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aspects of this model.

Computer programming support for the one-dimensional mass and energy transport model was
provided by James Jones of Sparta Systems, Inc., Lexington, Massachusetts. Funding for this support
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NOMENCLATURE

All units are in the SI system, with the exception of pressure, which is expressed as either mb or
N/m?Z. One calorie converts to 4.1868 J.

a Adjustable parameter in grain growth equation (m?/s)
al Constant in freezing curve (K1)
a2 Constant in freezing curve (K1) &
Ak Coefficient in fluid flow equation = Pe” 8 Kmax (kg/m2 - 8)
A Element in tridiagonal matrix; also area P
a Absorptivity in solar insolation routine
B Element in tridiagonal matrix vector
b Adjustable parameter in grain growth equation (K1)
b Constant term in linear approximation for 533
c Specific heat (J/kg - K)
Cair Specific heat of air at 0°C (1005.0) (J/kg - K)
c, Specific heat of water at 0°C (4217.7) (J/kg + K)
Capp Apparent specific heat, incorporating melt (J/kg « K)
cl Constant in computation of Cyr (kg/m3-K)
c3 Snow densification constant
cd Snow densification constant
c5 Snow densification constant (K1)
cb Snow densification constant (m>/kg)
c7 Constant in fluid flow equation p; (1-s) @4z (kg/m? - s)
c8 Constant in computation of hemispherically emitted spectral radiation

(0.59544 x 10716 Wm?)
9 Constant in computation of hemispherically emitted spectral radiation

(1.4388 x 102 Km)
Cor Variation of saturation vapor pressure with temperature relative to phase k (N/m? - K)
CE Dimensionless bulk turbulent transfer coefficient for latent heat
CD Dimensionless bulk turbulent transfer coefficient for momentum (drag coefficient)
CH Dimensionless bulk turbulent transfer coefficient for sensible heat
CEN Dimensionless bulk turbulent transfer coefficient for latent heat under neutral stability
CDN Dimensionless bulk turbulent transfer coefficient for momenturn under neutral stability
Cun Dimensionless bulk turbulent transfer coefficient for sensible heat under neutral stability
CR Fractional compaction rate of snow cover s
d Diameter of snow grain (m)
d, Constant in computation of solar insolation
D Diffusion coefficient (m?/s)
D, Constant in computation of solar insolation
D, Effective diffusion coefficient (m?%/s)
D, Effective diffusion coefficient for water vapor in snow (mzfs)
Do Effective diffusion coefficient for water vapor in snow at 1000 mb and 0°C

(0.92 x 10 m?%/s)
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s, slope

Effective diffusion coefficient for water vapor in soil (m?/s)

Effective diffusion coefficient for water vapor in soil at 1000 mb and 0°C
(1.61 x 1073¢) (m?/s)

Slope elevation angle (radians)

Windless exchange coefficient for sensible heat (W/m? - K)

Exchange coei‘ﬁcient for sensible heat (J/K - m3)

Windless exchange coefficient for latent heat (W/m?2 - mb)

Exchange coefficient for latent heat (J/mb - m?3 or Pa/mb)

Meters of hourly accumulation of bulk precipitation (m/hr)

Mass liquid-water fraction (y,/y,,)

Portion of f that is independent of water content

Mass liquid-water fraction of precipitation

Fractional humidity within medium relative to saturated state (0.0-1.0)

Slope of freezing curve

Temporal average of F over temperature for the current water content

Acceleration due to gravity (9.80 m/s?)

Gravitational vector (positive downwards) (m/s%)

Grain growth parameter (m*/kg)

Grain growth parameter (m?%/s)

Term in melt-zone switch (K)

Coefficient in melt-zone switch (Km3/kg)

Specific enthalpy (J/kg)

Enthalpy adjustment factor

Nodal offset between bottom of grid and bottom of flow zone

Energy flux (W/m?)

Intensity of hemispherically emitted spectral radiation (W/m?)

Intensity of hemispherically emitted all-wave radiation (W/m?)

Energy flux across air interface (’W{mz)

Energy flux across air interface, excluding solar radiation (W/m?)

Portion of / l;p that varies with temperature (W/m?2)

Portion of It;p not varying with temperature (W/m?)

Sensible heat flux across air interface (Wlmz)

Convective heat flux across air interface (W/m?)

Downwelling long-wave radiation flux (W/m?)

Upwelling long-wave radiation flux (W/m?)

Latent heat flux across air interface (Wfrnz)

Downwelling long-wave radiation flux under clear skies (W/m?)

Solar or short-wave radiation flux, net of downwelling and upwelling components (W/m?)

Downwelling short-wave radiation flux (W/m?)

Upwelling short-wave radiation flux (W/m?)

I, girecrv  Downwelling direct short-wave radiation flux (W/m?)
1L dirfuse'J’ Downwelling diffuse short-wave radiation flux (W/m?)

Downwelling short-wave radiation flux (W/m?) adjusted for incidence on sloped surface
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Solar insolation at top of atmosphere (W/m?)

Surface energy balance at air interface (W/m?)

Radiation flux vector, net of downwelling and upwelling components (W/m?)
Nodal or volume element index

Nodal or volume element index relative to flow zone

Nodal or volume element index for atmosphere relative to air/ground interface
Generalized flux

Generalized flux vector, positive upwards

Flux, which may be either convective or diffusive

Plasticity index (fraction of water)

Index for constituents

von Karman constant (0.40)

Thermal conductivity (W/K - m)

Effective thermal conductivity, including effects of vapor diffusion (W/K - m)
Coefficient on T for heat conduction at control volume interface (W/K - m2)
Hydraulic permeability (m?)

Saturation or maximum permeability (mz)

Latent heat of fusion for ice (3.335 x 10% J/kg) (Mellor 1977)

Latent heat of sublimation for ice (2.838 x 10° J/kg at 273.15 K) (Mellor 1977)
Latent heat of evaporation for water (2.505 x 106 J/kg at 273.15K)
Coefficient in linear approximation for se3

Rate of melt (kg/m3 - s)

Rate of sublimation (kg/m? - s)

Rate of evaporation (kg/m?> - 5)

Melt term in fluid flow equation = [m (l - %!-E) — PysAzCR | (kg/m? - 5)
Index of top node or volume element '

Index of top node or volume element in flow region

Index of top node or volume element in atmosphere

Differential pressure between phase j and k (mb or N/m?)

Pressure (mb or N/m?)

Atmospheric or air pressure (mb)

Capillary pressure (mb or N/m?)

Pressure in liquid water (mb or N/m?)

Melt function (kg/m?)

Turbulent Prandil number at neutral stability

Snow load pressure or overburden (N/m?)

Water vapor pressure in air (mb)

Saturation water vapor pressure at T = 0°C (mb)

Saturation water vapor pressure with respect to phase & (mb)

Past net heat fluxes (W/m?)

Stored heat coefficient (W/m? - K)

Elemental absorbed solar heat (W/m?)

Gas constant for water vapor (461.296 J/kg - K)

vii



Bulk Richardson number

Reflectivity in solar insolation routine

Liquid water saturation (fraction of voids filled by liquid water) (m?/m?)

Irreducible or residual liquid water saturation (m3/m?)

Steady-state effective liquid water saturation (m3/m?)

Antecedent liquid water saturation (m3/m?)

Effective liquid water saturation

Estimate of s, obtained from solution to cubic equation

Ratio of average diffuse radiance from the solar and antisolar quadraspheres

Source density or internal production term

Surface vector (m?)

Turbulent Schmidt number at neutral stability

Temperature (K)

Lower temperature limit of melt zone (K)

Upper temperature limit of melt zone (K)

Depression temperature, 273.15 - T (K)

Effective temperature error (K)

Apparent transmissivity in solar insolation routine, which includes forward
scattered component

Transmissivity in solar insolation routine

Mass flux (kg/m? - s)

Mass flux vector, positive upwards (kg/m2 -8)

Mass flux vector, which may be either convective or diffusive (kg/m? - s)

Net mass liquid water flux, averaged over past and current time steps (kg/m?2 - s)

Seepage velocity (m/s)

Seepage velocity vector, positive upwards (m/s)

Volume (m?)

Wind velocity (m/s)

General unknown in linear equation matrix

Distance of nodal midpoint from snow/ground interface (m)

Roughness length (m)

Thickness of snow cover or distance of snow surface from ground interface (m)

Reference height above the surface for wind speed measurement (m)
Reference height above the surface for temperature measurement (m)
Reference height above the surface for relative humidity measurement (m)

Albedo

Albedo of upper layer

Bulk or asymptotic extinction coefficient
Extinction coefficient for near-IR radiation
Extinction coefficient for visible radiation
Bulk density (mass/total volume) (kg/m?)
Kronecker delta

Thickness of volume element (m)

Time step (s)

Minimum time step (5)
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Thickness of thinnest volume element (m)

Control volume, AAz (m?)

Relative azimuthal angle of slope relative to that of sun minus nt (radians)
Emissivity

Exponent on s, for permeability function

Clear-air all-wave bulk emissivity of atmosphere

Clear-air all-wave bulk emissivity of atmosphere with Wachtmann correction
Viscosity coefficient (N - s/m?)

Viscosity coefficient at T=0°C and ¥, =0.0 (N - s/m?)

Fractional volume (m3/m?)

Solar zenith angle (radians)

Wavelength (m)

Dynamic viscosity of water at 0°C (1.787 x 103 N - s/m?)

Intrinsic density (kg/m>)

Density of air at 0°C and 1000 mb (1.276 kg/m3)

Intrinsic density of ice (0.917 x 103 kg/m3)

Intrinsic density of water (1.00 x 103 kg/m3)

Density of snow, including liquid water (kg/m3)

Equilibrium water vapor density with respect to phase & (kg/m?)
Stefan—Boltzmann constant (5.669 x 10~8 W/m? . K#) (Siegal and Howell 1972, p. 738)
Porosity

Aspect angle of slope measured clockwise from north (radians)

Solid porosity (volume between the solids/total volume)

Stability function for the transfer of momentum

Stability function for the transfer of water vapor

Stability function for the transfer of heat

General physical quantity

General quantity in conservation equations

Air

Ice

Generalized coefficient for constituent
Liquid water

Dry soil constituent

Snow

Saturated state

Solid

Total media, snow or soil

Water vapor

Saturated vapor state relative to phase k
Combined liquid and solid water phases
Precipitation

Transfer of water vapor

Transfer of heat

Transfer of momentum

Neutral stability






A One-Dimensional Temperature Model
For a Snmow Cover
Technical Documentation for SNTHERM.89

RACHEL JORDAN

INTRODUCTION

General description of model

This report describes a one-dimensional mass and energy balance model, SNTHERM.89, for
predicting temperature profiles within strata of snow and frozen soil. The model is intended for
seasonal snow covers and addresses conditions found throughout the winter, from initial ground
freezing in the fall to snow ablation in the spring. It is comprehensive in scope, being adaptable to a
full range of meteorological conditions such as snowfall, rainfall, freeze—thaw cycles and transitions
between bare and snow-covered ground. Although surface temperature prediction is the primary
objective, transport of liquid water and water vapor are included as required components in the heat
balance equation, Snow accumulation, ablation, densification and metamorphosis are addressed in the
model, as well as their impact on the optical and thermal properties of the snow cover. The water-
infiltration algorithm assumes gravitational flow and is coupled to the equilibrium temperature in
frozen strata through thermodynamically derived freezing curves. It does not include the effects of
capillary pressure, which are required for an accurate representation of water flow in soil. Water flow
in soil is therefore discounted, and water is artificially drained from the system when infiltration
reaches the snow/ground interface. The model is primarily intended for low-level water flow, and
while it will handle spring runoff conditions, it will not do so as efficiently as hydrological models
developed for that purpose.

A numerical solution is obtained by subdividing snow and soil layers into horizontally infinite
control volumes, each of which is then subject to the governing equations for heat and mass balance,
As a spatial discretization procedure, the control-volume approach of Patankar (1980) is adopted,
which is similar in implementation to a finite-difference scheme. A Crank—Nicolson method is used
for discretizing the time domain, which gives equal weights to past and current time periods. The
diffusive and convective components of the heat and mass fluxes are numerically approximated with
central-difference and upwind schemes, respectively. Governing sets of equations are linearized with
respect to the unknown variables and solved by the tridiagonal-matrix algorithm. The model contains
an adaptive time-step procedure that automatically adjusts between maximum and minimum values
(typically between 900 and 5 s) to achieve the desired accuracy of the solution. This approach is
efficient in terms of computer time, since in most instances quarter-hourly time steps are sufficient,
and smaller steps, associated primarily with melt and water flow, are implemented only as needed. The



overall structure of the model is very flexible, permitting an unlimited number of nodal subdivisions
and material types or layers.

The governing equations are subject to meteorologically determined boundary conditions at the air
interface. Surface fluxes are computed from user-supplied meteorological observations of air
temperature, dew point temperature, wind speed, precipitation and, if available, measured values of
solar and incoming infrared radiation. In lieu of measurements the model provides estimates of
radiation through routines that take into account solar aspect, cloud conditions, albedo and inclination
of the surface (Shapiro 1987). In addition, any of the meteorological values can be estimated by user-
supplied algebraic functions. The model is initialized with profiles of temperature and water content
for the various strata, the accuracy of which determines the time required for the simulation to
equilibrate after initiation of the computer run. Physical characteristics for the selected strata are either
entered by the user or are supplied from internal data bases, currently provided for snow, sandand clay.

