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Abstract: We use supersymmetric localization to calculate correlation functions of half-

BPS local operators in 3d N = 4 superconformal field theories whose Lagrangian descrip-

tions consist of vectormultiplets coupled to hypermultiplets. The operators we primar-

ily study are certain twisted linear combinations of Higgs branch operators that can be

inserted anywhere along a given line. These operators are constructed from the hyper-

multiplet scalars. They form a one-dimensional non-commutative operator algebra with

topological correlation functions. The 2- and 3-point functions of Higgs branch operators

in the full 3d N = 4 theory can be simply inferred from the 1d topological algebra. Af-

ter conformally mapping the 3d superconformal field theory from flat space to a round

three-sphere, we preform supersymmetric localization using a supercharge that does not

belong to any 3d N = 2 subalgebra of the N = 4 algebra. The result is a simple model

that can be used to calculate correlation functions in the 1d topological algebra mentioned

above. This model is a 1d Gaussian theory coupled to a matrix model, and it can be

viewed as a gauge-fixed version of a topological gauged quantum mechanics. Our results

generalize to non-conformal theories on S3 that contain real mass and Fayet-Iliopolous

parameters. We also provide partial results in the 1d topological algebra associated with

the Coulomb branch, where we calculate correlation functions of local operators built from

the vectormultiplet scalars.
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1 Introduction

Correlation functions of local operators are fundamental observables in quantum field the-

ory. In more than two spacetime dimensions, there are relatively few examples in the

literature where such correlation functions have been calculated non-perturbatively. In

some examples, such calculations can be performed by using non-renormalization theo-

rems, such as in [1, 2] who showed that the non-perturbative answer for 3-point functions
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of 1
2 -BPS operators in 4d N = 4 Yang-Mills theory are captured entirely by the tree-level

result.1 The conformal bootstrap approach also allows one to calculate certain correlators

of BPS operators in some particular supersymmetric conformal field theories (SCFTs) with

8 Poincaré supersymmetries in various dimensions [4–8]. Other examples use the technique

of supersymmetric localization (for recent reviews, see [9–25] and references therein) allow-

ing for the calculation of two-point functions of conserved flavor or R-symmetry currents in

3d N = 2 superconformal field theories (SCFTs) [26, 27], and of Coulomb branch operators

in 4d N = 2 SCFTs [28]. (See also [29–32].)

Our goal here is to provide more instances of such exact computations of correla-

tion functions of local operators. We focus on 3d quantum field theories with N = 4

supersymmetry defined by general Lagrangians constructed from vectormultiplets coupled

to hypermultiplets.2 In these theories, we provide new formulas for calculating correlation

functions of certain 1
2 -BPS operators. The derivation of these formulas also relies on super-

symmetric localization, albeit using a different supercharge from the one used in previous

supersymmetric localization studies of such theories.

The 1
2 -BPS operators whose correlation functions we compute fall within two classes

of more general operators. The first class, referred to as Higgs branch operators, consists

of gauge invariant operators constructed from the scalar fields in the hypermultiplet, while

the second class, referred to as Coulomb branch operators, contains operators constructed

from the scalars in the vectormultiplet as well as from 1
2 -BPS scalar monopole operators.

The naming of the two classes reflects that, when the QFT is defined on R3, these operators

acquire non-zero expectation values on either the Higgs or Coulomb branch of the moduli

space of supersymmetric vacua.

We restrict our attention to the origin of the moduli space, where the N = 4 theories

we consider flow in the IR to SCFTs. Let us denote the gauge group of such a theory by G

and assume, without loss of generality, that there is only one hypermultiplet transforming

in a unitary representation R of G, where R may be reducible.3 In a nutshell, we have

three main results:

• We present a relatively simple matrix model coupled to a 1d Gaussian theory,

ZHiggs=
1

|W|

∫

Cartan
dσ det ′adj [2sinh(πσ)]

∫
DQDQ̃exp

[
−ℓ
∫ π

−π
dϕ
(
Q̃∂ϕQ+Q̃σQ

)]
,

(1.1)

1See also [3] for a proof, and [4] for a generalization to 4d N = 2 theories.
2Such theories have been extensively studied in the literature starting with refs. [33, 34]. For string

theory constructions of such theories, see, for instance, [35–38].
3Let NH be the total number of hypermultiplets in the absence of gauging. The 2NH complex scalars

and 2NH complex two component fermions transform in the pseudoreal fundamental representation of the

flavor symmetry USp(2NH). We consider the U(NH) subgroup of USp(2NH) under which the fundamental

of USp(2NH) decomposes as NH ⊕NH , and we take the gauge group G to be a subgroup of U(NH). At

the level of Lie algebras, we have that a subalgebra g of u(NH) is gauged, and we define the representation

map R : g → u(NH) from the gauge algebra into NH ×NH hermitian matrices.

Our results can be easily extended to include half-hypermultiplets, namely to the case where the gauge

group G is a subgroup of USp(2NH) not contained in U(NH). However, we do not discuss this possibility

here for simplicity.
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which can be used to calculate all 2- and 3-point correlators of Higgs branch operators

at the IR fixed point. In addition, (1.1) can be used to calculate n-point correlators

of certain twisted Higgs branch operators of the SCFT. These twisted operators

are specific position-dependent linear combinations of Higgs branch operators, to

be defined precisely in section 3, obtained by contracting the various R-symmetry

components of Higgs branch operators with position-dependent polarization vectors.

Let us describe (1.1). |W| is the order of the Weyl group of G. The variable σ

is the matrix degree of freedom and takes values in the Cartan of the Lie algebra

g = Lie(G).4 It is coupled to a 1d Gaussian theory defined on a circle parameterized

by ϕ ∈ [−π, π) whose degrees of freedom are the anti-periodic scalar fields Q(ϕ) and

Q̃(ϕ) which transform in the representations R and R of g, respectively. The path

integral over Q and Q̃ is over a middle-dimensional integration cycle in the space of

complex-valued fields Q and Q̃. We will discuss this integration cycle in more detail

in section 5. Lastly, ℓ is a parameter with dimensions of length whose meaning we

will explain momentarily.

The twisted Higgs branch operators of the 3d SCFT whose correlators can be calcu-

lated using (1.1), can be inserted anywhere along a line in R3 or, equivalently, along a

great circle on S3 that maps to this line under the stereographic projection. In (1.1),

the angle ϕ parameterizes the great circle on S3, and ℓ ≡ −4πr is proportional to the

radius of S3. Moreover, the twisted Higgs branch operators are represented in the

1d model (1.1) by gauge-invariant polynomials in Q(ϕ) and Q̃(ϕ). From the 2- and

3-point functions of the twisted Higgs branch operators, one can extract in a simple

way the 2- and 3-point functions of the most general Higgs branch operators.

The 1d sector consisting of the twisted Higgs branch operators of a general 3d N = 4

SCFT was previously studied in [4, 7, 8] abstractly, using only properties of the

superconformal algebra.5 These properties imply that the correlation functions of the

twisted Higgs branch operators are topological, in the sense that they do not depend

on the relative separation between the insertion points, but do depend on the ordering

of the insertions. Moreover, the 1d OPE algebra of this sector is an associative non-

commutative algebra obeying certain very special properties. In some cases, refs. [7, 8]

used bootstrap-type arguments to show that these properties determine the 1d OPE

algebra uniquely up to a finite number of parameters. The model (1.1) provides

a complementary approach to the analysis in [7, 8] whereby (1.1) can be used to

calculate explicitly the structure constants of the 1d OPE algebra.

• We provide a partial result toward a similar computation of correlation functions of

Coulomb branch operators. In particular, we only consider Coulomb branch operators

4Very roughly, the theory (1.1) can be interpreted as a 1d gauged quantum mechanics with gauge group

G, in the gauge where Aϕ = σ. The determinant factor in (1.1) is precisely the Fadeev-Popov determinant

corresponding to the gauge fixing condition ∂ϕAϕ = 0.
5At this abstract level, there is no difference between the 1d sector associated with the Higgs branch

and that associated with the Coulomb branch.
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that are not monopole operators. Such non-monopole operators are given by gauge-

invariant polynomials in the vectormultiplet scalars. At the SCFT fixed point, the

2- and 3-point correlators of non-monopole Coulomb branch operators, as well as n-

point functions of their twisted analogs, can be calculated by inserting gauge-invariant

polynomials in σ into the matrix model

ZCoulomb =
1

|W|

∫

Cartan
dσ

det ′adj [2 sinh(πσ)]

detR [2 cosh(πσ)]
. (1.2)

The same matrix model was previously obtained by Kapustin, Willet, and Yaakov [39]

as a result of a supersymmetric localization computation that uses only N = 2

supersymmetry, and with the goal of calculating expectation values of BPS Wilson

loop operators. Its relation to the Higgs branch theory (1.1) is that one obtains (1.2)

after integrating out Q and Q̃ in (1.1).

As was the case with Higgs branch operators, the twisted Coulomb branch operators

whose correlation functions can be computed from (1.2) are part of the 1d topolog-

ical Coulomb branch sector studied abstractly in [4, 7, 8]. In terms of the fields of

the 3d SCFT, the twisted Coulomb branch operators represented by gauge-invariant

polynomials in σ correspond to position-dependent linear combinations of polynomi-

als in the vectormultiplet scalars. A more complete analysis that includes monopole

operators is left for future work.

• The above results can be generalized to non-conformal N = 4 QFTs on S3 that

are obtained by introducing real mass and Fayet-Iliopolous (FI) parameters. The

real mass parameters are introduced in (1.1)–(1.2) by shifting σ → σ + mr in the

exponent of (1.1) and denominator of (1.2), where m is a real mass matrix taking

value in the Cartan of the flavor symmetry algebra of the hypermultiplet.6 For each

abelian factor of the gauge group, one can introduce an FI parameter ζa by including

in (1.1)–(1.2) an additional factor

e−8π2ir trζ σ . (1.3)

In (1.3), trζ σ ≡ ∑
a ζaσa with the sum taken over all abelian factors in g, while ζa

are the corresponding FI parameters and σa are the components of σ that take values

in those abelian factors.

The correlators of twisted Higgs (Coulomb) branch operators that are not charged

under the flavor (topological) symmetries associated with non-zero real mass (FI)

6As in footnote 3, let NH be the total number of hypermultiplets in the absence of gauging. The full

flavor symmetry group ĜF of the NH hypermultiplets is defined as the normalizer of the gauge group inside

USp(2NH) modulo the gauge group [40]. However, we take our gauge group G to be contained in a U(NH)

subgroup of USp(2NH), and when defining the flavor symmetry we also consider GF = ĜF ∩ U(NH). We

sometimes refer to GF as the flavor symmetry of the hypermultiplet. The embedding of GF into U(NH)

induces a map F : gF → u(NH), where gF = Lie(GF ).

By σ + mr in the main text we then mean R(σ) + rF(m), where R : g → u(NH) is the representation

map from the gauge algebra into NH ×NH hermitian matrices.
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parameters are still topological. We will show that when a real mass parameter

triggers an RG flow between two SCFTs, the correlation functions in the 1d theory

interpolate between topological correlators in the UV and the IR, even though in the

intermediate regime these correlation functions may be position-dependent.

Let us explain in more detail the procedure by which one arrives at the aforementioned

results. While our results hold in SCFTs defined on any conformally flat space, we find

it convenient to first consider more general non-conformal 3d N = 4 QFTs on a round

S3 of radius r. Due to the large amount of supersymmetry, placing the N = 4 theories

on S3 is unambiguous. The S3 Lagrangians we consider are curved space generalizations

of the usual flat space ones: they contain kinetic terms for the hypermultiplets, a Yang-

Mills term for the vectormultiplet with Yang-Mills coupling gYM, and, optionally, real

mass and FI parameters, all containing certain curvature couplings that vanish in the limit

r → ∞. Setting to zero the real mass and FI parameters and taking both gYM, r → ∞,

the correlation functions computed in an N = 4 theory on S3 approach those of the deep

infrared limit of the same N = 4 theory defined on R3. In the examples we consider, such

a deep infrared limit is a non-trivial interacting SCFT. Alternatively, we can first take

gYM → ∞ at fixed r and then conformally map from S3 to R3. As we will see, the S3

correlators we study are independent of gYM, so the limit gYM → ∞ is taken trivially.

After placing the theories of interest on S3, we perform supersymmetric localization

with an appropriately chosen supercharge. The choice of supercharge is guided by the

cohomological construction of [4], which was elaborated upon in the context of 3d N = 4

SCFTs on R3 in [7, 8]. In particular, the authors of [7, 8] identified a supercharge QH in the

N = 4 superconformal algebra whose cohomology classes are represented by the twisted

Higgs branch operators mentioned in the first bullet point above. A similar construction

for Coulomb branch operators involves the cohomology of a different supercharge QC .

We perform supersymmetric localization using precisely the supercharge QH or QC ,

mapped to S3 using the stereographic map. At first, this statement may seem puzzling for

the following reason. In performing supersymmetric localization, one adds to the action

a QH,C-exact localizing term. The standard localizing term for the vectormultiplet is

usually constructed by acting with two supercharges on fermion bilinears, and it thus has

scaling dimension 4 and breaks conformal invariance. However, both supercharges QH and

QC were constructed in [7, 8] as specific linear combinations of Poincaré and conformal

supercharges on R3, so conformal symmetry seemed important. Consequently it seems

confusing why the standard vectormultiplet localizing term could even be invariant under

QH,C , let alone QH,C-exact, as required by the supersymmetric localization technique. We

will show, however, that the supercharges QH,C belong to anN = 4 supersymmetry algebra

su(2|1)ℓ⊕ su(2|1)r, which, upon mapping to S3, can be seen to contain only the isometries

of S3 and a U(1)2 R-symmetry, without any conformal generators.7 Thus, QH,C-invariant

7We stress that upon contraction r → ∞ the supercharges QH,C ∈ su(2|1)ℓ ⊕ su(2|1)r we define on S3

reduce to ordinary Poincaré supercharges on R3, and not to the supercharges constructed in [7, 8]. The

latter were also denoted by QH,C above, in a slight abuse of notation.
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theories on S3 are not necessarily conformal invariant; they include the more general non-

conformal QFTs on S3 mentioned above.

It is worth commenting on the relation between the localization computation using

QH,C and that preformed by Kapustin, Willett and Yaakov (KWY) in [39] for N ≥ 3

theories that yielded the matrix model (1.2). This computation was later generalized to

N = 2 theories in [41, 42]. The supercharge QKWY used for localization in [39] thus

also resides in an N = 2 sub-algebra, namely su(2|1) ⊕ su(2), of the full N = 4 algebra

su(2|1)ℓ ⊕ su(2|1)r. The supercharges QH and QC do not reside in any such N = 2 sub-

algebra, but are instead different linear combinations of supercharges in the two su(2|1)
factors of the N = 4 superalgebra. In spite of these differences, we find that the results of

localizing with QC or QH are very much related to the KWY matrix model, as was briefly

described above.

Concretely, our calculation proceeds as follows. Just as in [42], we find that the Yang-

Mills action isQ-exact (with respect toQH orQC) and can be added with a large coefficient,

thus localizing the N = 4 vectormultiplet in precisely the same way as in [39, 42]. In other

words, the localization of the vectormultiplet is realized by taking the theory to small gauge

coupling. At any point on the vectormultiplet localization locus, the hypermultiplet is thus

free, but massive, with its mass matrix depending on the precise location on the localization

locus. In this weakly coupled theory, the correlation functions of the hypermultiplet can be

computed by first using Wick’s theorem at a fixed point on the vectormultiplet localization

locus, and then integrating over it with a measure given by the determinant of fluctuations

of all the fields. If we focus our attention on QH,C-closed operators, which as we show

are twisted Higgs (or Coulomb) branch operators inserted along a great circle of S3, a

standard argument shows that these correlation functions are independent of the Yang-

Mills coupling.

We conclude that once the vectormultiplet has been localized, calculating correlators of

twisted Higgs branch operators does not require a further localization of the hypermultiplet.

Indeed, the hypermultiplet action in the background of the localized vectormultiplet is

Gaussian, and thus the remaining path integral is trivially solvable. For localization with

QH , however, it is instructive to also localize the hypermultiplet, which leads to the explicit

description (1.1) of the correlators in terms of the 1d Gaussian theory coupled to the matrix

model obtained from localizing the vectormultiplet.

Localization of the hypermultiplet with QH has several features that are worth men-

tioning. Unlike the N = 4 vectormultiplet, the supersymmetry algebra does not close

off-shell on the hypermultiplet. Since the supersymmetric localization arguments require

a supercharge that does close off-shell, the first step is to add a number of auxiliary fields

and modify the supersymmetry transformation rules such that the algebra generated by

QH does close off-shell on the hypermultiplet fields.8 The next step is to add to the action

a QH -exact term whose bosonic part is positive-definite. To describe the localization locus,

let us think of S3 as a circle fibered over a disk with the circle shrinking at the boundary

8A similar construction in the case of N = 4 supersymmetric Yang-Mills theory in 4d was used in [43, 44]

following the work of [48].
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of the disk. We find that the hypermultiplet localizes on field configurations that are in-

dependent of the coordinate parameterizing the circle and that obey additional differential

constraints in the disk directions. These constraints imply that the hypermultiplet action,

when evaluated on the localization locus, becomes a total derivative on the disk and re-

duces to a boundary term. This boundary term, living on the boundary of the disk, is

the Gaussian action for our localized theory. We will argue that the one-loop determinant

of fluctuations around this configuration equals 1, so there is no additional determinant

factor coming from the hypermultiplet. The situation presented here for the localization

of the hypermultiplet is very similar to the one encountered in [44] in the case of 4d N = 4

supersymmetric Yang-Mills theory on S4.

We apply (1.1)–(1.2) in a few examples where we calculate explicitly several correlation

functions of twisted Higgs and Coulomb branch operators, with the main focus on the Higgs

branch. As in [8], we interpret the 1d OPE algebra as a non-commutative star product

on the Higgs branch chiral ring,9 and we compute explicitly the values of the parameters

that the bootstrap analysis of [8] left undetermined. As we will discuss, in calculating

correlation functions using (1.1)–(1.2), one should be aware of the possibility of operator

mixing on S3. The mixing can be removed by diagonalizing the matrix of 2-point functions

using the Gram-Schmidt procedure. A similar approach was taken in [28] for the Coulomb

branch operators of 4d N = 2 theories.

The rest of this paper is organized as follows. In section 2 we introduce theN = 4 QFTs

on S3 we will study. In section 3 we review the cohomological construction of [4, 7, 8] in the

case of N = 4 SCFTs in flat space and explain how it is mapped stereographically to S3.

In section 4 we generalize this construction to QFTs on S3 that do not necessarily possess

conformal symmetry. Section 5 contains a description of the localization computation that

leads to the results (1.1)–(1.2) summarized above. In section 6 we describe in general terms

the various properties of the 1d theory (1.1) and its applications. Sections 7 and 8 contain

applications of our results to specific theories. We end with a brief discussion in section 9.

2 3d N = 4 theories on S
3

In this section we will review the construction of N = 4 supersymmetric Lagrangians

using vectormultiplets and hypermultiplets on S3. We first provide the supersymmetry

transformation rules and the supersymmetric actions. We then discuss the supersymmetry

algebras preserved by these actions.

2.1 Actions with vectormultiplets and hypermultiplets

The components of the vectormultiplets and hypermultiplets carry Lorentz indices as well

as su(2)C ⊕ su(2)H R-symmetry indices. Explicitly, the components of the vectormultiplet

9The twisted Higgs branch operators are in 1-to-1 correspondence with chiral Higgs branch operators.

While a generic Higgs branch operator corresponds to a function on the Higgs branch, a chiral Higgs branch

operator corresponds to a holomorphic function on the Higgs branch, for a given choice of complex structure.

These operators form the Higgs branch chiral ring. Similar statements hold for Coulomb branch operators.
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V transform in the adjoint representation of the gauge group G and will be denoted by

V = (Aµ, λαaȧ,Φȧḃ, Dab) . (2.1)

The vector Aµ in (2.1) is the gauge field, the spinor λαaȧ is the gaugino, and Φȧḃ and Dab

are scalars, transforming in the (1,1), (2,2), (3,1) and (1,3) irreps of su(2)C ⊕ su(2)H ,

respectively.10 The hypermultiplet H transforms in some unitary representation R of G

and has components

H = (qa, q̃
a, ψαȧ, ψ̃αȧ) , (2.2)

where qa, q̃
a are complex scalars transforming in (1,2) and (1,2) irreps of the R-symmetry

and representations R and R of G, and ψαȧ, ψ̃α,ȧ are their spinor superpartners, which

transform, respectively, in the (2,1) and (2,1) irreps of the R-symmetry, and in the R and

R representations of G. The multiplets V and H also have “twisted” versions, in which the

roles of su(2)C and su(2)H are interchanged, though we will not consider them in this paper.

On S3, superconformal transformations are generated by spinors ξaȧ in the (2,2) irrep

of the R-symmetry, which satisfy the conformal Killing spinor equations

∇µξaȧ = γµξ
′
aȧ , ∇µξ

′
aȧ = − 1

4r2
γµξaȧ , (2.3)

where γµ (µ = 1, 2, 3) are curved space Dirac matrices and r is the radius of S3. In

particular, the transformation rules for the vectormultiplet fields (2.1) are11

δξAµ =
i

2
ξaḃγµλaḃ , (2.4)

δξλaḃ = − i

2
εµνργρξaḃFµν −Da

cξcḃ − iγµξa
ċDµΦċḃ + 2iΦḃ

ċξ′aċ +
i

2
ξaḋ[Φḃ

ċ,Φċ
ḋ] , (2.5)

δξΦȧḃ = ξc(ȧλ|c|ḃ) , (2.6)

δξDab = −iDµ(ξ(a
ċγµλb)ċ)− 2iξ′(a

ċλb)ċ + i[ξ(a
ċλb)

ḋ,Φċḋ] , (2.7)

and those of the hypermultiplet (2.2) are

δξq
a = ξaḃψḃ , δξψȧ = iγµξaȧDµq

a + iξ′aȧq
a − iξaċΦ

ċ
ȧq

a , (2.8)

δξ q̃
a = ξaḃψ̃ḃ , δξψ̃ȧ = iγµξaȧDµq̃

a + iq̃aξ′aȧ + iξaċq̃
aΦċ

ȧ . (2.9)

One can check that acting twice with the transformation rules presented above realizes the

superconformal algebra osp(4|4) up to gauge transformations and fermionic equations of

motion. We will return to this point with more details shortly.

10We label the doublet irrep of su(2)rot. frame rotations by indices α, β, . . . = 1, 2, of su(2)H by

a, b, . . . = 1, 2, and of su(2)C by ȧ, ḃ, . . . = 1, 2. See appendix A for more details on our conventions.
11The field strength is Fµν ≡ ∂µAν − ∂νAµ − [Aµ, Aν ], and Dµ = ∇µ − iAµ is the space and gauge

covariant derivative. Brackets () enclosing indices denote an average over their permutations.
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With the supersymmetry transformation rules in hand, one can construct supersym-

metric actions. The action of a hypermultiplet coupled to a vectormultiplet is

Shyper[H,V] =
∫
d3x

√
g

[
Dµq̃aDµqa − iψ̃ȧ /Dψȧ +

3

4r2
q̃aqa + iq̃aDa

bqb −
1

2
q̃aΦȧḃΦȧḃqa

−iψ̃ȧΦȧ
ḃψḃ + i

(
q̃aλa

ḃψḃ + ψ̃ȧλbȧqb

)]
. (2.10)

This action is invariant under the full osp(4|4) algebra. Indeed, one can check that it is

invariant under the transformations (2.4)–(2.9) provided that (2.3) is obeyed. This action

could have been deduced from the analogous flat space action by simply covariantizing

all derivatives and introducing the conformal mass term 3
4r2
q̃aqa for the hypermultiplet

scalars.

Multiplets V and H as defined above have too many bosonic components and, in the

path integral, have to be integrated over the middle-dimensional cycle determined by the

following reality conditions on bosons:

q̃a = (qa)
∗ ,

(AI
µT

I)∗ = AI
µ(T

I)∗ ,

(ΦI
ȧḃ
T I)∗ = −ΦIȧḃ(T I)∗ ,

(DI
abT

I)∗ = −DIab(T I)∗ , (2.11)

where, for the vectormultiplet fields, we made the representation matrices T I by which they

act on R explicit. In Lorentzian signature, the fermions would also obey reality constraints,

namely ψ̃ȧ would be the hermitian conjugate of ψȧ and λαaḃ would be the hermitian

conjugate of λαaḃ, but in the Euclidean signature, ψαȧ and ψ̃αȧ are independent spinors in

the representations R and R of G respectively, and λαaḃ do not obey any constraints either.

As far as we know, it is not possible to write down other superconformal actions on

S3 with just vectormultiplets and hypermultiplets.12 It is possible, however, to write down

actions that are invariant under half the supersymmetries in osp(4|4), which anti-commute

to the isometries of S3 without any conformal transformations. Such actions provide curved

space analogs of the Yang-Mills action or of the actions corresponding to real masses and

FI terms, all of which are not conformally invariant on R3, and therefore cannot be mapped

to S3 using the stereographic map. The projection from 16 supersymmetries in osp(4|4)
to the 8 under which these actions on S3 are invariant is described in terms of two su(2)

matrices, ha
b and h̄ȧḃ,

ha
b ∈ su(2)H , h̄ȧḃ ∈ su(2)C , (2.12)

normalized such that ha
chc

b = δa
b and h̄ȧċh̄

ċ
ḃ = δȧḃ, and obeying the tracelessness condi-

tion ha
a = h̄ȧȧ = 0. We interpret these matrices as representing the Cartan elements of

12A Chern-Simons action for the vectormultiplet would be conformal, but preserving N = 4 supersym-

metry would require the presence of twisted hypermultiplets which we do not consider here.
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su(2)H ⊕ su(2)C . Then one can restrict the S3 Killing spinors (2.3) to those obeying the

further condition

ξ′aȧ =
i

2r
ha

bξbḃh̄
ḃ
ȧ . (2.13)

This condition reduces the number of independent ξaȧ by a factor of two. We will interpret

it shortly in terms of generating a subalgebra of osp(4|4), but let us first present the

actions on S3 that are invariant under the 8 supersymmetry transformations restricted in

this fashion.

