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A one-dimensional liquid of fermions with
tunable spin
Guido Pagano1,2, Marco Mancini1,3, Giacomo Cappellini1, Pietro Lombardi1,3, Florian Schäfer1,
Hui Hu4, Xia-Ji Liu4, Jacopo Catani1,5, Carlo Sias1,5, Massimo Inguscio1,3,5 and Leonardo Fallani1,3,5*

Correlations in systems with spin degree of freedom are at the
heart of fundamental phenomena, ranging from magnetism to
superconductivity. The e�ects of correlations depend strongly
on dimensionality, a striking example being one-dimensional
(1D) electronic systems, extensively studied theoretically over
the past fifty years1–7. However, the experimental investigation
of the role of spin multiplicity in 1D fermions—and especially
for more than two spin components—is still lacking. Here
we report on the realization of 1D, strongly correlated liquids
of ultracold fermions interacting repulsively within SU(N)
symmetry, with a tunable number N of spin components. We
observe that static and dynamic properties of the system
deviate from those of ideal fermions and, forN>2, from those
of a spin-1/2 Luttinger liquid. In the large-N limit, the system
exhibits properties of a bosonic spinless liquid. Our results
provide a testing ground for many-body theories and may lead
to the observation of fundamental 1D e�ects8.

One-dimensional quantum systems show specific, sometimes
counterintuitive behaviours that are absent in the 3D world. These
behaviours, predicted by many-body models of interacting bosons9
and fermions2–4, include the ‘fermionization’ of bosons10 and
the separation of spin and density (most commonly referred to
as ‘charge’) branches in the excitation spectrum of interacting
fermions. The last phenomenon is predicted within the celebrated
Luttinger liquid model5, which describes the low-energy excitations
of interacting spin-1/2 fermions. Although the Luttinger approach
describes qualitatively the physics of a number of 1D systems11,12,
the problem of how to extend it to a more detailed description
of real systems has puzzled physicists over the years7. In this
exploration the physics of spin has played a key role.

Ultracold atoms have proved to be a precious resource to study
1D physics, as they afford exceptional control over experimental
parameters. Most of the experiments so far have been performed
with spinless bosons, which for instance led to the realization
of a Tonks–Girardeau gas13,14. On the other hand, 1D ultracold
fermions are a promising system to observe a number of elusive
phenomena, such as Stoner’s itinerant ferromagnetism15 and the
physics of spin-incoherent Luttinger liquids6. However, only a
few pioneering works, dealing with spin-1/2 particles16–18, have
been reported so far.

In parallel, ultracold two-electron atoms have been recently
proposed for the realization of large-spin systems with SU(N )
interaction symmetry19,20, and the first experimental investigations
have been reported21. This novel platform enables the simulation of

1D systems with a high degree of complexity, including spin–orbit-
coupled materials22 or SU(N ) Heisenberg and Hubbard chains23,24.
Moreover, the investigation of these multi-component fermions
is relevant for the simulation of field theories with extended
SU(N ) symmetries25.

In this Letter we report on the realization of 1D quantum wires
of repulsive fermions with a tunable number of spin components,
which are created by tightly trapping ultracold 173Yb atoms in a
2D optical lattice (Fig. 1a). The purely nuclear spin I = 5/2 of
173Yb results both in the independence of the interaction strength
from the nuclear spin state and in the absence of spin-changing
collisions. The latter feature is particularly important for our
experiments, as it implies the stability of any spin mixture. The
atoms experience an axial harmonic confinement with (angular)
frequency ωx ≈ 2π × 80Hz and a strong radial confinement with
ω⊥=2π×25kHz, resulting in the occupation of the radial ground
state. We use optical spin manipulation and detection techniques
(see Supplementary Information) to prepare the system in an
arbitrary number N ≤2I+1=6 of spin components (Fig. 1b), thus
realizing different SU(N ) symmetries. We directly compare systems
with different N , keeping the atom number per spin component
Nat' 6,000 (≈20 atoms per spin component in the central wire)
and all the other parameters constant. This approach enables us
to examine how the physics of a strongly-interacting 1D fermionic
system changes as a function of N .