Background

The original objective for the one-dimensional snow model was to predict the temperature
difference AT between the surfaces of tank tracks and undisturbed snow. The earliest version (Jordan
et al. 1986) was restricted to homogeneous dry snow and permitted only three nodal subdivisions of
the snow cover. Evenin this simplified state, comparison of model predictions with field observations
indicated promise for the approach. Animproved and expanded version, SNTHERM.87, incorporated
phase change, permitted vertical inhomogeneity in snow cover characteristics, and relaxed the
restriction on the number of nodes. Field-test verification over a temperature range of —35 to 0°C
showed the model capable of predicting the AT of tank tracks with an accuracy of +1°C (Jordan et al.
1989). SNTHERM.89 marks a major extension to the model, incorporating the mass balance features
described in the preceding paragraphs and addressing metamorphism of the snow pack. Water flow
is limited to snow, for which an appropriate gravity flow algorithm is used. An expanded model,
SNTHERM2, which is currently in production, includes capillary flow in soil, redistribution of water
towards a freezing front, ponding, saturated flow and a two-stream radiative transfer algorithm for
computing albedo and solar absorption. The present version, SNTHERM.89, which has been released
as an interim model, contains material still under development, as noted in the subsequent discussion.
The purpose of this report is to provide technical documentation in support of the limited distribution
of the SNTHERM.89 code. An expanded and more in-depth publication (Jordan, in prep.) will
accompany the release of SNTHERM?2.

Early development of the CRREL model drew extensively from the thorough and definitive study
of Anderson (1976). Later versions have employed the mixture theory approach espoused by Morris
and Godfrey (1979) and Morris (1987), which has recently been given a rigorous theoretical
framework by Morland et al. (1990). The treatment of water flow within the snow pack is taken from
Colbeck (1971, 1972, 1976, 1979).

Outline of the report

The outline of this report is as follows. The next section provides a general description of porous
media and sets forth the basic mixture theory and terminology that are used in the model. The following
section is devoted to aspects of mass balance, first establishing the basic numerical approach and then
developing the continuity and fluid flow equations. Also included in this section are discussions of
snowfall accumulation, snow cover compaction and grain growth. The energy-balance equation and
phase-change algorithm are then presented, along with the related issues of solar extinction in snow,
turbulent exchange across the air interface, and estimation of radiation fluxes, The last major section
is devoted to the numerical implementation of the conservation equations and to a description of the
overall structure of the model. The remaining shorter sections present examples of model verification
and the concluding remarks.



BASIC DEFINITIONS

Snow and soil are examples of porous media, which are characterized by a solid, immobile matrix
and an interstitial system of more or less evenly distributed voids. They are mathematically described
here by mixture theory, which takes into account the constituent mix of the material and the interfacial
relationships among the phases, In the case of snow the matrix is composed of ice, and in soil, of the
dry solids, In contrast to snow the ice component of frozen soil is considered to be mobile and detached
from the supporting matrix. The void space in snow or soil is completely occupied by an immiscible
mixture of fluids, composed of air, liquid water and mobile ice. Air is further subdivided into miscible
dry and moist components. Whereas dry air is relatively inactive in the thermal process, water vapor
consumes an appreciable amount of heat upon sublimation and is considered as a separate component.
Dry air, the dry soil solids and the three phases of water will therefore constitute the mixture under
study. At this stage of development, contaminants are not taken into account. Within the snow or soil
medium, all five constituents are assumed to be in local thermal equilibrium, and in the limit of a one-
dimensional study the medium is considered to be horizontally homogeneous.

With the objective of a unified approach adaptable to either medium, the simplified mixture theory
presented here can be applied to soil or snow. On a spatial scale of centimeters, the media approach
acontinuum and can be described by bulk properties. Using the terminology of mixture theory (Morris
1987, Morland et al. 1990), the partial or bulk density ¥y, is introduced to denote the mass of constituent
k per unit volume of medium, where the subscriptk becomes v, £, i, a or d for water vapor, liquid water,
ice, air or the dry soil solids, respectively. Intrinsic density p, is defined as the mass of constituent k
per unit yolume of constituent k and is related to bulk density as

Yk=OkPk (N

where 6, is the volume fraction or partial volume (m¥m?) of constituent k, and Y, and p, are in kg/m3.
Taken over the five possible constituents in the medium, the sum of the volume fractions is unity, or

> 6=1. (2)
3

The sum of the constituent bulk densities is the density p, of the total medium, written as

Pt=2 Okpx=2 Tk - (3)
k K

Since the mass of air is less than 1% of the snow mixture, the density of snow p, and the bulk density
of the combined liquid water and ice constituents (y,,=Y,+7;) are nearly equal in magnitude and will
often be referred to interchangeably. Because mixture theory is consistently applied in the develop-
ment of the model, the mathematical structure is very flexible. By changing the specified volume
fractions or volumetric mix, it is possible to simulate a variety of terrain features, such as ice fields,
lakes and pavements, as well as snow and soil, with the same basic set of equations.

Porosity ¢ is a measure of the space within a medium available to fluids and is defined as the ratio
of the pore volume to the total volume (m?/m?), Since the supporting matrices of snow and soil are
made up of ice and dry solids, the porosities of these two materials are defined as

¢=1—ei=1—% (4a)
L §
for snow and

¢=t—ed=1-’£_j (4b)



Unit Volume Unit Volume
of Snow of Soil

Dry Air
Ve Water Vapor 82,08y =05—50
Dry Air
4 6a,0y =55k ¢4

9, ¢‘d‘ﬁ Water Vapor

Liquid Water | 8, =s¢

lce 8 i

Liquid Water | 8, =s¢

Dry Solids
Ice 8 =1-6 Bg=1-6

Figure 1. Fractional volume relationships in snow and soil. The air portion includes dry
and wet (water vapor) components.

forsoil. Analternative quantity, termed the “solid” porosity ¢, (where the subscript sd refers to solid),
will be used to refer to voids between the solids (ice plus dry solids) and is written as

o O - P |
Pag =1 Pi Pa’ )
In practice, only the interconnected pore space is available to fluid flow, which is not accounted for
in the preceding definitions.
Volume fractions 6, can be expressed in terms of the porosity and the liquid saturation s, where the
latter is defined as the volume of liquid water per unit volume of voids (m3/m3). The following
frequently used relationships, noted here for reference, are illustrated in Figure 1:

0; =1~ ¢ (for snow)

93 =S¢ (6)
0a=05g—50
Oy =@sa—s9.

MASS AND MOMENTUM BALANCE

General theory and numerical method

Heat and fluid flow within porous media are governed by conservation equations for mass,
momentum and energy. Within a finite control volume AV, the time rate of change in these quantities
must equal their net flow across the bounding surface dS, plus their rate of internal production. Using
the control-volume method espoused by Patankar (1980, p. 30-31), the equations are formulated here
in integral form, subject to assumed profiles for the physical quantities within AV. This method lends
itself to direct physical interpretation, in that quantities are in theory conserved over AV rather than at
an infinitesimal point as with a finite-difference scheme.

The numerical solution is obtained by subdividing the snow and underlying soil into  horizontally
infinite plane-parallel control volumes of area A and variable thickness Az, as shown in Figure 2.
Contrary to usual practice, these are indexed in ascending order from the bottom up, which permits



Elementn g — i .

Elementj + 1 . Snow

Element | . Az ?

Element | —1 . _J_

Element 1

Figure 2. Finite-difference grid.

the accumulation or ablation of snow at the top of the snow cover without renumbering the elements.
Generally speaking, the grid is constructed so that volume boundaries correspond to the natural
layering of the snow cover, which assures that assumptions of nodal homogeneity are realistically met.
As snow compacts over time, the grid is allowed to compress, so that the volume elements continue
to correspond with the original sample of snow. Thus the parameter z is not strictly a spatial coordinate
but rather specifies the nodal position relative to the snow/soil interface. The velocity of the fluxes is
taken with respect to the deforming grid and is positive in the upward direction.

In accordance with the control volume approach, conservation equations are expressed in integral
form as

ilYkﬂdV=-):JJ-dS+J§ax7 (7)
or Jy k Js v

time rate fluxes source

of change term
where k =i,£,vanda

Q = quantity being conserved

J = flux

S = source density.

The overbars indicate a temporal average over the time step (Ar). Based on assumed profiles for the
various physical quantities, the integrals are then evaluated over the control volume (AV = AAz). If
physical quantities are taken as stepwise-homogeneous, the mean and nodal values of ) are the same
and the control volume formulation reduces to the more commonly used finite-difference method
(Smith 1978, Albert 1983). The terms “‘element,” “‘node” and ““control volume” will henceforth be used
interchangeably but in a strictest sense refer to the control volume. As in any finite description, the
approximate solution must converge to the actual solution as the grid spacing becomes sufficiently
small.
If Q, v, and S are homogeneous over AV, eq 7 integrates to



aiykmz = _Z[J'“%_ 7Y 4 5a7 (8)
t k

time rate fluxes source

of change term

where j = nodal index

k =i, f,vanda
i +i = index referring to the upper bounding surface of the control volume.
J ~2 = index referring to the lower bounding surface of the control volume.

Note that the elemental thickness Az is left within the derivative. The quantity Y, Az (kg/m?) will
henceforth be referred to as a mass, although it is actually normalized per unit area. The asterisk on
the flux term J* indicates that it may be either convective or diffusive or a combination of both
processes. Within the temporal domain a Crank—Nicolson weighting scheme is used, which implies
that quantities vary linearly with time over Ar. The temporal average for any quantity % is therefore
expressed as

X =05 [x1-ar 4 x1] ©

where ' and are the past and current values. Henceforth, an overbar indicates an average as stated
ineq9. The iterative time step ranges between user-specified maximum and minimum values (usually
900 and 5 s) and is adjusted automatically by the program so that the desired solution accuracy is met,
as discussed later. If we assume that liquid water is dragged along by the compacting ice matrix, the
partial masses of the ice and liquid water constituents are conserved during compression, so that for
anincremental change in time, (Y, Az)" = (¥, Az)*"2". The densities of water vapor and dry air, however,
remain invariant during matrix deformation. A portion of gas is expelled from the contracting volume,
which must be taken into account when defining the fluxes for these constituents.

Inevaluating the surface integral for the fluxes, it is assumed that the profile of Qis piecewise-linear
foradiffusive—conductive process and stepwise for a convective process. The formerleads to a central
difference scheme of the form (Smith 1978, Albert 1983)

e, il i1
net conductive—diffusive flux = [J-“L—.!J’%] = [(Daaﬂ J+1—(Da§z— ? 3] (10)
2 2

where D is a diffusion coefficient. The latter leads to an upwind scheme (Patankar 1980), written as

net convective flux = [J7+1 - 77| = [(UQ)i*! - (UQ)/] (1

in which U is a mass flux. Conductive—diffusive fluxes at the control volume boundaries are denoted
by JJ+3 and 7/ -7 (with the asterisk omitted), and convective fluxes by JJ*! and J/. In the latter
scheme the flux has the value of the upwind element, which makes it an appropriate method when
gravitational flow dominates, as is generally the case with water flow through snow.

Equations for mass balance

Fora given time step, solutions to the mass and energy balance equations are obtained sequentially,
with the fluid flows being determined first and subsequently coupled to the energy equation. The mass
balance equations apply simultaneously to the total medium and the individual constituents. Inintegral
form the mass conservation equation for the medium is expressed as



_3_[ PV =—ZJUE-|:IS (12)
at v k Js

wherek =1, £, vandaand Uy represents mass fluxes corresponding to flows of falling snow or ice,
liquid water, water vapor and air, defined as

Uk =PxBkVik = YkVk (13)

where v, is the seepage velocity vector (m/s) and the asterisk indicates that the flux may be either
diffusive or convective. All quantities, including the total density p, and the control volume AV, are
assumed to vary with time. Similarly, conservation equations can be written for each of the water
phases as

ot |y ]s K Jv

where k, k" =1, £ and v and for dry air as

—a-I YadV = -[ Ui ds - (14b)
ot v s

The variable Sk,k is the Kronecker delta, the source terms M, M ; and M., denote the mass rates of
melt, sublimation and evaporation (kg/m*s), and

Myp=-Myy. (15)

At this stage in model development, the soil matrix is taken as immobile and incompressible and
therefore does not require a constituent equation. Air is assumed to be incompressible, stagnant and
at atmospheric pressure throughout the pore space. For this version of the model, its effect on water
flow is not considered. Furthermore, since only latent heat changes are retained for the gaseous
constituents, mass changes in dry air are henceforth neglected. If flows are constrained to the vertical
direction and the bulk densities and source terms are assumed to be constant over AV, eq 12 and 14
become

Ay =-3(ug vy 3
ot k

wherek =i, £ and v, and

2 s = (o R up ) 4 3 M A (T-8) (16)
14 K’

wherek, k’ =i, £ and v. Although the assumption of negligible free convection of air seems reasonable
for a seasonal snow cover, there are indications of enhanced thermal conductivity at the top of the
snowpack during moderate to high winds. The effects of forced convection due to windpumping on
heat transfer within snow warrants further investigation (Colbeck 1989).