The non-conformal supersymmetric actions depend explicitly on the matrices (2.12).

The Yang-Mills action is given by

SYM[V] = 1

g2YM

∫
d3x

√
gTr

(
FµνFµν−DµΦċḋDµΦċḋ+iλ

aȧ /Dλaȧ−DcdDcd−iλaȧ[λaḃ,Φȧḃ]

−1

4
[Φȧ

ḃ,Φ
ċ
ḋ][Φ

ḃ
ȧ,Φ

ḋ
ċ]−

1

2r
habh̄ȧḃλaȧλbḃ+

1

r
(ha

bDb
a)(h̄ȧḃΦ

ḃ
ȧ)−

1

r2
ΦċḋΦċḋ

)
.

(2.14)

Under a decomposition of N = 4 into an N = 2 sub-algebra, one can show that (2.14) is

nothing but the S3 action of an N = 2 vectormultiplet plus an adjoint chiral of R-charge

1. For each U(1) factor in G we can introduce an FI-term:

SFI[V] = iζ

∫
d3x

√
g

(
ha

bDb
a − 1

r
h̄ȧḃΦ

ḃ
ȧ

)
. (2.15)

Note that while on R3 the FI parameters ζab take value in the (1,3) irrep of su(2)C⊕su(2)H ,

only the single component ζ = habζab invariant under the Cartan of su(2)H survives on

S3. Finally, one can introduce mass terms for the hypermultiplets by coupling them to

background vectormultiplets Vb.g. in the Cartan of the flavor symmetry. In order to preserve

supersymmetry all the components of Vb.g. are set to zero except for

1

2
h̄ȧḃ(Φb.g.)

ḃ
ȧ = −r

2
ha

b(Db.g.)b
a , (2.16)

and the supersymmetry variations (2.8) and (2.9) have to be deformed accordingly to

account for the masses. As happened with the FI terms, out of the su(2)C-triplet of mass

parameters that exist on R3 for each flavor group Cartan element, only one survives on S3.

In the remainder of this paper, in order to conform with the conventions of [7] we will

sometimes choose

ha
b = −σ2 , h̄ȧḃ = −σ3 . (2.17)

2.2 Closure of the supersymmetry transformations

Irrespective of the actions presented above, the superconformal transformations (2.4)–(2.7)

of V close off-shell into

{δξ, δξ̃}V =
(
K̂ξ,ξ̃ + ĜΛ

)
· V , (2.18)
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where ĜΛ is a gauge transformation with parameter Λ defined as

Λ = (ξ̃cȧξcḃ)Φ
ȧḃ − i(ξ̃aȧγµξaȧ)Aµ , (2.19)

while K̂ξ,ξ̃ generates bosonic symmetries in osp(4|4) and is written explicitly in terms of

ξ and ξ̃ in appendix B. The transformations of the scalars qa in H also close off-shell as

in (2.18), but those of the fermions ψȧ do not. Instead, one finds

{δξ, δξ̃}ψȧ =
(
K̂ξ,ξ̃ + ĜΛ

)
· ψȧ + ξ̃aḃ

(
ξaȧΨ

e.o.m.
ḃ

)
+ ξaḃ

(
ξ̃aȧΨ

e.o.m.
ḃ

)
, (2.20)

{δξ, δξ̃}ψ̃ȧ =
(
K̂ξ,ξ̃ + ĜΛ

)
· ψ̃ȧ − ξ̃aḃ

(
ξaȧΨ̃

e.o.m.
ḃ

)
− ξaḃ

(
ξ̃aȧΨ̃

e.o.m.
ḃ

)
, (2.21)

where the equations of motion operators are given by

Ψeom
ȧ ≡ −i

[
/Dψȧ +Φȧ

ḃψḃ + λaȧq
a
]
, (2.22)

Ψ̃eom
ȧ ≡ i

[
/Dψ̃ȧ − ψ̃ḃΦ

ḃ
ȧ − q̃aλaȧ

]
. (2.23)

These are precisely the equations of motion following from the hypermultiplet action (2.10).

That the supersymmetry algebra closes only up to the fermion equations of motion will be

important in section 5.4.1, since the supercharge used for localization of the hypermultiplet

has to be closed off-shell.

2.3 Non-conformal supersymmetry algebra on S
3

Let us now return to the projection condition (2.13) and interpret it from the point of view

of which supersymmetry algebra it is that the actions (2.14)–(2.15) as well as the mass

terms introduced via (2.16) are invariant under.

Let us assume for now that we have not introduced any mass terms and that we

set all possible FI parameters to zero. The anti-commutator of two supersymmetries re-

stricted by (2.13) does not produce all the bosonic generators of the superconformal algebra

osp(4|4), but only a subset of them. This was to be expected, because we have argued that

the Yang-Mills action (2.14) is invariant under supersymmetries obeying (2.13), and since

the Yang-Mills action is not conformal, it must be that the anti-commutator of supersym-

metries (2.13) does not generate any conformal transformations.

Judiciously working out all possible (anti-)commutators, one can check that (2.13)

parameterize the 8 supersymmetry transformations of the algebra

su(2|1)ℓ ⊕ su(2|1)r . (2.24)

(See also [49].) The bosonic generators of this algebra consist of the so(4) = su(2)ℓ⊕su(2)r
isometries of S3 as well as two u(1) R-symmetries that we will denote by u(1)ℓ and u(1)r,

reflecting which su(2|1) factor they belong to. The u(1)ℓ⊕u(1)r is a subalgebra of su(2)H⊕
su(2)C . That (2.24) contains 8 supersymmetries means it is an N = 4 supersymmetry

algebra.
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The algebra (2.24) will be central in our work, so let us describe it in more detail. Let

us denote the generators by J
(ℓ)
αβ , Rℓ, and Q(ℓ±)

α for su(2|1)ℓ and J
(r)
αβ , Rr, and Q(r±)

α for

su(2|1)r. Abstractly, the algebra obeyed by J
(ℓ)
αβ , Rℓ, and Q(ℓ±)

α is

[J
(ℓ)
i , J

(ℓ)
j ] = iǫijkJ

(ℓ)
k , [J

(ℓ)
αβ ,Q(ℓ±)

γ ] =
1

2

(
εαγQ(ℓ±)

β + εβγQ(ℓ±)
α

)
, (2.25)

[Rℓ,Q(ℓ±)
α ] = ±Q(ℓ±)

α , {Q(ℓ+)
α ,Q(ℓ−)

β } = −4i

r

(
J
(ℓ)
αβ +

1

2
εαβRℓ

)
, (2.26)

where

J
(ℓ)
αβ ≡

(
−(J

(ℓ)
1 + iJ

(ℓ)
2 ) J

(ℓ)
3

J
(ℓ)
3 J

(ℓ)
1 − iJ

(ℓ)
2

)
. (2.27)

The generators of su(2|1)r obey the same relations with ℓ→ r.

To be more concrete, let us explain how these generators act on the various operators

in the theory. We will take this opportunity to set up some of the notation we will use later.

2.3.1 Action of S3 isometries

The commutators with S3 isometries act on a gauge-invariant operator O as the Lie

derivative

[J
(ℓ)
i ,O] = −Lvℓi

O , [J
(r)
i ,O] = −Lvri

O (2.28)

with respect to the Killing vectors vℓi and v
r
i that obey the su(2) algebra, [vℓi , v

ℓ
j ] = iεijkv

ℓ
k,

and similarly for vri .

In an explicit description where the three-sphere of radius r is embedded in R4 via

X2
1 +X2

2 +X2
3 +X2

4 = r2 , (2.29)

we can use the parameterization

X1 + iX2 = r cos θeiτ , X3 + iX4 = r sin θeiϕ (2.30)

in terms of the coordinates θ ∈ [0, π2 ], τ, ϕ ∈ [−π, π]. In this parameterization, the Killing

vectors in (2.28) are

vℓ1 =
i

2
(− cos(τ + ϕ)∂θ − tan(θ) sin(τ + ϕ)∂τ + cot(θ) sin(τ + ϕ)∂ϕ) ,

vℓ2 =
i

2
(sin(τ + ϕ)∂θ − tan(θ) cos(τ + ϕ)∂τ + cot(θ) cos(τ + ϕ)∂ϕ) ,

vℓ3 =
i

2
(∂τ + ∂ϕ) ,

vr1 =
i

2
(cos(τ − ϕ)∂θ + tan(θ) sin(τ − ϕ)∂τ + cot(θ) sin(τ − ϕ)∂ϕ) ,

vr2 =
i

2
(− sin(τ − ϕ)∂θ + tan(θ) cos(τ − ϕ)∂τ + cot(θ) cos(τ − ϕ)∂ϕ) ,

vr3 =
i

2
(∂τ − ∂ϕ) .

(2.31)
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We will make significant use of the parameterization (2.30) in the remainder of this paper.

The metric in these coordinates is

ds2(S3) = r2(dθ2 + cos2(θ)dτ2 + sin2(θ)dϕ2). (2.32)

Coordinates θ and ϕ parametrize a disk with the metric ds2(D2) = r2(dθ2 + sin2(θ)dϕ2),

where θ is the radial coordinate of the disk. The sphere metric then becomes:

ds2(S3) = ds2(D2) + w2dτ2, w = r cos θ, (2.33)

which manifests S3 as a U(1)-fibration over D2, with the fibers being “warped” by w and

shrinking to zero size at the boundary of the disk.

2.3.2 Action of R-symmetries

The action of Rℓ and Rr on the fields of the previous section depends on the precise

embedding of u(1)ℓ and u(1)r into su(2)C ⊕ su(2)H given in terms of the matrices h and h̄

in (2.12) as follows. Let us first define the operators

RH =
1

2
ha

bRb
a , RC =

1

2
h̄ȧḃR

ḃ
ȧ , (2.34)

where Rb
a and Rḃ

ȧ are the generators of su(2)H and su(2)C respectively. In our conventions,

we then have

Rℓ = RH +RC , Rr = RH −RC . (2.35)

This equation provides an identification of Rℓ and Rr with linear combination of the Cartan

elements RH and RC of the R-symmetry of the superconformal algebra. In terms of their

action on fields, it is sufficient to describe how they act on su(2)H and su(2)C fundamental

operators. We have13

[RH ,Oa] =
1

2
ha

bOb , [RC ,Oȧ] =
1

2
h̄ḃȧOḃ , (2.36)

with a straightforward generalization to operators with multiple su(2)H ⊕ su(2)C indices.

For instance, [RH ,Oab
c] = 1

2ha
dOdb

c + 1
2hb

dOad
c − 1

2hd
cOab

d. The action of Rℓ and Rr on

operators can then be inferred from simply combining (2.35) and (2.36).

2.3.3 Action of supersymmetries

The action of the odd generators of su(2|1)l ⊕ su(2|1)r on operators in general multiplets

can be quite complicated. As mentioned above, on the vector and hypermultiplet operators

their action is just a particular subset of the transformation rules (2.4)–(2.9). The precise

correspondence between the various ξaȧ obeying (2.13) and the supercharges Q(ℓ±)
α and

Q(r±)
α is given in (C.9) and (C.21).

13Note that in our conventions ha
b = hb

a, and similarly for h̄.
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2.4 Central extension of non-conformal supersymmetry algebra

The discussion in section 2.3 was restricted to the case of vanishing mass and FI parameters.

Introducing these parameters amounts to central extensions of the algebra (2.24), as we

will now describe.

It is not hard to see, using Jacobi identity, that one cannot introduce central charges

in (anti-)commutators between left and right algebras, so one can only separately centrally

extend su(2|1)ℓ and su(2|1)r. Each of these algebras admits only one non-trivial central

extension, so in total we have two central charges. We denote the centrally extended

algebras with a tilde, so the supersymmetry algebra of our theories is s̃u(2|1)ℓ ⊕ s̃u(2|1)r.
Denoting central charges of the left and right subalgebras by Zℓ and Zr respectively, the

only place where they appear are the following anti-commutators:

{Q(ℓ+)
α ,Q(ℓ−)

β } = −4i

r

(
J
(ℓ)
αβ +

1

2
εαβRℓ + εαβZℓ

)
,

{Q(r+)
α ,Q(r−)

β } = −4i

r

(
J
(r)
αβ +

1

2
εαβRr + εαβZr

)
.

(2.37)

Physically, the central charges Zℓ and Zr correspond to turning on real masses and FI

parameters. We turn on masses by coupling to background vectormultiplets in the Cartan

of the flavor symmetry, as explained in section 2. The only components of these background

multiplets which are non-zero are h̄ȧ
ḃ
(Φb.g.)

ḃ
ȧ = −(Φb.g.)1̇2̇ and h b

a (Db.g.)
a
b , as explained

in (2.16).

The supersymmetry algebra has a gauge transformation on the right, as written in

eq. (2.18), with the gauge parameter Λ of (2.19). In gauge theories, dynamical gauge fields

force us to consider only operators which are not charged under the corresponding gauge

symmetry. For such operators, the gauge transformation in the SUSY algebra vanishes.

For background gauge fields, this is not so. We can have operators which are charged

under the corresponding global symmetry (which would be gauged if the gauge field were

dynamical), and for them, such gauge transformations in the algebra will generate central

charges. A simple computation, using the expression (2.19) for Λ, shows that:

1

r
(Zℓ + Zr) = i(Φb.g.)1̇2̇ = im̂ ,

1

r
(Zℓ − Zr) = 0 . (2.38)

Here m̂ = diag(mI), where mI are real masses for hypers qIa, I being the flavor index.

Analogously, FI parameters correspond to background twisted vectormultiplets in the

Cartan of the gauge group. They similarly generate central charges with:

1

r
(Zℓ + Zr) = 0 ,

1

r
(Zℓ − Zr) = iζ̂. (2.39)

Here, ζ̂ = ζIt
I acts non-trivially only on operators charged under the topological symmetry,

where ζI is the FI parameter and tI is the corresponding topological charge. Examples of

such operators are monopole operators.
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3 Cohomology in SCFTs

Our aim in this section and the next is to describe a procedure that generalizes the coho-

mological truncation of [4, 7, 8] from N = 4 SCFTs to the more general non-conformal

N = 4 theories on S3 that were described in section 2. The construction of [4, 7, 8] was

based on identifying two supercharges QH
1 and QH

2 in N = 4 SCFTs on R3, such that

the OPE restricted to their cohomology gives a certain quantization of the Higgs branch.

It was also possible to find another pair of supercharges, QC
1 and QC

2 , whose cohomology

similarly leads to a quantization of the Coulomb branch, though this second possibility was

not explored in detail. We will generalize both cases to non-conformal theories on S3, but,

just as in [4, 7, 8], our main focus will also be the Higgs branch.

We will find that local operators in the cohomology, both for QH
i and for QC

i , can

only be inserted along a great circle S1 ⊂ S3.14 The circle is the fixed point locus of the

U(1) isometry that appears in the anti-commutator {QH
1 ,QH

2 } or {QC
1 ,QC

2 }. In the case of

QH
i , the operators that can be inserted on S1 will be referred to as “twisted Higgs branch

operators”, because, as we will see, they are in 1-to-1 correpsondence with Higgs branch

chiral ring operators. Similarly, operators in QC
i cohomology will be referred to as “twisted

Coulomb branch operators”.

In section 3.1, we start by reviewing the construction of [4, 7, 8] in flat space, and

then in section 3.2 we translate this construction to S3. In section 4 we describe the

generalization of this cohomology directly based on the su(2|1)ℓ ⊕ su(2|1)r algebra.

3.1 SCFT in flat space

Consider theories living on a three-dimensional Euclidean space R3 with the standard

coordinates ~x = (x1, x2, x3). The bosonic subalgebra of the osp(4|4) superconformal alge-

bra is so(4)⊕ sp(4), where the generators of sp(4) are rotations Mαβ , translations Pµ and

special conformal transformations Kµ, and the generators of the so(4) ∼= su(2)H⊕su(2)C R-

symmetry are denoted by Rab and R̄ȧḃ and act on the Higgs and Coulomb branches, respec-

tively. The fermionic generators are Qαaȧ and Sαaȧ, denoting Poincaré and conformal super-

charges, respectively. The detailed description of this algebra can be found in appendix C.1.

Define the two supercharges QH
1 and QH

2 by

QH
1 = Q112̇ +

1

2r
S2

22̇ , QH
2 = Q211̇ +

1

2r
S1

21̇ . (3.1)

In (3.1), r is some arbitrary parameter with dimensions of length.15 The supercharges QH
1,2

are nilpotent, i.e., (QH
1 )2 = (QH

2 )2 = 0, and their anticommutator is given by

Z =
ir

4
{QH

1 ,QH
2 } = −M12 + R̄1̇

1̇ . (3.2)

Whether we consider the cohomology of QH
1 or QH

2 , the above equation implies that it

can be represented by elements from the Z = 0 subspace. In order to satisfy Z = 0, local

operators with zero R̄1̇
1̇ charge can only be inserted at the fixed point locus of the M12

rotation, i.e., at the line x1 = x2 = 0.

14There is some freedom in choosing QH,C
i , which corresponds precisely to the choice of great circle on S3.

15When we map (3.1) to S3, we will interpret r as the radius of the sphere.
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There are QH
1,2-exact twisted translation and dilatation given by

L̂− = −1

4
{QH

1 , Q221̇} =
1

4
{QH

2 , Q122̇} = P3 +
i

2r
R2

1 (3.3)

L̂0 = −1

8
{QH

1 ,QH†
1 } =

i

8
{QH

1 , 2rQ211̇ − S1
21̇}

= −1

8
{QH

2 ,QH†
2 } =

i

8
{QH

2 ,−2rQ112̇ + S2
22̇} = −D +R1

1 . (3.4)

The twisted translation generated by L̂− can be used to move cohomology classes along the

line x1 = x2 = 0. In particular, every cohomology class defined at the origin can be twisted-

translated to the whole line x1 = x2 = 0. It is those observables on the line which where

referred to before as twisted operators. Because L̂− is QH
1 - and QH

2 -exact, this twisted

translation is a trivial operation at the level of the cohomology of QH
1 or QH

2 . Therefore,

to characterize the local operators in cohomology completely, it is sufficient to consider

them inserted at the origin. By the state-operator map, this corresponds to studying

the state cohomology. Using (3.4), L̂0 = −1
8{QH

1 ,QH†
1 } = −1

8{QH
2 ,QH†

2 }, the standard

Hodge theory argument proves that the cohomologies of QH
1 and QH

2 are identical and are

represented by the kernel of L̂0.

As shown in [7, 8], these representatives are given by local operators OR3

a1···an(
~0) trans-

forming in the (n+ 1,1) irrep of the su(2)H ⊕ su(2)C R-symmetry and of conformal di-

mension ∆ = n/2. When translated with L̂− they give the twisted operator:

O(s) = OR3

a1···an

∣∣∣
~x=(0,0,s)

ua1
R3 · · ·uanR3 , uR3 ≡

(
1,

s

2r

)
, (3.5)

which defines a non-trivial cohomology class on the line x1 = x2 = 0.

Local operators in the cohomology form a certain algebraic structure under the OPE

of the full theory. In particular, because L̂− is zero in cohomology, the OPE of operators

in the cohomology does not depend on their positions on the line, but it can depend on

their ordering. By moving operators to one point, we then define a product of cohomology

classes. This way we get an algebra in the cohomology, which is associative but not

necessary commutative.

As explained in [8], the operators O(s), when inserted at the origin s = 0, are just

the Higgs branch chiral ring operators. However, as we move away from the origin, they

become mixed with anti-chiral operators, because of the twisting factor uR3 = (1, s
2r ).

This twisting factor can be thought of as an s-dependent choice of the Cartan generator

of su(2)H given by 1−s2/(2r)2

1+s2/(2r)2
σ3 +

s/r
1+s2/(2r)2

σ1. A twisted operator O(s) is in the su(2)H
highest weight state with respect to this s-dependent Cartan generator. The fact that the

twisted operators are not chiral with respect to a fixed Cartan generator is responsible for

the fact that the algebraic structure we get is not a chiral ring, but rather its deformation

quantization.16 The deformation parameter is 1
2r , which was denoted by ζ in [8].

In fact, it turns out to be slightly more convenient to study the cohomology of a linear

combination QH
1 + βQH

2 with some generic β. This operator squares to the bosonic trans-

formation Z, and so it plays a role of the equivariant differential. The cohomology problem

16More precisely, the Higgs (or Coulomb) branch chiral ring has a natural Poisson structure, since it

corresponds to the ring of holomorphic functions on the moduli space, which for N = 4 theories is a

hyperkähler cone. The algebraic structure we obtain is the deformation quantization of this Poisson algebra.
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for this operator therefore involves two steps: one has to restrict to the Z = 0 subspace first,

and then compute the cohomology there. The idea to treat a supercharge as an equivariant

differential (with respect to spacetime symmetries) in SUSY gauge theories is an old one

and goes back, e.g., to [45, 46], while the associated quantization was first discussed in [47].

Recall that Z is a sum of rotation in the (x1, x2) plane and a certain R-symmetry

transformation. The condition Z = 0 then implies that geometrically, the configuration of

operators should be invariant under this rotation. In particular, local operators, as well

as line operators, can only be inserted at the line x1 = x2 = 0, which is the fixed point

locus of this rotation. Surface operators, on the other hand, can only span the orthogonal

(x1, x2) plane and correspond to some fixed value of x3.

Including line operators would of course change the answer, and the cohomology of local

operators located at the line defect at x1 = x2 = 0 would give a different protected algebra.

Surface operators, on the other hand, are expected to give some modules for the protected

algebra to act on. They would describe point defects on the line x1 = x2 = 0, acted on

by the local operators. This action simply corresponds to merging local operators and

the defect together. Including extended operators gives an interesting direction for further

explorations, and it would potentially allow one to extract more dynamical information

about the theory. However, in this paper, we do not consider any extended operators and

study only the protected algebra of local operators.

3.2 SCFT on the sphere

Now let us identify the counterpart of the above construction on the sphere. After describ-

ing it in some detail, we will be able to see that it generalizes to non-conformal theories in

a straightforward fashion.

Using the stereographic map, one can place any conformal theory on S3. Under this

map, the line x1 = x2 = 0 maps to a great circle S1 ⊂ S3, along which the cohomology

classes of local operators described in the previous subsection will be inserted. The rotation

in Z now becomes a U(1) isometry of the sphere, whose fixed point locus is precisely this S1.

As mentioned in section 2.3.1, it will be useful to represent S3 as a U(1) fibration

over the disk D2, with fibers shrinking at its boundary ∂D2 = S1. This boundary S1,

parameterized by the angle ϕ at θ = π
2 , is the great circle mentioned above along which

local operators in cohomology can be inserted. The situation here is similar to that in [44],

where an analogous representation of S4 was used in the localization of 4d N = 4 Yang-

Mills theory to an S2.

3.2.1 Twisted operators on S
3 by stereographic map

In R3, we were interested in correlators of twisted operators Oi(si) inserted at points

(0, 0, si). Let us map them on S3:

〈O1(s1) · · · Ok(sk)〉R3 = 〈O1(ϕ1) · · · Ok(ϕk)〉S3 . (3.6)

Operators on the right are the sphere counterparts of the flat space twisted operators,

and are given by contraction of the S3 operators OS3

a1···an(ϕ)
∣∣∣
θ=π

2

, inserted on the great
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circle at θ = π/2, with u = (1, x3
2r ) = (1, tan ϕ

2 ). For every operator of dimension ∆, we

have OR3
= Ω∆OS3

, with Ω being the conformal factor, which evaluates to Ω = cos2 ϕ
2 at

θ = π/2. The definition (3.5) then implies

O(ϕ) = cosn
ϕ

2
OS3

a1···an

∣∣∣
θ=π

2

ua1
R3 · · ·uanR3 = OS3

a1···an

∣∣∣
θ=π

2

ua1
S3 · · ·uanS3 , (3.7)

where uS3 = uR3 cos ϕ
2 = (cos ϕ

2 , sin
ϕ
2 ). Note that the twisted operators O do not transform

with a conformal factor in going from R3 to S3, and this is why they do not carry an R3

or S3 superscript and why there is no conformal factor in (3.6). We will now interpret this

construction in a more intrinsic way using the theory on S3 only.

3.2.2 Interpretation in terms of su(2|1)ℓ ⊕ su(2|1)r subalgebra

In section 2 and appendix C, we chose an embedding of the su(2|1)ℓ⊕su(2|1)r superalgebra
in osp(4|4), such that su(2)ℓ ⊕ su(2)r ⊂ sp(4) corresponds to isometries of the sphere and

u(1)ℓ ⊕ u(1)r ⊂ so(4)R ∼= su(2)H ⊕ su(2)C was a Cartan subalgebra of the R-symmetry

algebra. The choice of Cartan subalgebra was parametrized by the matrices h and h̄. To

be more precise, h parameterizes the Cartan generator RH in su(2)H and h̄ parameterizes

the Cartan generator RC in su(2)C . The generators Rℓ and Rr of u(1)ℓ and u(1)r are given

by (2.35). The supercharges of su(2|1)ℓ were denoted by Q(ℓ±)
α , and the supercharges of

su(2|1)r by Q(r±)
α . Their expressions in terms of conformal supercharges Qαaȧ and Sα

aȧ can

be found in appendix C.2.