Momentum distribution
We investigate the correlations in the 1D wires by observing the
momentum distribution n(k) (k is the momentum divided by
the reduced Planck’s constant h̄). We measure this quantity by
extinguishing the trapping light and imaging the atomic cloud after
a ballistic expansion, as done in previous works to measure n(k) of a
Tonks–Girardeu gas13. A typical image is reported in Fig. 2c, where
x̂ denotes the wire axis. Integration over ŷ results in the n(k) curves
plotted in Fig. 2a for different N (the curves are normalized to
have the same unit area). In the non-interacting case N =1 the data
(solid blue) are very well accounted for by the theory of a trapped
ideal Fermi gas (dashed blue, see Supplementary Information).
Increasing N , we observe a clear monotonic broadening of n(k),
with a reduction of the weight at low k and a slower decay
of the large-k tails.

The observed n(k) broadening arises from a pure effect of
correlations that goes beyond standard mean-field physics. To
give a qualitative understanding of this phenomenon, we consider
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Figure 1 | Ultracold 1D fermionic liquids with tunable spin. a, A 2D optical
lattice is used to create an array of independent quantum wires of ultracold
173Yb with six possible nuclear spin orientations. b, The nuclear spin of the
atoms can be manipulated with optical pumping techniques, resulting in a
tunable number of spin components, and analysed with optical
Stern–Gerlach detection (see Supplementary Information).

spin-1/2 fermions with infinite repulsion. In this limit, the
density–density correlation function G↑↓(d) = 〈n̂↑(x + d)n̂↓(x)〉
(where n̂↑(x) and n̂↓(x) are the density operators for the two
spin components) falls to zero for d→ 0 as G↑↑(d) does in the
case of a spin-polarized gas, thus mimicking the effects of Pauli
repulsion between distinguishable particles. This ‘fermionization’,
restricting the effective space which is available to the particles,
causes them to populate states with larger momentum26,27. We note
that an opposite behaviour would be predicted by a mean-field
treatment of interactions neglecting correlations between trapped
fermions: the effectively weaker confinement along x̂ induced by the
atom-atom repulsion would lead to more extended single-particle
wavefunctions, hence to a decreased width of n(k) (Fig. 2b). For
N = 2 the interaction regime of our 1D samples is described
by the parameters γ ' 4.8 and K ' 0.73 (see Supplementary
Information), lying in the strongly-correlated regime between
the ideal Fermi gas (γ = 0, K = 1) and a fully fermionized
gas (γ =∞, K =0.5).

The details of n(k) depend nontrivially on the temperature, ow-
ing to the thermal population of spin excitations. The temperature
regime for our experiments, T ' 0.3 TF (where TF is the Fermi
temperature), is slightly below the predicted temperature scale
TS' 0.4TF for spin excitations (see Supplementary Information),
in the crossover between the spin-ordered regime for T�TS and
that of a spin-incoherent Luttinger liquid for T � TS (ref. 6).
Figure 2b shows the theoretical n(k) forN =2 and infinite repulsion
in the limiting regimes T = 0 and T � TS (light and dark solid
curves, derived from refs 26 and 27, respectively). Although both
curves show an evident n(k) broadening, in accordance with our
observations, their shape is different and can be explained in terms