Ignoring the convective flux for water vapor and taking into account vapor expelled from the
contracting control volume, we can write the continuity equation for water vapor as*

i + 1 =&
a?vAz =) ﬁv BBvAz = (DgQP."_J Bian (‘De ’a_‘-)-&)"‘ 2 + Mvi Az +MV£AZ (17)
ot ot 0z 0z
expulsion vapor diffusive vapor sources
flux flux and sinks

where D, is an effective diffusion coefficient (m?/s). Water vapor within the pores is assumed to be
at equilibrium with respect to water if the liquid water content exceeds the arbitrary level of 0.02, and
otherwise to be at equilibrium with respect to ice, giving

Yv=6,Py = evfrh pvk,sal (18)

where k=1if 6,<0.02 and k = £if 6,> 0.02, and the subscript vk,sat refers to vapor saturation with
respect to water orice. The fractional humidity f;;, is assumed constant over the simulation and is taken
as 1.0 for snow and as < 1.0 for soil. In order that equilibrium levels be maintained, continuity requires
that vapor flows across the control volume boundaries be compensated by phase gains and losses
within the medium. Applying the chain rule, we can rewrite the time and spatial partial derivatives of
the vapor density as

9Py, sat aT ap T
vkt _ o 90 apd “hvksat _ ¢ oI (19)
ot x> ot oz = dz

where k =i if 8, < 0.02 and k = £ if 6, > 0.02. The variation of equilibrium vapor density with
temperature C, is expressed as

L
ap it TE —k—)
=_rvkst - Cik | _“vk _.
Cyr 3T p= [R“J" l]e (R“,T (20)
where k =1iif 8,<0.02
k = £if6,>0.02

L,, = latent heat of evaporation for water (2.505 x 105 J/kg)
L,; = latent heat of sublimation for ice (2.838 x 106 J/kg)
R,, = gas constant for water vapor (461.296 J/kg-K)

ks
ol; = Ewom® ““'T“) = 5.726 x 108 kg/m3 K
Rw
=0
gl I "‘1;?*" RuTol _ 8047 109 kg/m3K
w

Posa = saturation vapor pressure at T, =273.15K (6.1360 mb).

Now, if the mass vapor flux U, (kglm‘z-s) is defined as (Anderson 1976.1' Farouki 1981)

*The diffusive vapor flux in snow is customarily taken as independent of porosity, which is generally a
consequence of the “hand-to-hand” process of vapor diffusion.

TThe exponential power on temperature in eq 21 was determined through a curve fit to the data of Yen (1963)
and Yoshida (1950), where the mean values were D, = 0.65 x 10~* m?/s and T'=-15.4°C, and D, = 0.8 x 10~
m?/s and T = —4°C, respectively. Further investigation of this temperature relationship is needed.
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ar 6~ dT
U, =-D,.Cer T =D, (1000)(_T_)°c, 2T 1)
bl ™ em( Py (273.15 b

for snow and
U, == D fCr L =D, (m)(_r_ N
oz P, 1\273.15 9z

for soil

where P, = atmospheric pressure (mb)
D, and D, = effective diffusion coefficients for snow and soil

Do, and De()g = effective diffusion coefficients at 1000 mb and 0°C

then the media and constituent continuity equations for the interior elements are written as*

R 7 N T @)
for the total media,

2 (1182) = - Mz - Mz 23)
for ice,

;—I(Yz Az) =—(U,""’—U{)+MﬁAz—Mqu (24)

for liquid water and

e e R N e
I

for water vapor, where M, ,=0if 8,<0.02 and M ;= 0if 6,> 0.02, and U, without the asterisk, refers
to diffusive—conductive or convective mass fluxes as noted earlier for the generalized fluxes J (eq 10
and 11). As discussed later, gravitational flow is assumed in describing the movement of water through
snow, and an upwind scheme is used for U,. Snowfall has been omitted from eq 23, since it is
constrained to the top node, as discussed in the section on boundary conditions for mass and
momentum flow.

Snow compaction and granular growth rate

Immediately upon reaching the ground, snow begins a process of rapid change in which individual
snowflakes quickly lose their original shape and metamorphose into more rounded forms. Branched
crystals break down, either through the mechanical forces of wind or through thermodynamic stress,
sothat settling or grain packing of the snow pack occurs. As snow accumulates, the weight of overlying
snow results in a further, more sustained, compaction of the snow cover. Stress from the overburden

* In the SNTHERM. 89 version, mass changes due to vapor diffusion in soil have been tlemporarily disallowed
except for the top element. Evaporation from the top node is not permitted when the water content reaches the
irreducible saturation limit for that soil type.



leads to an increased rate of bond growth, which in turn results in grain shapes that pack more
efficiently (Colbeck 1973). The greatest changes occur immediately after snow has fallen, when, on
average, density increases at 1% per hour (Gunn 1965, as reported in Anderson 1976). This rate
increases by at least an order of magnitude for intense snowfalls of soft snow (Mellor 1977) or when
there are strong winds. Under blizzard conditions with winds over 17 m/s, the density of new snow
has been found to increase from 45 to 230 kg/m? within a 24-hour period (Gray 1979).

Following the approach of Anderson (1976, p. 36-39, 82-83), the snow compaction process will
be considered in two stages. For newer snow with densities of less than 150 kg/m?, settling due to
destructive metamorphism is important. New snow has a certain structural strength due to “cogging”
between the crystal branches, which gives way as metamorphism proceeds (deQuervain 1963).
Anderson proposed the following empirical function for compaction at this stage:

hL @i = -2778 x 10 x 3 x c4 x ¢004(273.15- T) (26)
z 9t | metamorphism
where ¢3 =c4=1 if y, = Oand ¥, < 150 kg/m?

3 = expl~0-046 (1;-150)] if y, > 150 kg/m?

4 =2 ify, >0.

Note that eq 26 predicts a deformation rate of 1% per hour for snow densities less than 150 kg/m> and
has an enhancement factor of two for wet snow.

After snow has undergone its initial settling stage, densification proceeds at a slower rate, which
is largely determined by the snow load or overburden. In the low stress range associated with seasonal
snow covers, the deformation rate is a linear function of the snow load pressure P, such that

~

Ag: 2
n 27

[_1_ 3_63.]
Az Ot Joverburden

where P, is in N/m?and 1 is a viscosity coefficient (N- s/m?) that varies with density, temperature and
grain type. The viscosity coefficient, which increases exponentially as the load pressure and snow
density come into hydrostatic equilibrium, has been found by observation to take the form (Mellor
1964, Kojima 1967, as reported by Anderson)

N =1 ec273.15- T) ectpg (28)

where 1, is the viscosity coefficient at T = 273.15 K and p = 0. By substituting into eq 27, we can
express the compaction rate for snow of density p, subject to a load pressure P, as

[_1_ a(Az)] = =Ps o—<5(273.15- T) g—6ps (29)
Az 9t overburden Mo

Based on reported measurements by Mellor and Kojima, Anderson suggested values for the
parameters of 1) = 3.6 X 105 N- s/m?, c5 = 0.08 K~! and c6 = 0.021 m*/kg. Equations 26 and 29 are
combined to obtain a total fractional compaction rate CR of

(30)

CR !———:—[__._] _[L&Az]
Az o Az ot metamorphism Az ot overburden

Substitution of this function into the continuity equation (eq 22) provides an expression for the overall
densification of the snow cover:
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Inaddition to the effects of compaction, eq 31 takes into account grain growth due to vapor movement
(constructive metamorphism) and densification from water flow. Anderson has verified his densifi-
cation algorithm with snow observations from five winter seasons, and it shows excellent agreement
between theory and measurements (Anderson 1976, p. 88-93). His settling function does not take into
account the effects of wind, which would be a beneficial refinement for the future.

Grain size is a critical variable in both the mass and energy balance equations, in that it affects
(among other things) the permeability of snow to fluid flow and the extinction coefficient for solar
radiation. Stephenson (1967, reported in Wiscombe and Warren 1980) proposed graindiameters in the
range of 0.04—0.2 mm for new snow, 0.2-0.6 mm for fine-grained older snow and 2.0-3.0 mm for older
snow near 0°C. The processes of crystal growth within a snow cover are complex and subject to debate,
although work by Colbeck (1982, 1983a, 1983b and 1987) and Gubler (1985) have advanced
understanding in the area.

Within dry snow, grain growth is generally a result of the upward moving “hand-to-hand" vapor
flux, in which vapor condenses on the bottom and evaporates from the top of snow grains (Yoshida
1963). Since the vapor pressure is higher for smaller particles, they tend to be consumed or
cannibalized by larger particles (Colbeck 1973), leading to an overall upward shift in the particle size
distribution with time. A theoretically based thermodynamic growth function is beyond the current
scope of this study but will be addressed in a subsequent version of the model. Based on observations
of grain growth metamorphism in Antarctica, Stephenson (1967) and Gow (1969) (as reported in
Wiscombe and Warren 1981) have had success with a function that is used to predict growth by
sintering in metals and ceramics:

d 3—‘1 =a e—(bfT ) (32)
s

where d = mean grain diameter (m)
T = temperature (K)
a, b = adjustable variables.

I propose for use here, as an interim formulation, a simple function of the form

2 _ gl _ el p, (1000)(_T_fc,r
ot d d Py J\273.15

a]

where the mass vapor flux U, (kg/m? . s) provides the necessary vapor source for growth and the
inverse relation 1.0/d is in agreement with the observed slowing of the growth rate with increased
particle size. Further refinement of the relationship is needed, but preliminary comparison with data
suggests a value on the orderof 5.0x 10~" m*/kg forthe adjustable variable g 1. Because of the inherent
temperature relationships in the diffusion function, eq 33 predicts an increased growth rate at higher
temperatures and higher thermal gradients. For a snow temperature of —~2°C and a thermal gradient of
10°C/m, the predicted size of a 0.5-mm particle after 30 days is approximately 1 mm. Note that the
vapor flux as it is used here assumes a purely diffusive process, as defined in eq 21, and that eq 33 is
not appropriate when a convective component is present.

Within wet snow, there is a marked increase in grain growth for “even small quantities of water”
(Colbeck 1982), which increases even further for water saturations in the funicular regime. The

1



equilibrium fusion temperature is higher for larger particles than for smaller particles, so that growth
of larger grains in the distribution is fed by meltwater from the disappearing smaller grains. A similar
growth function is proposed to that for dry snow:

. o (e, ) (34a)
when 0.00 < 6,<0.09 and

od _ g2

22 =84 (0.14 34b

ot d g )

when 6,2 0.09, where g2 is an adjustable variable and the growth rate increases with the liquid water
fraction up to the start of the funicular regime at s = 0.14. Observations of the particle size distributions
inliquid-saturated snow have been made by Wakahama (1965, reported in Colbeck 1982 and Colbeck
1986), who reported increases in mean grain size from about 0.3 to 0.8 mm in six days, and from 0.21
to 1.78 mmin 1028 hours, respectively. Foraliquid volume fraction of 0.09, an approximate fit to these
data provides a value of 4.0 x 10~'2 m%s for g2.*

Momentum balance and fluid flow

The movement of fluids through a porous medium results from the combined action of gravita-
tional, viscous and surface stress or pressure forces. In accordance with Newton’s second law for
continuous media, the rate of change in momentum within the control volume equals the net flux across
its bounding surface plus the resultant force on the fluid plus the momentum generated through phase
change. Within snow or soil media, flow of both the water and air phases is present, although only the
water phase will be considered here. The integral momentum equation for an isotropic medium and
a Newtonian fluid undergoing negligible divergence can be written as

ij YevedV + JU;VZ-dS =~93JPgi - dS
a Jy s s

inertial convection pressure
term
2 :
X (—'ng +_°t“t"!)dv + (Meiv’+v‘ —Mvzv""'v‘)dV (35)

K, v 2 2

4

gravity viscous phase change
stress

where g = gravitational vector, positive downwards (m/s?)
P, = intrinsic pressure (N/m?)
M, = dynamic viscosity (N's/m?2)
K, = hydraulic permeability (m?)
i = unit vector (m).

* Values for g1 and g2 are preliminary and need to be evaluated with further field data.