Using this embedding, it is easy to identify our supercharges QH
1 and QH

2 as:

QH
1 = Q(ℓ+)

1 +Q(r−)
1 , QH

2 = Q(ℓ−)
2 +Q(r+)

2 . (3.8)

Each of these supercharges is of course nilpotent, and

{QH
1 ,QH

2 } =
4i

r
(Pτ +RC) (3.9)

where Pτ ≡ −(J
(ℓ)
3 + J

(r)
3 ) is the τ -translation acting as Pτ = i∂τ on gauge-invariant

operators.

Using the su(2|1)ℓ ⊕ su(2|1)r algebra, we can check that:

{
QH

1 ,
r

4i

(
Q(ℓ−)

2 −Q(r+)
2

)}
=
{
Q2,

r

4i

(
Q(ℓ+)

1 −Q(r−)
1

)}
= Pϕ +RH ≡ P̂ϕ . (3.10)

Here Pϕ = J
(r)
3 − J

(ℓ)
3 is simply the ϕ translation isometry of S3 acting on gauge invariant

operators as Pϕ = i∂ϕ. The generator P̂ϕ defined above is a new twisted-translation, which

is defined on the sphere purely in terms of the su(2|1)ℓ ⊕ su(2|1)r superalgebra.

Let Oa1···an be some local operator in the SCFT on the sphere,17 in the spin-n/2 irrep

of su(2)H . If O11···1, when inserted at the point θ = π/2, ϕ = 0 (which corresponds to the

origin of R3 upon stereographic projection), is in the cohomology of QH
1 and QH

2 , (recall

17From now on, we drop the superscript or subscript S3 present in the previous subsection.
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from previous discussions that it must have the highest su(2)H -weight) we can use the P̂ϕ

translation to move it along the ϕ-circle without changing its cohomology class:

O(ϕ) = eiϕP̂ϕO11···1

∣∣∣
θ=π

2
,ϕ=0

e−iϕP̂ϕ = Oa1···an

∣∣∣
θ=π

2
,ϕ=0

ua1 · · ·uan , (3.11)

where u = (cos ϕ
2 , sin

ϕ
2 ). This expression precisely matches (3.7), which was obtained from

the stereographic map from R3. We conclude that the stereographic map identifies the

twisted operators on R3 defined in [7, 8], with twisted operators on S3 defined purely in

terms of the su(2|1)ℓ ⊕ su(2|1)r subalgebra of the osp(4|4) superconformal algebra. This

subalgebra has all the necessary ingredients for the cohomological truncation to work.

Note that the R3 construction in [7, 8] utilized a different subalgebra of osp(4|4), namely

a centrally extended su(2|2). That algebra is a 1d N = 4 superconformal algebra acting on

the x1 = x2 = 0 line, suggesting that conformal symmetry is somehow important for the

construction to work. Our algebra su(2|1)ℓ ⊕ su(2|1)r, on the other hand, is not related to

conformal symmetry anymore. In fact, it is the supersymmetry algebra of a general class

of non-conformal N = 4 actions on S3, as explained in section 2 (of course, at the RG

fixed points, it becomes enhanced to osp(4|4)). In the next subsection, we summarize our

construction for the theories based on su(2|1)ℓ ⊕ su(2|1)r and its central extensions.

4 Cohomology in non-conformal N = 4 theories on S
3

As we have seen, the cohomolgical construction of [4, 7, 8] for SCFTs on R3 can be readily

translated to S3, since SCFTs can be canonically placed on a sphere. Interestingly, once

we pass to the sphere, conformal symmetry is no longer necessary, and the cohomology

described in the previous section is also defined away from the RG fixed point. We will

explore this construction in this section.

For the cohomological reduction to the 1d sector to work, it is enough to preserve the

subalgebra su(2|1)ℓ ⊕ su(2|1)r ⊂ osp(4|4) of the superconformal algebra. The superalgebra

su(2|1)ℓ⊕su(2|1)r (or its centrally extended versions), as explained in section 2, is a possible

N = 4 superalgebra on S3. It describes a class of non-conformal theories on S3. At the

RG fixed point, the symmetry is of course enhanced to osp(4|4), and our results reduce to

those of [4, 7, 8] as reviewed in section 3.

In an N = 4 theory on S3 invariant under the centrally extended algebra s̃u(2|1)ℓ ⊕
s̃u(2|1)r discussed in section 2.4, the construction proceeds as follows. Consider the follow-

ing linear combinations of supercharges:

QH
1 ≡ κα1ℓQ(ℓ+)

α + κα1rQ(r−)
α , QH

2 ≡ κα2ℓQ(ℓ−)
α + κα2rQ(r+)

α , (4.1)

QC
1 ≡ κα1ℓQ(ℓ+)

α + κα1rQ(r+)
α , QC

2 ≡ κα2ℓQ(ℓ−)
α + κα2rQ(r−)

α . (4.2)

Each of them is nilpotent, and, based on (2.37), they satisfy:

{QH
1 ,QH

2 }=−4i

r

(
κα1ℓκ

β
2ℓJ

(ℓ)
αβ+κ

α
1rκ

β
2rJ

(r)
αβ +κ1ℓκ2ℓ

(
1

2
Rℓ+Zℓ

)
−κ1rκ2r

(
1

2
Rr+Zr

))
, (4.3)

{QC
1 ,QC

2 }=−4i

r

(
κα1ℓκ

β
2ℓJ

(ℓ)
αβ+κ

α
1rκ

β
2rJ

(r)
αβ +κ1ℓκ2ℓ

(
1

2
Rℓ+Zℓ

)
+κ1rκ2r

(
1

2
Rr+Zr

))
, (4.4)
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where κ1κ2 ≡ εαβκ
α
1κ

β
2 . We want the rotation which appears on the right to fix a great

circle on S3. Before, this circle was determined as an image of the line x1 = x2 = 0 under

the stereographic projection, and it was the fixed point locus of the τ -rotations on S3. But

there are many equivalent choices of the large circle on S3, and that is why we have free

parameters denoted by κ above.

Without loss of generality, we will consider the same S1 as before that is parametrized

by ϕ and is a fixed point set for the τ rotations. To pick such a circle, we use:

κ1ℓ = κ1r =

(
1

0

)
, κ2ℓ = κ2r =

(
0

1

)
. (4.5)

Then the supercharges become:

QH
1 = Q(ℓ+)

1 +Q(r−)
1 , QH

2 = Q(ℓ−)
2 +Q(r+)

2 , (4.6)

QC
1 = Q(ℓ+)

1 +Q(r+)
1 , QC

2 = Q(ℓ−)
2 +Q(r−)

2 , (4.7)

and their algebra is:

{QH
1 ,QH

2 } =
4i

r
(Pτ +RC + Zℓ − Zr) =

4i

r

(
Pτ +RC + irζ̂

)
, (4.8)

{QC
1 ,QC

2 } =
4i

r
(Pτ +RH + Zℓ + Zr) =

4i

r
(Pτ +RH + irm̂) , (4.9)

where Pτ = −(J
(ℓ)
3 + J

(r)
3 ) = i∂τ is the τ -rotation isometry, just as we need, and

RC = 1
2(Rℓ −Rr), RH = 1

2(Rℓ +Rr).

Next, we find the Q
H/C
1,2 -exact generators given by

{
QH

1 ,
r

4i

(
Q(ℓ−)

2 −Q(r+)
2

)}
=
{
QH

2 ,
r

4i

(
Q(ℓ+)

1 −Q(r−)
1

)}
=Pϕ+RH+Zℓ+Zr , (4.10)

{
QC

1 ,
r

4i

(
Q(ℓ−)

2 −Q(r−)
2

)}
=
{
QC

2 ,
r

4i

(
Q(ℓ+)

1 −Q(r+)
1

)}
=Pϕ+RC+Zℓ−Zr , (4.11)

with Pϕ = J
(r)
3 − J

(ℓ)
3 = i∂ϕ as before. We define two twisted rotations:

P̂H
ϕ = Pϕ +RH , (4.12)

P̂C
ϕ = Pϕ +RC , (4.13)

which are closed with respect to the corresponding supercharges, i.e., [QH
i , P̂

H
ϕ ] = 0 and

[QC
i , P̂

C
ϕ ] = 0. Therefore, these twisted rotations can still be used to translate cohomology

classes along the ϕ-circle. Now, however, P̂
H/C
ϕ are not necessarily exact. Rather, P̂H

ϕ is

cohomologous to −Zℓ−Zr = −irm̂ and P̂C
ϕ is cohomologous to −Zℓ+Zr = −irζ̂. Thus, on

operators commuting with m̂, twisted translations act in a QH
i -exact way, which is similar

to what we had before. For such operators, there is no ϕ-dependence of cohomology classes,

meaning their correlation functions are position-independent.

For operators that have a non-zero eigenvalue of m̂ (such operators are charged under

the Cartan of the flavor symmetry), the corresponding cohomology classes become position
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dependent. Nevertheless, this position dependence is very simple: it appears in correlators

as the factor ermϕ, where m is the eigenvalue of m̂. We could have included Zℓ + Zr into

the definition of the twisted translation and removed this position dependence, but we find

it more convenient not to do so.

Analogously, operators in QC
i cohomology, which are not charged under the topolog-

ical symmetry, have ζ̂ = 0, and correlation functions of twisted-translated operators are

position-independent. For operators charged under the topological symmetry, there is a ϕ-

dependence given by erζϕ, where ζ is the eigenvalue of ζ̂. For example, cohomology classes

of monopole operators are expected to carry such position dependence in the presence of

non-zero FI terms.

4.1 Operators in the cohomology of QH
i

In an SCFT, there was a state-operator map which allowed to identify the cohomol-

ogy of local operators inserted at the origin with the state cohomology. Because of
1
8{QH

1 ,QH†
1 } = 1

8{QH
2 ,QH†

2 } = D − R 1
1 , one could completely describe cohomology by

the equation D = R 1
1 . Unitarity also implied D − R 1

1 ≥ 0, so states/operators with

D − R 1
1 = 0 had to be the highest weight states with respect to su(2)H , i.e., they had

the maximal eigenvalue of R 1
1 . This approach shows that the components q1 and q̃1 of

the hypermultiplet scalars are examples of such operators in gauge theories built from

hypermultiplets and vectormultiplets, and all other operators are constructed from them.

What should we do in our, generally non-conformal, case? One can check, by applying

SUSY variations from the section 2, that q1 and q̃1 = −q̃2, when inserted at the point

θ = π/2, ϕ = 0, are still annihilated by QH
1 and QH

2 . Twisted-translating them along the

great circle parametrized by ϕ, we get twisted operators in the cohomology of QH
i :

Q(ϕ) = q1(ϕ) cos
ϕ

2
+ q2(ϕ) sin

ϕ

2
, Q̃(ϕ) = q̃1(ϕ) cos

ϕ

2
+ q̃2(ϕ) sin

ϕ

2
. (4.14)

In the gauged case, one should be slightly more precise, as we are allowed to consider only

gauge invariant operators. This means that QH
i -closed operators that we can insert at the

origin are gauge invariant polynomials in q1 and q̃1, and twisting-translating them along

the circle gives gauge invariant polynomials in Q and Q̃.

These are the interesting QH
i -closed observables. Because we do not have a Hodge

theory argument like in the conformal case, it becomes harder to argue that these operators

are not QH
i -exact, and that there are no other cohomology classes besides those represented

by products of Q and Q̃. But there is a roundabout: in the next section we will localize our

theory to a 1d theory on the circle, and non-trivial cohomology classes of local operators

will give local observables in that theory. We will see that all local observables in the 1d

theory are generated by Q and Q̃. (This will be especially clear from the 1d gauge theory

interpretation of section 6.2) This allows to prove that a 3d operator constructed from Q

and Q̃ is not QH
i -exact, otherwise it would vanish in the 1d theory (because a correlator

of QH
i -closed operators with a QH

i -exact operator is zero). We can say that localization

provides a surjective map from QH
i -closed observables in 3d to all local observables in 1d,

which are just gauge invariant polynomials in Q and Q̃. It does not prove that there are no
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additional operators in the cohomology of the 3d theory, i.e., that this map is also injective,

but we assume it to be the case.18

The cohomology of QH
1,2 also contains interesting loop operators. For instance, the

1
2 -BPS Wilson loop wrapping the θ = π

2 circle is defined by:

WR ≡ TrR Pe−i
∫
θ=π

2
dϕ(Aϕ+irΦ1̇2̇) . (4.15)

One can verify that WR preserves the supercharges Q(ℓ+)
1 , Q(ℓ−)

2 , Q(r+)
2 and Q(r−)

1 , which

generate an su(1|1)⊕ su(1|1) sub-algebra of su(2|1)ℓ ⊕ su(2|1)r. Our supercharges QH
1,2 are

both part of this sub-algebra.

4.2 Operators in the cohomology of QC
i

Studying the Coulomb branch is not the central topic of this paper, but we nevertheless

give some details on it. Again, in conformal theories one can use state-operator map and

the equation:
1

8
{QC

1 ,QC†
1 } =

1

8
{QC

2 ,QC†
2 } = D − 1

2
(R̄ 2̇

1̇
+ R̄ 1̇

2̇
). (4.16)

So, every state in the cohomology of an SCFT has to be the highest-weight state with

respect to (σ1)
ḃ
ȧ R̄

ȧ
ḃ

and satisfy D = 1
2(σ1)

ḃ
ȧ R̄

ȧ
ḃ
. If we define

vȧ =

(
1

1

)
, (4.17)

then every operator Oȧ1···ȧn of su(2)C spin n/2 has the highest weight component

Oȧ1···ȧnv
ȧ1 · · · vȧn . In gauge theories constructed from vectors and hypers, there is one

obvious operator which satisfies this condition:

Φȧḃv
ȧvḃ = Φ1̇1̇ +Φ2̇2̇ + 2Φ1̇2̇ , (4.18)

because Φȧḃ at the conformal point has dimension ∆Φ = 1. For non-conformal theories,

Φȧḃv
ȧvḃ is also annihilated by QC

i at the origin θ = π/2, ϕ = 0, as one can check using

transformation rules from the section 2. The corresponding twisted-translated operator is:

Φ(ϕ) = eiϕΦ1̇1̇ + e−iϕΦ2̇2̇ + 2Φ1̇2̇ . (4.19)

Later we will be able to easily compute correlation functions of such operators. However,

this is not the whole story for the Coulomb branch. The Coulomb branch chiral ring

also contains monopole defect operators that contribute to the protected algebra in the

cohomology of QC
i . Moreover, this cohomology contains line defect operators, known as

vortex loops, which map to the Wilson loops (4.15) under mirror symmetry. As shown

in [49], the vortex loop preserves an su(1|1)⊕su(1|1) sub-algebra of su(2|1)ℓ⊕su(2|1)r, which
in our language is generated by Q(ℓ+)

1 , Q(ℓ−)
2 , Q(r+)

1 and Q(r−)
2 . Both of the supercharges

QC
1,2 are part of that sub-algebra. We postpone a detailed study of defect operators to a

future publication.

18Had it not been the case, this map would have a non-empty kernel, in other words there would exist

a non-trivial operator in 3d which vanishes under the correlators with arbitrary insertions of QH
i -closed

observables.
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5 Localization

In this section we describe how to localize the theories on S3 defined in section 2 to the

1d Higgs branch cohomological sector described in sections 3 and 4. We also provide some

preliminary results on the Coulomb branch.

Let us first briefly review how supersymmetric localization works. Given a supercharge

Q which generates a symmetry of our theory, we would like to calculate the path integral

I =

∫
DVDHe−S[V,H](· · · ) , S ≡ SYM[V] + Shyper[H,V] , (5.1)

with SYM and Shyper defined in (2.14) and (2.10), respectively, and (· · · ) representing some

Q-closed insertions.19 The first step is to deform the action in (5.1) by a Q-exact operator:

I → I(t) =
∫
DVDHe−St[V,H](· · · ) ,

St ≡ S + tV = S + t

∫
d3x

√
g{Q,Ψ(x)} . (5.2)

If [Q, V ] = 0, then the path-integral (5.2) can be argued to be independent of t. Therefore,

I = I(0) is equal to the limit limt→∞ I(t). In order for the path integral to converge

as we take this limit, the bosonic part of V is assumed to be non-negative. Then in the

t→ ∞ limit, the path integral reduces to a sum over zeros of V , which are also its saddles.

Those zeros include Q-invariant field configurations, and if V is chosen properly, they are

precisely identified with such configurations. Each of the saddles gives rise to two distinct

contributions to I. The first contribution comes from the classical action and insertions

evaluated on the saddle point. The second contribution is the 1-loop determinant arising

from integrating over the quadratic fluctuations of the fields around the saddle.

Our first task is then to choose the supercharge Q in (5.2). The twisted Higgs branch

operators constructed from (4.14) are in the cohomology of QH
1,2 defined in (4.6). To

calculate their correlators we can therefore contemplate localizing with either QH
1 or QH

2 .

Similarly, to calculate correlators of twisted Coulomb branch operators, such as those

constructed from (4.19), we can consider localizing with QC
1 or QC

2 , which were defined

in (4.7). In either case, as discussed in section 3, it is actually advantageous to localize

with a linear combination

QH
β = QH

1 + βQH
2 , (5.3)

QC
β = QC

1 + βQC
2 , (5.4)

keeping β 6= 0 arbitrary. In what follows, we will describe the details of localizing our

theories with respect to (5.3) or (5.4), starting with the vectormultiplet and then proceeding

with the hypermultiplet.

19In most of this section we will not include FI terms and real masses to avoid clutter, but they can be

very easily incorporated.
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5.1 Vectormultiplets and a non-renormalization theorem

As explained in [42], previous supersymmetric localization computations on S3 may be

simplified by taking the N = 2 Yang-Mills and chiral superfield actions themselves as

localizing terms. Indeed, these actions have non-negative bosonic parts, and are exact with

respect to supercharges in the su(2|1)⊕ su(2) symmetry algebra of N = 2 theories on S3.

Moreover, they are symmetric under the full su(2|1) ⊕ su(2) algebra, which simplifies the

evaluation of 1-loop determinants.

It follows that our N = 4 Yang-Mills action SYM defined in (2.14) is also exact with

respect to supercharges in all of the su(2|1)⊕ su(2) sub-algebras of su(2|1)ℓ ⊕ su(2|1)r. In
fact, an explicit calculation shows that SYM is also exact under both QH

β and QC
β , even

though they do not lie in any such N = 2 sub-algebra.

Indeed, the Killing spinor generating QH
β can be inferred from (3.1) and (C.9) to be

(ξHβ )αaȧ = −eΩ/2

[(
β

0

)
⊗
(
0

1

)
⊗
(
0

1

)
+

(
0

1

)
⊗
(
0

1

)
⊗
(
1

0

)

+
1

2r

(
x1 − ix2
−x3

)
⊗
(
1

0

)
⊗
(
1

0

)
− β

2r

(
x3

x1 + ix2

)
⊗
(
1

0

)
⊗
(
0

1

)]
. (5.5)

One can then check using (2.4)–(2.7) that

δξH
β
δξH−β

(
1

2g2YM

habh̄ȧḃ
∫
d3x

√
gTr

(
λaȧλbḃ − 2DabΦȧḃ

))
= −iβSYM . (5.6)

Equation (5.6) also holds after the replacement ξH±β → ξC±β , where ξ
C
β is the Killing spinor

generating QC
β . We conclude that SYM can be used as a localizing term for the vectormul-

tiplet, whether we choose to localize with QH
β , QC

β , or the supercharge QKWY that was

used by [39] and lies in an N = 2 sub-algebra of su(2|1)ℓ ⊕ su(2|1)r.20
When calculating the variations in (5.6) we have set to zero total derivatives under the

integral sign. Those total derivatives could give additional contributions in the presence of

defect operators, such as monopoles, which introduce non-trivial boundary conditions for

the fields at their insertion points. Consequently, the above result may have to be modified

when defect operators are inserted in the path integral.

An immediate consequence of (5.6) is that for any N = 4 theory on S3, correlators

of operators in the cohomology of QC
β or QH

β are independent of gYM in the absence of

defect operators. In particular, for our theories, all correlators of the twisted Higgs branch

operators constructed from (4.14), or of the twisted Coulomb branch operators constructed

from (4.19), are independent of gYM. The non-renormalization theorems of [34, 40, 50] make

similar statements at the level of the chiral ring.

Let us now summarize the details of the localization of the N = 4 vectormultiplet.

Since we established that SYM can be used as a localizing term, the result can be entirely

migrated from [39, 42]. In our language, the fields (2.1) in the vectormultiplet V localize to

V → Vloc = {Aloc
µ , λloc

aḃ
,Φloc

ȧḃ
, Dloc

ab } , (5.7)

20For example, in our notations we can take QKWY = Q
(ℓ+)
1 .
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where

Φloc
1̇2̇

= irDloc
11 = irDloc

22 =
1

r
σ , Aloc

µ = Dloc
12 = Φloc

1̇1̇
= Φloc

2̇2̇
= λloc

aḃ
= 0 , (5.8)

and σ is a constant in the Cartan of the lie algebra g parameterizing the different saddles

of SYM. The action SYM itself, of course, vanishes when evaluated on the vectormultiplet

localization locus (5.8):

SYM[Vloc(σ)] = 0 . (5.9)

On the other hand, the hypermultiplet action (2.10) becomes

Shyper[H,Vloc(σ)] =

∫
d3x

√
g

[
∂µq̃a∂µqa−iψ̃ȧ /∇ψȧ+

1

r2
q̃a
(
σ2+

3

4

)
qa+

1

r2
(
q̃1σq2−q̃2σq1

)

− i

r

(
ψ̃1̇σψ1̇−ψ̃2̇σψ2̇

)]
. (5.10)

Together with the contribution from the vectormultiplet 1-loop determinant, the path in-

tegral I in (5.1) reduces to21

I =
1

|W|

∫

Cartan
dσ det ′adj [2 sinh(πσ)]

∫
DHe−Shyper[H,Vloc(σ)](· · · ) , (5.11)

where |W| is the order of the Weyl group of the gauge group. The prime over the determi-

nant sign means we should restrict the action of σ to the non-zero weights of the adjoint

before taking the determinant. Note that the determinant factor in (5.11) is actually equal

to the contribution of only an N = 2 vectormultiplet. This is because the N = 4 vec-

tormultiplet decomposes into an N = 2 vectormultiplet plus an adjoint chiral multiplet of

R-charge 1, and the 1-loop determinant of a chiral with precisely this R-charge is equal to 1.

For each U(1) factor in G, we can introduce an FI term (2.15), which leads to additional

insertions in (5.11) of

e−SFI → e−8π2irζσ , (5.12)

where σ in (5.12) is understood to be the real scalar in the vectormultiplet that gauges

the corresponding U(1) factor. Real masses can be treated as follows. For every Cartan

generator of the flavor symmetry group we can couple the corresponding Abelian flavor

current multiplet to a background vectormultiplet. With our choice of matrices h and h̄,

introducing a real mass parameter means giving an expectation value equal to m to the

background Φ1̇2̇ and to the corresponding components of Dab according to (2.16). One

can introduce as many real mass parameters as Cartan generators of the flavor symmetry

algebra thus breaking the flavor symmetry to its Cartan subalgebra. At the level of localized

action, turning on real masses corresponds to replacing:

σ → σ + rm , (5.13)

21Given a choice of a Cartan sub-algebra for the gauge group G with generatorsHi, we can decompose σ =

σiH
i. If ρ is a weight vector in a representation R of G, then ρ(σ) ≡ ρiσi, and detR f(σ) ≡ Πρ∈Rf(ρ(σ)).

In the vectormultiplet determinant det ′
adj [2 sinh(πσ)] in (5.11) the product is only over the roots of G.
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where m is a mass matrix in the Cartan of the flavor symmetry group acting on Q in the

corresponding representation. To be more precise, in the above expression, σ acts only on

gauge indices, while m acts only on flavor indices. In the notation of footnote 6, where R
is viewed as a map from the gauge algebra into dimR× dimR hermitian matrices and F
is defined as a map from the hypermultiplet flavor algebra into dimR× dimR hermitian

matrices, one would write R(σ) → R(σ) + rF(m) instead of (5.13).

5.2 3d Gaussian theory coupled to a matrix model

The expression (5.11) for the path integral could be viewed as our final result. Indeed, at

fixed σ, the remaining path integral over the matter fields in H is now easily calculable

because the hypermultiplet action is quadratic. Performing this integral gives a matrix

model that depends on the precise operator insertions in (5.11). We conclude that no

further localization of the hypermultiplet is necessary for reducing the path integral (5.11),

with any supersymmetric insertions, to a matrix integral. (However, as we will see soon,

we can do even better and replace the 3d Gaussian theory at fixed σ by a very simple 1d

Gaussian theory.)

Without any insertions, (5.11) gives the S3 partition function. After integrating out

the hypermultiplet fields using

Zσ ≡
∫
DH e−Shyper[H,Vloc(σ)] =

1

detR [2 cosh(πσ)]
, (5.14)

one obtains the KWY matrix model

ZS3 =
1

|W|

∫

Cartan
dσ

det ′adj [2 sinh(πσ)]

detR [2 cosh(πσ)]
. (5.15)

The types of insertions (· · · ) allowed in (5.11) depend on the supercharge one chooses

to localize with. As we saw, we can consider three possibilities: the supercharge QKWY

of [39], the supercharge QH
β in (5.3), or QC

β defined in (5.4). The insertions (· · · ) then must

all lie either in the cohomology of QKWY, or in the cohomology of QH
β , or in the one of

QC
β . Let us now discuss each of the three cases separately.