Figure 2 | Momentum distribution of the 1D fermions. a, Solid lines:
momentum distribution n(k) measured with time-of-flight absorption
imaging for di�erent N and the same atom number Nat per spin component
(each curve results from the average of 30–50 experimental images, after
integration along the ŷ axis and normalization to unity area, i.e.∫
n(k)dk= 1). Dashed line: theoretical curve for N= 1 based on the ideal

trapped Fermi gas theory, after averaging over the inhomogeneous
distribution of atoms in the di�erent wires. b, Theoretical n(k) for the N=2
system derived from di�erent models (see Supplementary Information):
ideal Fermi gas at T=0 (dashed), mean-field treatment of finite
interactions at T=0 (dotted), full many-body problem for infinite
interactions both for T=0 (light solid, from ref. 26) and TS�T�TF (dark
solid, from ref. 27). Whereas the mean-field curve shows a di�erent
behaviour from the one observed in the experiment, the many-body curves
account for the observed broadening. c, Averaged absorption image (the
x̂ axis denotes the direction of the wires).

of a modified effective Fermi momentum28. Exact calculations for
finite interactions and finite temperatures are challenging, thus
making our system a profitable quantum simulation resource for
the fundamental problem of 1D interacting fermions.

Probing excitations
A distinctive feature of 1D fermions is the existence of a
well-resolved excitation spectrum at small momenta h̄q� h̄kF
(where kF is the Fermi wave vector). Number-conserving excitations
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Figure 3 | Excitation spectra of the 1D fermions. a–c, The points show the
measured increase in atomic momentum transfer after a Bragg excitation
with energy h–ω and momentum h–q'0.2h–k0F (see text) for N= 1 (a), N=2
(b) and N=6 (c) spin components and the same atom number Nat per spin
component. The error bars are standard deviations over up to five repeated
measurements per frequency. The solid line is the calculated response
function for the ideal Fermi gas N= 1, while the dotted lines show the
calculation in the limit of infinite repulsion. The dashed lines are Gaussian
fits to the experimental points, to guide the eye and to extract the peak
excitation frequency. Both the experimental and theoretical spectra have
been normalized to unit area. The graphs in the inset show a sketch of the
excitation spectrum at low q for the ideal Fermi gas (a) and for the
two-component Luttinger liquid (b) with repulsive interactions. The red
arrows indicate the shift in the excitation resonance.

in the ideal 1D Fermi gas correspond to particle–hole pairs with
energy h̄ω= vFh̄q, where vF= h̄kF/m is the Fermi velocity (Fig. 3a,
inset). This physical picture changes in the case of an interacting
spin mixture, as excitations acquire a purely collective nature.
According to the Luttinger theory, the spectrum of phononic
excitations is still described by a linear dispersion ω= cq, where
c = vF/K is a renormalized sound velocity1. In a two-component
Luttinger liquid with contact repulsion one has 0.5 < K < 1.
This yields a sound velocity that is larger than vF (Fig. 3b, inset),
corresponding to an increased stiffness of the many-body state.

We have characterized the excitations of the fermionic wires
by performing Bragg spectroscopy. This technique, relying on
inelastic light scattering, allows the selective excitation of density
waves with energy h̄ω and momentum h̄q (see Supplementary
Information). Figure 3a shows the measured spectrum for N = 1
at low momentum transfer h̄q' 0.2 h̄k0

F (with k0
F being the peak

Fermi wave vector in the central wire). A clear resonance is

Figure 4 | Breathing oscillations. The quantity that is plotted in the graphs
is the squared ratio β= (ωB/ωx)2 of the breathing frequency ωB to the trap
frequency ωx. a, The squares show the experimental data, as a function of
N, obtained as the weighted mean over sets of up to nine repeated
measurements (the error bars indicate the standard deviation of the
weighted mean). The circles show the theoretical predictions for the
average interaction parameter (defined in the text) η=0.44 for our
experiment. The dashed line is a guide to the eye, while the height of the
violet shaded region indicates the uncertainty on the theoretical values
resulting from the experimental uncertainty1η=0.08 (coming from the
measured atom number and trapping frequencies). The upper horizontal
line shows the theoretical value for the non-interacting Fermi gas (N= 1),
while the lower line shows the result for 1D spinless bosons. b, The lines
show the theoretical dependence of β on the interaction parameter η. The
circles show the predicted values for our average interaction parameter
(also shown in a), while the width of the violet shaded region indicates the
experimental uncertainty1η=0.08. In both panels the height of the grey
region shows the range of β for N=2 and any possible value of the
repulsion strength.