T The presentation here of the momentum equation is simplified and does not contain a complete description of
the interactive forces between the constituents. For a more thorough treatment, see the papers of Morris (1987)
and Morland et al. (1990).
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The seepage velocity vector v, is in effect an average over the point velocities of the fluid particles
within the medium. Again the problem is reduced to that of one-dimensional vertical flow, and‘yk,Mjk,
6,, K, and v, are taken as constant over Az. Integrating over the control volume AAz and employing
the divergence theorem to convert the surface integral in the pressure term to a volume integral, we
can write eq 35 as

J‘+l j-% i+1 =1
i 2‘.4.\7,("! -y} z) =_(P;' _sz 1)-9,3-9”"
ot Az Az K,
_ 1 [Myi(ve—vi)+ My (vo = vi)] ] (36)
2 6

The left-hand terms have been simplified by applying the product rule:

2 (sevets)+ v - -

% [ai (yeaz)+ U, *3 - U:f‘i] +72 [Z\? a_a".t + 7 'v: *%_v;"ﬂ] 37
t t

where by using the continuity equation for liquid water (eq 24), the first term of the right in eq 37 equals
v (M tidz—-M,, Az). If we assume that the inertial, convective and phase change terms are small
(Corey 1977, p. 76, Morris 1987, p. 191-192) and that the air is at atmospheric pressure, eq 36 for the
water phase simplifies to

49 g2
K l_p 2
Ovy=-gt p,g-[fx_z_z_g_)] (38)

which is in the form of the empirically derived Darcy equation, in which water pressure is expressed
in terms of the capillary pressure, p,, =P,~P,. Furthermore, since capillary forces within snow are
usually two to three orders of magnitude less than those of gravity (Colbeck 1971, p. 3), the equation
for the mass water flux in snow reduces to the gravitational form*

K
Uy =P8, = 'th e (39)

which is discretized by the upwind scheme as presented ineq 11.
Hydraulic permeability is a measure of the ease and rate at which water is transmitted by a medium
and is generally expressed in terms of the effective liquid saturation s,, which is defined as

L (40)

1-5

where s, is the irreducible water saturation, or the minimum liquid level to which a snow cover can be

* As Colbeck points out (1971, p. 3 and 13), the assumption that 9P /0z is small is not valid at a shock front.
Subsequent versions of the model will retain the capillary term.
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drained regardless of the imposed suction (Colbeck 1972). For estimating K, the formula of Brooks
and Corey (1964) is used:

Ky =K o s¢ (41)

where the exponent € depends on the pore size distribution, and K (m?)is the saturation permeabil-
ity, approximated from the relationship of Shimizu (1970), as

Kmax = 0.077 d2el-00B) (42)

Based on field data of water flow through a ripe snowpack, Colbeck and Anderson (1982) suggested
a value of 3 for . Expressing the saturation s in terms of s,

s =se(l-57) + 8¢ (43)

and noting that y, =p,s¢, we can express the change in liquid water mass dy,Az/or as

ovedz) _ o As0Az) _o (1) 4az e 4 p,5 29AZ (44)
ot ot ot ot

Discounting sublimation changes, the continuity equation for ice (eq 23) gives the following
relationship for the change in porosity of snow:

a(q)ﬂz) =MﬁAZ + dAz -

45
ot Pi ot )

Now substituting into the continuity equation for water (eq 24) and employing the upwind scheme for
U,, we can write the final form of the fluid flow equation as*

— 2 i e
pl(l"sr]mz %& 3 Eflt_g[(Kmaxscs)JH_ (Kmaxsé;)j]
/3

+ MpAz (1-&3) ~p,5 9%z (46)
Pi ot

Since the residual saturation deficit must be satisfied prior to the advancement of the water front,
the parameter s, is critical in determining the infiltration rate and the equilibrium liquid water content.
Based on a drainage curve of kerosene and snow, Colbeck (1974b) suggested a value of 5. =0.07. A
compendium of data from different researchers using various procedures (Kattelmann 1986) shows
abroad range from 0.0 to 0.4 for the irreducible water content 8, = s, ¢, with most values lying between
0.01 and 0.05. For a snow of density 250 kg/m? the porosity is 72%, and s, correspondingly lies
between 0.014 and 0.069. Although higher values of 6, are generally associated with newer snow,
Kattelmann found that only 20% of the snowpack was wetted 12 hours after application of water to
the surface, so that during the initial stages of infiltration the effective residual water content may be
comparatively low. A tentative value of s, = 0.04 is used in the model, which is subject to revision

pending further study and analysis of field data.
The fluid flow model just presented assumes horizontal homogeneity in the snow cover. Seasonal
snow covers that are undergoing freeze—thaw cycles or that are subject to strong winds develop crusts

* The evaporation term has been omitted here but will be included in the next version of the model.
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and icelayers, which complicate the flow pattern. Perforations arise in the crusts through which fingers
of water flow at a much faster rate than through the crust itself (Colbeck 1979). Field observations by
Marsh and Woo (1984a) of runoff rates from ripe snow in the Canadian Arctic show that almost half
the daily flow can be carried by fingers or flow channels that move ahead of the background front. The
same authors have developed a simulation model that incorporates the phenomenon of fingering
(Marsh and Woo 1984b). In addition to addressing the concerns of capillary flow at the water front and
amore accurate determination of s, anenhanced version of the fluid flow model presented here should
include the effects of fingering and of ponding above ice lenses.

Boundary conditions for
mass and momentum balance

Mass fluxes of the three water phases across the air/snow interface consist of rainfall, snowfall and
the turbulent exchange of water vapor. Velocities are taken with respect to the moving top boundary,
In the case of snowfall or water ponding on a frozen or otherwise impermeable surface, mass flows
result in a thickening of the top element by an amount

9Az _ fallrate _ CR Az @7
ot 3600

where the term CR is the compaction rate (eq 30), and fallrate represents hourly accumulation (m/hr).
The mass precipitation flux Up inkg/m? - s is given by

o = U™ = _y, fallrate (48)
3600

where the precipitation density v, is 1000 kg/m? forrain, and from 20 to 200 kg/m? for snow, depending
upon wind, crystal type and water content. For dry snow a representative value of 80 kg/m? is
suggested. Accumulation is added in elemental increments of Az, , which defaults to values of 4 cm
for snow and 1 cm for ponding rain. At the beginning of a precipitation event, or when an element is
full, the time step is automatically reduced to a minimum level, which is usually set at 5 s. In addition,
At is constrained to be sufficiently small so that an element is not totally filled within one iteration. In
the case of snowfall the top node is subdivided in a ratio of 1/3 to 2/3 once precipitation stops, subject
to a minimum elemental thickness of 2 mm.
When substituted into eq 2225, the mass balance equations for the top node n become

aa—r(ptAz) =Py, satfen w = s (Up“ Uf)

U

o
+ E‘E'fﬂ (Py, air— finPok.sat) + Uy 2 (49)
vk

for the total media,

% (vidz) =={1~frp) Up — MpiAz - My; Az
for snowfall,
53;(7, Az) = —Tpp Up+ UF + MyAz — My Az

for liquid water and
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—p 1
(Psa—s0)Az finCr aa_i: o EFT-EEW' (Py,air— fn Pk, sat) + Uy 2 + My; Az + My Az
vk

for water vapor, where

w = wind speed at a given height above the surface (m/s)
P‘,_m water vapor pressure in air at a given height above the interface (mb)
Py sa = saturation water vapor pressure with respect to phase k (mb)
ftp = fractional mass liquid content of the precipitation
Ep, = windless exchange coefficient for latent heat (W/m%mb)
Eg = exchange coefficient for latent heat (J/mb - m3)

and the exchange coefficients for latent heat are described later. The fluid flow equation for the top
node is

=3 — P n Py = - 9A
Pe(1- ‘)Mz'gf s Tl = _ﬁf_(xmsg] + Mphz (“T’f s)—pgs —ét—z . (50)
ENERGY BALANCE
Energy equation

Analogous to the conservation equations for mass and momentum, the conservation of energy
stipulates that the time rate of change in stored energy within volume AV equals the net energy flux
across the volume surface dS. The terminology “‘energy balance” in effect describes a “heat balance,”
since other sources of energy (such as macrokinetic, chemical and viscous dissipation) are of alower
order and are customarily discounted. The amount of heat associated with a unit of mass at temperature
T relative to a reference level T, is expressed in terms of its specific enthalpy A, (J/kg), which for an
isobaric system is the heat required to raise or lower the temperature to T from T},. If the fusion point
of water (T = 273.15 K) is chosen for T, the general expression for specific enthalpy becomes

T
h =] e(T)dr + L (51)
273.15

where ¢ (J/kg-K) and L (J/kg) are the specific and latent heats, respectively. Neglecting sensible heat
effects for the water vapor, the specific enthalpies for the constituents h,_are

h = c,(T-273.15)

hy = c,(T—-273.15) + L, (52)
by =Ly

hd = cd (T— 273.15).

Expressing the conductive flux by Fourier’s law, where k, is the thermal conductivity of the medium
(W/mK), and denoting the radiative flux as I (W/m?), yields the following form of the energy
equation:

9| phyav =-3 | Ughy- a8 + | k,VT-dS + [ 1x-ds (53)
ot |, k Js s s
mass flux conduction radiative
flux
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where k =i, £ and v. The radiative flux here is defined as positive downwards and is the net of the
downwelling and upwelling components, The first term on the right in eq 53 represents the transport
of enthalpy through the mass flows of liquid water (U,), water vapor (U,) and falling dry snow or ice
(U,), where the latter is constrained to the top node. Substituting eq 21 for the vapor flux and making
the usual assumptions of vertical flow and nodal homogeneity, we can write eq 53 as

= R A -
;—f (Pehy Az)— Py, sar fin (*B—;'*’) =~ [(Uh,)I*' = (Uyhy) ]
rate of change in stored heat water flow

4l ol
+ (hvueck.ra_T)”u(thecﬂ?I.‘ 2
0z oz

diffusive vapor flux

1 j-1 7
+ (ktaT “‘-(k,g_“ 4 (1Y), (54)

dz z
conduction radiative
flux

As discussed later, it is assumed that only the short-wave radiation /, penetrates beyond the top node.
Air constitutes less that 1% of the total mass and, with the exception of the latent heat effects of water
vapor, is omitted from the heat balance calculations. Together with the fluid flow and continuity
equations (eq 46 and 22-25), the energy equation (eq 54) forms a closed set from which temperature,
mass and phase changes may be computed.

Evaluation of eq 54 is facilitated by the use of bulk thermal properties to characterize the snow—
soil mixture. Thus a combined specific heat ¢, and combined specific enthalpy h, for the total medium
are defined in terms of the mass fractions y,/p, of the constituent phases, as

=LY yeee = L (vaca+ vici+ ve©) (55)
Peg Pt
and
T
hy=-LY Yeodl | + LuLl + L, 1y (56)
P g P Py
273.15

where k =i,fandd
¢; = specific heat of ice (J/kg-K) =-13.3 + 7.80 T (K)
c, = specific heat of water (4217.7 J/kgK)
¢4 = specific heat of the dry soil (J/kg-K)
L,; = latent heat of fusion for ice (3.335 x 10° J/kg)
L,; = latent heat of sublimation for ice (2.838 x 10 J/kg).

Employing the bulk enthalpy definition (eq 56), we can write the first term in eq 54 as

T

g—r(P:":M] = g; % I YkCxAzdT | + Lﬁ@+‘wi$ . (57)
273.15
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Now expressing the bulk densities of ice and liquid water in terms of the unfrozen mass fraction, fpas

¥ = (l_f!)Yw
and

Ye = feYw (58)
where Y, =, +7,;, and differentiating under the integral, leads to the further simplification of

/
9 (pehiA?) = prcpz 9L + —(YwAz) cudl +Ly20e82) g 3vehz) (s
ot ot ot ot

273.15

in which ¢, =f,c, + (1 - f,)c;, and where the rate of change in water mass [0(y,,Az)/d] equals the net
water flux (eq 23 and 24),* or

;’—I(vwm) =-[t]"_u]) . (60)

If the bulk vapor density is expressed as ¥, =£;;,0,p,, s, the term (Y, Az)/dt in eq 59 can be specified
in terms of the variation in saturation vapor density with temperature (C\ 1) and the volume fraction
©, = ¢gq —s9) as

+ @wa-50)2z fm Cnaa‘”

gr_ (Tv AZ) =aa_r(frhev Pk, salAz] = Pysat frh (61)

a:

Now using eq 59-61 and substituting the enthalpy expressions into the flux terms, we can write eq 54
as

T
[Pecidz + Ly; (bsa— 50)Az frn Ckﬂ%% -(U{“ = Ui) J codT + €;273.15 - Ly;

273.15

+ina—ygﬁ [(UtTJ)’“ (U,T, ( aT)j 3 ( E)T)J 2+L"’+ -1)": ) (62)
t

wherek =1iif 6,<0.02 and k = £ if 6, > 0.02. Heat transport through conduction and vapor diffusion
have been combined through use of an effective thermal conductivity, k, =k, +L.;D Cyr (W/K - m),
in which the thermal conductivity of soil is computed from the algorithm of Johansen (as reported by
Farouki 1981), and the thermal conductivity of snow £, is estimated as

= ka+(7.75x 105 ¥4 + 1.105 x 105 ¥ (ki - ky) . (63)
In this relationship the conductivities of air k, and ice k; are 0.023 and 2.29 W/K - m, respectively, and

the adjustable parameters have been selected so that £_ fits the data of Yen (1962) and extrapolates to
k; when the snow density is that of ice.

* Exchange with the vapor phase is omitted, since sensible heat effects for this phase have been neglected.
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Latent heat changes resulting from additional liquid water in the mix, either through water flow or
freeze—thaw of the snow cover, are included in the term L ,,3Y,Az/0t of the heat balance equation (eq
62). Solution of the equation requires further specification of this term, which will be addressed in the
next section. Alternative derivations of the energy equation for porous media can be found in the work
of Morland et al. (1990), Lunardini (1988) and Morris (1987).