5.2.1 Localizing with QKWY

The cohomology of QKWY does not contain any local operators. It contains, however,

non-local operators such as the Wilson loop operators (4.15). Such a Wilson loop in

representation RL of G localizes to

WRL

∣∣∣∣
loc

= trRL
e2πσ . (5.16)

These operators are not constructed from the hypermultiplet fields, so we can safely inte-

grate those out using (5.14), which gives

〈WRL
〉 = 1

|W|

∫

Cartan
dσ

det ′adj [2 sinh(πσ)]

detR [2 cosh(πσ)]
trRL

e2πσ . (5.17)

The modification of (5.15) that results from including real masses also allows for the

calculation of integrated correlators of scalar operators in N = 2 current multiplets asso-

ciated with flavor symmetries [26].
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5.2.2 Localizing with QC
β

If we localize with QC
β , the allowed insertions include the twisted Coulomb branch opera-

tors discussed in section 4.2. As shown there, with the exception of monopole operators,

these are gauge invariant polynomials in the twisted field Φ(ϕ) defined in (4.19). On the

localization locus (5.8), we have

Φ(ϕ)

∣∣∣∣
loc

=
2σ

r
. (5.18)

Because these operators are independent of H, we can again integrate out the hypermulti-

plet fields using (5.14). We conclude that

〈P1 (Φ(ϕ1)) · · ·Pn (Φ(ϕn))〉

=
1

ZS3 |W|

∫

Cartan
dσ

det ′adj [2 sinh(πσ)]

detR [2 cosh(πσ)]
P1

(
2σ

r

)
· · ·Pn

(
2σ

r

)
,

(5.19)

where Pin are any polynomials and where we divided by ZS3 so that 〈1〉 = 1. The treatment

of defect operators in the cohomology of QC
β is left for future work.

5.2.3 Localizing with QH
β

Finally, let us discuss the possible insertions when localizing with QH
β . They are gauge

invariant polynomials constructed from Q(ϕ) and Q̃(ϕ), as discussed in section 4.1. We

conclude that the correlators of such operators Oi(ϕ) can be calculated using (5.11):

〈O1(ϕ1) · · ·On(ϕn)〉=
1

ZS3 |W|

∫

Cartan
dσ

det ′adj [2sinh(πσ)]

detR [2cosh(πσ)]
〈O1(ϕ1) · · ·On(ϕn)〉σ , (5.20)

where

〈O1(ϕ1) · · · On(ϕn)〉σ ≡ 1

Zσ

∫
DHe−Shyper[H,Vloc(σ)]O1(ϕ1) · · · On(ϕn) . (5.21)

Let us now explain how (5.20) is to be evaluated. The correlation functions (5.21)

in the theory governed by the action Shyper[H,Vloc(σ)] are calculable since this action is

quadratic. Indeed, they are given by simply summing over all Wick contractions with the

Green’s function Gσ(ϕ1 − ϕ2) ≡ 〈Q(ϕ1)Q̃(ϕ2)〉σ. This Green’s function can be calculated

explicitly from (5.10), and as shown in appendix D:

Gσ(ϕ1 − ϕ2) ≡ 〈Q(ϕ1)Q̃(ϕ2)〉σ = −sgn(ϕ1 − ϕ2) + tanh(πσ)

8πr
e−σ(ϕ1−ϕ2) , (5.22)

where σ is taken to be in the representation R. In the limit of coincident points, we can

take as a definition that sgn(0) = 0 in (5.22).

To summarize, the correlation functions (5.20) reduce to the KWY matrix model with

products of the propagator (5.22) inserted according to Wick’s theorem applied to (5.21).

As discussed in section 4.1, the Wilson loops (4.15) are also QH
β -closed so we can insert

them as well. Correlators of only Wilson loops will of course be the same as in the KWY

model (5.17). Now, however, we have the possibility of calculating correlators of both

Wilson loops and local operators, similarly to what was done in [51, 52] for 4d N = 4

Yang-Mills theory.
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5.3 1d Gaussian theory for twisted Higgs branch operators

As we have seen, the solution for correlators of twisted Higgs branch operators can be

obtained from a 3d Gaussian theory coupled to a matrix model. One may wonder, however,

if, because these operators are restricted to lie on an S1, their correlators can be described

by a 1d quantum field theory that is coupled to the same matrix model. As advertised

in the title of this paper and briefly reviewed in the Introduction, the answer is yes. In

particular, the Green’s function (5.22) can be obtained from the 1d quadratic action

Sσ[Q, Q̃] = −4πr

∫ π

−π
dϕ
(
Q̃∂ϕQ+ Q̃σQ

)
, (5.23)

and so one can alternatively represent the 1d correlator given in (5.21) as

〈O1(ϕ1) · · · On(ϕn)〉σ =
1

Zσ

∫
DQDQ̃e−Sσ [Q,Q̃]O1(ϕ1) · · · On(ϕn) . (5.24)

To check that the path integral (5.24) with the 1d action (5.23) can be used to calculate

the correlators (5.21), we need to check two things:

1. We should check that (5.24) is normalized so that 〈1〉 = 1. In other words, we must

have ∫
DQDQ̃e−Sσ [Q,Q̃] = Zσ . (5.25)

Indeed, we can check that if we assume that Q and Q̃ are related by a reality condition

(to be discussed in more detail later), such that the path integral (5.25) is over half

the number of complex integration variables than given by arbitrary complex fields

Q(ϕ) and Q̃(ϕ), we have:
∫
DQDQ̃ e−Sσ [Q,Q̃] =

1

det(∂ϕ + σ)
=

1

detR
∏

n∈Z+ 1
2
(in+ σ)

=
1

detR [2 cosh(πσ)]
,

(5.26)

where in evaluating the product over n we used zeta-function regularization. This

expression indeed matches the formula for Zσ given in (5.14).

The fact that the path integral in (5.24) is over a middle-dimensional integration

cycle in the space of complex fields Q and Q̃ may seem mysterious at this point,

but we should point out that it is absolutely necessary if (5.24) were to make sense:

without such a choice of integration contour the path integral in (5.24) would not

converge.

2. The second thing we need to check is that (5.22) is indeed the Green’s function

following from (5.23). Such a Green’s function would have to obey the differential

equation

(∂ϕ + σ)Gσ(ϕ) = − 1

4πr
δ(ϕ) , (5.27)

and it should be an anti-periodic function of ϕ, as required by the anti-periodicity of

the twisted fields Q(ϕ) and Q̃(ϕ). Indeed, it is easy to see that (5.22) obeys these

properties.
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While so far we simply guessed the 1d action (5.23), let us now explain how to obtain

it directly from a supersymmetric localization computation. Additionally, we will provide

a derivation of the middle-dimensional integration cycle in (5.24).

5.4 1d theory from localization of hypermultiplet

Let us now provide a derivation of (5.24) using supersymmetric localization of the hyper-

multiplet. Because we have already argued for (5.23) in a round-about way, the reader

with applications in mind can safely skip to section 6.

Our starting point is the remaining path integral over the hypermultiplet in (5.11)

IH =

∫
DHe−Shyper[H,σ](· · · ) , (5.28)

obtained after the vectormultiplet has been localized, and where (· · · ) are QH
β -closed op-

erators. We now wish to localize (5.28), by deforming Shyper[H,Vloc(σ)] with a QH
β -exact

term constructed from the fields in H.

5.4.1 Off-shell closure

For localization it is important that the algebra generated by the localizing supercharge

Q closes off-shell. Otherwise, a Q-exact deformation δSt = tV will generally not be Q-

closed. Instead, [Q, V ] will contain non-vanishing factors that include equations of motion

operators, thus making the path integral depend on the deformation parameter t and

spoiling the localization argument. In our case, while it may not be possible to close the

full N = 4 algebra off-shell, the sub-algebra generated by QH
β can certainly be made to do

so. We will first describe the general procedure and then apply it to QH
β .

Let us first define a new hypermultiplet H′ by supplementing H with new auxiliary

fields:

H′ = (qa, q̃
a, ψαȧ, ψ̃αȧ, Ga, G̃

a) . (5.29)

In (5.29), Ga and G̃
a are new complex scalar fields in the fundamental and anti-fundamental

of su(2)H respectively (as well as R and R representations of G in the gauged case), and

whose reality condition is:

G̃a = (Ga)
∗ . (5.30)

The action of H′ is defined as

S′
hyper[H′,V] = Shyper[H,V] +

∫
d3x

√
gG̃aGa . (5.31)

The modifications (5.29) and (5.31) are harmless, since by integrating out Ga and G̃a

we recover the original theory. The new action (5.31), however, admits additional super-

symmetries that act only on the fermion matter fields and the new auxiliary fields. The

modified SUSY transformations are given by

δξ,νψȧ = iγµξaȧDµq
a + iξ′aȧq

a − iξaċΦ
ċ
ȧq

a + iνaȧGa , δξ,νG
a = iνaȧΨeom

ȧ , (5.32)

δξ,νψ̃ȧ = iγµξaȧDµq̃
a + iq̃aξ′aȧ + iξaċq̃

aΦċ
ȧ + iνaȧG̃a , δξ,νG̃

a = −iνaȧΨ̃eom
ȧ , (5.33)
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where Ψeom and Ψ̃eom were defined in (2.22) and (2.23). In (5.32) and (5.33) we introduced

an arbitrary auxiliary spinor ναaȧ parameterizing the new symmetry, and it is taken to

transform in the bi-fundamental of su(2)H ⊕ su(2)C .

Given a Killing spinor ξaȧ, it is then sometimes possible to close the sub-algebra gen-

erated by δξ,ν off-shell on H′. This is done by tuning the value of νaȧ as a function of ξaȧ
to cancel the equations of motion that appear in δ2ξ,νH′, as written in (2.20) and (2.21).

The resulting constraints on νaȧ that ensure this cancellation are given by22

ξαcȧξβcḃ = ναcḃνβcȧ , ξa
ċνbċ = 0 , ξ(a

ċ /∇ξb)ċ =
3i

2
ν(a

ċ /∇νb)ċ . (5.34)

The constraints (5.34) on νaȧ have generally many solutions. For the Killing spinor ξ = ξHβ ,

which was defined in (5.5) and generates the supersymmetry we use for localization, a

convenient solution of (5.34) is

νaȧ = (ξH−β)aȧ . (5.35)

5.4.2 1d action from BPS equations

We are now ready to show that the 1d action Sσ[Q, Q̃] follows from evaluating the 3d action

S′
hyper[H′,Vloc(σ)] on bosonic QH

β -invariant field configurations. These configurations are

obtained by setting the fermions and their QH
β variations to zero. We will refer to them

as the BPS locus and the corresponding equations as the BPS equations. Supplementing

the BPS equations by reality conditions of the bosonic fields is equivalent to intersecting

the BPS locus with the real middle-dimensional contour in the space of 3d bosonic fields.

We call this intersection the bosonic localization locus throughout this paper. Note that,

in general, the bosonic localization locus may not be the same as the full localization locus

defined as the space of zero modes of V , which may also contain fermionic directions.

An interesting fact, which is not crucial for our derivation, is that the BPS equations

alone, without the reality conditions, reduce the 3d action to 1d. Namely, the full 3d

action on S3 evaluated at the BPS locus λaȧ = ψȧ = ψ̃ȧ = δξλaȧ = δξ,νψȧ = δξ,νψ̃ȧ = 0 is

given by a 1d action on a great circle of S3. This reduction is shown in full generality in

appendix E. Since we have already localized the vectormultiplet, in this section we show a

slightly simpler result that the hypermultiplet action on the Vloc(σ) background reduces to

the 1d action after imposing the BPS equations. The reality conditions, however, will be

absolutely crucial for us later. In the next section they will be used to achieve two goals.

One is that only the intersection of the BPS locus by the real cycle is parametrized by

fields Q(ϕ) and Q̃(ϕ) appearing in the 1d action, thus ensuring that there are no bosonic

flat directions. Another is that the hypermultiplet reality conditions determine a middle-

dimensional contour of integration in the space of complex fields of this 1d theory.

Note also that the results of this subsection do not really depend on the precise choice

of the localizing term V . Since V is QH
β -exact, it automatically vanishes on the BPS locus,

22To close more than one supersymmetry off-shell, say δξ,ν and δξ̃,ν̃ , we would have additional constraints

on ν and ν̃ from imposing the closure of the {δξ,ν , δξ̃,ν̃} transformation. The entire N = 4 algebra cannot

be closed off-shell in this way.
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so the localization answer includes an integral over the BPS locus. By properly choosing

V , one can actually ensure that it does not have any other zeros besides the BPS locus.

The fact that we take β 6= 0 now plays an important role. Indeed, the QH
β -invariant

field configurations must also be invariant under (QH
β )2, where

(QH
β )2 = β{QH

1 ,QH
2 } =

4iβ

r
(Pτ +RC) ≡

4iβ

r
Z . (5.36)

It follows that operators with zero RC charge, such as the action, must be τ -independent.23

The action can therefore be dimensionally reduced in the τ direction leaving us with a

theory on the disk D2 with metric

ds2(D2) = r2
(
dθ2 + sin2 θ dϕ2

)
. (5.37)

The second ingredient in the derivation comes from solving the BPS equations in the

background (5.8) of the localized vectormultiplet

δξH
β
,νψȧ

∣∣∣∣
V=Vloc

= δξH
β
,νψ̃ȧ

∣∣∣∣
V=Vloc

= 0 . (5.38)

As evident from (5.32) and (5.33), one can solve (5.38) for the auxiliary fields Ga and G̃a

in terms of functions linear in qa and q̃a,

Ga

∣∣
(BPS)

= fν(qa, σ) , G̃a

∣∣
(BPS)

= f̃ν(q̃a, σ) , (5.39)

where explicit expressions for fν and f̃ν are given in appendix E, and we have indicated

that they depend on the choice of auxiliary spinor νaȧ. Without imposing reality conditions

on the fields, τ -independence and the solutions (5.39) constitute the full set of constraints

that follow from the BPS equations (5.38).

To summarize, the action S′
hyper[H′,Vloc(σ)] evaluated on QH

β -invariant configurations

is obtained by first performing dimensional reduction on τ , and then plugging in the solu-

tions (5.39). Using (5.34), the result can be shown to be independent of the choice of νaȧ,

even though the solutions for the auxiliary fields (5.39) depend on it. After some algebra,

one finds that the action evaluates to a total derivative on D2:

S′
hyper[H′]

∣∣∣∣
QH

β
−BPS

= 2π

∫

D2

d2x
√
gD2∇µK

µ , (5.40)

where

Kθ = q̃aAab
1 ∂ϕqb + q̃aBab

1 qb , Kϕ = q̃aAab
2 ∂θqb + q̃aBab

2 qb , (5.41)

23Generally, τ -independence would only follow from (5.36) up to a gauge transformation. However, in the

treatment of this section, even non-gauge invariant fields are τ -independent since we have already localized

the vectormultiplet. This is because the gauge parameter Λ in (2.19) evaluated for ξ = ξ̃ = ξHβ localizes to

zero on (5.8).
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and

Aab
1 =

1

r sin(θ)

(
− cos(ϕ) sin(θ)− 1 − sin(ϕ) sin(θ)

− sin(ϕ) sin(θ) cos(ϕ) sin(θ)− 1

)
, Aab

2 = −Aab
1 ,

Bab
1 =

1

2r

(
sin(ϕ)− 2(cos(ϕ) + sin(θ))σ − cos(ϕ)− sin(θ)− 2 sin(ϕ)σ

− cos(ϕ) + sin(θ)− 2 sin(ϕ)σ − sin(ϕ) + 2(cos(ϕ)− sin(θ))σ

)
, (5.42)

Bab
2 =

cot(θ)

2r

(
cos(ϕ) + 2 sin(ϕ)σ +sin(ϕ)− 2 cos(ϕ)σ

sin(ϕ)− 2 cos(ϕ)σ − cos(ϕ)− 2 sin(ϕ)σ

)
.

One can verify that the boundary term left from (5.40) is precisely the 1d action (5.23),

which completes the derivation. As already mentioned before, in appendix E we show a

slightly more general result. In particular, imposing δξλaȧ = δξ,νψȧ = δξ,νψ̃ȧ = 0, without

assuming that V is initially set to its localization locus, is sufficient in order to reduce the

full non-Gaussian hypermultiplet action Shyper[H,V] to

S = −4πr

∫
dϕ Q̃D̂ϕQ , (5.43)

where D̂ϕ = ∂ϕ−i(Aϕ+irΦ1̇2̇) is the
1
2 -BPS connection from which Wilson loops (4.15) are

constructed. The procedure outlined in this section is analogous to the one in the work [44]

of Pestun on localization of 4d maximally supersymmetric Yang-Mills on S4 to an S2.24

5.4.3 Hypermultiplet 1-loop determinant

Under the assumption that a well-defined localizing term exists, we know by now that the

Gaussian 3d theory (5.10) localizes to the Gaussian 1d theory (5.23), up to the presence of

a possible 1-loop determinant. The well-definiteness of the localizing term means that this

1-loop determinant is finite and non-zero. We also loosely describe this situation by saying

that there are no flat directions. In our case, this means that the localization locus has

no fermionic directions, and the bosonic directions are parametrized by the 1d fields Q(ϕ)

and Q̃(ϕ) appearing in the action Sσ[Q, Q̃] given in (5.23) and obeying an extra reality

condition which relates Q(ϕ) and Q̃(ϕ). Therefore, the term e−Sσ , multiplied by a possible

1-loop determinant, provides a good integration measure over the localization locus, which

is what we mean by saying that there are no flat directions.

Being more precise, the statement is that:
∫
DHe−Shyper

(
QH

β -closed insertions
)
=

∫
DQDQ̃e−Sσ [Q,Q̃]∆(σ,r)

(
QH

β -closed insertions
)
,

(5.44)

where ∆(σ, r) is a possible 1-loop determinant for fluctuations around the localization locus.

It is clear that it can only be a function of σ and r, (as well as masses and FI parameters if

they are present in the theory) because these are the only parameters appearing in either

24Note that the localization in [44] also allows for insertions of local operators on S2 [51, 52]. Those

operators are “twisted-translated” operators that were first defined by Drukker and Plefka [53]. It would

be fascinating to generalize [44] to N = 2 theories in a way that allows insertions of the more general class

of twisted operators found in [4].
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the 3d action (5.10) or the 1d action (5.23). Since both 1d and 3d theories are Gaussian, we

can find ∆(σ, r) by simply computing partition functions for theories on the left and on the

right in (5.44) with no QH
β -closed insertions whatsoever. We performed this computation

in (5.25)–(5.26) and noticed that the results agree. We therefore conclude that

∆(σ, r) = 1 . (5.45)

To finish the argument, we need to construct the localizing term and show that there

are indeed no flat directions. We will construct the localizing term below and give some

evidence that it has the required properties, in particular that there are no fermionic flat

directions and the 1-loop determinant is non-zero and finite. Unfortunately, we do not

have a completely rigorous proof of the last statement.

The localizing term. In the localization, it is useful to organize fields into the multiplets

of QH
β . For that purpose, define fields:

ηa = (ξHβ ) ȧ
a ψȧ , Υa = iµ b

a ν
ȧ
b ψȧ ,

η̃a = (ξHβ )aȧψ̃ȧ , Υ̃a = iµabν ȧ
b ψ̃ȧ , (5.46)

where, as before, ν ≡ ξH−β , and the matrix µab is defined as in appendix E:

µab = (ξHβ ) ċ
a (ξ

H
β )bċ = −ν ċ

a νbċ. (5.47)

The choice of ξHβ breaks spacial and R-symmetries of the model. The bosonic symmetry

algebra su(2)ℓ⊕u(1)ℓ⊕su(2)r⊕u(1)r is broken down to u(1)ϕ⊕u(1)τ . Here u(1)ϕ represents

twisted rotations of the circle generated by P̂H
ϕ = Pϕ +RH , where RH = 1

2 (Rℓ +Rr), and

Rℓ and Rr are, respectively, the generators of u(1)ℓ and u(1)r. The u(1)τ represents twisted

τ -rotations generated by (QH
β )2 ∝ Pτ + RC , where RC = 1

2(Rℓ − Rr). The new fermions

ηa,Υa transform as scalars under uτ (1), while for u(1)ϕ:

[P̂H
ϕ , ηa] = i∂ϕηa +

1

2
h b
a ηb, (5.48)

and analogously for Υa. For conformal theories, u(1)ϕ is enhanced to the algebra

su(2)S1 ⊂ so(4)⊕ sp(4) that acts by twisted conformal transformations on the circle, and

the fields ηa,Υa transform in the spin-1/2 representation of this su(2)S1 .

The matrix µab has the properties:

detµab = β2 cos2 θ ≡ µ , µabµ
bc = µδca . (5.49)

The fields qa and ηa, as well as q̃
a and η̃a, form multiplets of δξH

β
:

δξH
β
qa = ηa , δξH

β
ηa =

β

r
∂τqa ,

δξH
β
q̃a = η̃a , δξH

β
η̃a =

β

r
∂τ q̃

a .

(5.50)
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We then complete Υa and Υ̃a into multiplets:

δξH
β
Υa = Ha , δξH

β
Ha =

β

r
∂τΥa ,

δξH
β
Υ̃a = H̃a , δξH

β
H̃a =

β

r
∂τ Υ̃a ,

(5.51)

where the new bosonic fields Ha and H̃a are explicitly given by:

Ha = −µGa − µ b
a ν

ȧ
b γ

µ(ξHβ )cȧ∂µq
c − µ b

a ν
ȧ
b (ξ′Hβ )cȧq

c + µ b
a ν

ȧ
b (ξHβ )cċΦ

ċ
ȧq

c,

H̃a = −µG̃a + µabν
bȧγµ(ξHβ )cȧ∂µq̃

c + µabν
bȧ(ξ′Hβ )cȧq̃

c − µabν ȧ
b (ξHβ )cċΦ

ċ
ȧq̃

c. (5.52)

Recall that Φȧḃ has only one non-zero component Φ1̇2̇ = Φ2̇1̇ = σ/r.

We can group the fields into four sets: X0 = (qa, q̃
a)t, X1 = (Υa, Υ̃

a)t, X ′
0 = (ηa, η̃

a)t

and X ′
1 = (Ha, H̃

a)t. Now the multiplet structure is very simple:

δξH
β
X0 = X ′

0 ,

δξH
β
X1 = X ′

1 . (5.53)

However, the conjugation property of the new bosonic fields X0 = (q1, q2, q̃
1, q̃2)t and

X ′
1 = (H1, H2, H̃

1, H̃2)t (we suppress gauge and flavor indices) is more complicated, as it

follows from (2.11) and (5.30):

(X ′
1)

∗ = D11X
′
1 +D10X0 ,

(X0)
∗ = D11X0 . (5.54)

Here,

D11 =

(
02 12
12 02

)
, D10 =

(
02 D̂

−D̂ 02

)
, D̂ = 2

β2

r

(
−d− d+
d+ d−

)
− 2µ

σ

r

(
1 0

0 1

)
, (5.55)

where 02 and 12 represent zero and unit 2 × 2 matrices respectively, and the differential

operators d± on the disk parameterized by z2 = sin θeiϕ are given by:

d+ = cos2 θ

(
cosϕ

cos θ

∂

∂θ
− sinϕ

sin θ

∂

∂ϕ

)
= cos2 θ

(
∂

∂z2
+

∂

∂z̄2

)
, (5.56)

d− = cos2 θ

(
sinϕ

cos θ

∂

∂θ
+

cosϕ

sin θ

∂

∂ϕ

)
= i cos2 θ

(
∂

∂z2
− ∂

∂z̄2

)
. (5.57)

These differential operators are globally well-defined on S3 as well.

Let us define a quantity which we call the canonical localizing fermion:

Ψ =

∫

S3

Vol
∑

a=1,2

[
ηa

(
δξH

β
ηa

)∗
+ η̃a

(
δξH

β
η̃a
)∗

+Υa

(
δξH

β
Υa

)∗
+ Υ̃a

(
δξH

β
Υ̃a
)∗]

. (5.58)

This can be written as:

Ψ =

∫

S3

Vol
(
X

′t
0 Xt

1

)(D00 0

D10 D11

)(
X0

X ′
1

)
, (5.59)
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where we introduced one more notation:

D00 =
β

r
D11∂τ . (5.60)

The canonical localizing term is then defined as

V = δξH
β
Ψ =

∫

S3

Vol
(
Xt

0 X
′t
1

)
∆̂b

(
X0

X ′
1

)
+

∫

S3

Vol
(
X

′t
0 Xt

1

)
∆̂f

(
X ′

0

X1

)
. (5.61)

We could also introduce a notation:

〈A,B〉 ≡
∫

S3

VolAtB. (5.62)

In terms of this inner product, the localizing term is:

V =

〈(
X0

X ′
1

)
, ∆̂b

(
X0

X ′
1

)〉
+

〈(
X ′

0

X1

)
, ∆̂f

(
X ′

0

X1

)〉
. (5.63)

If we naively compute the above expression, the bosonic/fermionic operators ∆̂b,f will

appear neither symmetric nor anti-symmetric with respect to 〈·, ·〉. Therefore, one should

symmetrize/anti-symmetrize them first using integration by parts, because correct appli-

cation of Gaussian integration formulas requires them to have such properties. We obtain:

∆̂b =

(
−(β/r)2D11∂

2
τ

1
2D

†
10

1
2D10 D11

)
, ∆̂f =

(
−D00

1
2D

†
10

−1
2D10 −D00

)
. (5.64)

Here we wrote Hermitian conjugate on D10 instead of transpose, because this operator is

real. Note that the operator ∆̂b is real symmetric and ∆̂f is real and anti-symmetric. We

claim that V is a well-defined localizing term. Below we will give some evidence to support

this claim.

