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Abstract

A one-dimensional, continuous, regular, and strong Markov processX with state space
E hits any point z ∈ E fast with positive probability. To wit, if τz = inf{t ≥ 0 : Xt = z},
then Pξ(τz < ε) > 0 for all ξ ∈ E and ε > 0.
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1 Introduction

Consider a measurable function σ : R 7→ R \ {0} such that 1/σ2 is locally integrable.

Then [4] guarantees the existence of a filtered probability space (Ω,F ,F, P), equipped

with a Brownian motion W = (Wt)t≥0, and the existence of a stochastic process Z =

(Zt)t≥0 such that

Zt =

∫ t

0

σ(Zs)dWs , t ≥ 0

holds. Moreover, Z is strong Markov and continuous. Let now z ∈ R, ε > 0, and τZ
z

denote the first hitting time of z by Z. Then we know that P(τZ
z < ∞) > 0. [11] and [8]

ask whether also P(τZ
z < ε) > 0 holds for all ε > 0. Only a partial answer is provided:

If 1/σ4 is locally integrable (everywhere, apart from countably many points), then the

answer is affirmative.

This note answers the question affirmatively in a general setup. To this end, we fix an

open, half-open, or closed interval E of R, and denote its interior by E̊ and its closure

in [−∞,∞] by E. We then consider a one-dimensional Markov process X = (Xt)t≥0

with state space E on the filtered space (Ω,F ,F), along with a family of probability

measures (Pξ)ξ∈E . We denote the death-time of X by ζ. We assume that X is strong

Markov, regular, continuous on [0, ζ), and limtրζ Xt exists and satisfies limtրζ Xt /∈ E

on {ζ < ∞}. We set Xζ+s = limtրζ Xt ∈ E for all s ≥ 0 on {ζ < ∞}. If Y = (Yt)t≥0 is a

stochastic process and ρ a stopping time, then Y ρ = (Y ρ
t )t≥0 = (Yρ∧t)t≥0. Furthermore,

if Y is a semimartingale, we let [Y ] = ([Y ]t)t≥0 denote the quadratic variation process of

Y .

We now define the stopping times

τz = inf{t ≥ 0 : Xt = z}, z ∈ E.
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Since X is regular, we have Pξ(τz < ∞) > 0 for all ξ ∈ E̊ and z ∈ E. Throughout the note

we shall fix a starting point ξ ∈ E and a target point z ∈ E \{ξ} such that Pξ(τz < ∞) > 0.

Then ξ cannot be an absorbing boundary point for X, and we also have Pξ(τy < ∞) > 0

for all y ∈ E. We are now able to state the main result of this note.

Theorem 1.1. For all ε > 0, we have Pξ(τz < ε) > 0.

The theorem is proved in the next section. We directly obtain two corollaries.

Corollary 1.2. The support of τz is [0,∞] under Pξ; that is, for any open subset U ⊂ [0,∞]

we have Pξ(τz ∈ U) > 0.

Proof. Let us start by fixing t ≥ 0 and arguing that Pξ(t < τz < ∞) > 0. Without

loss of generality, we may assume that ξ < z and that ξ ∈ E̊. We now fix a point

y ∈ E̊ with y < ξ and note that there exists some δ > 0 such that the stopping time

τy,ξ = inf{t ≥ τy : Xt = ξ} satisfies

Pξ ({δ < τy,ξ < 1/δ} ∩ {τy < τz}) > 0.

Applying the strong Markov property then several times and using the fact Xτy,ξ
= ξ on

the event {τy,ξ < ∞} yields the claim Pξ(t < τz < ∞) > 0.

In order to argue the statement we need to prove that the survival function [0,∞) ∋

t 7→ Pξ(τz > t) is strictly decreasing. Note that the strong Markov property of X yields

Pξ(τz > t+ ε) = Eξ[1{τz>t}PX(t)(τz > ε)] < Pξ(τz > t)

for all t ≥ 0 and ε > 0, where the inequality uses Pξ(τz > t) > 0 and PX(t)(τz > ε) < 1 on

{τz > t} with positive probability under Pξ, thanks to Theorem 1.1. This theorem may be

applied since Pξ(t < τz < ∞) > 0 yields that PX(t)(τz < ∞) > 0 on {τz > t} with positive

probability under Pξ.

Corollary 1.3. For each t > 0, the support of Xt is E under Pξ; that is, for any open

subset U ⊂ E we have Pξ(Xt ∈ U) > 0.

Proof. The statement follows directly from Corollary 1.2 and the continuity of X. To add

some details, let us fix a point y in some open subset U ⊂ E. The continuity of X now

yields the existence of a constant δ > 0 such that Py(infs≤δ Xs ∈ U ; sups≤δ Xs ∈ U) > 0.