Phase change

The nodal heat balance equations each contain four unknowns: the latent heat change, L ,,0y,Az/0r,
and temperatures for the node and its first neighbors. In the case of snow, since the transition between
solid and liquid phases occurs sharply near 0°C, we could proceed with two independent solutions for
the heat equation, First the temperature profiles are calculated, where the temperature is held at 0°C
for nodes undergoing phase change, and then the amount of melt is computed (Morris 1987).
Alternatively we could use the apparent heat capacity method described by Albert (1983). In this
procedure, total enthalpy changes (both latent and sensible) are expressed in terms of temperature
through the definition of an apparent specific heat Capp? such that

Ahy = Cqpp Al . (64)

Forsubstances with abrupt phase boundaries, latent heat changes are artificially allowed to occur over
a small temperature interval 8T about the fusion point, leading to a definition of Capp 2

- 4 Luai

Capp =C + — (65)
Within a porous medium, a fraction of unfrozen water f, coexists in equilibrium with ice at
temperatures below 0°C. Thus, for porous media the apparent heat capacity method has a physical
basis and is the preferred numerical approach.

If hysteresis effects are disregarded, the unfrozen water content within a given medium is a
single-valued function of temperature and has a freezing curve characteristic of the snow-soil
properties. In the absence of water flow, the change in the mass fraction of liquid water is then directly
related to phase change, and the apparent specific heat can be written in terms of the slope of the
freezing curve as

== Yw af 4
Capp =Cp+ WL 28 (66)
app t P, 4 aT

This means of defining the apparent specific heat was adopted by Guryanov (1985), who proposed the
following semi-empirical function for f,:

1-075 Yay, 07514y,
fo=3L= Tw. . % Yw (67)
Yw  14(a1Tp)? 1+ (a2Tp)*

where J'p = plasticity index (fraction of water)
al = 0.2/(0.01 +Jp)
al= 0.01/(0.1+Jp)
Ty, = depression temperature (K), defined as 273.15 - T.

Although less complex functions for unfrozen water content are in frequent use (Tice etal. 1976), the
Guryanov model has the advantage of being continuous at T=0°C. The two terms in eq 67 correspond
to free (or capillary) and bound (or hygroscopic) water. The capillary term dominates at temperatures
near 0°C but diminishes rapidly with depression temperature. Associated with hygroscopic water is
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Figure 3. Mass liquid water fraction f ,predicted
by eq 67. The equation parameters are:
Snow  al =100
Sand T b = 0.02
Gravimetric water
content (Y,/Y,) =0.05
Clay J b= 0.15
4 & % Gravimetric water
Tp(K) content (Y, /Y,) = 0.25

a minimum unfrozen level for a given depression temperature. In order that eq 67 be well behaved,
a minimum water content is set at 0.75 'yd.fp. The plasticity index Jp ranges from 0.0 for coarse soils,
such as gravel or sand, to greater than 0.15 for fine-grained clays. The plasticity index for snow is 0,
andavalue of 100is arbitrarily selected for a1. The resulting curve approaches a step function, in which
99% of the water is frozen at a depression temperatures of 0.10°C. Curves calculated from eq 67 for
snow, sand (Jr 0.02) and clay (J’ 0.15) are shown in Figure 3.

The term F is introduced to denote the slope of the freezing curve (df,/07), which is found by
differentiation of eq 67:

ZTDalz(l—O.?ST—de) aipl,
Pl iy a5t 2 (69

or [1 +(a1 Tp)d? [1+(a21p)4]

Substituting F into eq 66 provides a function for the apparent specific heat. In general, there is an
immediate rise in ¢, as freezing commences, followed by an exponential drop as temperatures fall
below 0°C.

Changes in the latent heat component of enthalpy result both from phase change and from the influx
of other phases. Applying the chain rule to the expression L,,0v,Az/ot in eq 62, and substituting F for
of,/0T, gives an expression for latent heat changes in liquid water:

Lyid(yeAz) _ Lpd(frywdz) _ g (TwAzF + Fi aywAz) (69)
ot ot ot ot

Expressing the change in mass density dY,,Az/or in terms of the net water flux (eq 60) gives

L!Ia(YlAz) L iYw ﬁzF o -flL (U —Utj). (70)

ot
latent heat freeze—thaw unfrozen net flux
change of medium

Using the definition of f, (eq 67), the function | ¢,,dT in eq 62 can be integrated to give
T
f [C‘i (1-fz]+ thz]dr = q(T—273.15) - (Cz - Ci)

273.15

m (1_{),75 ld..f)
al Yw '
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. (1)

4+ 0.5625 Yd Jp . ll“ (a2TD)2f3 -V2 (@ T:"D)lf3 +1 \+2 tan-! ﬁ(azrn)ua
V2a2 Yw (a2Tp)? + V2 (@2Tp) 2 +1 1 - (a2Tp)%3

|

For the case of snow, where al is very large and J_ is zero, it is reasonable to simplify eq 71 to
(T —273.15). Now an enthalpy adjustment factor H is defined as

T
H = J [q(l—fz)+ czfg]dr + c273.15 (72)
273.15

which becomes

H =T + (¢, -¢)273.15
for snow,

H =¢T
for unfrozen soil and

=1
H =T + (¢ - ¢) 273.15 - (¢, - ©) lw (1_0.75 %;p)

(73)

+0.5625 Y4 J . [h, (a2Tp)*? — V2 (a2Tp) P + 1), 1 (V2 (@2Tp)'""
602 Yw (GZTD)M + ﬁ(azrn)lﬂ +1 ’ ¥ (aZTD)m

for frozen soil.
Using eq 70-73, we can simplify eq 62:

[PicAz + LyiywAz F +Ly; (Dsq— 59) Az FnCitl % -~ (Uzjﬂ - Uf’) [H-L4(1-7)]

, , s A, A
= =0 [(U‘Tt]‘”’l - (U,T,]-’] + (keaT i hecd (keg—T " + Isj*é —Isj-il') (?4)

2z, 2

which is the final form of the heat balance equation. The second term on the left accounts for the heat
gained through freezing of an infiltrating water flux. Note that for unfrozen soil (f, = 1), it is canceled
by a portion of the water flow term on the right, which then reduces to —c, U7 (T /+3 — TJ=%) when
a central difference scheme is used. The latter expression is the more standard representation of the
water flow term in coupled mass and energy balance equations. The heat flow problem is solved
numerically through a system of equations, one for each node, subject to a meteorologically
determined heat flux across the air interface and to a constant temperature at the bottom boundary.

Surface energy balance

The surface energy balance /,__ at the air interface is composed of the turbulent fluxes of sensible
and latent heat, the short- and long-wave components of radiation, and convected heat due to snow or
rainfall. Mathematically this takes the form
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Lop = Igb (1= 0tyop) + Tigd = Iy T+ Igen + Dy + Icony (75)

where Isi = energy flux of downwelling short-wave radiation (W/m?)
0., = albedo or short-wave reflectance (mez)
I&‘E = energy flux of downwelling long-wave radiation (W/m?)
I.T = energy flux of upwelling long-wave radiation (W/m?)
I ., = turbulent flux of sensible heat (W/m?)
I, = turbulent flux of latent heat (W/m?)
I, = heat convected by rain or falling snow (W/m?).
Contrary to the usual convention employed throughout this report, the surface fluxes are defined as
positive downwards. The magnitude of turbulent exchange primarily depends on surface roughness,
wind speed and the atmospheric gradients of temperature and humidity. Radiation incident on the
earth’s surface is composed of emissions from the sun and the earth’s atmosphere. The spectrum is
divided accordingly into solar or short-wave (0.3-3 pm) and terrestrial or long-wave (3—-100 pm)
components.* The portion of incident radiation to be either absorbed or re-emitted back into the
atmosphere varies both with wavelength and with the optical properties of the medium and is
parameterized in terms of albedo for short-wave radiation and emissivity for long-wave radiation.

Solar heating

As a first approximation the solar energy incident on the snow cover is assumed to be diffuse and
isotropic. Radiation entering the snow cover is subdivided into near-infrared and visible components,
with corresponding bulk extinction coefficients B, and ;. For B, the asymptotic bulk extinction
coefficient B, is used, which is represented by the function of Bohren and Barkstrom (1974) as

Vd

where the adjustable parameter is taken from Anderson (1976). Extinction of near-infrared radiation
is constrained to the top node and assumes an elemental thickness of 2 mm. The value for  ; is input
to the program. Combining these effects, the energy gain due to solar heating Q.. within the snow
cover is estimated as

Ofar = I: +11‘—— l:_l =Id (l - amp) (I — e Pz o—Ppir 0.002 )J'I
for the top element and
Ol = 1% -1l F 2 1j 43 (1 - Pte) an

for the interior elements, where
jd S i
I3 2 =Is'l'(1"uwp)_ z Qsolar -
i=j+1

The albedos for both snow and soil are input as constant parameters, with default values of 0.78 and
0.40, respectively.

* The wavelength cut-off between short- and long-wave radiation is somewhat arbitrary. A value of 3 pm was
selected here because it corresponds fo the spectral limits of the Eppley radiometers, which were used for the
radiation measurements.
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Estimation of short-wave radiation

Incident short-wave or solar radiation is composed of direct and diffuse components, the latter
being scattered during its passage through the atmosphere. Diffuse radiation is largely isotropic,
although the intensity is higher beneath the portion of the sky dome nearest the sun. Incident and
reflected solar fluxes are customarily measured with hemispherically averaging radiometers, the net
of which is used directly in the energy equation. As a default measure the incident solar flux is
estimated from the two-stream model of Shapiro (1982, 1987). A brief description of his procedure
follows.

In Shapiro’s model the atmosphere is subdivided into N horizontally infinite plane—parallel layers.
Following the two-stream formulation for a thin atmosphere, the angulardistribution is simplified into
bidirectional forward and backward components. Shapiro defines a reflectivity & and apparent
transmissivity 7 for each layer, in which ® is analogous to the backscatter, and according to
conservation of energy, T'is given by

T=1-%- A (78)

where A4 is the absorptivity. Note that by this definition T includes both unscattered and forward
scattered radiation. The radiative transfer equations are then given by

j=1 Jo+ ) J7=1
I "3l =qpur T3+ gper; 72T

Jm i j=—1 il
I; 3T =qer; 2T + el T2 (79)
where the index j“numbers in ascending order from the air interface. Using curve fits to large amounts
of data from the SOLMET data base, Shapiro has tabulated values for R;~and Tj~as polynomial
functions of the solar zenith angle 6, and cloud conditions. Specifying the upper and lower boundary
conditions as

1

‘rsN+2 =f500

and

1

111 = Ro 13L = 0yp 131 (80)

where /, is the solar insolation at the top of the atmosphere, leads to a system of 2V + 2 linear
equations, which can be solved for the incident flux / s'-TJf at the earth’s surface. In addition to the N-
level model, Shapiro has proposed a simplified three-level algorithm with layers corresponding to
heights of low (j”= 1), midlevel (j“= 2) and high (j”= 3) clouds, as shown in Figure 4.* Equation set
79 is then solved in closed form to obtain

1@ = 15l =0T 1, (81)
2
where
Dy = dy (d3dy — 3R, T3) - d3 R200p T} - R30op (T2T1)? (82)

* The indexing here is the reverse of that used by Shapiro, who uses values of j”= 1,2 and 3 for high, middle and
low clouds, respectively.
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Figure 4. Conceptual geometry for a three-layer solar insolation model.

and the coefficients d jrare defined as

dr =1- RER" ;. (83)

Direct radiation is taken as that which is transmitted to the earth unscattered by the atmosphere. As
a first approximation the transmissivity 7d is computed by assuming that radiation is scattered
isotropically, so that the backward and forward components are equal. In this case 7d = 7— ®_ and the
direct radiation incident on the earth is

I, direrV (Z) = Tdy Tdy Td3 1500 (84)

and diffuse radiation is the complement of this, or

I giftuse Y @) =14 @) — I girecr L @) (85)
where the position of the snow surface relative to the ground is denoted by the snow depth Z.*

Adjustment of solar radiation for sloped surfaces.

In the appendix to his report, Shapiro (1987) included an adjustment for radiation incident on a
sloped surface. His algorithm takes into account reflected radiation from the horizontal plane and
changes in diffuse radiation due to varying exposure of the slope to the solar and antisolar
quadraspheres, as well as the standard correction for the intensity of direct radiation. The slope is
characterized by an upslope vector in the direction of greatest ascent, where the elevation angle e
(radians) is measured between the vector and its horizontal projection, and the azimuthal or aspect
angle ¢, (radians) is measured clockwise from north to the horizontal projection, as shown in Figure
5. The position of the sun is specified by the solar zenith angle 6, and the azimuthal angle ¢, .,

* The computer routines for estimating both solar and long-wave radiation have been adapted from the codes of
Glen Higgins and Joan-Marie Freni of Systems and Applied Sciences Corporation, under contract to the Air Force
Geophysics Laboratory.



Figure 5. Geometry for radiation incident on a sloped surface.

measured clockwise from north to the horizontal projection of the solar position vector. Under clear
skies the adjusted radiation for a slope of given elevation and aspect angle is

sin 8;sin e cos AQ asp

fs'slopc 'l' o= Is'diml l CosS € + . B
z

= AQ asp) (5 + cos € )+ Ad asp (1 + Scos e) 4 7.1 %o (1-cos e)
s"

n(1+3) 2 o

+ I diffuse ! (

where the latter term accounts for reflected radiation, AQygpis the aspect angle relative to the azimuthal
angle of the sun, and § is the ratio of the average diffuse radiance from the solar and anti-solar
quadraspheres, computed as

S$=1+ 05sin0,+ 2.0sin20, (87)

By convention Abysp is defined as zero for a south-facing slope, giving AQ 55 = [ |¢ asp— ¢ so],,| -7 |
A further correction is included in the code for diffuse radiation under cloudy skies.