The localization for bosons. We find no difficulties studying the localization locus for

bosons. The bosonic part of V can be written as
∑

a(|δξHβ ηa|
2 + |δξH

β
η̃a|2 + |δξH

β
Υa|2 +

|δξH
β
Υ̃a|2). It has a global minimum and actually vanishes at the localization locus de-

scribed by:

δξH
β
ηa = (δξH

β
ηa)

∗ = 0 , δξH
β
η̃a = (δξH

β
η̃a)∗ = 0 ,

δξH
β
Υa = (δξH

β
Υa)

∗ = 0 , δξH
β
Υ̃a = (δξH

β
Υ̃a)∗ = 0 , (5.65)

which are nothing but the BPS equations supplemented by the reality conditions. The

equations in the first line imply that qa and q̃a are τ -independent, something we already

saw before from the BPS equations. In other words, qa and q̃a are functions on the disk

D2, which is a base of the U(1) fibration with fibers parametrized by τ . The equations in

the second line imply Ha = H̃a = 0, i.e., X ′
1 = 0, as well as (X ′

1)
∗ = 0. The equations

Ha = H̃a = 0 are again the BPS equations, they simply express Ga and G̃a in terms
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of qa and q̃a (as in (E.8) and (E.9)), while (X ′
1)

∗ = 0, due to the unusual conjugation

property (5.54), gives one more equation on q’s concisely written as:

D10X0 = 0 . (5.66)

Introducing notation

q± = q1 ± iq2 , q̃± = q̃1 ± iq̃2 , (5.67)

this equation is equivalent to the following system of equations:

∂q+
∂z2

= i
σ

2
q− ,

∂q−
∂z̄2

= −iσ
2
q+ ,

∂q̃+

∂z2
= i

σ

2
q̃− ,

∂q̃−

∂z̄2
= −iσ

2
q̃+ .

(5.68)

Because q̃a are complex conjugates of qa, the above equations on q̃
a are complex conjugates

of those for qa, so we only need to solve for qa.

The case σ = 0 (the free hyper case) is simpler, so let us discuss it first. In this

case, q− is simply a holomorphic function of z2 on D2, and q+ is anti-holomorphic. The

holomorphy of q− on the disk implies that it can be written as a convergent power series

q− =
∑∞

n=0 an(z2)
n, and similarly q+ =

∑∞
n=0 bn(z̄2)

n. Such functions are uniquely deter-

mined by their values at the boundary of the disk, where their Taylor expansions turn into

the Fourier expansions: q−|∂D2 =
∑∞

n=0 ane
inϕ and q+|∂D2 =

∑∞
n=0 bne

−inϕ. We see that

equations at σ = 0 imply that the functions qa are determined uniquely by their values

at the boundary ∂D2 = S1 (which is where our 1d theory lives), and moreover, q− at the

boundary has only Fourier modes einϕ with n ≥ 0, while q+ at the boundary has only

Fourier modes e−inϕ with n ≥ 0. If we now look at the anti-periodic linear combination:

Q(ϕ) = q1(ϕ) cos
ϕ

2
+ q2(ϕ) sin

ϕ

2
=

1

2
q+(ϕ)e

−iϕ/2 +
1

2
q−(ϕ)e

iϕ/2

=
1

2

∞∑

n=0

ane
iϕ(n+ 1

2) +
1

2

∞∑

n=0

bne
−iϕ(n+ 1

2) ,
(5.69)

we see that the most general Fourier series for Q(ϕ) completely encodes boundary values

for q+ and q−. This shows that Q(ϕ) parametrizes the bosonic part of the localization

locus at σ = 0. An analogous calculation can also be performed for Q̃(ϕ) as defined

in (4.14). Alternatively, we could start from Q(ϕ), from which by (5.69) we can extract qa,

then determine q̃a by complex conjugation, and consequently determine Q̃(ϕ) using (4.14).

This procedure shows that Q̃(ϕ) is not simply the complex conjugate of Q(ϕ); the relation

between Q and Q̃ is more complicated and will be discussed later.

It is straightforward to extend this analysis to σ 6= 0, with the equations becoming

slightly more complicated and holomorphy lost. In this case, the solution for q± is:

q− =
∑

n∈Z

anIn(σ sin θ)e
inϕ ,

q+ =
∑

n∈Z

ian−1In(σ sin θ)e
inϕ , (5.70)
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where In are modified Bessel functions that are regular at zero. Just as for σ = 0, the

solutions (5.70) are completely determined by the values of q± at the boundary ∂D2. The

expressions for q̃a are obtained by complex conjugation. The fields Q(ϕ) and Q̃(ϕ) at the

boundary are:

Q(ϕ) = q1(ϕ) cos
ϕ

2
+ q2(ϕ) sin

ϕ

2
=
∑

n∈Z

ian
In+1(σ)− iIn(σ)

2
ei(n+

1
2)ϕ ,

Q̃(ϕ) = q̃1(ϕ) cos
ϕ

2
+ q̃2(ϕ) sin

ϕ

2
= −

∑

n∈Z

a∗n
In+1(σ)− iIn(σ)

2
e−i(n+ 1

2)ϕ . (5.71)

We see that, again, all information about the fields qa and q̃a that solve D10X0 = 0 in the

bulk of D2 is encoded in the most general anti-periodic fields Q(ϕ) and Q̃(ϕ) at the bound-

ary ∂D2, subject to a certain reality constraint relating Q(ϕ) and Q̃(ϕ). This completes

the proof that the bosonic part of the localization locus is completely parametrized by

Q(ϕ) and Q̃(ϕ), the fields present in the 1d action (5.23), subject to the reality constraint.

Knowing the localization locus for bosons, there are no further subtleties with the

1-loop determinant for fluctuations of bosons in the transverse directions of the field space.

Since the localizing term is quadratic, any zero mode would correspond to moving along the

localization locus, so the determinant for transverse directions is well-defined and non-zero.

In fact, one can easily check that the bosonic localization locus, as found above, coincides

precisely with the space of zero modes of ∆̂b. These are a discrete series of normalizable zero

modes of ∆̂b, and there are no other zero modes of ∆̂b (which could be part of continuous

spectrum, for example). Concretely, one can check that there is a gap in the spectrum of

∆̂b which separates discrete zero modes from the rest of the spectrum. The existence of

this gap gives an even better evidence that everything works well with the localization of

bosons using e−tV as the localizing term.

The localization of fermions. To understand what the localization by e−tV does to

fermions, we have to study the spectrum of the operator acting on fermions that appear

in V , that is of ∆̂f . To do that, we have to be precise about the space that ∆̂f acts on,

and this is where the subtleties begin.

Spaces of fields and L
2 and L

′2 structures. The fields that initially appear in the

path integral are ψαȧ, ψ̃αȧ. It is natural to postulate that they are square-integrable, and

that the path integral is taken over the corresponding Hilbert space. Note that when we

describe the space of fields, their statistics does not matter, so we might as well assume

that they take values in the ordinary complex numbers. There is a norm which we refer to

as an L2 structure:

||(ψ, ψ̃)||2L2 =

∫

S3

Vol
∑

α,ȧ

[
(ψαȧ)

∗ψαȧ + (ψ̃αȧ)
∗ψ̃αȧ

]
. (5.72)

One then chooses some convenient operator on S3 that is self-adjoint with respect to

this norm, e.g., the Dirac operator, expands fields into their eigenmodes, and uses this

expansion to define the path integral. At this point, statistics becomes relevant since the

modes of spinors are defined to be Grassmann numbers.
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A key step in our discussion of the localizing term is to introduce new fields ηa, η̃
a,

Υa, Υ̃
a. We want to pass to integration over these new fields, but this is a subtle point.

Even though the expressions for ηa,Υa in terms of the old fields are perfectly smooth, they

degenerate at the θ = π/2 circle. The inverse transforms blow up there. Indeed, we have

ψȧ =
1

µ

(
(ξHβ )aȧµ

abηb − iνa ȧΥa

)
,

ψ̃ȧ =
1

µ

(
(ξHβ )a ȧµabη̃

b + iνaȧΥ̃
a
)
, (5.73)

which blows up at θ = π/2. Since we want ψ and ψ̃ to be L2-normalizable, the fields ηa and

Υa cannot behave arbitrarily in the vicinity of θ = π/2, where µ vanishes. They should

obey certain “boundary” conditions in the vicinity of the θ = π/2 circle that ensure that

∑

α,ȧ

(ψαȧ)
∗ψαȧ=−1+β2

2β

(
1

µ
µabη∗aηb+

1

µ2
µabΥ∗

aΥb

)
− 1−β2

2β

1

µ
iεab (Υ∗

aηb−η∗bΥa) (5.74)

is integrable on S3.

We can introduce another norm, which we refer to as an L′2 structure. If we write

A = (ηa η̃
aΥa Υ̃

a)t, then the L′2 structure is characterized by the norm:

||(η, η̃,Υ,Υ̃)||2L′2 = 〈A∗,A〉=
∫

S3

Vol
∑

a

[
(ηa)

∗ηa+(η̃a)∗η̃a+(Υa)
∗Υa+(Υ̃a)∗Υ̃a

]
. (5.75)

Our real operator ∆̂f , being anti-symmetric with respect to 〈·, ·〉, becomes anti-Hermitian

in the L′2 structure. If we study its spectrum in the L′2 structure, all its discrete spec-

trum eigenfunctions have to be L′2 normalizable. But, because of the singular relations

like (5.74), they won’t necessarily be L2 normalizable.

For the Hilbert space with the L2 inner product, we will use the notation H, while H′

will be used to denote the L′2 Hilbert space. The definitions (5.46) of η,Υ and η̃, Υ̃ provide

an embedding of H as a linear subspace of H′. Linearity simply follows from the linearity

of (5.46).

When we write the path integral in terms of ψ, ψ̃, we simply think of integration over

H (with some modes cut-off used to make this precise). When we write the path integral

in terms of η,Υ, η̃, Υ̃ though, because these fields live in a bigger space H′, we should think

of integration over H as a subspace of H′. This is important, in particular, because the

operator ∆̂f , being anti-Hermitian in H′, is not anti-Hermitian when restricted to H.

No fermionic zero modes in the discrete spectrum. The above discussion shows

that the operator that enters the localization procedure is ∆̂f restricted to H ⊂ H′, where

by “restricted” we mean the orthogonal projection with respect to 〈·, ·〉. It would be difficult

to study such a projected operator, so instead we do the following.

Let us introduce an eight-column Γ = (ψ11̇ ψ12̇ ψ21̇ ψ22̇ ψ̃11̇ ψ̃12̇ ψ̃21̇ ψ̃22̇)
t. We already

introduced notations X ′
0 and X1 for the columns with η, η̃ and Υ, Υ̃ before. The rela-

tion (5.46) can be written as: (
X ′

0

X1

)
= TfΓ , (5.76)
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where Tf is a coordinate dependent 8 by 8 matrix. Its determinant is β8 cos8 θ, which of

course vanishes at the θ = π/2 circle and is the reason why H and H′ are not the same.

The localizing term for fermions is:

∫

S3

Vol
(
X

′t
0 Xt

1

)
∆̂f

(
X ′

0

X1

)
=

∫

S3

Vol ΓtT t
f ∆̂fTfΓ . (5.77)

The matrix Tf is complex, so even though T t
f ∆̂fTf is anti-symmetric, it is not real, so we

cannot apply the spectral theorem. However, it is possible to find another complex and

everywhere non-degenerate matrix Mf , such that:

Tf = RfMf , (5.78)

where Rf still degenerates at θ = π/2, but now it is real. There is a lot of freedom in

choosing such a matrix Mf , and we fix it to be:

Mf =

(
B 04
04 B

)
, B =




1 0 0 − 1
β

0 1 β 0

i 0 0 i
β

0 i −iβ 0


 . (5.79)

The localizing term for fermions becomes:
∫

S3

Vol ΓtM t
fR

t
f ∆̂fRfMfΓ. (5.80)

The change of variables χ = MfΓ is a non-degenerate field redefinition, and we could

imagine defining the path integral over χ rather than Γ. We could define yet another norm:
∫

S3

Volχ†χ , (5.81)

but because χ†χ = Γ†M †
fMfΓ = 2(|ψ11̇|2 + |ψ12̇|2 + β2|ψ21̇|2 + 1

β2 |ψ22̇|2 + |ψ̃11̇|2 + |ψ̃12̇|2 +
β2|ψ̃21̇|2 + 1

β2 |ψ̃22̇|2), this χ†χ is integrable if and only if Γ†Γ =
∑

αȧ

(
|ψαȧ|2 + |ψ̃αȧ|2

)
is

integrable. So this norm is equivalent to the L2 structure we had before, and integrating

over χ with this norm is equivalent to integrating over the same Hilbert space H.

The localizing term now takes the form
∫
S3 Volχ

tRt
f ∆̂fRfχ, and the relevant operator

is Rt
f ∆̂fRf . It is real and anti-symmetric, thus the spectral theorem applies to it now, and

so it makes sense to look for its eigenfunctions. If it has any zero modes, they would be of

the form “R−1
f times the zero mode of ∆̂f”. If they are part of the discrete spectrum, they

should be L2 normalizable. Let us see if there are any. We try to solve:

∆̂f

(
X ′

0

X1

)
= 0 ⇒

{
D00X

′
0 − 1

2D
†
10X1 = 0 ,

1
2D10X

′
0 +D00X1 = 0 .

(5.82)

where as before, X ′
0 = (η1, η2, η̃

1, η̃2)t and X1 = (Υ1, Υ2, Υ̃
1, Υ̃2)t are four-component

columns. Acting on the second equation with D00, using that it anticommutes with D10
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and using the first equation to eliminate D00X
′
0, we arrive at:

D10D
†
10X1 =

(
2β

r

)2

∂2τX1 . (5.83)

The differential operator ∂2τ appearing on the right is non-positive definite: it can only

have zero or negative eigenvalues. The differential operator D10D
†
10 appearing on the left

is manifestly non-negative definite. Therefore, the above equation can only be satisfied if

∂τX1 = 0 (so the solutions of (5.83) are defined on the disk D2) and D10D
†
10X1 = 0 ⇒

D†
10X1 = 0. Let us temporarily write D

(σ)
10 for D10 to make σ-dependence of D10 explicit.

Then

(D
(σ)
10 )† =

1

cos2 θ
D

(−σ)
10 cos2 θ . (5.84)

So (D
(σ)
10 )†X1 = 0 impliesD

(−σ)
10 (cos2 θX1) = 0. Modes in the kernel ofD

(−σ)
10 are completely

determined by their value at the boundary of the disk, as we have seen in the analysis of

bosonic localization locus. If X1 is regular, then X1 cos
2 θ vanishes at θ = π/2, that is at

∂D2, and so D
(−σ)
10 (cos2 θX1) = 0 implies X1 = 0. The only way to avoid this conclusion is

to assume that X1 is singular at the boundary, with the singularity being no weaker than

1/ cos2 θ. However, this asymptotic behavior will give a mode which is not normalizable.

So we infer that X1 = 0. The remaining equations imply D00X
′
0 = 0, that is ∂τX

′
0 = 0, and:

D10X
′
0 = 0 . (5.85)

These are again the same equations we obtained before for the bosonic part of the local-

ization locus. Therefore, we could use the same solution, which would lead us to a naive

conclusion that there are fermionic zero modes: Υa = Υ̃a = 0 and ηa, η̃
a are determined

by η± = η1 ± iη2 and η̃± = η̃1 ± iη̃2, which are in turn given by expressions like (5.70).

We now impose L2 normalizability of these zero modes. Using (5.74), the integral∫
S3

1
µµ

abη∗aηb × sin θ cos θ dθ dϕ dτ has to be convergent. Since µ = β2 cos2 θ, we are inte-

grating over the disk the following:

−2π

β2

∫

D2

µabη∗aηb
d(cos θ)

cos θ
dϕ. (5.86)

For possible zero modes we have:

η− =
∑

n

ηnIn(σ sin θ)e
inϕ ,

η+ =
∑

n

iηn−1In(σ sin θ)e
inϕ . (5.87)

If we insert these expressions into (5.86), we obtain

2π2

β

∫ θ=π/2

θ=0

∑

n

(η∗n−1ηn−1 + η∗nηn)I
2
n(σ sin θ)

d(cos θ)

cos θ
. (5.88)

The convergence of this integral requires that all ηn = 0, so we conclude that zero modes

are not in the discrete spectrum of Rt
f ∆̂fRf .
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Summary. Let us summarize what has been done in the last couple of pages. We have

rewritten the fermionic path integral as an integral over χ. We were able to prove that the

operator Rt
f ∆̂fRf that appears in the localizing term does not have any L2 normalizable

zero modes. If there were such zero modes, we would say that the localization locus is

actually a supermanifold and they would be the fermionic coordinates on it. As we see,

this does not happen, and the localization locus is purely bosonic, parametrized by Q(ϕ),

as we explained before.

However, the spectrum of Rt
f ∆̂fRf still might have continuous branches that pass

through zero. They manifest themselves as “non-normalizable” zero modes we encountered

above. In fact, a more detailed analysis of this operator and the asymptotic behavior of

its eigenfunctions next to θ = π/2 shows that this is indeed the case. We believe that for

such operators, the determinant can still be defined after appropriate regularization and

renormalization have been introduced. We are not going to study this here.

Let us also emphasize that even though we have not been able to prove rigorously

that localization works well for fermions, our final result about the 1d theory (5.23) is

still reliable. Indeed, in section 5.3 we showed that the 1d theory (5.23) gives precisely

the same correlators as the 3d Gaussian theory coupled to a matrix model (5.10). What

we have shown in the discussion above is that the same result can be obtained from the

localization of the hypermultiplet, up to an unresolved problem about the existence of the

determinant of an operator with continuous spectrum. Moreover, our analysis identified

a relation between Q and Q̃ that can be used to define a middle-dimensional integration

cycle in the path integral (5.24) that we now discuss.

5.4.4 Integration cycle from localization

If we look at the linear combinations Q = q1 cos
ϕ
2 + q2 sin

ϕ
2 and Q̃ = q̃1 cos

ϕ
2 + q̃2 sin

ϕ
2

in the 3d theory, they are completely independent. They are also not related by the

complex conjugation, since Q∗ = q̃2 cos
ϕ
2 − q̃1 sin

ϕ
2 and Q̃ = q̃1 cos

ϕ
2 + q̃2 sin

ϕ
2 are linearly

independent.

Things change once we pass to the 1d theory of the localization locus. The fields Q(ϕ)

and Q̃(ϕ) become related by a complicated reality condition. If we write Fourier expansions

of these fields as:

Q(ϕ) =
∑

n∈Z+ 1
2

cne
inϕ ,

Q̃(ϕ) =
∑

n∈Z+ 1
2

c̃ne
−inϕ ,

(5.89)

then, as one can see from (5.71), the reality condition is:

c̃n = eiαn(σ)c∗n , eiαn(σ) ≡ 1

i

In+ 1
2
(σ)− iIn− 1

2
(σ)

In+ 1
2
(σ) + iIn− 1

2
(σ)

. (5.90)

The relation c̃n = eiαn(σ)c∗n can be interpreted as a choice of integration cycle in

the Gaussian integrals in (5.24) or (5.26). The choice (5.90) is such that these integrals

– 41 –



J
H
E
P
0
3
(
2
0
1
8
)
1
3
8

converge. Indeed, the Gaussian integrals in (5.26) can be written in terms of the mode

coefficients as

∏

n∈Z+ 1
2

∫
dcn dc̃n e

−2π(in+σ)cnc̃n =
∏

n∈Z+ 1
2

∫
dcn dc

∗
n e

−2π(in+σ)eiαn(σ)|cn|
2

(5.91)

where we used the fact that the Jacobian for the change of variables from c̃n to c∗n is equal

to 1 due to the property αn(σ) + α−n(σ) = 0 that can be easily inferred from (5.90). The

Gaussian integral in (5.91) converges provided that

Re
[
(in+ σ)eiαn(σ)

]
≥ 0 (5.92)

for all n and σ. This condition holds, as can be checked explicitly using the expression for

αn(σ) given in (5.90).

One can of course deform the integration cycle while preserving the convergence of the

Gaussian integrals. For instance, an alternative choice of integration cycle is given by

c̃n = i sgn(n)c∗n (5.93)

which has the advantage of being independent of σ. This is in fact the σ → 0 limit of (5.90).

While very simple in terms of the Fourier modes, the condition (5.93) is rather complicated

in position space. It takes the form

Q̃(ϕ) =
1

2π
P.V.

∫
dϕ′ 1

sin ϕ−ϕ′

2

Q∗(ϕ′) , (5.94)

with P.V. denoting principal value integration.

5.5 Integration cycle from Morse theory

The 1d Gaussian theory (5.23) is very similar to the one studied by Witten in [54]. The

two theories are given by the same Hamiltonian path integral for quantum mechanics, with

the only exception that in (5.23) the scalar fields are taken to be anti-periodic on the circle,

while in [54] they are periodic. When σ = 0, the description of integration cycle used in [54]

involves holomorphic functions on an auxiliary two-dimensional disk, which is suggestively

similar to the description we found in (5.68)!

Let us thus explore the connection between our 1d Gaussian theory (5.23) and that

studied in [54] in more detail. For simplicity, let us focus on the case of a free uncharged

hypermultiplet and leave the generalization to a gauged hypermultiplet for future work.

It was explained in [54, 55] that one can construct sensible integration cycles for the path

integral using Morse theory. Let us apply this formalism to our case. While we will not

give a comprehensive review of the Morse theory formalism developed in [54, 55], we refer

interested readers to these references for more details.

We start with the holomorphic functional

exp

[
4πr

∫ π

−π
Q̃∂ϕQdϕ

]
, (5.95)
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which we want to integrate over some middle-dimensional real cycle in the space of complex

fieldsQ(ϕ) and Q̃(ϕ) that describe anti-periodic maps S1 → C2. At every ϕ, it is convenient

to parameterize the target space C2 by Q = x + iy and Q̃ = x̃ + iỹ, where x, y, x̃, and ỹ

are real coordinates.

The integration cycle in the path integral should be chosen in such a way that the

functional exp
[
4πr

∫ π
−π Q̃∂ϕQdϕ

]
vanishes at large field values in order for the path integral

to converge. A way to construct such an integration cycle is to consider the real part of

the holomorphic action as a Morse function:

h = Re

∫
Q̃dQ =

∫
(x̃dx− ỹdy) , (5.96)

(we dropped the positive factor 4πr because it is irrelevant in this discussion) and construct

the integration cycle using the gradient flow lines associated with this Morse function that

start from the critical points of h. Since the Morse function h = Re
∫
Q̃dQ is strictly

decreasing along any gradient flow, it is bounded from above by its value at the critical

point at which the flow starts. As explained in [54, 55], if the integration cycle is, roughly

speaking, defined as a union of all gradient flow lines starting from the critical point, the

functional exp
[∫ π

−π Q̃dQ
]
remains bounded along this cycle and vanishes at infinity, so it

can be integrated.

Since the fields are taken to be antiperiodic on the circle — which is the main difference

between our theory and that in [54] — the only critical point of h is x = x̃ = y = ỹ = 0, as

one can find from setting δh = 0. One can check that among the eigenvalues of the Hessian

of h at this critical point, precisely half are positive and half are negative.25 A gradient

flow line can go in any of the negative directions, and so the union of all gradient flow lines

indeed defines a middle-dimensional cycle, as is always the case for isolated critical points.

The definition of gradient flow requires a metric on target space. Indeed, in order to

define gradient flow, we would like to turn the one-form δh into the vector field defining

the flow line using a metric on the space of maps parameterized by Q(ϕ) and Q̃(ϕ). To

achieve this goal, we first choose a metric on C2,

ds2 = |dQ̃|2 + |dQ|2 = dx2 + dy2 + dx̃2 + dỹ2 . (5.97)

This metric on C2 induces a metric on the space of maps Q(ϕ), Q̃(ϕ) given by∫ (
|δQ|2 + |δQ̃|2

)
dϕ, and this latter metric allows us to define the gradient flow lines

of h. If s ∈ (−∞, 0] is the flow parameter, the flow equations for this metric are:

∂x(s, ϕ)

∂s
=
∂x̃(s, ϕ)

∂ϕ
,

∂x̃(s, ϕ)

∂s
= −∂x(s, ϕ)

∂ϕ
,

∂y(s, ϕ)

∂s
= −∂ỹ(s, ϕ)

∂ϕ
,

∂ỹ(s, ϕ)

∂s
=
∂y(s, ϕ)

∂ϕ
.

(5.98)

The fields appearing in (5.98) have to be anti-periodic in ϕ, as we mentioned before. The

boundary condition at s = −∞ is that the flow line should start from the critical point of

25For that, we can expand fields x, y, x̃, ỹ in Fourier modes on S1 and introduce a UV cutoff on the modes

in order to obtain a finite-dimensional vector space. Then h becomes a real quadratic form in those modes,

half of whose eigenvalues are positive and half are negative.

– 43 –



J
H
E
P
0
3
(
2
0
1
8
)
1
3
8

h, that is the fields x, y, x̃, ỹ should vanish at s = −∞. With such a boundary condition,

the space of all possible solutions of (5.98) restricted to s = 0 provides a good integration

cycle, as explained in [54] and reviewed briefly above. Note that taking s = 0 is just a

convenient choice. Since we can go along the flow with different speeds, flowing for the time

(−∞, 0] with all possible initial speeds sweeps out the whole range of possible flow lines.

What the equations (5.98) tell us is that x + ix̃ and ỹ + iy should be holomorphic

functions in the complex coordinate w = s + iϕ. Locally, this is the same as to say that

they are holomorphic in the coordinate z = expw, that parameterizes the unit disk D2. The

locus s = 0 corresponds to the boundary of this disk. Unlike in [54], fields x+ ix̃, ỹ+ iy are

not holomorphic functions on this disk, but rather, because of their anti-periodicity in ϕ,

are holomorphic functions on the double cover parametrized by
√
z. Being holomorphic in√

z and anti-periodic in ϕ = 2arg
√
z, the Taylor expansions of these functions can contain

only odd positive powers of
√
z. Any function of this type can be written as

√
z times an

arbitrary holomorphic function of z. So we conclude that the most general solution of the

flow equations satisfying the boundary condition at s = −∞ is:

x+ ix̃ =
√
za(z) , ỹ + iy =

√
zb(z) , (5.99)

where a(z) and b(z) are arbitrary holomorphic functions on the disk. Then the space of

boundary values of these solutions provides a good integration cycle.