Next, let us fix t > 0 and observe that

Pξ(Xt ∈ U) ≥ Pξ
(
τy ∈ (t− δ, t)

)
Py

(
inf
s≤δ

Xs ∈ U ; sup
s≤δ

Xs ∈ U

)
> 0

by Corollary 1.2.

Remark 1.4. We now provide some warnings concerning Thereom 1.1.

• The continuity of X is clearly important in Theorem 1.1. For instance, the compen-

sated Poisson process with state space E = R is strong Markov and regular, but

the assertion of Theorem 1.1 does not hold for it.

• If X is Brownian motion then Theorem 1.1 clearly holds. If X is only a local

martingale, the Dambis-Dumbins-Schwarz theorem yields the representation X =

B[X] for some Brownian motion B and Lemma 2.3 below yields that [X] is strictly

increasing. However, B and [X] are usually not independent. In particular, [X]

might slow down as X approaches a point. Thus, an argument for Theorem 1.1

that is based purely on a change of time is incomplete.

After we had completed this note, Umut Cetin and Pat Fitzsimmons pointed out to us

that Theorem 1.1 could also be derived as follows. First, the theorem could be proved by

ECP 21 (2016), paper 22.
Page 2/7

http://www.imstat.org/ecp/

http://dx.doi.org/10.1214/16-ECP4544
http://www.imstat.org/ecp/


A one-dimensional diffusion hits points fast

studying the (positivity of the) transition density of X directly, as for example presented

in Section 4.11 of [7]. Alternatively, Krein’s spectral theory of strings yields precise

estimates for the transition density of X for short time horizons; see Appendix II of

[10]. These estimates then yield Theorem 1.1 as a corollary. The arguments of this note,

however, are less analytic and more direct.

2 Proof of Theorem 1.1

Before proving Theorem 1.1, we provide some auxiliary results.

Lemma 2.1. Let v : [0,∞) → [0,∞) denote a nonnegative function with v(0) = 0 that

satisfies v(t+ s)− v(t) ≤ s for all s, t ≥ 0. Then the first variation of v|[0,t] is bounded by

2t, for each t ≥ 0.

Proof. Note that v can increase by at most t on the interval [0, t]. This, in conjunction

with the nonnnegativity of v, then yields that v can drop by at most t as well, and hence

the bound of 2t.

Recall that we have fixed a strong Markov process X with state space E and a

starting point ξ ∈ E for which the following results are formulated.

Proposition 2.2. Let v : E → R be a measurable function and consider the case that

ξ ∈ E̊ and that the strong Markov process X is a continuous Pξ–local martingale. Then

the function [0,∞) ∋ t 7→ v(Xt) is of finite first variation on compact subintervals of

[0,∞), Pξ–almost surely, if and only if v is constant on E̊.

Since Proposition 2.2 is the core step of this note’s argument we provide three

different proofs.

Preparation for the proofs of Proposition 2.2. Since X is a Pξ–local martingale, and

hence gets absorbed when hitting a boundary point, v being constant on E̊ implies that

v(X·) is of finite first variation; thus it suffices to argue the reverse direction. Hence,

from now on, we will assume that v(X·) is of finite first variation on compact subintervals

of [0,∞). Note that v(X·) is of finite first variation variation on {ζ < ∞}. If Pξ(ζ = ∞) > 0

let (an)n∈N be a strictly decreasing sequence and (bn)n∈N a strictly increasing sequence

such that E̊ =
⋃

n∈N
(an, bn) and ξ ∈ (a1, b1). Moreover, let

ζn = inf{t ≥ 0 : Xt /∈ (an, bn)}, n ∈ N.

Then we have ζn < ∞ and v(Xζn
· ) is of finite first variation for each n ∈ N. Moreover,

note that v is constant on E̊ if and only if v is constant on (an, bn) for each n ∈ N. Thus,

we shall assume, without loss of generality, that v(X·) is of finite first variation.

Next, observe that the Dambis-Dumbins-Schwarz theorem yields the existence of a

Brownian motion B = (Bt)t≥0 with B0 = ξ, possibly on an extension of the probability

space, such that X = B[X]; see, for instance, Theorem V.1.7 in [12]. Using the fact that

[X] is continuous and defining ρ = [X]∞, the process v(Bρ
· ) is also of finite first variation.

The first proof relies on an application of the Itô-Meyer-Tanaka formula.