Long-wave radiation

Allmaterials radiate electromagnetic energy, the intensity being a function of their temperature and
surface characteristics, The power spectrum emitted by a black body, or perfect absorber, is known
as Planck’s law and is written as

Temis A) = 2"?{-‘”#3 (88)
EU -1

where 7, (A) = intensity of hemispherically emitted radiation of wavelength A (W/m?)
T = absolute temperature (K)
c8 = 0.59544 x 10~16 Wm?
9 = 1.4388x 1072 Km (Siegal and Howell 1972, p. 19 and 738).

The emissivity € of a specified material is the ratio of its emitted energy to that of a black body at the
same temperature. Integrating Planck’s law over the power spectrum gives the well-known Stefan—
Boltzmann expression for the all-wave hemispherical emitted intensity /.-
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Iemit = eoT* (89)

where o is the Stefan—Boltzmann constant (5.669 x 10~ W/m? - K%).

The net long-wave exchange consists of upwelling thermal emissions from the earth’s surface and
downwelling emissions from gases and particulate matter in the atmosphere. Generally speaking, the
earthradiates as a gray body and the power spectrum has the form of Planck’s law. The upwelling long-
wave flux !i,T in the boundary equation (eq 75) therefore contains an emitted component, which
corresponds to the Stefan—-Boltzmann equation, and a reflected component, which is proportional to
the downwelling flux. In accordance with Kirchoff’s Law, the emissivity and reflectance must sum
to 1.0, so that

Ii:T = eoT* + (1- €)1 4. (90)

Although eq90is customarily regarded as aboundary condition, infrared radiation penetrates the snow
cover to 5-8 mm. The present minimum thickness of 2 mm will therefore be increased in subsequent
versions of the code, so that most infrared radiation is absorbed within the top element. Snow is nearly
ablack body, with an emissivity approaching 1.0 (Warren 1982). Based on a comparison of measured
radiation with estimates from the Stefan-Boltzmann Law, a value of 0.97 is suggested for the
emissivity (Jordan et al. 1989).

Estimation of downwelling long-wave radiation
The downwelling long-wave flux under clear skies is estimated using the formula of Idso (1981),
which is referred to in the literature as Idso2 and has the form

1500
Iip. clesrd = Ot T = a[o.'m +5.95x 107P,, ,,,-,c?”-h] TS (91)

where g, = clear-air all-wave bulk emissivity of the atmosphere
P, air = Water vapor pressure at a reference height above the surface (mb)

T, = air temperature at a reference height above the surface (K).
The Idso formula tends to overestimate the emissivity and is therefore adjusted using the Wachtmann
correction (Hodges et al. 1983):

€ = —0.792+3.161 g — 1.573 €2, ©92)

where e;ir is the corrected emissivity. An additional downwelling long-wave component is computed
in the code for the emittance from clouds. No correction has been included for sloped surfaces, which
will see less of the sky dome but will additionally receive a diffuse component from adjacent terrain.

Models of the Idso type, which estimate atmospheric emissivity from surface values of air
temperature and water pressure, are good general indicators of long-wave radiation but are often of
insufficient accuracy for energy balance computations (Jordan et al. 1989). Further modifications in
the procedure are needed, particularly for the case of atmospheric inversions, which occur frequently
OVeT Snow.

Turbulent exchange
The turbulent fluxes of latent and sensible heat are defined as (Andreas and Murphy 1986)*

* In this version of SNTHERM the latent heat flux is defined in terms of vapor pressure. Subsequent versions use
the more standard parameter of vapor density.
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Isen = (Exo+ PaircarCuw) (Tair — T") = (Eno+ Exw) (Tair — T") (93)

100L y;

w L air

Iy =|Ego + Cpv (Pv.air_me:r‘k.sat) = (Ego+ Egw) (Pv.air"frhp\ﬁ:.sal)

where p,;. = air density (kg/m)
Cqir = specific heat of air at constant pressure (J/kg-K)
T™ = surface temperature, approximated by that of the top node (K)
Cy = bulk transfer coefficient for sensible heat (dimensionless)
Cg = bulk transfer coefficient for latent heat (dimensionless)

and the fluxes are defined as positive downwards. Within a snow cover, water vapor is assumed to be
at saturation and f;;, = 1.0. Vapor pressure is computed using the procedure of Buck (1981) and can
optionally be taken as relative to ice or water. The exchange coefficients Eyy (J/K - m3) and Eg (J/mb-
m?) are related to the bulk transfer coefficients as

Ey = PairCairCH
and
~100L .k
ES—25CE (94)
Rw Tair

The parameters Ey, = 2.0 £+ 0.5 W/m*K and Eg, = 2.00 + 0.5 W/m? - mb in eq 93 are windless
convection coefficients for exchange over snow and are determined empirically. They are larger in
magnitude than would be theoretically predicted by the limiting case of molecular diffusion, and they
indicate the need for further study of windless exchange above snow. Bulk transfer coefficients are
deiﬂncd in terms of the roughness length z; for velocity and the measurement reference heights Z i,
ZiandZ Q for wind speed, temperature and relative humidity, as

2 &
CD =3 _k_‘, CE = = DN —
zo |l z
@y In [N In|—
zo Z'
Dm DEg| Seny+ ——
m(z_w
L Zp/
Cis = _CoN .
ZJ
In (=T,
ZW
Dy Dul Pry+
zf
o
L Z0

= 95)

Errata: The ratios C,,/C,,, and C, JC_ should not be designated as the turbulent Prandt] and Schmidt numbers,
the latter being defined as the ratios of the eddy transfer coefficients. In subsequent versions of the model the
stability functions have been replaced with the flux-profile (¥) formulas. The upgraded procedures are
documented in the Technical Note Estimating the Turbulent Transfer Functions for Use in Energy Balance
Models, which is available from the author.
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where Cy, is the drag coefficient (dimensionless), k is the von Karman’s constant (0.40), Scy; and Pry
are the turbulent Schmidt and Prandtl numbers, defined for neutral stability and at the measurement
height for wind speed, as

Cm(ZQ'= Zw)

Scny =
CeN

. CDN(Z:[;Z;\I)

Cun (96)

where @ represents the stability functions defined as (Anderson 1976)

Om=D@g=Ox=1 (97a)
for neutral stability (Ri = 0.00),

Om=Pe= Ou=—1— (97b)

1 —5Ri

for stable conditions when 0.00 < Ri < 0.20,

o [ NI, 97c)

Pm D 9u
for stable conditions when Ri = 0.20 and

S o & (1- 1;Ri)°-5 R

for unstable conditions (Ri < 0.00). Cpy, Cgy and Cyy are the bulk transfer coefficients at neutral
stability. The bulk Richardson number Ri is estimated as

8Z (Tair-T")
0.5 (Tair + T")w?

98)

where g is the acceleration due to gravity. The use of these stability functions over snow for the stable
case consistently underpredicted the convective exchange and markedly degraded the predictive
ability of the model. Therefore, as a temporary measure, the stability correction is not used for snow
under stable atmospheric conditions. :

On the basis of the best fit for surface temperature predictions, a roughness length of 2 1 mm is
suggested for snow, which yields a drag coefficient Cpyy of 3.35 x 1073 under neutral stability at a
measurement reference height of 2.0 m. Measurements used in validating the model were made with
thermocouples, which were subject to solar loading and were not always in thermal contact with the
snow cover, so this is not an exact figure. Values of 0.7 and 1.0 are suggested for the turbulent Prandtl
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and Schmidt numbers, respectively. On theoretical grounds there is no justification for setting Scy to
1.0, but the use of a lower value resulted in unrealistically high latent heat losses in cases of moderate
to high winds. The problem may lie in the assumption that water vapor is at saturation at the surface,
which is probably not true during windy periods. Using values of 1005.0 J/kg-K, 1.276 kg/m3 and
2.?38 x 196 for ¢,;p 5 Pair (8t 0°C and 1000 mb) and L, respectively, and reference heights of 2 m for
Z,and ZQ. the exchange coefficients at neutral stability evaluate to £, = 6.14 J/K-m? and E g=1.55
J/mb-m3.

The exchange coefficient for latent heat can be measured directly by noting the amount of
evaporation from pans of snow inserted so that they are flush with the top of the snow cover.
Determinations of E; by this procedure as reported in the literature ranged from 4.82 to 10.78
(Anderson 1976, Table 2.1, for a reference height of 2 m). For wind speeds from 0.5 to 5.5 m/s,
Anderson (Fig. 5.4) computed a value of 7.8 for Eg. The empirical value of 7.55 used in this study is
correspondingly in the midrange of wind functions determined by evaporation. On the other hand,
values in the literature for z, over snow ranged from 0.1 to 2.3 mm (Anderson 1976) and are therefore
mostly lower than the value of 2 mm used here, although Dunne et al. (1976) assumed values of z; =
5 and 15 mm in computing runoff from a melting snow cover. Andreas (1987) reported Cy;, =0.9%
0.3x 1073 and Cgny=2.5+0.5% 10-3 for measurements made by Hicks and Martin (1972), and Cun
= 1.1-1.5 x 10~ for measurements made by Kondo and Yamazawa (1986), both of which again
suggest that a value of 3.35 x 1073 for Cpy may be too high.

Consistent with the stipulation that air is at rest within the pore space, it is assumed that turbulent
energy dissipates abruptly at the surface. Although this boundary condition is customarily applied in
heat-budget modeling, in reality a degree of wind penetration occurs within an open material such as
snow. The usual assumptions of thermal equilibrium and stagnant air are made for this study, but a
revised formulation is indicated for the future.

Energy equation for the top node
Combining eq 77, 90 and 93, and using the definitions for the precipitation flux given earlier, we
can express the top energy flux (eq 75) as

!lop = fslo(l _ulup) + Elir'l'* GE(T")"

+ (Evo + Epw) (Tair = T") + (Em + Epw) (Py, air— fen P, sat) = cpUpTy 99)

and the energy equation for the top node becomes

[PiCAz + LyiYuhz F + Ly (Bsg— 50) Az fnCrl ?3—":

- (mﬁ + L[i[ﬁp%_m -u; (1 ‘f_l)]

=" - 3 i
=lop — Isl’(l - alop)(c_ﬂ“& e~ Pnir 0.002) + € (UZTJR == (ke a—T) . (100)
Z
where

cp = frpce + (1-Fep) e - (101)
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DISCRETIZATION AND NUMERICAL IMPLEMENTATION

General structure of the model

In the preceding sections, governing equations were presented for the conservation of mass,
momentum and energy within a snow-soil system. Each set contains n equations, one for each node
or control volume. To solve the equations, they are first linearized and the differentials are
approximated by discrete intervals. The solution procedure will now be outlined, where the reference
numbers refer to the abbreviated flow-chart in Figure 6 and to the sections within the MAIN routine
of the computer code.

At the inception of the computer run, necessary media and program parameters are read (Item 3),
constant parameters are established (Item 4) and initial values are computed (Item 5), Subsequently
the main time loop begins, which increments in time steps Ar automatically selected to obtain the
desired accuracy of the solution. The first procedure within the time loop is to increment the
meteorological data. Data are either provided from a meteorological file at a base sampling rate, which
is usually once per hour (Item 6a) or, for intermediate time steps, is interpolated between past and
current periods (Item 6b). Once the meteorological or driving parameters are established, the mass
balance solution commences with the addition of snowfall or ponding rain to the top node (Item 7).
This is followed by estimation of the compaction rate (Item 8), computation of elemental solar heating
(Item 9), and estimation of the top boundary fluxes (Item 10). In the case of rain or melt, solutions are
obtained for the fluid flow equations (Item 11), expressed in terms of the effective saturation s,. Having
established values for s, the water flux U, is computed from Darcy’s equation, which in addition to
the vapor flux U, (Item 12a), is used to update the nodal mass (Item 13), thereby completing the mass
balance section. Grain growth is estimated as a function of the vapor flux (Item 12b).

The energy balance section begins with updating of the thermal parameters (Item 14) and proceeds
to the formulation and solution of the matrix of linear equations (Item 16). Both fluid flow and energy
matrices assume a tridiagonal form and when linearized are solved using the tridiagonal-matrix
algorithm (TDMA), described in Patankar (1980, p. 50-54) or Albert (1983). After solutions have been
obtained to the energy equations, exact values for the linearized items are computed using the updated
temperature values, and final adjustments are made to the liquid water parameters (Item 17). The
equation balance is checked to see if the linearization error is acceptable (Item 18). If the convergence
criteria are not met, the time step is reduced, values are reset, and the iteration is repeated. If the
convergence criteria are met, the time step is retained or increased, current values are set to past values
(Item 20), and processing continues. If an elemental thickness becomes less than 2 mm (through melt
or evaporation), or if either of the top two nodes exceeds prescribed maxima, they are combined or
subdivided (Item 21). Updated parameters are written toan output file ata ratechosen by the user (Item
22), which is usually that of the sampling rate of the input meteorological data. The time step or time
loop is now complete, and the process is repeated for the next step, 1+At.