Let us make contact with the fields of our theory. Recall that in section 5.4.3 we

defined the linear combinations of hypermultiplet scalars q± = q1 ± iq2 and q̃± = q̃1 ± iq̃2,

in terms of which Q(ϕ) and Q̃(ϕ) are

Q(ϕ) =
1

2
q−(ϕ)e

iϕ/2 +
1

2
q+(ϕ)e

−iϕ/2 ,

Q̃(ϕ) =
i

2
q̃+(ϕ)e−iϕ/2 − i

2
q̃−(ϕ)eiϕ/2 .

(5.100)

Using (5.99) restricted to the boundary z = eiϕ, and using Q = x + iy and Q̃ = x̃ + iỹ,

we obtain

Q(ϕ) =
1

2
(a(eiϕ) + b(eiϕ))eiϕ/2 +

1

2
(ā(e−iϕ)− b̄(e−iϕ))e−iϕ/2 ,

Q̃(ϕ) =
i

2
(b(eiϕ)− a(eiϕ))eiϕ/2 +

i

2
(ā(e−iϕ) + b̄(e−iϕ))e−iϕ/2 .

(5.101)

Comparing (5.101) with (5.100), we conclude that we can take:

q−(ϕ) = [a(z) + b(z)]
∣∣
z=eiϕ

, q+ =
[
ā(z̄)− b̄(z̄)

] ∣∣
z=eiϕ

,

q̃+(ϕ) =
[
ā(z̄) + b̄(z̄)

] ∣∣
z=eiϕ

, q̃− = [a(z)− b(z)]
∣∣
z=eiϕ

, (5.102)

and therefore completely describe the integration cycle by saying that it is given by (5.100),

with q−(ϕ) being the boundary value of a holomorphic function on a disk, and q+(ϕ) being

the boundary value of an antiholomorphic function on a disk. For the tilded fields we

have q̃± = (q∓)
∗. But these descriptions coincide precisely with what we obtained in

section 5.4.3 from localization! We therefore conclude that the integration cycle we find

here using the Morse theory is the same as the integration cycle given in (5.93) obtained

before from localization.
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6 Properties of twisted Higgs branch theory

Before we move on to applications, let us provide a brief summary of the results of the

previous section and describe some important features of the 1d theory used to calculate

correlation functions of twisted Higgs branch operators.

6.1 Brief summary

The main result of our work is a concise formula representing a 1d Gaussian theory coupled

to a matrix model that can be used to compute correlation functions of twisted Higgs branch

operators. The matrix degree of freedom, σ, has its 3d origin in the constant mode of one

of the N = 4 vectormultiplet scalars and is thus valued in the Lie algebra g of the gauge

group G. By a gauge transformation, σ can be taken to lie within the Cartan subalgebra,

and one can write the S3 partition function as

Z =
1

|W|

∫

Cartan
dσ det ′adj(2 sinh(πσ))Zσ , (6.1)

where |W| is the order of the Weyl group of the gauge group, and Zσ is the partition

function of the 1d Gaussian theory that couples to σ. This 1d Gaussian theory is written

in terms of anti-periodic scalars Q(ϕ) and Q̃(ϕ) living on a great circle of S3 parameterized

by ϕ ∈ [−π, π]. They have their 3d origin in the twisted operators formed from the

hypermultiplet scalars. For a hypermultiplet transforming in the representation R of g, we

have that Q(ϕ) and Q̃(ϕ) transform in R and R, respectively. The partition function of

the 1d theory is

Zσ =

∫
DQDQ̃e−Sσ [Q,Q̃] , Sσ[Q, Q̃] = ℓ

∫
dϕ
[
Q̃∂ϕQ+ Q̃(σ +mr)Q− 2πi trζ σ

]
, (6.2)

where ℓ ≡ −4πr, r being the radius of S3, m is the real mass matrix, and trζ : g → C is a

weight of g corresponding to FI parameters, i.e., if ta are generators of abelian factors in g,

then trζ σ = trζ
∑

a σata =
∑

a σa trζ(ta), with trζ(ta) = ζa the FI parameters. The path

integral in (6.2) is over a middle-dimensional integration cycle in the space of complex

Q and Q̃, as explained in sections 5.4.4 and 5.5. However, for the applications we are

interested in, the precise choice of the integration cycle will not be important.

The theory (6.1)–(6.2) can be used to calculate correlation functions of twisted Higgs

branch operators Oi via

〈O1(ϕ1) . . .On(ϕn)〉 =
1

|W|Z

∫

Cartan
dσ det ′adj[2 sinh(πσ)]〈O1(ϕ1) . . .On(ϕn)〉σ Zσ , (6.3)

where, 〈 · · · 〉 represents an expectation value in the full 3d N = 4 SCFT, while 〈 · · · 〉σ
represents the expectation value in the Gaussian 1d theory (6.2). The latter expectation

value can be computed using Wick contractions with the propagator

Gσ(ϕ1−ϕ2)= 〈Q(ϕ1)Q̃(ϕ2)〉σ =
sgn(ϕ1−ϕ2)+tanh(π(σ+mr))

2ℓ
e−(σ+mr)(ϕ1−ϕ2) . (6.4)
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At coincident points, this propagator reduces to

Gσ(0) =
tanh(π(σ +mr))

2ℓ
. (6.5)

In the expressions above, σ+mr is a shorthand notation for R(σ) + rF(m), where R and

F are maps form the gauge and flavor algebras, respectively, into dimR×dimR hermitian

matrices, as introduced in footnote 6.

6.2 Topological gauged quantum mechanics

Let us now discuss two important properties of the theory presented above, first in the

conformal case m = ζ = 0, and then in the case where m and ζ are non-zero.

6.2.1 The conformal case

The first property of (6.1) when m = ζ = 0 is that correlation functions of gauge-invariant

operators are topological. Indeed, at fixed σ, the equations of motion for Q and Q̃ give

∂ϕQ = −R(σ)Q and ∂ϕQ̃ = +R(σ)Q̃. The theory (6.2) being Gaussian, it follows that

any operator O built out of Q and Q̃ obeys ∂ϕO = −RO(σ)O, with RO being the gauge

representation of O. Gauge-invariant operators have RO(σ) = 0, and therefore they obey

∂ϕO = 0. Consequently, the correlation functions of gauge-invariant operators must be

independent of the precise distance between the operator insertions. However, these cor-

relation functions could and, in general, do depend on the ordering of the insertions. Note

that gauge-non-invariant operators may have position-dependent correlation functions, as

can be seen, for instance, in (6.4) in the case of the gauge non-invariant operators Q and Q̃.

Another property that is rather hard to see from (6.1), but that we have checked in

detail in many examples, is that, when m = ζ = 0, we have

(Q̃R(T )Q)(ϕ) = 0 , for all T ∈ g , (up to contact terms) . (6.6)

This identity can be used in the correlation functions of gauge-invariant operators (up to

contact terms). From the point of view of the 3d theory, the relation (6.6) is a D-term

relation. Indeed, at the SCFT fixed point attained by sending gYM → ∞, the Dab equation

of motion gives the D-term relations q̃(aR(T )qb) = 0 for all T ∈ g. Taking appropriate linear

combinations of these relations and using the definitions of Q and Q̃ in (4.14) yields (6.6).

Note that when Q̃R(T )Q appears in a composite operator, for instance in a gauge-invariant

operator Q̃R(T )QO, this operator need not vanish exactly; instead, it can be written as

a linear combination of operators that do not involve Q̃R(T )Q. The precise form of this

linear combination depends on the precise definition of the composite operator Q̃R(T )QO,

as we will see explicitly in examples.

It is possible to provide a more formal argument both for the topological nature of

the correlation functions of gauge-invariant operators and for the D-term relation (6.6).

This argument relies on interpreting (6.1) with m = ζ = 0 as the partition function of

a gauge-fixed topological gauged quantum mechanics, albeit with an unusual choice of

integration cycle in the path integral. Let us construct this gauged quantum mechanics
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starting from (6.1). The first step is to rewrite (6.1) as an integral over the whole Lie

algebra, not just the Cartan. Up to an overall constant, we have

Z =

∫
dσ Zσ det ′adj

2 sinh(πσ)

σ
. (6.7)

Indeed, in passing from (6.7) to (6.1) one has to introduce a Vandermonde determinant

equal to det ′adjσ that cancels the denominator of the last factor in (6.7), as well as divide

by |W|, the order of the residual discrete gauge symmetry.

We then notice that

2 sinh(πa)

a
= C

∞∏

n=1

(n2 + a2) , (6.8)

where the prefactor C amounts to a divergent a-independent normalization. It follows that

up to an overall normalization factor, we can write (6.7) as

Z =

∫
dσ Zσ

∫
D′cD′c̃ exp

[
−
∫
dϕ c̃ ∂ϕ(∂ϕ + σ)c

]
, (6.9)

where c and c̃ are Lie-algebra valued fermionic ghosts that are periodic on the circle, and

where the primes in the ghost integration measure mean that we are not integrating over

the ghost zero modes. Indeed, to show that (6.9) reduces to (6.7), note that integrating

out the pair of modes of c and c̃ whose ϕ dependence is proportional to einϕ and e−inϕ,

with n ≥ 1, results in a factor of

n2(n2 + σ2) . (6.10)

Using (6.8), we see that the product of (6.10) over all integer n ≥ 1 gives (6.7) up to an

unimportant overall normalization factor.

Lastly, we interpret (6.9) as the ghost action corresponding to the gauge-fixing con-

dition ∂ϕAϕ = 0 for a 1d gauge field A = Aϕdϕ. Thus, combining all the steps men-

tioned above, we find that the theory (6.1) is a gauge-fixed version of the gauged quantum

mechanics

Z =

∫
DADQDQ̃ exp

[
−ℓ
∫ π

−π
dϕ Q̃DϕQ

]
, Dϕ ≡ ∂ϕ +Aϕ . (6.11)

In order to match (6.9), the gauge fixing condition is solved by Aϕ = σ.

So far we have been cavalier about the proper integration cycle for Q, Q̃, A, and the

ghosts that would make the formal manipulations above well-defined. We leave a careful

discussion for future work, but we would like to point out that this integration cycle is

likely to be quite non-trivial. For instance, we know from section 5.4.4 that when A is

restricted to constant values σ in the Cartan of the gauge algebra, one should choose a

slightly unusual integration cycle for Q and Q̃. When A is not constant, one should choose

an integration cycle which is middle-dimensional in the space of complex Q, Q̃, and A and

that makes the path integral (6.11) well-defined. Hopefully such a cycle exists and can be
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used to show that, despite the lack of the usual factor of i multiplying the gauge connection

in the covariant derivative, the action (6.11) still enjoys gauge invariance.

Assuming that the issues raised in the previous paragraph can be resolved, the descrip-

tion (6.11) makes more transparent the properties of (6.1) mentioned earlier. In particular,

the gauged quantum mechanics (6.11) is topological26 because it is invariant under repa-

rameterizations of the circle, so all correlation functions of gauge invariant operators must

be topological. In addition, the operator relation (6.6) is imposed pointwise by the path

integral over Aϕ: the gauge field Aϕ acts as a Lagrange multiplier.

It is worth noting that the topological quantum mechanics on a circle is an interesting

theory which has previously appeared in the literature in the context of deformation quan-

tization (see [56] and the footnote 3 of [57]) and the study of quantum geometry of phase

spaces [56], as well as the analytic continuation of quantum mechanics path integral in [54],

where the zero Hamiltonian quantum mechanics was the most basic example studied. The

fields there were taken to be periodic on the circle, in which case the theory had a zero

mode corresponding to translations along the circle. The proper definition of the theory

involved regularizing that zero mode, which can be done in a variety of ways (fixing zero

mode, delta function insertion, adding a small Hamiltonian, considering compact or finite

volume phase spaces) and which can introduce various subtleties. In our case, the fields Q

and Q̃ naturally appear as antiperiodic on the circle, which is yet another way of solving

the zero mode problem.

6.2.2 Non-vanishing mass and FI parameters

When m and ζ are not necessarily vanishing, the discussion above is modified as follows.

The first modification is that all operators in the theory (6.1) obey ∂ϕO = −[RO(σ) +

RO(mr)]O, where RO is the representation of O under the product of the gauge and flavor

groups. For gauge invariant operators RO(σ) = 0, but RO(mr) may not vanish when

m 6= 0. Consequently, the correlation functions of O may no longer be topological. The

position dependence of these correlation functions is rather simple, however. We have

〈O1(ϕ1) · · · On(ϕn)〉 = e−
∑n

i=1 ROi
(mr)ϕi × (topological correlation function) . (6.12)

For example, if Oi has charge qj associated with the flavor U(1) symmetry with real mass

parameter mj , the position dependence on ϕi is e−r
∑

j qjmjφi . The non-trivial position

dependence can also be understood from the fact that, as explained in section 4, in the

presence of real mass parameters, the twisted translation P̂ϕ is cohomologous to −rm̂,

where m̂ is the real mass operator.

The second modification of the discussion in the previous section is that the r.h.s. of

the D-term relation (6.6) receives contributions proportional to the FI parameters. Note

that non-vanishing FI parameters do not affect the topological nature of the correlation

function.

26For quantum mechanics, “topological” is synonymous to “zero Hamiltonian.” We use the Schwarz type

notion of a “topological” quantum mechanics, which means that Hamiltonian is precisely zero, not up to

Q-exact terms.
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Lastly, the rewriting of the 1d Gaussian theory coupled to a matrix model (6.1) as a

gauge-fixed gauged quantum mechanics (6.11) is straightforward to perform in the presence

of non-zero m and ζ. The covariant derivative in (6.11) simply gets modified to Dϕ +mr

and the path integral acquires an extra factor of eiℓ
∫ π

−π
trζ A. This factor is a 1d analog of

an analytically continued Chern-Simons term. A precise understanding of this term in the

gauged quantum mechanics requires studying the middle-dimensional integration cycle in

the space of complex fields Q, Q̃, and A. As already mentioned before, we postpone this

task for future work.

6.3 Correlators of twisted Higgs branch operators

Having understood the main properties of the theory (6.1), let us move on to applications.

The main application of the theory (6.1) (or (6.11)) is to calculate correlation functions

of twisted Higgs branch operators. We again first focus on the conformal case, and then

extend this discussion to the non-conformal deformations.

6.3.1 The conformal case

The most basic correlation functions are the 2- and 3-point correlators. When m = ζ = 0,

we have

〈Oi(ϕ1)Oj(ϕ2)〉 = bij , 〈Oi(ϕ1)Oj(ϕ2)Ok(ϕ3)〉 = cijk , ϕ1 < ϕ2 < ϕ3 , (6.13)

where bij and cijk are constants independent of the insertion points in the range where

ϕ1 < ϕ2 < ϕ3. All higher-point correlation functions are determined by (6.13) through a

successive use of the OPE

Oi(ϕ)Oj(ϕ
′) =

∑

k

cij
kOk(ϕ

′) , ϕ < ϕ′ , (6.14)

This OPE should be interpreted as an identity when used inside correlation functions of

adjacent insertions of twisted Higgs branch operators. The OPE coefficients cij
k can be

extracted from the 2-point and 3-point functions (6.13):

cij
k = bklcijl , (6.15)

where the matrix bij is the inverse of bij obeying b
ijbjk = δik. In practice, it is convenient to

work with a basis of operators that diagonalizes the 2-point function, such that bij = biδij
and bij = (1/bi)δ

ij . The lack of an explicit position dependence in the coefficients cij
k is a

reflection of the topological nature of the correlation functions of gauge-invariant twisted

Higgs branch operators.

The quantities of main interest in any given application of the 1d theory (6.1) are

the OPE coefficients cij
k, because they contain all the information necessary to construct

correlation functions of twisted Higgs branch operators. In particular, in the special case

where Ok is the identity operator, Ok = 1, we have cij
k = bij , and thus from the cij

k one

can immediately extract the coefficients bij and cijk defined above. The OPE coefficients

cij
k are thus quantities we will calculate in explicit examples in section 7.
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6.3.2 Non-vanishing mass and FI parameters

When m = 0 but ζ 6= 0, the correlation functions of the twisted Higgs branch operators

are still topological and take the form (6.13). The discussion above holds in this case too.

When m 6= 0, the correlation functions acquire position dependence, as explained in

section 6.2.2. For the given ordering of the insertion points ϕ1 < ϕ2 < . . ., we have

〈Oi(ϕ1)Oj(ϕ2)〉 = bije
−FOi

(mr)ϕ1−FOj
(mr)ϕ2 , ϕ1 < ϕ2

〈Oi(ϕ1)Oj(ϕ2)Ok(ϕ3)〉 = cijke
−FOi

(mr)ϕ1−FOj
(mr)ϕ2−FOk

(mr)ϕ3 , ϕ1 < ϕ2 < ϕ3 ,
(6.16)

with bij and cijk being constants, and F being the map from the flavor symmetry alge-

bra into complex dimR × dimR matrices defined in footnote 6. The 1d OPE (6.14) is

replaced by

Oi(ϕ)Oj(ϕ
′) =

∑

k

cij
kOk(ϕ

′)e
−FOi

(mr)ϕ−FOj
(mr)ϕ′+FOk

(mr)ϕ′

, ϕ < ϕ′ , (6.17)

with constant cij
k, which can now be used in any higher-point functions of twisted Higgs

branch operators between adjacent insertions. The relation between cij
k and bij and cijk

is then as in the conformal case.

While in a general non-conformal QFT it is not always possible to find a basis of

operators whose matrix of two-point functions is diagonal, in the 1d theory corresponding

to the twisted Higgs branch operators studied here one can diagonalize bij through the

Gram-Schmidt procedure.

6.4 2- and 3-point correlators of Higgs branch operators of the SCFT

As advertised in the Introduction, when m = ζ = 0, we can also infer the 2- and 3-

point functions of the untwisted Higgs branch operators. Concretely, let us make contact

between (6.13) and the 2- and 3-point functions of untwisted Higgs branch operators in

flat space. For a Higgs branch operator Oa1···an(~x) of scaling dimension ∆O = n/2 let us

define the index free operator

O(n)(~x, U) = Ua1 · · ·UanOa1···an(~x) (6.18)

by contracting the su(2)H indices with polarizations U . Conformal invariance and su(2)H
symmetry imply that we can choose a basis of operators where the only non-vanishing

2-point functions are

〈O(n)
i (~x1, U1)O(n)

j (~x2, U2)〉 = Bij
〈U1, U2〉n
|~x1 − ~x2|n

, (6.19)

where Bij are constants and where 〈U1, U2〉 ≡ Ua
1U

b
2εab.

27 The 3-point functions of Higgs

branch operators are also constrained by conformal and su(2)H symmetry to take the form

〈O(ni)
i (~x1, U1)O(nj)

j (~x2, U2)O(nk)
k (~x3, U3)〉

= Cijk
〈U1, U2〉

ni+nj−nk
2 〈U1, U3〉

ni+nk−nj
2 〈U2, U3〉

nj+nk−ni
2

|~x1 − ~x2|
ni+nj−nk

2 |~x1 − ~x3|
ni+nk−nj

2 |~x2 − ~x3|
nj+nk−ni

2

(6.20)

where Cijk are constants.

27Recall that ε12 = −ε21 = −1.
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The untwisted operators are related to the twisted ones by setting Ua = ua
R3 as in (3.5).

A simple calculation shows that

Bij =

(
ℓ

2π

)n

bij , Cijk =

(
ℓ

2π

)ni+nj+nk
2

cijk . (6.21)

If we calculate bij and cijk using the model (6.1), we can easily extract the coefficients

appearing in the untwisted correlators (6.19)–(6.20) using (6.21).

6.5 Star product, Higgs branch chiral ring, and deformation quantization

More abstractly, in the conformal case m = ζ = 0 we can represent the OPE (6.14) as the

star product operation

Oi ⋆Oj =
∑

k

cij
kOk , (6.22)

which can be thought of as a non-commutative multiplication operation on the algebra of

twisted Higgs branch operators. What is slightly less obvious is that the star product (6.22)

is also a non-commutative multiplication on the Higgs branch chiral ring. Indeed, it is not

hard to see that the twisted Higgs branch operators are in 1-to-1 correspondence with

Higgs branch chiral ring operators — at any given ϕ, the twisted Higgs branch operators

agree precisely with the Higgs branch chiral ring operators with respect to an N = 2

subalgebra, which is to say that they can be represented by holomorphic functions on the

Higgs branch with respect to an appropriate choice of complex structure. To be concrete,

let us take ϕ = 0 and denote the holomorphic function associated with O(0) by fO. The star

product (6.22) can therefore also be thought of as acting on the Higgs branch chiral ring:

fOi
⋆ fOj

=
∑

k

cij
kfOk

. (6.23)

As explained in [8], (6.23) represents a deformation quantization of the usual commuta-

tive product fOiOj
= fOi

fOj
given by the multiplication of the corresponding holomorphic

functions, with the deformation parameter equal to ℓ−1. Indeed, the star product (6.23)

reduces to this commutative product in the ℓ→ ∞ limit.

It was explained in [8] that the descent of the twisted Higgs branch operators from

the untwisted ones of the 3d N = 4 SCFT, which have scaling dimension equal to the

su(2)H spin, ∆ = n/2, yields various very special properties of the 1d operator algebra,

and consequently of the OPE (6.14) and of the star product (6.22). In some cases, it

was shown in [8] that these properties determine the star product uniquely up to a finite

number of parameters. Since we will not use these properties directly, we refer the reader

to the discussion in [8]. In the rest of this paper, we use the 1d theory of the previous

section to compute the star product explicitly in a few examples and compare with the

results of [8]. In particular, we determine the parameters left undetermined in [8].

In the non-conformal case when m or ζ are non-zero, one can still define a star product

operation as in (6.22) using the coefficients cij
k appearing in (6.17). The star product

defined in this way obeys all the properties discussed in [8] except for the property referred

to as evenness in [8]. There is thus more freedom in the star product of a non-conformal

theory relative to the conformal case.
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6.6 Operator mixing

As a last point in the discussion on how to use (6.1) to calculate explicit correlation

functions, we stress that the definition of the twisted Higgs branch operators in terms

of the fields of the 1d theory may suffer from operator mixing ambiguities even in the

conformal case. These ambiguities are reflected in non-zero two-point functions between

operators of different scaling dimensions, and can be removed upon performing a Gram-

Schmidt diagonalization procedure. From the point of view of the parent N = 4 SCFT, the

freedom that is used for defining orthogonal operators is that of adding lower dimensional

operators multiplied by powers of the curvature tensor. Indeed, suppose we have identified

a basis of orthogonal operators with scaling dimension strictly less than ∆. In defining

an operator O∆ of dimension ∆ that is orthogonal to all lower dimension operators, one

can start with some choice Ô∆ that is not necessarily orthogonal to all lower dimension

operators and consider the linear combination

O∆ = Ô∆ +
∑

i

α1,iRO∆−2,i +
∑

i

α2,iR
2O∆−4,i + · · · (6.24)

where Rk denotes some contraction of the kth power of the Riemann tensor. One should

then adjust the coefficients αk,i such that O∆ is orthogonal to all lower dimension oper-

ators. The construction of orthogonal twisted Higgs branch operators follows a similar

recursive pattern, where we can simply replace Rk by 1/ℓ2k after redefining the αk,i by a

dimensionless multiplicative constant. Note that if there are any flavor symmetries present,

then the lower dimension operators included in (6.24) should transform in the same rep-

resentation of the flavor symmetry as Ô∆. In practice, we remove the operator mixing by

diagonalizing the matrix of 2-point coefficients bij defined in (6.13).

7 Applications to SCFTs

We now discuss specific examples in SCFTs, where m = ζ = 0.

7.1 SQED with N charged hypermultiplet flavors

Our first example is N = 4 SQED with N charged hypermultiplet flavors. Without adding

any real masses or FI terms, this theory is believed to flow to an interacting SCFT in

the IR. The matter content of the 1d theory consists of fields Q̃I(ϕ) and QI(ϕ), with

I = 1, . . . , N , and has the partition function

Z =

∫
dσ Zσ ,

Zσ =

∫
DQ̃IDQ

I exp

[
−ℓ
∫
dϕ
(
Q̃I∂ϕQ

I + σQ̃IQ
I
)]

=
1

[2 cosh(πσ)]N
.

(7.1)

In preparation for describing all the gauge-invariant operators of the 1d theory, let

us observe that σ acts as a Lagrange multiplier imposing the constraint Q̃IQ
I = 0 as an
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operator relation. (See also the discussion in section 6.2.) Indeed, taking a derivative of

the integrand of (7.1) with respect to σ, one obtains the integrated identity
∫
dϕ 〈Q̃IQ

I(ϕ)O1(ϕ1) · · · On(ϕn)〉 = 0 (7.2)

where Oi(ϕi) are any gauge-invariant insertions. Let us assume without loss of generality

that ϕ1 < ϕ2 < . . . ϕn. Because 〈Q̃IQ
I(ϕ)O1(ϕ1) · · · On(ϕn)〉 is a correlation function of

gauge-invariant operators, it is topological, or in other words

〈Q̃IQ
I(ϕ)O1(ϕ1) · · · On(ϕn)〉 = αk , if ϕ ∈ (ϕk, ϕk+1) , (7.3)

for some constants αk, with 1 ≤ k ≤ n. Here, we identified ϕn+1 = ϕ1 + 2π. Then (7.2)

reduces to

n∑

k=1

αk(ϕk+1 − ϕk) = 0 . (7.4)

This equation should hold for any ϕk obeying ϕ1 < ϕ2 < . . . ϕn < ϕn+1 = ϕ1 + 2π, which

implies that αk = 0 for all k. Consequently Q̃IQ
I(ϕ) = 0 in all correlation functions. As

explained in section 6.2, this relation also follows from the D-term relations of the 3d theory.