observed, in excellent agreement with the calculated response for
ideal fermions (solid line, with no free parameters). For N =2 the
resonance is clearly shifted towards higher frequencies (Fig. 3b), as
expected from the Luttinger theory. Themeasured shift (+15±4)%
agrees with the expected (+10± 2)% shift in the sound velocity
predicted on the basis of the Luttinger theory for a trapped
system (see Supplementary Information). For N =6 the spectrum
shows a much larger shift (+33± 4)% (Fig. 3c), which disagrees
with the predictions for N = 2, signalling an increased effect of
interactions, in qualitative accordance with the n(k) change of
Fig. 2. We also plot the calculated spectra for trapped fermions
with infinite interactions (Fig. 3b,c, dotted lines), which shows how
themeasured spectra lie between the response of the ideal Fermi gas
and that of a fermionized system.
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Collective mode frequencies
More insight into the physics of multicomponent 1D fermions can
be gained by studying low-energy breathing oscillations in which
the cloud radius oscillates in time. We measure the frequency of
this collective mode by suddenly changing the trap frequency and
measuring the time evolution of the radius. In Fig. 4a we plot the
measured squared ratio β = (ωB/ωx)

2 of the breathing frequency
ωB to the trap frequency ωx as a function of N (squares). For N =1
the measured value is in good agreement with the expected value
β=4 for ideal fermions (upper horizontal line). With increasing N
our data clearly show a monotonic decrease of β , induced by the
repulsive interactions in the spin mixture.

The dependence of β on the interaction strength is remarkably
nontrivial, already for N = 2, as first predicted in ref. 29. Indeed,
β = 4 in both the limiting cases of an ideal gas (γ = 0) and a
fermionized (γ =∞) system, whereas for finite repulsion it is
expected to exhibit a nonmonotonic behaviour, with a minimum
at finite interaction strength. The theoretical curves in Fig. 4b
show the expected dependence of β on the interaction parameter
η=N 1

at(a1D/ax)2 (where N 1
at is the number of atoms per wire, a1D

is the 1D scattering length and ax is the trap oscillator length). We
have derived these results by combining a Bethe Ansatz approach
with the exact solution of the hydrodynamic equations describing
a 1D fermionic liquid with N components (see Supplementary
Information). As N is increased, the curves exhibit an increasingly
larger redshift of β , and for N→∞ they asymptotically approach
the curve for 1D spinless bosons. The circles indicate the theoretical
values for the average η=0.44 in our experiment. The agreement
between experiment and theory is excellent, as shown in Fig. 4a
(we note that for N = 2 both theory and experiment agree with
the results of ref. 29).

The experimental data, accompanied by our theoretical curves,
clearly show that changing N causes markedly different effects
from those induced by simply changing the interaction strength
in an N = 2 mixture. In fact, by increasing N , the constraints
of the Pauli principle become less stringent and the number of
binary-collisional partners increases, causing the system to acquire
a more ‘bosonic’ behaviour. Our experimental value atN =6 clearly
falls out of the range of β expected for an N = 2 liquid (Fig. 4,
grey regions), and already approaches the value expected for 1D
spinless bosons. This bosonic limit for N→∞ is a remarkable
property of multi-component 1D fermions that has been pointed
out theoretically only very recently30 and that our experimental
system is capable to clearly evidence.

Concluding remarks
The possibility of tuning the number of spin components allows
us to study different regimes of interplay between Fermi statistics
and the degree of distinguishability in this novel 1D system.
From a quantum simulation perspective, this realization provides
a powerful test bench for large-spin models and opens a route
towards the investigation of fundamental effects ranging from spin
dynamics to novel magnetic phases.
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