Mass balance section

For computational efficiency, only the nodes with active water flow are included within the fluid
flow matrix. The nodal system is subdivided into regions of contiguous flow as diagrammed in Figure
7, where the criteria for flow are that the effective saturation s, exceed zero and that the element not
be impermeable. Relative to the flow zone, the nodal index is denoted as j* = j~ioffset, where ioffset
is the nodal offset between the bottom of the grid and the flow zone. For this version of the model, the
condition of impermeable strata has been temporarily disallowed, pending further testing and
verification of the saturated flow option. Discretization of the water flow equation proceeds directly
from eq 46 and for the interior nodes takes the form

o (4= s7%) = 05 (A [s3)0 4 - Ak [s3)) - 05 {uj* s vi) T+ M o2
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1. DECLARE ARRAYS and VARIABLE TYPES. Large common blocks are established in ARRAYS.
2. OPEN FILES. File names are read from FILENAME.

3. READ in general parameters and initial snowpack and soil element values for temperature, thickness, water
content and grain size (GETINPUT).

4, CALCULATE CONSTANT PARAMETERS for unfrozen water fraction, thermal conductivity, melt zone
limits, bulk transfer functions over soil, water content limits, vapor diffusion and others (CALCONSTANT ).

5. INITIALIZE general liquid water variables (DENSITY), combined specific heat and other miscellaneous
parameters.

BEGIN TIME LOOP

6a. If this is the start of a basic time interval (default of 1 hour), then READ in or GENERATE METEOROLOGICAL
DATA (GETMET) and screen it for out-of-bound data points. Optionally estimate solar radiation (/INSOL) or
downward long-wave radiation (SKXYRAD) if measured values are not provided. Adjust measured or estimated
radiation for incidence on sloped surface (SLOPE).

6b. Automatically SUBDIVIDE basic time interval and INTERPOLATE meteorological data (SUBTIME). Size of
time step is determined in Section 18,

MASS BALANCE

T ADD top elements, resulting from SNOWFALL or ponding RAIN (NEWSNOW).

B, Determine COMPACTION rate of snow cover as a function of the initial settling rate and overburden
(COMPACT).

9. Estimate SOLAR HEATING within snow elements as a function of density and grain diameter (SDSOL).

10. Estimate TOP BOUNDARY FLUXES, as functions of air temperature, wind speed, relative humidity and
radiation (QTURB).

11. For RAIN or MELT, compute the mass WATER FLOW exiting each element, using the gravity flow
approximation of Colbeck and an upwind discretization scheme (FILTRATE).

12a,  Estimate mass transfer due to SUBLIMATION and DIFFUSION of WATER VAPOR within snow cover and
for top node of bare soil (DIFFUSION).

12b.  Estimate SNOW GRAIN DIAMETER (FGRAIN).

13. Using the snowfall rate and the estimates for water flow, vapor diffusion and compaction rate, UPDATE the
SNOW DENSITY, MASS and elemental THICKNESS.

THERMAL BALANCE

14, Update THERMAL PARAMETERS, including effective thermal conductivity (THRK); combined specific heat,
slope of freezing curve, enthalpy adjustment factor and melt zone switches (THPARAM).

15. For INITIAL TIME STEP, set PAST fluxes and variables.

16. SET UP and SOLVE linear THERMAL BALANCE equations, using tridiagonal matrix algorithm (THERMAL,
TRIDIAG). For elements in melt zone, compute temperature change from melt (FTEMP). Recompute top fluxes
using new temperature, Compute nodal heat fluxes (including solar heating) for use in nexl iteration (FBB).

FINAL ADJUSTMENTS and PRINTOUT

17. Make final ADJUSTMENTS to LIQUID WATER variables (DENSITY), determine melt state (NMELT) and
make other adjustments.

18. CHECK if CONVERGENCE criteria are met (CONVERGE). If not, reduce lime siep, reset variables and redo
iteration. If met, increase time step and continue.

19. Optionally PRINT OUT surface FLUX and METEOROLOGICAL data for this basic time step (FLUX).

20. SAVE PAST VALUES for mass, thermal and meteorological parameters (OLD).

21. Divide or combine thick or thin snow elements (SUBDIVIDE, COMBINENODES and COMBQ).

22, PRINT OUT information for this basic time step (WRI/TE). If measured temperatures are provided, compute RMS

error,
END MAIN TIME LOOP
23. CLOSURE.

Figure 6. Abbreviated flow chart of SNTHERM.89. Major subroutines are indicated in upper-case
italics.
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Figure 7. Diagram of flow zone system used in solution of fluid flow
equations.

where ¢7, Ak and M are defined as

a =p,L=s008z _, (1-s)(0az)'"4

At At
2 sk 2, pi-At
Ak = E.Lifmm = % (103)
¢ ¢

and
M—M-Az(1-&§)+p Az CR
=My D, e 5 Az
1

where the dynamic viscosity of water |1, is assumed to have a value of 1.787 X 103 N - s/m? at 0°C,
and the procedure for estimating the phase change term M is described later. For the top node in the
flow zone the discretized form is derived from eq 50 as

S oy LR .
et (sht - sii-8) = 05 l(f""?"faﬂmre) 360; ep Ypfallrate) _ AI[s3) + U+ M

when j = n and
i (sht = si-8) = 05 (- 4k [s3) + U{""‘-“} +MJ (104)

when j # n, where the influx U’ i (f4p Yp fallrate)/ 3600 when the flow zone is at the top of the
snow pack and is otherwise zero.

Characteristic of gravity flow, the saturation profile generated by a water pulse propagating through
snow approaches a step function at the wave front and has a comparatively gradual decline behind the
receding edge of the pulse (Fig. 9). The term 52 in eq 102 and 104 is therefore highly nonlinear for
nodes at the wave front. Away from the front it can be linearized by the usual first-order Taylor’s
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expansion, as

(SE)r = by + ms(se)‘

= =2(s2)4 + 3(s2)"Y (so)* (105a)

ifj’# 1 andj"#n *, where b, and m_are equation parameters estimated from the past effective saturation.

At the front and for the top node it is estimated by obtaining a solution s, ., to the cubic equation:

05 Ak (53 Ve ctisd =l sht=4_ pyl* b4 Losul « M3  (105b)
e, est e £ !

e, est

] j ln -,
where it has been assumed that UtjﬂlmUeﬁ J m’ so that
(s2)) = 0+ my (se)’
« 0% se::'est (se) (105¢c)

if j”=1o0rj” =n". For each flow zone a system of linear equations in s, can be constructed, taking the
standard tridiagonal-matrix form of

VA E S o'

Ay st v Ay s =BT (106)

’

where A f is always O (because of the upwind scheme), and the matrix elements are defined as

Ay =0

A} = ¢ + 05 AkIm)

Al'=0

B" =-05 U —05 (U < Ud) Y 4 (T s+ MU (107)
for the top node and

AL =—05 A/

A;.': ¢ + 0.5 Akjmg

s i l _6 P 3 5 - g
Bl =05 (U] - U™ + (75 A + MI + 054k B — 05 AkiBI  (108)

for the interior nodes. The numerical solution becomes unstable if an initially dry node is totally
saturated inone time step. To assure accuracy and stability of the solution, the minimum time step limit

At for the adaptive time step range should meet the empirically derived criterion

33



&rmin< 0.5 Azm,-n (Iw)

_U£H+I+M

where Az . (m) is the thickness of the thinnest node. Further discussion of the minimum time step
versus solution accuracy is presented later.

The effective saturation reaches a steady-state value s, when the nodal outflux equals the influx,
which for a water source of constant magnitude is computed as

3 dlrate
P
Ak

Employing conservation of mass, the wave front in a snow cover with an antecedent water content at
or below the residual saturation level then propagates at an approximate speed of*

Surface influx rate
Vv =
Residual + Thermal deficit+ Drainable
saturation deficit water
UM

(111)

3 Py (se—s0) 0 + Yi9%p) (Tn) +pgse(l—s5)¢
Ly

where the thermal deficit is the amount of influx frozen in warming the snow cover to 0°C, the
drainable water is the steady-state level of liquid water in excess of the residual or immobile water
content, and s, is the antecedent saturation. Following cessation of the surface water flux, the snow
cover drains to its residual saturation level.

Colbeck (1976) computed runoff at the bottom of a 1-m-deep snow pack for hypothetical cases of
fresh, ripe and refrozen snow. The water source in each case was a heavy rainfall of 0.01 mm/s, or 1.42
in./hour. For fresh and refrozen snow the temperature was initialized at —-5°C, so that a heat deficit as
well as the residual saturation deficit had to be satisfied prior toadvancement of the water front. A small
grain size of 0.2 mm was used for fresh snow, compared with 2.0 mm for the older snow types, reducing
the saturation permeability and substantially slowing the flow of water. Model predictions of runoff
forthe three cases as compared with Colbeck’s results are shown in Figure 8, and the assumed physical
parameters and model results are summarized in Table 1. Since porosity changes and grain growth are
not considered in Colbeck’s solution, these mechanisms have been disabled in the computation of the
flow coefficient A for the model simulations. Agreement between the two procedures is generally
good, except that lag times predicted by the model for the cold snow cases are about 10% longer.
Colbeck** indicated that he used a graphic procedure and that the numerical solution should be more
accurate. The slight dispersion about the wave front in the model solution is an artifact of the numerical
method, and it reduces to the expected shock front solution as the nodal thickness is reduced. In
actuality the numerical simulation is more representative of hydrographs from real snow covers, as
inhomogeneities in snow characteristics lead to a spread in the flow rates.

* For a complete discussion of the rate of propagation of a wave front in melting snow, see Colbeck (1974a).
T Computation of the steady-state mass gains in Table 1 take porosity changes due to freezing into account, since
it was too difficult to exclude them from the model.

** Personal communication, 1991.
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Figure 8. Mass water flux at the bottom of a 1-m-deep snow cover.

Table 1. Assumed snow parameters and model predictions of water infiltration in fresh, ripe and
refrozen snow covers. The snow cover is 1 m deep, and the incident flux has a constant magnitude of 0.01

kg/m~2s and duration of 10,800 s,

Steady-state Steady-state  Immobile  Frozen Drainable
Ps d T, Lag effective Ak mass gain  liquid influx  influx influx
(kgim) (mm) (°C) & (s) _ saturation  (kgim®-s) (kg/m’) (kginP)  (kgim®)  (kgim®)
Ripe 300 2.0 0 073 2254 0.035 242 24 0 0 24
Refrozen 300 2.0 -5 0.67 7,978 0.039 163 80 46 10 24
Fresh 300 0.2 =5 0.67 18,615 0.183 1.63 169 46 10 113

~ Inaddition to illustrating the water flow algorithm, the two cases of rain on cold snow demonstrate
the coupled heat and mass flow capability of the model. Temperature and bulk liquid density profiles
predicted by the model for the fresh snow case are shown in Figure 9. The liquid density reaches a
steady-state level of 159 kg/m3 and then gradually drains towards the residual level of 46 kg/m3.

Energy balance section

- Once the fluid flows and adjusted mass balances have been computed, the energy balance equation
(eq 74 and 100) can be solved for the nodal temperature or phase change. First the heat storage terms
on the left side of eq 74 are discretized, which correspond to the partial derivative a(p,Azh,)/dt in eq
59. Usually the discretized form of the product (p,Az)h, would be 0.5((p,Az)"+(p,Az)"4]Ah, + 0.5(h,'
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Figure 9. Predicted profiles of temperature and bulk liquid density in a 1-m-deep fresh snow cover,
in response to the input pulse illustrated in Figure 8a.

+h~4")A(p,Az). An alternative but mathematically equivalent form (p Az)'Ah, + hl“‘“A(ptAz) will be
used here, since it results in a more efficient partitioning of current and past portions for the storage
term, as

%;:il (")) (cr 213.05 - Lgy) =
it

[PeCAz + LyiYwhz F + Ly; (0sa— 50) Az finCrr) %—T - (Ugju - UzJ) [H-Ly(1 -f_:)]

A . f,f_ j!'-A'.r
={az[pct LavuF+ Luc (0ot 50) faCil | T2l —
A 7y o R N Rl 112)
Furthermore it can be shown that
x j,;_ j,.f—A! e — 4
(arpuif T=L (0T uj)s -
At
= It ot mdit—At —\ & j1-At
N R | ‘AT (v =ik, (113)
t

where F [ Yw(f)] isthe temporal average of F (eq 68) in temperature evaluated for the current water
content Y%, and fl is the portion of the freezing curve (eq 67) that is independent of water content, given
as
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/S (114)
‘ 1 + (a1 T4)?

Applying a central-difference scheme for the conduction—diffusion term and an upwind scheme for
the convection term, we can write the discretized version of the energy equation (eq 74) as

Jit=At

b5

{Az [Px":"‘ in’\'w§+ Ly; (Osw+ "'q’)f'hc"t] }N I’ Ar

—j ~ 7Jt=4A1 g Jj+l1 Yl
= Uy net [H "in(l—fz)] ='CZ[U£JH 3'”2_-[}'2’ ]'2_]

AJ' 1 : . ’\ t ]
+[ke +;(TJ+1_TJ)2 :(TJ’ TJ l] [.Hl (1 __5“6:)] +2{.§i (115)

~J +l l
where ke * and Ic * are derived from the steady-state conductivities:

o 1
kiAzI ' 4 k1 Azl

i 2kd kd™! .
kJAz“'_l + kg_' Azl

(116)

The average net liquid water flux is

wa j+l i\ j+1 ¢ —At
G 0 ¢ iU‘J L (117)

and the past net heat fluxes Q. are

A | t—-Ar
nné:-bt_ !r -4r + ¢ (Ulr s..r—Al_[k: z(Tn_Tn»l)]

=lrbi= Gt 10p) (et ¢~ir 0002 )]n,:—a'

(118a)
for the top node and

Q;:e: g [(Uer) = (U, )]

2 " t=A . =
[ (i i)y ’(T"—Tj“')] '+[1,”%(1-e-ﬂ-m)]' )
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for the interior nodes. Equation 115 is the final discretized form of the heat balance equation for the
interior nodes.