As a further corrolary, we have that, up to mixings with lower dimension operators as

discussed in section 6.6, composite operators Q̃IQ
IO(ϕ) also vanish in correlation functions.

Here, O is any gauge-invariant operator. Indeed, a convenient definition of Q̃IQ
IO(ϕ) is

through the limit

lim
ϕ′→ϕ
ϕ′>ϕ

Q̃IQ
I(ϕ)O(ϕ′) .

(7.5)

Because Q̃IQ
I(ϕ) = 0, as shown above, it follows that the operator defined in (7.5) also

vanishes in correlation functions. Any other definition of Q̃IQ
IO(ϕ) differs from (7.5)

by lower dimension operators, so one concludes that indeed, Q̃IQ
IO(ϕ) equals a linear

combination of lower dimension operators, with the precise linear combination depending

on the precise definition of Q̃IQ
IO(ϕ). We call such an operator redundant.

Let us now describe the twisted Higgs branch operators of this theory. They are in 1-to-

1 correspondence with the Higgs branch chiral ring operators of the SCFT, or equivalently

with the holomorphic functions on the Higgs branch, as described in section 6.5.28 The

twisted Higgs branch operators can be constructed as gauge invariant words in QI and

Q̃I modulo the complex D-term relation Q̃IQ
I = 0 proven above, with QI and Q̃I having

gauge charges +1 and −1, respectively. The result is an algebra of operators generated by

the traceless bilinears

JI
J = Q̃IQ

J − 1

N
δJI Q̃KQ

K , (7.6)

obeying the nilpotency constraint JI
JJJ

K = 0. This nilpotency constraint should be

interpreted as the relation fJI
JfJJ

K = fJI
JJJ

K = 0 in the Higgs branch chiral ring, which

28The Higgs branch of SQED with N hypermultiplets is the hyperkähler quotient HN///U(1).
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means that the operator JI
JJJ

K is redundant. This relation can also be recovered from

the ℓ→ ∞ limit of the star product, namely limℓ→∞ JI
J ⋆ JJ

K = 0, as we will see below.

Note that given that Q̃KQ
K = 0, one need not write the second term in (7.6) that

makes manifest the tracelessness of JI
J . However, we find it convenient to explicitly remove

the SU(N) traces in the definitions of the various operators considered here, as in (7.6),

because with such a traceless definition group theory arguments guarantee that there is no

mixing with lower dimension operators.

The other linearly independent twisted Higgs branch operators can be taken to be

products of JI
J symmetrized in their upper and lower indices separately and with no

indices contracted and the traces removed, namely

JI1I2...Ip
J1J2...Jp ≡ J (J1

(I1
J J2
I2

· · · J Jp)
Ip)

− traces . (7.7)

For instance, we have

JI1I2
J1J2 = Q̃I1Q̃I2Q

J1QJ2 − 4Q̃KQ
K

N + 2
δ
(J1
(I1
Q̃I2)Q

J2) +
2(Q̃KQ

K)2

(N + 1)(N + 2)
δ
(J1
(I1
δ
J2)
I2)

. (7.8)

From a group theory perspective, the Higgs branch chiral ring admits an action of the

SU(N) flavor symmetry of the SQED under which QI and Q̃I transform as a fundamental

and as an anti-fundamental, respectively.29 The algebra of operators decomposes under

this action as

∞⊕

p=0

[p, 0, 0, . . . , 0, p] , (7.9)

where the term [p, 0, 0, . . . , 0, p], appearing only once, is represented precisely by (7.7).

As reviewed in section 6.5, the correlation functions in the 1d theory can be deduced

from the non-commutative star product defined in (6.22). In the case of minimal nilpotent

orbits of classical groups (other than SU(2)), it was shown in [8] that the star product is

uniquely determined (see for instance [58]) by its properties, and consequently all corre-

lation functions of the operators (7.7) are also uniquely determined.30 Nevertheless, it is

instructive to see how these correlation functions are computed within our formalism.

To avoid dealing with SU(N) indices, it is convenient to contract them into polarization

vectors (yI , ȳI) obeying ȳ · y ≡ ȳIy
I = 0. So let us define

J (p)(ϕ, y, ȳ) = JI1I2...Ip
J1J2...JpyI1 · · · yIp ȳJ1 · · · ȳJp . (7.10)

Using (6.4) for each flavor, one can easily express the two-point functions of J (p) as

〈J (p)(ϕ1, y1, ȳ1)J (p)(ϕ2, y2, ȳ2)〉 = (ȳ1 · y2)p(y1 · ȳ2)p
∫
dσ Zσ [Gσ(ϕ)Gσ(−ϕ)]p∫

dσ Zσ
, (7.11)

29Under the complexified action of sl(N) ∼= su(N), the Higgs branch, seen as a complex manifold, can be

identified with the minimal nilpotent orbit of sl(N). The Higgs branch chiral ring can be identified with

the ring of holomorphic functions on the Higgs branch.
30In the case of SU(2) the star product is determined up to a free parameter. There exist different SCFTs

for which this parameter takes distinct values.
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with the propagator Gσ(ϕ) given in (6.4). We have

∫
dσZσ [Gσ(ϕ)Gσ(−ϕ)]p=

∫
dσ

(−1)p sechN+2p(πσ)

2N+2pℓ2p
=

(−1)pΓ
(
N
2 +p

)

2N+2p
√
πℓ2pΓ

(
N+1
2 +p

) (7.12)

which immediately implies

〈J (p)(ϕ1, y1, ȳ1)J (p)(ϕ2, y2, ȳ2)〉 =
(−1)p

(2ℓ)2p
Γ
(
N+1
2

)
Γ
(
N
2 + p

)

Γ
(
N
2

)
Γ
(
N+1
2 + p

)(ȳ1 · y2)p(y1 · ȳ2)p . (7.13)

It is not hard to compare this relation with the general expectation of [58]. To do so,

let us group together the J (p) into a single quantity

J (ϕ, y, ȳ) =
∞∑

p=0

ℓpJ (p)(ϕ, y, ȳ) (7.14)

from which J (p)(ϕ, y, ȳ) can be identified with the term of total degree 2p in (y, ȳ), and the

factor of ℓp was inserted such that all terms in the sum have the same scaling dimension.

Then (7.13) implies

〈J (ϕ1, y1, ȳ1)J (ϕ2, y2, ȳ2)〉 = 3F2

(
N

2
,
N

2
, 1;

N

2

N + 1

2
;−(ȳ1 · y2)(y1 · ȳ2)

4

)
. (7.15)

Comparing with eq. (1.3) of [58], we see that these expressions agree precisely with the

bilinear form on the generalized higher spin algebra hsλ(sl(N)), with the parameter λ

taking the value λ = 0!31

One can also calculate three-point functions. For instance, for ϕ1 < ϕ2 < ϕ3 we have

〈J (1)(ϕ1, y1, ȳ1)J (1)(ϕ2, y2, ȳ2)J (1)(ϕ3, y3, ȳ3)〉

= − N

8ℓ3(N + 1)
[(ȳ1 · y3)(ȳ3 · y2)(ȳ2 · y1)− (ȳ1 · y2)(ȳ2 · y3)(ȳ3 · y1)] ,

(7.16)

which also agrees with the results of [58].32 From this expression as well as from (7.13)

and (6.13)–(6.22), we can extract the star product of the generator JI
J :

JI
J ⋆ JK

L = JIK
JL − 1

2ℓ

(
δJKJI

L − δLI JK
J
)
− N

4ℓ2(N + 1)

(
δLI δ

J
K − 1

N
δJI δ

L
K

)
. (7.17)

In the ℓ → ∞ limit, this expression reduces to the commutative product on the Higgs

branch chiral ring, JI
JJK

L = JIK
JL, or more precisely to the relation fJI

JfJK
L = fJIK

JL

written in terms of the holomorphic functions on the Higgs branch. This commutative

product follows from (7.6) and (7.8) as well as from the condition that in the Higgs branch

chiral ring we have the relation Q̃KQ
K = 0.

31In making this comparison, one has to convert the matrix polarization V used in that reference to the

vector polarizations used here. The relation is VI
J = ȳIy

J . Then (ȳ1 · y2)(y1 · ȳ2) = tr(V1V2).
32To compare, in the convention of footnote 31, we can write (ȳ1 · y3)(ȳ3 · y2)(ȳ2 · y1) = tr(V1V2V3) and

(ȳ1 ·y2)(ȳ2 ·y3)(ȳ3 ·y1) = tr(V3V2V1). Then (7.16), with ℓ = 1, matches the terms cubic in V in the expansion

of eq. (1.4) of [58].
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7.2 N-node quiver

The next example we study is that of an N -node Abelian quiver gauge theory with N

hypermultiplets with charges (1,−1, 0, 0, . . .), (0, 1,−1, 0, . . .), and so on. One has to mod

out by the overall U(1) since no matter fields are charged under it — the gauge group is

U(1)N/U(1). This theory is the mirror dual of SQED with N charged hypermultiplets, as

explained in [34].

The 1d theory describing the twisted Higgs branch operators is

Z =

∫ 


N∏

j=1

dσj


 δ


 1

N

N∑

j=1

σj


Zσ ,

Zσ =

∫ 


N∏

j=1

DQ̃jDQj


 exp


−ℓ

∫
dϕ

N∑

j=1

(
Q̃j∂ϕQj + (σj − σj+1)Q̃jQj

)



(7.18)

where for the purpose of writing a succinct formula we have defined σN+1 = σ1. Integrating

out Qj and Q̃j gives

Zσ =
N∏

j=1

1

2 cosh(π(σj − σi+1))
. (7.19)

The S3 partition function itself can be calculated using the trick of writing each factor

in (7.19) as a Fourier transform:

1

2 cosh(π(σj − σj+1))
=

∫
dτj

e2πi(σj−σj+1)τj

2 cosh(πτj)
. (7.20)

Further performing the integral over σj and τj , one finds

Z =

∫
dτ

1

[2 cosh(πτ)]N
=

Γ
(
N
2

)

2N
√
πΓ
(
N+1
2

) . (7.21)

This expression agrees precisely with the partition function of SQED with N charged

hypermultiplets, as should be the case since the two theories are each other’s mirror duals.

The Fourier transform in (7.20) effectively implements the mirror symmetry duality. See

also [59, 60] and [61].

Let us now discuss the twisted Higgs branch operators of this theory and their corre-

lation functions. The Higgs branch is the hyperkähler cone C2/ZN , and the Higgs branch

chiral ring, whose operators are in 1-to-1 correspondence with the twisted Higgs branch

operators, is generated by three operators

X = Q1Q2 · · ·QN , Y = Q̃1Q̃2 · · · Q̃N , Z = Q̃1Q1 = Q̃2Q2 = . . . = Q̃NQN (7.22)

modulo the relation XY = ZN . This relation should be interpreted as the ℓ → ∞ limit

of the star product X ⋆ Y or as the commutative product on the Higgs branch chiral ring

fX fY = fZN = (fZ)
N . The relations in the last equation of (7.22) can be seen from the
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1d theory (7.18) precisely in the same way as the relation Q̃IQ
I = 0 was derived in SQED

around equations (7.2)–(7.5). They are imposed by the integration variables σj which act

as Lagrange multipliers.

The 1d topological algebra of this theory was also studied in [8] quite expliclity in the

casesN = 3, 4. WhenN = 3, for instance, ref. [8] found that some of the abstract properties

on the star product determine it up to two parameters that are denoted by α3 and κ3:

N = 3 : Z ⋆ Z = Z2 − α3

ℓ2
,

Z ⋆ X = ZX +
1

2ℓ
X ,

Z ⋆ Y = ZY − 1

2ℓ
Y ,

X ⋆ Y = Z3 − 3

2ℓ
Z2 − 3α3 + κ3

4α3ℓ2
Z +

3α3 + κ3
2ℓ3

,

(7.23)

etc. The parameter α3 can be calculated using the supersymmetric localization results

of [41] combined with the prescription in [26]. It is found that [8]

α3 =
π2 − 8

4π2
. (7.24)

Lastly, the relation between α3 and κ3 was determined in [8] using the remaining proper-

ties of the star product. The simple form of the result, namely κ3 = −1/4 is suggestive of

the existence of an analytical derivation of it. The computation we are about to perform

represents such a derivation.

A similar analysis was performed in [8] in the case N = 4, where it was found that the

first few star product relations are

N =4 : Z⋆Z =Z2−α4

ℓ2
,

Z⋆X =ZX+
1

2ℓ
X ,

Z⋆Y =ZY− 1

2ℓ
Y ,

X ⋆Y =Z4− 2

ℓ
Z3−−2κ4(λ4−4α4)+(1+λ4)(−5+6λ4−14α4)α4

7(κ4+α4(2−3λ4+5α4))ℓ2
Z2

+
−2κ4+α4+λ4α4

5α4ℓ3
Z−2

−2κ4+α4+λ4α4

5ℓ4
,

(7.25)

etc., where α4, λ4, and κ4 are constants. Using existing supersymmetric localization com-

putations, one can determine α4, while imposing the other properties of the topological

operator algebra restricts the space of allowed values of κ4 and λ4 to a curve. Which

point on this curve corresponds to the N = 4 quiver theory was not determined. Our

computation below determines it.
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Let us now compute various correlation functions from which we can reproduce the

algebras (7.23) and (7.25) as well as generalizations thereof. To simplify the following

formulas, let us define the integration measure

dµ(σj) ≡
(

N∏

i=1

dσj

)
δ


 1

N

N∑

j=1

σj


Zσ (7.26)

and define σjk = σj − σk and ϕjk = ϕj − ϕk. Let us start with the 2-point functions

〈Z(ϕ1)Z(ϕ2)〉 =
∫
dµ(σj)

[
Gσ12(ϕ12)Gσ12(−ϕ12) +Gσ12(0)

2
]

Z
,

〈X (ϕ1)Y(ϕ2)〉 =
∫
dµ(σj)

∏N
j=1Gσj(j+1)

(ϕ12)

Z
,

(7.27)

and the 3-point function

〈Z(ϕ1)X (ϕ2)Y(ϕ3)〉

=

∫
dµ(σi)

∏N
j=2Gσj(j+1)

(ϕ23) [Gσ12(ϕ23)Gσ12(0) +Gσ12(ϕ13)Gσ12(ϕ21)]

Z
.

(7.28)

In these correlation functions, one can again pass to the mirror dual integration variable

τ by performing a Fourier transform. The result is

〈Z(ϕ1)Z(ϕ2)〉 =
1

ℓ2
1

Z

∫
dτ

1

[2 cosh(πτ)]N
(iτ)2 , (7.29)

〈X (ϕ1)Y(ϕ2)〉 =
1

ℓN
1

Z

∫
dτ

1

[2 cosh(πτ)]N

(
iτ − 1

2

)N

, if ϕ1 < ϕ2

〈Z(ϕ1)X (ϕ2)Y(ϕ3)〉 =
1

ℓN+1

1

Z

∫
dτ

1

[2 cosh(πτ)]N

(
iτ

(
iτ − 1

2

)N
)
, if ϕ1 < ϕ2 < ϕ3

These calculations are sufficient to determine the dimensionless parameters α3 and κ3
entering the algebra (7.23) in the N = 3 case. Before we do so, however, let us compute

2- and 3-point functions of some of the composite operators as well. While so far, the

operator mixing discussed in section 6.6 has not been important, it does become important

for composite operators. Our strategy is to first calculate the matrix of two-point functions

in some conveniently chosen basis of operators, and afterwards perform a change of basis

to an orthogonal set of operators.

Let us focus on the operators Zp with p ≤ N . A rather convenient basis is

Ẑp =

p∏

j=1

Q̃jQj (7.30)

where the hat on Ẑp signifies that we do not expect these operators to be orthogonal. We

reserve the notation Zp for the orthogonal operators. Following the same path as above,
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one can calculate

〈Ẑp(ϕ1)Ẑq(ϕ2)〉 =
1

ℓp+q

1

Z

∫
dτ

1

[2 cosh(πτ)]N
(iτ)p+q ,

〈Ẑp(ϕ1)X (ϕ2)Y(ϕ3)〉 =
1

ℓN+p

1

Z

∫
dτ

1

[2 cosh(πτ)]N

(
(iτ)p

(
iτ − 1

2

)N
)
,

(7.31)

where in the second equation we assumed ϕ1 < ϕ2 < ϕ3. A closed analytical expression

for the integrals appearing in (7.31) does not seem to be available for a generic value of

N , p, and q, but these integrals can be performed analytically on a case-by-case basis.

Once these integrals have been performed, we can construct the orthogonal operators Zp

recursively via the Gram-Schmidt procedure:

Zp = Ẑp −
p−1∑

q=0

〈Ẑp(ϕ1)Zq(ϕ2)〉
〈Zq(ϕ1)Zq(ϕ2)〉

Zq . (7.32)

In the case N = 3, we have

Z = Ẑ , Z2 = Ẑ2 − 8− π2

4π2ℓ2
, Z3 = Ẑ3 − 48− 5π2

4(π2 − 8)
Ẑ , etc. (7.33)

Assuming ϕ1 < ϕ2 < ϕ3, we have

〈Z(ϕ1)Z(ϕ2)〉 = −π
2 − 8

4π2ℓ2
,

〈Z2(ϕ1)Z2(ϕ2)〉 =
π4 − 8π2 − 16

4π4ℓ4
,

〈Z3(ϕ1)Z3(ϕ2)〉 = −9π4 − 152π2 + 624

16π2(π2 − 8)ℓ6
,

〈X (ϕ1)Y(ϕ2)〉 = −12− π2

4π2ℓ3
,

〈Z(ϕ1)X (ϕ2)Y(ϕ3)〉 = −12− π2

8π2ℓ4
,

〈Z2(ϕ1)X (ϕ2)Y(ϕ3)〉 = −3(16 + 8π2 − π4)

8π4ℓ5
,

〈Z3(ϕ1)X (ϕ2)Y(ϕ3)〉 = −9π4 − 152π2 + 624

16π2(π2 − 8)ℓ6
.

(7.34)

Combining these expressions with (6.13)–(6.22), one can derive the star product rules (7.23)

with

α3 =
π2 − 8

4π2
, κ3 = −1

4
. (7.35)
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We have thus provided a direct derivation of the result κ3 = −1/4 that was found numer-

ically in [8]. A similar exercise for N = 4 gives

〈Z(ϕ1)Z(ϕ2)〉 =
6− π2

12π2ℓ2
,

〈Z2(ϕ1)Z2(ϕ2)〉 =
−45− 30π2 + 4π4

180π4ℓ4
,

〈Z3(ϕ1)Z3(ϕ2)〉 = −3(525− 170π2 + 12π4)

2880π2(−6 + π2)ℓ6
,

〈Z4(ϕ1)Z4(ϕ2)〉 =
55125 + 17850π2 − 6160π4 + 384π6

7350π2(−45− 30π2 + 4π4)ℓ8
,

〈X (ϕ1)Y(ϕ2)〉 =
15− π2

30π2ℓ4
,

〈Z(ϕ1)X (ϕ2)Y(ϕ3)〉 =
15− π2

60π2ℓ5
,

〈Z2(ϕ1)X (ϕ2)Y(ϕ3)〉 =
16π4 − 84π2 − 315

1260π4ℓ6
,

〈Z3(ϕ1)X (ϕ2)Y(ϕ3)〉 = −3(525− 170π2 + 12π4)

1400π2(π2 − 6)ℓ7
,

〈Z4(ϕ1)X (ϕ2)Y(ϕ3)〉 =
55125 + 17850π2 − 6160π4 + 384π6

7350π2(−45− 30π2 + 4π4)ℓ8
.

(7.36)

From these correlation functions one can reproduce the algebra (7.25) with

α4 =
π2 − 6

12π2
, κ4 =

1

16
, λ4 =

3

2
. (7.37)

One can see from figure 5 of [8] that these values of the parameters lie in the region allowed

by the numerical bounds. Extending the analysis above to N > 4 is then straightforward,

but we will not perform it explicitly here.

7.3 U(2) with adjoint hypermultiplet and fundamental hypermultiplet

We can also study the much more intricate example of an N = 8 SCFT and make a

comparison with the results of [7]. The N = 8 SCFT we consider is the infrared limit of

U(2) gauge theory with an adjoint hypermultiplet and a fundamental hypermultiplet. Let

the twisted fields corresponding to the adjoint hypermultiplet be denoted by Xi
j and X̃i

j

and those corresponding to the fundamental hypermultiplet by Qi and Q̃i, where i, j = 1, 2

are gauge indices. The 1d twisted Higgs branch theory is

Z =
1

2

∫
dσ1dσ2 4 sinh

2(π(σ1 − σ2))

∫
DQiDQ̃iDX

i
jDX̃i

je−S (7.38)

with

S= ℓ

∫
dϕ
[
Q̃iQ̇

i+X̃i
jẊi

j+σ1Q̃1Q
1+σ2Q̃2Q

2+(σ1−σ2)(X̃1
2X1

2−X̃2
1X2

1)
]

(7.39)
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Integrating out the Q’s and X’s we get the matrix model [39]

Z =
1

2

∫
dσ1dσ2

sinh2(π(σ1 − σ2))

16 cosh2(π(σ1 − σ2)) cosh(πσ1) cosh(πσ2)
=

1

16π
. (7.40)

The U(2) gauge theory with a fundamental and an adjoint hypermultiplet is believed

to flow to the same IR fixed point as the N = 8 U(2) Yang-Mills theory. The IR fixed point

SCFT has two N = 8 stress tensor multiplets, one of which corresponds to a free sector

and one to an interacting sector. Intuitively, the free sector corresponds to the IR limit of

the diagonal U(1) in the Yang-Mills description, while the interacting sector corresponds

to the IR limit of SU(2) Yang-Mills theory, as will be made more precise shortly.

It was shown in [7] that upon decomposition to N = 4 SCFT notation, the 1d Higgs

branch theory has a flavor su(2)F symmetry that is a subgroup of the so(8) R-symmetry.

Under su(2)F , (X̃,X
T ) form a doublet.33 In order to match the notation in [7], let us

introduce polarization variables ȳā, ā = 1, 2, and denote the operators in the 1d theory by

O2jF (ϕ, ȳ) = Oā1...ā2jF
ȳā1 · · · ȳājF , (7.41)

where jF is the spin of the su(2)F representation.

We will identify 3 operators in the 1d theory and compute their correlation functions:

• The twisted Higgs branch representative of the N = 8 free field multiplet. The

N = 8 free field multiplet consists of 8 scalar operators of scaling dimension 1/2

and 8 spin-1/2 operators of scaling dimension 1. Under the decomposition to N = 4

supersymmetry, 4 of the scalar operators are interpreted as Higgs branch operators

(transforming under su(2)H ⊕ su(2)F as (2,2), while the other 4 are Coulomb branch

operators. From the 4 Higgs branch operators one can construct the twisted Higgs

branch operator O1,free(ϕ, ȳ).

• The twisted Higgs branch representatives of the free and of the interacting N =

8 stress tensor multiplets. Any N = 8 stress tensor multiplet contains 35 scalar

operators of scaling dimension 1, 9 of which being Higgs branch operators from an

N = 4 point of view. From them, one can construct twisted Higgs branch operators

O2(ϕ, ȳ). We will denote the operator corresponding to the free stress tensor multiplet

by O2,free(ϕ, ȳ) and the one corresponding to the interacting stress tensor multiplet

by O2,int(ϕ, ȳ).

7.3.1 Free N = 8 multiplet

The free multiplet operator O1,free(ϕ, ȳ) is

O1,free(ϕ, ȳ) = ȳ1 tr X̃(ϕ) + ȳ2 trX(ϕ) . (7.42)

33Because of the D-term relations, we may construct operators only from X and X̃. Indeed, the equations

of motion for the auxiliary field Dab imply Q̃jQ
i+X̃j

kXi
k−X̃k

iXk
j = 0, so every pair Q̃jQ

i can be replaced

by −X̃j
kXi

k + X̃k
iXk

j . Since gauge-invariant operators can only contain an equal number of Q’s and Q̃’s

such replacements yield expressions depending only on X and X̃.
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From (7.38), we see that tr X̃ and trX only appear in the kinetic term, so computing

correlation functions of these operators can be performed using the propagator

〈trX(ϕ1) tr X̃(ϕ2)〉 =
sgn(ϕ1 − ϕ2)

2ℓ
. (7.43)

(No integrals over σ are necessary to establish (7.43).) Using this expression and (7.42),

one obtains

〈O1,free(ϕ1, ȳ1)O1,free(ϕ2, ȳ2)〉 =
1

ℓ
〈ȳ1, ȳ2〉 sgn(ϕ1 − ϕ2) . (7.44)

where the angle bracket notation is defined by

〈ȳi, ȳj〉 ≡ ȳāi εāb̄ȳ
b̄
j , ε21 = −ε12 = 1 . (7.45)

Higher point functions of O1,free(ϕ, ȳ) can be computed using Wick contractions

using (7.44).