Proof I of Proposition 2.2. Proceeding as in Section 5 in [3] we observe that v is a so

called semimartingale function for a Brownian motion killed when hitting the boundary

of E and thus, v is locally the difference of two convex functions. More precisely, with

(an)n∈N and (bn)n∈N as above, v|[an,bn] is the difference of two convex functions. It then

suffices to prove that D−v|[an,bn] = 0, where D−v|[an,bn] denotes its left derivative, for

each n ∈ N. To this end, let

ρn = inf{t ≥ 0 : Bt /∈ (an, bn)}, n ∈ N.
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Then the Itô-Meyer-Tanaka formula yields

v(Bρn
· ) = v(ξ) +

∫ ·∧ρn

0

D−v|[an,bn](Bt)dBt +Aρn
· , n ∈ N,

where A = (At)t≥0 is a process of finite first variation. Since v(Bρn
· ) is of finite first

variation we obtain
∫ ·∧ρn

0
(D−v|[an,bn](Bt))

2dt = 0, and thus D−v|[an,bn] = 0 for each

n ∈ N, as desired.

We remark that [1] provides a similar proof. The next proof has been suggested

by Vilmos Prokaj, to whom we are very grateful. The proof requires the additional

assumption that v is of finite first variation and uses local time of Brownian motion.

Proof II of Proposition 2.2. Let N(x, y) denote the number of upcrossings of [x, y] made

by Bρ for all x, y ∈ R with x < y. Moreover, let Lρ(x) denote the local time of Bρ at

x ∈ E, fix ε > 0, and pick some sufficiently small δ > 0, possibly depending on ω ∈ Ω,

such that

|δN(x, x+ δ)− Lρ(x)| ≤ ε

for all x ∈ E. Such a δ exists almost surely, thanks to the uniform convergence of

Theorem 2 in [2]. Next, define the sequence (σk)k∈N0
of stopping times inductively by

σ0 = 0 and

σk+1 = ρ ∧ inf{t > σk : |Bt −Bσk
| = δ}.

Suppose that the first variation Ξ of the function v(Bρ
· ) is finite almost surely, directly

implying that v is continuous on E̊. Then we have

δ Ξ ≥ δ
∑

k∈N

|v(Bσk+1∧ρ)− v(Bσk∧ρ)| ≥
∑

i∈Z,(iδ,iδ+δ)⊂E

|v(iδ + δ)− v(iδ)|δN(iδ, iδ + δ)

≥
∑

i∈Z,(iδ,iδ+δ)⊂E

|v(iδ + δ)− v(iδ)|(Lρ(iδ)− ε).

Letting now δ tend to zero and using the continuity of Lρ, argued in Theorem VI.1.7 in

[12], note that

0 = lim
δ↓0

δ Ξ ≥

∫

E̊

Lρ(x)|dv(x)| − εTV(v),

where TV(v) denotes the variation of v, which is finite by assumption. Next, letting ε

tend to zero, taking expectations, and using Tonelli yields
∫

E̊

Eξ[Lρ(x)]|dv(x)| = 0.

Since each expectation is strictly positive, we obtain that the function v is constant on

E̊.

The third proof follows a pathwise argument and relies less on the one-dimensional

character of X. The proof requires the additional assumption that v(ξ) = 0, v is nonnega-

tive, and there exists a Pξ–nullset N such that for all s, t ≥ 0 and ω ∈ Ω \N we have the

upper-Lipschitz condition

v (Xt+s(ω))− v (Xt(ω)) ≤ s. (2.1)

Proof III of Proposition 2.2. Again, clearly v is continuous on E̊. Fix now some ω ∈ Ω

such that the function f : [0, ζ(ω)) → R, t 7→ v(Xt(ω)) is of finite first variation, (2.1)

holds, and X(ω) has no point of monotonicity (see Theorem 2.9.13 in [9]). Then f is
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continuous and Theorem 3.23(b) in [6] yields that f has a derivative f ′ almost everywhere.

Levy’s decomposition theorem, Hahn’s decomposition theorem, and Proposition 3.30

in [6] yield the existence of two nonnegative measures µ− and µ+, both singular with

respect to each other and to Lebesgue measure, such that

df = f ′dt− dµ− + dµ+.

Suppose now that f ′(t) > 0 for some t > 0. Then we must have f(t+ h)− f(t) > 0 for

all sufficiently small h ∈ R, but then t is a point of monotonicity of X(ω). This contradicts

the choice of ω. Thus f ′ ≤ 0 and we get in the same way that f ′ = 0. Therefore,

df = −dµ− + dµ+ Since, on intervals, we have df ≤ dt thanks to the upper-Lipschitz

condition we get µ+ ≤ m + µ−, where m denotes the Lebesgue measure. Thanks to a

monotone class argument we also get µ+(D) ≤ m(D) + µ−(D) for all D ∈ B, the Borel

sigma algebra of [0,∞). Thus, µ+ is both absolutely continuous and singular with respect

to m+ µ−, and we get µ+ = 0. Finally, since f ≥ 0 and f(0) = 0, we have µ− = 0, and so

f is constant.

