model 712/60 work station.Table 3 shows that both URVHQR and SQRED are much faster than the standard QRalgorithm. The speed up expected from the op counts is not attained, though. This is due26



n URVHQR URVPSD SQRED LAPACK25 0.045 0.173 0.052 0.11850 0.35 1.13 0.31 0.7175 1.13 3.40 0.95 2.21100 2.78 7.99 2.31 5.01125 5.42 15.00 4.53 9.75150 9.41 25.53 7.71 17.25175 15.18 40.61 12.22 28.15200 22.93 60.24 18.38 42.45Table 3: Example 4, CPU timesto the fact that both methods are more complex as far as index handling, memory access,and subroutine calls are concerned.The CPU times for URVPSD are unsatisfactory. This is due to the high CPU times re-quired by the implemented subroutines for the periodic Schur decomposition and are not inaccordance with the op counts | even if the abovementioned e�ects are taken into account.Besides the faster computation of the eigenvalues, both URV based methods and Van Loan'smethod return the right pairing of the eigenvalues as ��i, i = 1; : : : ; n. Since DGEEVX treatsa Hamiltonian matrix like an arbitrary unsymmetric matrix, small perturbations can causecomputed eigenvalues with small real parts to cross the imaginary axis. For instance, thenumber of stable eigenvalues in Example 4 returned by DGEEVX for n = 100 varied between96 and 106.7 ConclusionsWe have presented a new method for computing the eigenvalues of Hamiltonian matricesand pencils which can also be used for symplectic matrices and pencils employing a Cayleytransformation. The method is numerically strongly backward stable, since it preserves theunderlying Hamiltonian structure and uses only backward stable orthogonal transformations.The algorithms save a signi�cant amount of computational cost compared to the standardQR and QZ algorithms. On the other hand, the new method is more expensive in both com-putational cost and work space than Van Loan's method and its analogues for the symplecticcase, but does not su�er from the O(p") loss of accuracy as these methods do.Future work will include an LAPACK-based implementation of Algorithms 1. Our algo-rithms strongly depend upon the performance of the periodic QR and QZ algorithms. Thus, inorder to obtain reasonable execution times for Algorithms 1 and 2, excellent implementationsof the periodic QR and QZ algorithm will be required.27
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