Values forthe phase change term M in the fluid flow equation are estimated from eq 62 by assuming
that the nodal temperatures, and the convective and conductive fluxes, are constant over the time step.
Using eq 24, 103 and 117

M =MyAz (1—%LE)+ P,sAzCR
i

t t—-At —
=[{7,az) ~ (yeAs)'™& | U;'.,e.] (1 _P_c.g) +PysAzCR .
At ' Py

Then using eq 62, 77 and 118

Qn': +I’ +!r Tn,;—&t+ (U T)" [;ﬂ‘%(.rn Tn—l)]hm n,t=At
solar ™ £ top,k top,v CPvE s =I1be = Qe

M = 4 Xmnet
2 2
i (Un+1.r+ ynHle-ar U""'A')H”"*A‘}
2
x (1 -';—!s""“ﬂ‘)/LﬁJr Py (sAzCR)™ ! (1192)
i
for the top node and
jit-At (Qjagl':at = QJS-Q'II_A,I r] i+l _ ) gl
M = \oiP s : [(vi*! - i) Hi]
(1 £ %L sH=8Y JLy; + Py (sAzCRY -4 (119b)
i
1.0 T | T | i |
0.8 =
0.6 =
fo | 4
0.4f ~
0.2\ -
" Figure 10. Conceptualization of the melt zone
: l (T, <T<Ty), where P, rather than T is used
?10 ; -8 -6 2 .4 as the independent variable in the heat balance
equation.
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for the interior node. The air interface fluxes / ;DP are defined in eq 124 and 125. Since the time steps
are very small when melt is occurring, the subsequent version of the model will estimate melt from
its past value, thereby avoiding these complicated expressions.

Solvingeq 115 requires that terms first be linearized, which in most cases is accomplished by using
past values to estimate current values. Near 0°C the slope of the freezing curve F changes rapidly with
temperature, so that maintaining acceptable linearization error for elements undergoing melt leads to
very small time steps. To improve computational efficiency, melt is used instead of temperature as the
independent variable in this region of the freezing curve. The approximation uncertainty is thereby
shifted from the latent to the sensible heat change, which is of much lower magnitude. The region
where this variable transformation applies is termed the “melt zone,” as shown in Figure 10 and is
arbitrarily bounded by the limits 7| and T} on the freezing curve where sensible and latent heat
changes approach the same magnitude, given as

L
T = 23S | —2hy e (120)
alz (Cl-’-m_

w, mid
and

cr+ 'Ydfd_
Ty =273.15 — | Y w.mid
2Lﬁ012

where Y, 4 1S the midpoint bulk water density in soil between the residual and saturation limits. A

melt function P, is introduced, defined as the change in 7y, with temperature over the time step in

which the bulk water density is held constant at its current value Y{, , or
1=At
Poew = vhlfe (T 44) = 72 (T2 4]

Ye=075valp 07574l

14+ (@ T2l 14 [(a2T)i] ™

= Yol - = yL FAT (121)

where F was defined in eq 113. Temperature is then expressed in terms of P

melt 38

Tf"=gj Pr{;;u‘* g]‘: (122a)
where within the melt zone when T; ST/-M<T,,

go=——

¢ 2
YwF

and

gl = it (122b)

The variables g, and g, function as switches within the linear equation system, automatically
transforming P, to T when an element is within the melt region. Outside of the melt zone when
T/#-8< T, or T/*A'> T, these functions are defined as
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gl=o. (123)

The combined heat flux at the air interface pr is linearized in terms of temperature, where /

the constant term and [/ wp v is the coefficient on T, as*

mpkis

Top ® iop, k. * Tiop, v T" (124)

where'

"u;p. k =05 {ali.r’l' "'"(EHO + EHW) Tyir + (Ego + EEW) (Pv, air +21.452 fi P2 t—ﬂ:)

vk, sat
n, t=At
+ 30e(T4) <y Tl }
and
ul—A:
: i S
[ 05{(Em+5mv)+22452 fin P s (Ee0+ Ex) + 4o (7)™ (125)
» Tu.l—m

In these relationships all quantities are evaluated for the current time unless otherwise indicated, and
the following approximations have been made:

(T4 = (Y~ + 4(r3)' ™ (r*-1*-8) = (13~ (a* - 37*-2Y) (126)
Pl sat = Pup s [22 452 I _ 21.452}
Tl—ﬁi‘
Efy ~ BN
Ef =~ ES® .

The equation system can now be written in standard tridiagonal form as
Ajx ittty alx g a) x i1t = gl (27

where X =T when a node is outside the melt zone and X =P, when it is within the melt zone. The
matrix elements of A and B are defined as

Af =00

*Thetermlmp used here is inconsistent with /, definedmoq?S in that it does not contain the solar flux.
*Thecaseoffallmgwetsnow13ad(h’essedmtheequaﬂmsbuttsnotmcludﬂdmtthNTHERM.@Cﬂd&
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for the top nodes,
2 ~ j+1_r
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for the interior nodes and
A3 =00 (130)
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Al =B'

Al =00
Bl=Téunstml

for the bottom node. The following definitions and linearizations are used:

; = Jit
Q: = {[Ptf: +LgiywF + Ly; (00— 50) fin CkT] i‘—i}

when T/#-8 < T, or T/H-A > Ty

Qf = {[Puci + Lui (Bsa=59) fn Cur] 42}
At

when T} ST/H-A'<Ty (131)
E‘ ) C:—AI
= ~t=At
Fyr = Fyr
ey —At
Cxr = Cyr

o', 0% =~ 0", 0™

When new elements are created to accommodate the accumulation of snowfall or ponding water,
the numerical solution is unstable until aminimum elemental mass is reached. In this case the thermal
balance is circumvented, and the nodal temperature is set to that of the precipitation.

Final adjustments and adaptive time step procedure
For nodes within the melt zone, the function P, (eq 121), rather than temperature, is returned by
the solution to the heat balance equation. For these nodes the current bulk liquid-water density is

computed from P, as
t . \i-AE = A 1=At
P P (vi22) ™'~ Upnefs &t 132)
Az'
and eq 67 is then solved for T as
!
T =27315-L 4/ X (133a)
a 14
Ye
for snow and
2\5 2\3 2\2 A
(Tﬁ) x P(Tﬁ) ¥ ‘?(Tﬁ) = (133b)
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for soil, where the coefficients in the fifth-order polynomial for soil are given as

1-075 Y4y,
,Yl'
. (134)
als

r
1-Y% _0.75 I_tl,fp
I !

g = Yy ; Ye
al
r
o )
I
g/
al?a23

Equation 133bissolvediteratively using the Newton—Raphson bisection technique. Since eq 122a will
not provide valid solutions in the eventuality that a phase boundary is extremely overshot, a check is
first made to see if P, has exceeded a boundary by more than 5%. This should not normally occur,
since the time step is autornatically shortened as the boundary is approached, but if the situation should
arise, the step is shortened and the iteration is repeated.

Given the new set of temperatures, the top flux (eq 124) is recomputed, and new values for the liquid
water density, saturation, unfrozen mass fraction and porosity are established. Substituting into the
original form of the heat equation (eq 62), we can compute the linearization error in the energy balance

and express it as an effective temperature error 7., Where

= At Heat balance error . (135)
[AZ [Pt ci+ Lyi (9sa— 59) frn CkT]r

TEI.TDI'

A minimum allowable error is input to the model, typically 0.05°C. If the error tolerance is exceeded,
the time step is shortened, nodal parameters are reset and the iteration is repeated. Conversely, if the
error is below the tolerance level, the time step is increased. For a given linearization error, note that
decreasing the nodal thickness leads to smaller time steps. In the case where the thermal balance has
been circumvented due to minimal mass or when 2 node is being deleted, the convergence check is
bypassed. A convergence check is also included so that changes in water saturation within a time step
remain below a specified level.

Combination and subdivision of elements

Combination

If a snow element has totally melted or if its thickness is less than the prescribed minimum of 2 mm
(exceprifitis a new element accumulating precipitation), the element is combined with a neighboring
element. The top or bottom neighbor is selected as the recipient according to the following criteria:

« [If the surface element is being removed, combine it with the bottom neighbor;

+ If the bottom neighbor is not snow, combine it with the top neighbor;

» If the element is entirely melted, combine it with the bottom neighbor; and

« If none of the above cases apply, combine it with the thinnest neighbor.

The two elements are combined by adding the thicknesses and masses, and computing the
combined bulk density as
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Y5 = ylaz! + yZlAz? — mass! + mass? _ mass® (136)
Az! + AZ? Az€ Az€

where the superscripts 1, 2 and ¢ denote the separate and combined elements, respectively. Mass
weights are used to compute a combined grain size of

2
d¢ = d'mass! + d*mass? (137)

mass €

and a combined temperature for dry snow of

1
7¢= T mass' +T?mass? (138)
mass ¢

In the case of wet snow the sum of the enthalpies of the separate elements is equated to that of the
combined element, as

-G (massl TS + masszTﬂ‘) + Ly ('yzl Azl + v} Azz)

=—cmass®TH + Ly y5 Az€. (139)

Using eq 67 to express y §, eq 139 is written as a third-order polynomial, which is solved iteratively
for T using the Newton—Raphson technique, in which the solution is bounded by Tﬁ and T 8. The
past values for the net fluxes Q ., and the elemental solar absorption Q.. are combined additively
as

Ot + 0% = 0
and
Qi + Qi = O otar - (140)

Nodes superior to the combined node are shifted down by one index number, and parameters for the
former top node are set to 0. Re-definition and re-indexing of nodal values is facilitated by declaring
the nodal vectors equivalent to large two-dimensional arrays defined within the subroutine ARRAYS.

Subdivision

The two uppermost nodes are automatically subdivided if they exceed the prescribed minimum
values of 12/3 and 3/3 cm. If the (n—1)" node is being subdivided, the top node is first moved up by
one index number. Subsequently a new node is created that has the same values as the original node.
The procedure is completed by readjusting mass-related variables so that a third of the mass is assigned
to the upper node and two thirds to the lower node of the pair.

MODEL VERIFICATION
The ability of SNTHERM.89 to predict surface temperatures has been verified on field data for
several years from sites in Grayling, Michigan, and Hanover, New Hampshire. The instrumentation

consisted of thermocouple profiles within the snow and soil, an adjustable surface probe, a meteoro-
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logical tower instrumented at two or three levels for measuring air temperature, wind speed and
relative humidity, and pairs of Eppley pyranometers and pyrgeometers for measuring upwelling and
downwelling radiation. A detailed description of the Hanover test site is presented in Jordan et al.
(1989). Comparison of measured to predicted surface temperatures for snow showed agreement to
within £1.0-1.5°C for diurnal temperature cycles of amplitude up to 20°C, with most of the dis-
crepancy occurring over midday when the thermocouples overheated due to solar loading. Figure 11
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Figure 11. Comparison of predicted vs measured surface temperatures for
snow at Hanover, New Hampshire.
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compares measured snow surface temperatures at the Hanover site with predictions from SNTHERM.89
for the period of 5-18 February 1987. The surface temperature of snow is highly correlated to air
temperature (indicated by the dotted line in the graphs). In general it warms towards the air temperature
during the day and drops below by several degrees at night due to radiative cooling. Subsurface profiles
also showed close agreement between measured and predicted values, except during windy periods,
when the curvature of the profiles indicated wind penetration within the upper 10 cm of the snow cover.
It is yet to be determined how much of this effect was the result of wind-flow channeling by the
thermocouple support, and how much would occur naturally in an undisturbed snow cover.

The supporting algorithms for snow compaction, grain growth, snow accumulation, freeze—thaw
cycles and meltwater infiltration have been tested on the data set of 5-18 February 1987, which
contained three periods of melt and two minor snowfall events. Preliminary testing has been done on
subsequent data sets with periods of more active water flow. Water appears to be drawn down into the
pack at a faster rate than predicted by theory, which may be corrected by including the capillary term
or by using a lower value for the residual saturation. The model has been tested for the bare soil case
but has not been verified with measurements. A more complete analysis of model performance is
anticipated in conjunction with the extended version of the model, SNTHERM2.

CONCLUSIONS

" Aninterim stage in the ongoing development for a model of the heat and mass flow through snow
has been presented as technical documentation for the computer program SNTHERM.89. The
program is coded in standard FORTRAN-77, and its implementation is further described in a
preliminary user’s guide (Jordan 1990). The expanded model version, SNTHERM2, which should be
available within the calendar year, will contain many of the improvements noted in the report,
including a two-stream radiative transfer algorithm for computing albedo and solar absorption and an
extended water flow algorithm capable of simulating flow through soil and through a heterogeneous
Snow cover containing ice lenses.
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