Proposition 2.2 could also be argued as a simple consequence of Theorem 1 in [5].

Lemma 2.3. Consider the case that the strong Markov process X is a continuous Pξ–

local martingale. Then the quadratic variation process [X] is Pξ–almost surely strictly

increasing on [0, ζ̃), where ζ̃ = inf{t ≥ 0 : Xt /∈ E̊}.

Proof. Proposition III.3.13 and the discussion proceeding it in [12] yield that X cannot

be constant on an interval before hitting the boundary of E. Proposition IV.1.13 in [12]

then yields the statement.

Before stating the next lemma we introduce some notation. We observe that E is of

the form E = (a, b), E = [a, b), E = (a, b], or E = [a, b] for some a, b ∈ [−∞,∞] with a < b.

For each x ∈ E we now define the deterministic function ux : E 7→ [0, 1] by

ux(y) = 1 ∧ inf{t ≥ 0 : Px(τy ≤ t) > 0}, y ∈ E̊; ux(a) = lim
yցa

ux(y); ux(b) = lim
yրb

ux(y).

(2.2)

Note that ux is nonincreasing before x and nondecreasing after x; thus, in particular, the

limits in (2.2) always exist, for each x ∈ E. Moreover, ux is nonnegative, of finite first

variation, and satisfies ux(x) = 0, for each x ∈ E̊. Observe that an equivalent formulation

of Theorem 1.1 is the statement that uξ is constant, at least, if ξ ∈ E̊.

Lemma 2.4. Consider the case that ξ ∈ E̊ and that the strong Markov process X is a

continuous Pξ–local martingale. The function uξ, given in (2.2), satisfies the following

two claims.

(i) uξ is continuous;

(ii) there exists a Pξ–nullset N such that for all s, t ≥ 0 and ω ∈ Ω \N we have

uξ(Xt+s(ω))− uξ(Xt(ω)) ≤ s.

Proof. To start, for all x,w ∈ E, we have the triangle inequality

ux(·) ≤ ux(w) + uw(·). (2.3)

Indeed, this is clear if either one of the two summands equals one. To see the distribu-

tional property of (2.3) otherwise, fix x,w, y ∈ E and assume for the moment that the

underlying probability space is the canonical one; see Section I.3 in [12]. Then, for each
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path ω we have the inequality τy(ω) ≤ τw(ω) + τy(θτw(ω)(ω)), where θ denotes the shift

operator; that is θt(ω)(·) = ω(t+ ·) for all t ≥ 0, see also the discussion on page 104 in

[12]. Fix now ε > 0 and t1 = ux(w) + ε/2 and t2 = uw(y) + ε/2. Then we have

Px(τy ≤ t1 + t2) ≥ Px(τw + τy(θτw
) ≤ t1 + t2) ≥ Px(τw ≤ t1; τy(θτw

) ≤ t2)

= Px(τw ≤ t1)Pw(τy ≤ t2) > 0,

where the equality follows the strong Markov property ofX and the last inequality follows

from the definition of t1 and t2. This yields directly that ux(y) ≤ t1+t2 = ux(w)+uw(y)+ε.

Letting ε tend to zero then gives (2.3).

Claim (i): First, for any w ∈ E̊, the continuity of uw at w follows from the fact that

X is not constant on any interval (see the proof of Lemma 2.3), in conjunction with the

strong Markov property. Let us now study the continuity of uξ at some y ∈ E̊. Without

loss of generality, we may assume that y > ξ. The right-continuity then follows from

(2.3) and the continuity of uy at y. For the left-continuity of uξ at y, Section 3.3 in [7] or

Lemma 4.1, in particular (4.5), in [8] also hold for the case of the regular, strong Markov

process X, thanks to Lemma 2.3. Thus, for each ε > 0 there exists w ∈ (ξ, y) such that

Pw(τy ≤ ε) > 0. The left-continuity of uξ at y then follows by another application of (2.3).

Claim (ii): Assume first that there exists some t ≥ 0 such that Pw(uw(Xt) > t) > 0 for

some w ∈ E̊. This then implies that there exists some y ∈ E̊ such that uw(y) > t and

Pw(Xt > y) > 0 if y > ξ and Pw(Xt < y) > 0 if y < ξ, respectively. This, in conjunction

with the continuity of X, however, contradicts the definition of uw in (2.2). We therefore

have

Pw (uw(Xt) ≤ t) = 1 for all t ≥ 0 and w ∈ E̊. (2.4)

Fix now q1, q2 ∈ Q. Conditioning and the strong Markov property of X then yield that

Pξ(uξ(Xq1+q2)− uξ(Xq1) ≤ q2) = 1 if

Pw (uξ(Xq2)− uξ(w) ≤ q2)|w=Xq1

= 1 holds Pξ–almost surely. (2.5)

We now note that (2.3) and (2.4) imply (2.5). The claim then follows from the continuity

of uξ and X.

We are now ready to prove this note’s main result.

Proof of Theorem 1.1. Let us first consider the case ξ ∈ E̊. Then, in order to show

the statement we may assume that X is stopped when exiting E̊. Moreover, thanks

to Propositions VII.3.2, VII.3.4, and VII.3.5 in [12] we may assume, without loss of

generality, that X is in natural scale and thus a Pξ–local martingale. Next, we recall the

function uξ, given in (2.2). Now Lemma 2.1, in conjunction with Lemma 2.4(ii), yields

that the function [0,∞) ∋ t 7→ uξ(Xt) has finite first variation on compact subintervals of

[0,∞), Pξ–almost surely. Proposition 2.2 now implies that uξ is constant. This yields that

uξ(z) = uξ(ξ) = 0, and thus, the assertion of the theorem follows if ξ ∈ E̊.

Next, if ξ /∈ E̊ then Proposition III.2.19 in [12] and the assumptions that Pξ(τz < ∞) >

0 and ξ 6= z yield the existence of a stopping time ρ taking values in [0, ε/2] such that

Pξ(Xρ ∈ E̊) > 0. Another application of the strong Markov property, together with fact

that we already argued the case ξ ∈ E̊ now concludes the proof.

References

[1] R. Aboulaïch and C. Stricker, Variation des processus mesurables, Séminaire de Probabilités,

XVII, Lecture Notes in Math., vol. 986, Springer, Berlin, 1983, pp. 298–305. MR-770419

ECP 21 (2016), paper 22.
Page 6/7

http://www.imstat.org/ecp/

http://www.ams.org/mathscinet-getitem?mr=770419
http://dx.doi.org/10.1214/16-ECP4544
http://www.imstat.org/ecp/


A one-dimensional diffusion hits points fast

[2] R. V. Chacon, Y. Le Jan, E. Perkins, and S. J. Taylor, Generalised arc length for Brownian

motion and Lévy processes, Z. Wahrsch. Verw. Gebiete 57 (1981), no. 2, 197–211. MR-626815

[3] E. Çinlar, J. Jacod, P. Protter, and M. J. Sharpe, Semimartingales and Markov processes, Z.

Wahrsch. Verw. Gebiete 54 (1980), no. 2, 161–219. MR-597337

[4] H.-J. Engelbert and W. Schmidt, On the behaviour of certain functionals of the Wiener

process and applications to stochastic differential equations, Stochastic Differential Systems

(Visegrád, 1980), Lecture Notes in Control and Information Sci., vol. 36, Springer, Berlin-New

York, 1981, pp. 47–55. MR-653645

[5] P. J. Fitzsimmons, Brownian space-time functions of zero quadratic variation depend only on

time, Proc. Amer. Math. Soc. 127 (1999), no. 8, 2423–2429. MR-1487367

[6] G. B. Folland, Real Analysis: Modern Techniques and Their Applications, Pure and Applied

Mathematics (New York), John Wiley & Sons, Inc., New York, 1984. MR-767633

[7] K. Itô and H. P. McKean, Jr., Diffusion processes and their sample paths, Die Grundlehren

der Mathematischen Wissenschaften, Band 125, Academic Press, Inc., Publishers, New York;

Springer-Verlag, Berlin-New York, 1965. MR-0199891

[8] I. Karatzas and J. Ruf, Distribution of the time to explosion for one-dimensional diffusions,

Probability Theory and Related Fields forthcoming (2015).

[9] I. Karatzas and S. E. Shreve, Brownian motion and stochastic calculus, second ed., Graduate

Texts in Mathematics, vol. 113, Springer-Verlag, New York, 1991. MR-1121940

[10] S. Kotani and S. Watanabe, Krein’s spectral theory of strings and generalized diffusion

processes, Functional Analysis in Markov Processes, Lecture Notes in Math., vol. 923,

Springer, Berlin-New York, 1982, pp. 235–259. MR-661628
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