7.3.2 Free N = 8 stress tensor multiplet

There are two su(2)F triplets of linearly independent operators that are quadratic in X

corresponding to the two stress tensor multiplets of the theory. It is easy to identify the

one corresponding to the free N = 8 multiplet because this is the only one appearing in

the OPE of O1,free×O1,free: it is simply the square of the free N = 8 operator O1,free(ϕ, ȳ),

O2,free(ϕ, ȳ) = (ȳ1)2(tr X̃)2 + 2ȳ1ȳ2(tr X̃)(trX) + (ȳ2)2(trX)2 . (7.46)

Again using (7.43) gives

〈O2,free(ϕ1, ȳ1)O2,free(ϕ2, ȳ2)〉 =
2

ℓ2
〈ȳ1, ȳ2〉2 . (7.47)

7.3.3 Interacting N = 8 stress tensor multiplet

The interacting stress tensor multiplet must be orthogonal to the free one. To obtain O2,int,

we first compute the matrix of 2-point functions
(
〈(trX)2(ϕ) (tr X̃)2(0)〉 〈(trX)2(ϕ) (tr X̃2)(0)〉
〈(trX2)(ϕ) (tr X̃)2(0)〉 〈(trX2)(ϕ) (tr X̃2)(0)〉

)
=

(
1

2π2
1

4π2

1
4π2

7
24π2

)
. (7.48)

We can then easily see that
〈[

(tr X̃2)(ϕ)− 1

2
(tr X̃)2(ϕ)

]
(trX)2(0)

〉
= 0 , (7.49)

which implies that the (ȳ1)2 component of O2,int(ϕ, ȳ) is (tr X̃
2)(ϕ)− 1

2(tr X̃)2(ϕ) up to an

overall normalization factor of our choice. The su(2)F symmetry then implies

O2,int(ϕ, ȳ) = (ȳ1)2
(
(tr X̃2)− 1

2
(tr X̃)2

)
+ 2ȳ1ȳ2

(
(trXX̃T )− 1

2
(trX)(tr X̃)

)

+ (ȳ2)2
(
(trX2)− 1

2
(trX)2

)
.

(7.50)
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Computing the two-point function of O2,int is more challenging, as one now has to use the

non-trivial propagators coming from (7.39). A careful calculation shows that the two-point

function is

〈O2,int(ϕ1, ȳ1)O2,int(ϕ2, ȳ2)〉 =
〈ȳ1, ȳ2〉2

4ℓ2
1

Z

∫
dσ1dσ2

sinh2(πσ12) [5 + cosh(2πσ12)]

16 cosh4(πσ12) cosh(πσ1) cosh(πσ2)

=
2

3ℓ2
〈ȳ1, ȳ2〉2 , (7.51)

where σ12 ≡ σ1 − σ2.

7.3.4 Four-point functions

We can use the formalism we have developed to calculate the 4-point functions of

O2,free(ϕ, ȳ) and O2,int(ϕ, ȳ) and compare with [7]. In [7] it was found that the 4-point

function of an operator O2(ϕ, ȳ) corresponding to an N = 8 stress tensor multiplet (which

could be any linear combination of O2,free(ϕ, ȳ) and O2,int(ϕ, ȳ)) is

〈O2(ϕ1, ȳ1)O2(ϕ2, ȳ2)O2(ϕ3, ȳ3)O2(ϕ4, ȳ4)〉

=C2〈ȳ1, ȳ2〉2〈ȳ3, ȳ4〉2
[
1+

1

16
λ2(B,2)+

1

4
λ2stress

2−w̄
w̄

+
1

16
λ2(B,+)

6−6w̄+w̄2

w̄2

]
.

(7.52)

Here, w̄ is defined as

w̄ ≡ 〈ȳ1, ȳ2〉〈ȳ3, ȳ4〉
〈ȳ1, ȳ3〉〈ȳ2, ȳ4〉

, (7.53)

the constant C is given by the normalization of the operator,

〈O2(ϕ1, ȳ1)O2(ϕ2, ȳ2)〉 = C〈ȳ1, ȳ2〉2 , (7.54)

and λ2(B,2), λ
2
(B,+), and λ

2
stress are the squares of the various OPE coefficients of N = 8 super-

conformal multiplets appearing in the OPE of the N = 8 stress tensor multiplet with itself.

The four-point function of O2,free(ϕ, ȳ) does not require any integrals, as it again only

uses (7.43). When ϕ1 < ϕ2 < ϕ3 < ϕ4, we obtain

〈O2,free(ϕ1, ȳ1)O2,free(ϕ2, ȳ2)O2,free(ϕ3, ȳ3)O2,free(ϕ4, ȳ4)〉=
4

ℓ4
〈ȳ1, ȳ2〉2〈ȳ3, ȳ4〉2

6+2w̄−2w̄2

w̄2
,

(7.55)

Obtaining O2,int(ϕ, ȳ) is slightly more complicated. The final result is

〈O2,int(ϕ1, ȳ1)O2,int(ϕ2, ȳ2)O2,int(ϕ3, ȳ3)O2,int(ϕ4, ȳ4)〉 =
8

15ℓ4
〈ȳ1, ȳ2〉2〈ȳ3, ȳ4〉2

4 + w̄ − w̄2

w̄2
.

(7.56)

Comparing these expression with (7.52), we find

Free stress tensor: λ2stress = 16 , λ2(B,+) = 16 , λ2(B,2) = 0 ,

Interacting stress tensor: λ2stress = 12 , λ2(B,+) =
64

5
, λ2(B,2) = 0 .

(7.57)
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The expressions for the OPE coefficients of the free N = 8 stress tensor multiplet match

the result of [7] in the free N = 8 theory (of 8 free massless scalars and 8 free massless

Majorana fermions), while the corresponding expressions obtained for the interacting stress

tensor match those obtained in [7] for the U(2)2 ×U(1)−2 ABJ theory. The former theory

is the infrared limit of N = 8 super Yang-Mills theory with gauge group U(1), while the

latter theory is the infrared limit of N = 8 Yang-Mills theory with gauge group SU(2).

These results show quite explicitly how, at the level of the N = 4 Higgs branch theory, the

IR limit of N = 8 U(2) Yang-Mills theory (or the U(2) gauge theory with one fundamental

and one adjoint hypermultiplet) is a product between a free theory and the IR limit of

SU(2) Yang-Mills theory.

8 Applications to N = 4 QFTs on S
3 with non-vanishing mass and FI

parameters

Let us now present a few examples of correlation functions in non-conformal theories with

either m or ζ non-vanishing.

8.1 Deformation by FI parameters

8.1.1 SQED with non-zero FI parameter

Turning on a non-zero FI parameter in SQED is easily implemented by replacing Zσ in (7.1)

and subsequent formulas in section 7.1 by

Zσ =
e2πiζℓσ

[2 cosh(πσ)]N
. (8.1)

The S3 partition function is

Z =
Γ
(
N
2 − iζℓ

)
Γ
(
N
2 + iζℓ

)

2π(N − 1)!
. (8.2)

The two-point function of J (p) is then still given by (7.11). The integrals evaluate to

〈J (p)(ϕ1, y1, ȳ1)J (p)(ϕ2, y2, ȳ2)〉

=
(−1)p

ℓ2p
Γ(N)Γ

(
N
2 − iζℓ+ p

)
Γ
(
N
2 + iζℓ+ p

)

Γ(N + 2p)Γ
(
N
2 − iζℓ

)
Γ
(
N
2 + iζℓ

) (ȳ1 · y2)p(y1 · ȳ2)p .
(8.3)

These two-point functions can be combined into a single formula upon using the defini-

tion (7.14). We have

〈J (ϕ1, y1, ȳ1)J (ϕ2, y2, ȳ2)〉 = 3F2

(
N

2
− iζℓ,

N

2
+ iζℓ, 1;

N

2

N + 1

2
;−(ȳ1 · y2)(y1 · ȳ2)

4

)
.

(8.4)

Comparing with eq. (1.4) of [58] we see that (8.4) agrees with the bilinear form of the

generalized higher spin algebra hsλ(sl(N)) with parameter λ = ±2iζℓ/N .
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One can also compute 3-point functions. We have, for example,

〈J (1)(ϕ1, y1, ȳ1)J (1)(ϕ2, y2, ȳ2)J (1)(ϕ3, y3, ȳ3)〉

= −
N
(
1 + 4ζ2ℓ2

N2

)

8ℓ3(N + 1)

[(
1− 2iζℓ

N + 2

)
(ȳ1 · y3)(ȳ3 · y2)(ȳ2 · y1)

−
(
1 +

2iζℓ

N + 2

)
(ȳ1 · y2)(ȳ2 · y3)(ȳ3 · y1)

]
,

(8.5)

which matches eq. (1.4) of [58] upon making the identification λ = −2iζℓ/N . (See foot-

notes 31 and 32.) The star product of the generators of the chiral ring becomes

JI
J ⋆ JK

L = JIK
JL +

iζ

N + 2

(
δJKJI

L + δLI JK
J − 2

N
(δJI JK

L + δLKJI
J)

)

− ζ2

N(N + 1)

(
δLI δ

J
K − 1

N
δJI δ

L
K

)

− 1

2ℓ
δJKJI

L +
1

2ℓ
δLI JK

J − N

4ℓ2(N + 1)

(
δLI δ

J
K − 1

N
δJI δ

L
K

)
.

(8.6)

In the limit ℓ→ ∞, (8.6) reduces to the commutative product on the deformed Higgs

branch chiral ring. Indeed, using (7.6) and (7.8), one can check that the multiplication of

JI
JJK

L yields the ℓ→ ∞ limit of (8.6) provided that the relation Q̃IQ
I = iζ is satisfied,

as appropriate for the deformed Higgs branch chiral ring.

8.1.2 N-node quiver with non-zero FI parameters

The N node quiver has gauge group U(1)N/U(1) containing N −1 Abelian factors. Conse-

quently, there are N−1 linearly independent FI parameters that can be introduced. Let us

introduce an FI parameter ζj for each one of the N gauge group factors with the constraint

N∑

j=1

ζj = 0 . (8.7)

The deformation to non-zero ζj ’s is realized by modifying the expression of Zσ in (7.19) to

Zσ =
N∏

j=1

e2πiℓζjσj

2 cosh(π(σj − σi+1))
. (8.8)

Because the ζj sum to zero, it is possible to write them as

ζj = ωj−1 − ωj , (8.9)

for some ωj , and then using summation by parts one can write

N∑

j=1

ζjσj =

N∑

j=1

σj(ωj−1 − ωj) = −
N∑

j=1

ωj(σj − σj+1) . (8.10)
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This expression can be substituted into (8.8). Upon performing the Fourier transform to

the τj coordinates using now

e−2πiℓωj(σj−σj+1)

2 cosh(π(σj − σj+1))
=

∫
dτj

e2πiℓ(σj−σj+1)τj

2 cosh(π(τj + ℓωj))
, (8.11)

we obtain

Z =

∫
dτ

1
∏N

j=1 [2 cosh(π(τ + ℓωj))]
. (8.12)

The S3 partition function (8.12) agrees with that of SQED with N hypermultiplets with

real masses ωj , as required by mirror symmetry. (See [59] where this equivalence was first

shown at the level of the S3 partition function.) Note that an overall shift in ωj can be

“gauged away” by shifting the integration variable τ . We will thus impose a gauge fixing

condition

N∑

j=1

ωj = 0 . (8.13)

In the presence of the FI terms, we can use a modified definition of the operators (7.22):

X = Q1Q2 · · ·QN , Y = Q̃1Q̃2 · · · Q̃N ,

Z = Q̃1Q1 − iω1 = Q̃2Q2 − iω2 = . . . = Q̃NQN − iωN .
(8.14)

They obey the classical relation XY = (Z + iω1)(Z + iω2) · · · (Z + iωN ), corresponding to

the deformation of the Kleinian singularity XY = ZN with parameters ωj .

With the definition in (8.14), we have

〈Z(ϕ1)Z(ϕ2)〉 =
1

ℓ2
1

Z

∫
dτ

(iτ)2
∏N

j=1 [2 cosh(π(τ + ℓωj))]
. (8.15)

Then the second equation in (7.27) still holds, and we have

〈X (ϕ1)Y(ϕ2)〉 =
1

ℓN
1

Z

∫
dτ

∏N
j=1

(
i(τ + ℓωj)− 1

2

)
∏N

j=1 [2 cosh(π(τ + ℓωj))]
, for ϕ1 < ϕ2 . (8.16)

More generally, defining

Ẑp =

p∏

j=1

(Q̃jQj − iωj) (8.17)

we find that for ϕ1 < ϕ2 < ϕ3 we have

〈Ẑp(ϕ1)Ẑq(ϕ2)〉 =
1

ℓp+q

1

Z

∫
dτ

(iτ)p+q

∏N
j=1 [2 cosh(π(τ + ℓωj))]

,

〈Ẑp(ϕ1)X (ϕ2)Y(ϕ3)〉 =
1

ℓN+p

1

Z

∫
dτ

(iτ)p
∏N

j=1

(
i(τ + ℓωj)− 1

2

)
∏N

j=1 [2 cosh(π(τ + ℓωj))]
.

(8.18)

From these expressions, it is straightforward to extract the corresponding star product

deformed by the parameters ωj .
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8.2 Introducing mass parameters

8.2.1 Mass-deformed N-node quiver

The N -node quiver has a U(1) flavor symmetry under which the Qi carry charge +1/N

while Q̃i carry charge −1/N . This normalization of the U(1) charge is such that the

operators X and Y carry charges +1 and −1, respectively.

We can introduce a real mass term associated with this flavor symmetry by adding

−ℓ
∫
dϕ

mr

N
Q̃iQi (8.19)

to the exponent of (7.18). This amounts to replacing Zσ in (7.19) by

Zσ =

N∏

j=1

1

2 cosh (π(σj − σj+1 +mr/N))
. (8.20)

The partition function is given by the equation

Z =
Γ
(
N
2 − imr

)
Γ
(
N
2 + imr

)

2π(N − 1)!
, (8.21)

which, upon the replacement mr → ζℓ, can be seen to agree with eq. (8.2) of the partition

function of SQED with N charged hypers and FI parameter ζ. Indeed, under mirror

symmetry the real masses and FI parameters are interchanged.

Eqs. (7.27) and (7.28) still hold, with the only change that σj(j+1) is replaced by

σj(j+1) +mr/N . We obtain, for instance, that

〈Z(ϕ1)Z(ϕ2)〉 =
1

ℓ2
1

Z

∫
dτ

e2πimrτ

[2 cosh(πτ)]N
(iτ)2 . (8.22)

More generally, we can define the operators Ẑp with p ≤ N , whose matrix of two point

functions is given by

〈Ẑp(ϕ1)Ẑq(ϕ2)〉 =
1

ℓp+q

1

Z

∫
dτ

e2πimrτ

[2 cosh(πτ)]N
(iτ)p+q . (8.23)

The mixing of these operators can be removed by performing a Gram-Schmidt proce-

dure as was the case for SCFTs. For example, we can remove the mixing with the identity

operator by subtracting the expectation values of the operators. Explicitly, (8.22)–(8.23)

imply that the connected correlation function of Z is

〈Z(ϕ1)Z(ϕ2)〉 − 〈Z(ϕ1)〉〈Z(ϕ2)〉 = −ψ
(1)
(
N
2 − imr

)
+ ψ(1)

(
N
2 + imr

)

4π2ℓ2
, (8.24)

where ψ(n)(z) is the polygamma function. One can see that this function vanishes as

m→ ∞.
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8.2.2 Mass-deformed SQED

The SQED theory with N charged hypermultiplets has an SU(N) flavor symmetry. One

can introduce N − 1 real mass parameters corresponding to the U(1)N−1 Cartan of SU(N)

by adding

−ℓ
∫
dϕ

N∑

I=1

mIr Q̃IQ
I ,

N∑

I=1

mI = 0 (8.25)

to the exponent of the second equation in (7.1). The condition
∑N

I=1mI = 0 ensures

that the mI are real masses for the Cartan of SU(N). The expression for the S3 partition

function in (7.1) gets replaced by

Z =

∫
dσ Zσ , Zσ =

1
∏N

I=1 2 cosh(π(σ +mIr))
. (8.26)

The S3 partition function agrees with that of the N -node quiver (8.12) upon the replace-

ment mIr → ℓωI , in agreement with mirror symmetry.

While it is possible to perform computations for arbitrary N , for simplicity let us give

an example in the case N = 2 where we take m1 = −m2 = m. The partition function

in (8.26) evaluates to

Z = mr csch(2πmr) (8.27)

in this case. Let us define the quadratic operators

J3 =
1

2

(
Q̃1Q

1 − Q̃2Q
2
)
, J+ = Q̃1Q

2 , J− = Q̃2Q
1 . (8.28)

The operator J3 is neutral under the U(1) Cartan of flavor SU(2) symmetry, so it’s corre-

lation functions are independent of position. We obtain, for instance,

〈J3(ϕ)〉=−1−2πmr coth(2πmr)

4πmrℓ
,

〈J3(ϕ1)J3(ϕ2)〉−〈J3(ϕ1)〉〈J3(ϕ2)〉=
[
1+8π2m2r2−cosh(4πmr)

]
csch2(2πmr)

32π2m2r2ℓ2
.

(8.29)

On the other hand, the operators J± carry charges ±2 under the Cartan of the flavor

SU(2). Their expectation values must vanish because they cannot mix with the identity

operator. Their correlation functions, however, do depend on position as in (6.16) with

FJ±(mr) = ±2mr. We obtain

〈J+(ϕ1)J−(ϕ2)〉 =
e2mr(ϕ1−ϕ2) [1− 2mrπ coth(2mrπ)] [coth(2mrπ)− sgn(ϕ1 − ϕ2)]

16πℓ2mr
.

(8.30)

One can see that both (8.29) and (8.30) interpolate between a non-trivial topological ex-

pression at mr = 0 and they both tend to zero as mr → ∞. Indeed, if we interpret mr as

the RG scale, then at small mr we are probing the UV SCFT, while at large mr we are

probing the infrared.
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9 Discussion

In this paper we used supersymmetric localization to derive a 1d theory coupled to a

matrix model, given in (6.1), that can be used to calculate correlation functions of twisted

Higgs branch operators of N = 4 QFTs on S4. In the case of N = 4 SCFTs, this

theory provides a Lagrangian realization of the protected Higgs branch topological sector

discussed in [7, 8]. The immediate practical application of (6.1) is to the computation of

2- and 3-point functions of Higgs branch operators.

Our results can be used to perform more detailed tests of mirror symmetry. We have

seen, for instance, that in the N -node necklace quiver, the twisted operator Z has the

2-point function (see (7.29))

〈Z(ϕ1)Z(ϕ2)〉 =
1

ℓ2
1

Z

∫
dτ

1

[2 cosh(πτ)]N
(iτ)2 . (9.1)

This theory is mirror dual to SQED with N flavors. One expects the twisted Higgs branch

operator Z in the N -node quiver to be mirror dual to the twisted Coulomb branch operator

Φ constructed from the vectormultiplet scalars in SQED. In section 5.2.2 we explained that

the 2-point function of Φ can be computed by replacing each insertion of Φ by 2σ/r in the

KWY matrix model, thus obtaining

〈Φ(ϕ1)Φ(ϕ2)〉 =
64π2

ℓ2
1

Z

∫
dσ

1

[2 cosh(πσ)]N
σ2 . (9.2)

Comparing (9.1) and (9.2), we can thus identify Z in the N -node quiver with ±iΦ/(8π)
in SQED. A similar exercise shows that, at least for p ≤ N , Zp in the N -node quiver

can be identified with [±iΦ/(8π)]p in SQED. These are, of course, rather simple tests of

mirror symmetry. It should be possible to perform more non-trivial tests in non-Abelian

gauge theories.

There are a few generalizations of our results that we have left for the future. One

such generalization is to N = 4 gauge theories that include twisted vectormultiplets and

twisted hypermultiplets, which would then open the possibility of including Chern-Simons

interactions. Another such generalization would be to complete the Coulomb branch lo-

calization computation by allowing for insertions of monopole operators. Yet another such

generalization would be to Higgs branch operators in theories with 8 supercharges defined

in a different number of spacetime dimensions. We hope to report on these questions in

future publications.
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A Conventions

Curved space vector indices are denoted by µ, ν, . . ., while frame indices are denoted by

i, j, . . . = 1, 2, 3. We label the doublet (spinor) representation of the SU(2)rot. frame rotation

group by α, β, . . . = 1, 2, of SU(2)H by a, b, . . . = 1, 2, and of SU(2)C by ȧ, ḃ, . . . = 1, 2.

Spinor indices are raised and lowered from the left with the antisymmetric tensors εαβ
and εαβ , where ε12 = −ε12 = −1. The same conventions are used for raising and lowering

SU(2)C×SU(2)H indices (e.g., λaȧ ≡ εabεȧḃλbḃ). When SU(2) spinor indices are suppressed

their contraction is defined with the convention:

(ψχ) ≡ ψαχβ = (χψ) . (A.1)

In particular, for any three spinors x, y and z (either commuting or anti-commuting) we

have the Fierz identity:

xα(yz) + (xy)zα + xβyαz
β = 0 . (A.2)

We will always take variation spinors ξ, as in (2.4)–(2.9), to be commuting, while the δξ
symbol itself to be anti-commuting.

The flat space gamma matrices are the usual Pauli matrices, (γi)α
β ≡ σi, which satisfy

γiγj = δij + iεijkγ
k , (ε123 = 1) , (A.3)

(γi)α
β(γi)γ

δ = 2δα
δδγ

β − δα
βδγ

δ . (A.4)

Given a Euclidean metric gµν an orthonormal frame is defined by

gµν = eiµe
j
νδij , δij = gµνeiµe

j
ν . (A.5)

A spin connection ωµij = −ωµji is then fixed from the conditions

dei + ωi
j ∧ ej = 0 , ei ≡ eiµdx

µ . (A.6)

The Riemann tensor is

Rµνij = ∂µωνij + ωµi
kωνkj − (µ↔ ν) , (A.7)

while the Ricci tensor and scalar are defined by Rµν = Rρ
µρν and R = Rµ

µ, respectively.

With this definition R = 6 for a round unit 3-sphere.

The space covariant derivative of spinors is defined as

∇µψ = (∂µ +
i

4
ωµijǫ

ijkγk)ψ , (A.8)

while the Lie derivative L̂v along vµ acting on scalars φ, spinors ψ, and vector fields Aµ, is

given by

L̂vφ = vµ∂µφ , (A.9)

L̂vψ =

(
vµ∇µ +

i

4
ǫµνρ∇µvνγρ

)
ψ , (A.10)

L̂vAµ = vν∂νAµ + ∂µv
νAν . (A.11)
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A.1 Differential geometry on S
3

We will hereby summarize various details on differential geometry on S3 that are used in

the main text. Let S3 be the radius r 3-sphere embedded into C2 as

|z1|2 + |z2|2 = 1 , r~z ∈ C2 . (A.12)

Each point on S3 can be represented by an SU(2) element

g =

(
z2 iz1
iz̄1 z̄2

)
. (A.13)

The su(2)-valued left/right invariant 1-forms ω(ℓ/r), and the frame 1-forms e(ℓ/r) associated

with them are defined as

ω(ℓ) ≡ g−1dg =
i

r
e
(ℓ)
i γi , ω(r) ≡ dgg−1 =

i

r
e
(r)
i γi . (A.14)

They satisfy the Maurer-Cartan equations

de
(ℓ)
i +

1

r
ǫi
jke

(ℓ)
k ∧ e(ℓ)j = 0 , (A.15)

de
(r)
i − 1

r
ǫi
jke

(r)
k ∧ e(r)j = 0 , (A.16)

from which the spin-connections can be directly read-off by using (A.6).

The su(2)ℓ⊕ su(2)r isometries of S3 are generated, respectively, by the vector fields Li

and Rj , which are dual to the 1-forms e
(r)
i and e

(ℓ)
i up to proportionality constants that

we define as34

e
(ℓ)
i (Rj) = − ir

2
δi

j , e
(r)
i (Lj) =

ir

2
δi

j . (A.17)

They satisfy the su(2) algebra

[Li,Lj ] = iεijkLk , [Ri,Rj ] = iεijkRk . (A.18)

In the round coordinates

z1 = cos(θ)eiτ , z2 = sin(θ)eiϕ , (A.19)

the metric on S3 is given by

ds2 = e(ℓ)ie
(ℓ)
i = e(r)ie

(r)
i = r2(dθ2 + cos2(θ)dτ2 + sin2(θ)dϕ2) . (A.20)

34Li generates the left SU(2) action Lig = − 1
2
γig, while Ri generates the right action Rig = 1

2
gγi.
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and the vectors Li = Liµ∂µ Ri = Riµ∂µ are given by

L1 =
i

2
(− cos(τ + ϕ)∂θ − tan(θ) sin(τ + ϕ)∂τ + cot(θ) sin(τ + ϕ)∂ϕ) , (A.21)

L2 =
i

2
(sin(τ + ϕ)∂θ − tan(θ) cos(τ + ϕ)∂τ + cot(θ) cos(τ + ϕ)∂ϕ) , (A.22)

L3 =
i

2
(∂τ + ∂ϕ) , (A.23)

R1 =
i

2
(cos(τ − ϕ)∂θ + tan(θ) sin(τ − ϕ)∂τ + cot(θ) sin(τ − ϕ)∂ϕ) , (A.24)

R2 =
i

2
(− sin(τ − ϕ)∂θ + tan(θ) cos(τ − ϕ)∂τ + cot(θ) cos(τ − ϕ)∂ϕ) , (A.25)

R3 =
i

2
(∂τ − ∂ϕ) . (A.26)

It will also be useful to introduce stereographic coordinates. Let

rz1 = X1 + iX2 , rz2 = X3 + iX4 . (A.27)

The stereographic coordinates xi (i = 1, 2, 3) are defined as

X1,2 =
x1,2

1 + x2

4r2

, X4 =
x3

1 + x2

4r2

, X3 = r
1− x2

4r2

1 + x2

4r2

, (A.28)

x1,2 =
2X1,2

1 +X3/r
, x3 =

2X4

1 +X3/r
, x2 ≡ x21 + x22 + x23 . (A.29)

In our definition the origin ~x = (0, 0, 0) is mapped to ~X = (0, 0, r, 0). The induced metric

on S3 is conformally flat

gµν = e2Ωδµν , eΩ =
1

1 + x2

4r2

, (A.30)

and we define the stereographic frame as

eiµ = eΩδiµ . (A.31)

Let us summarize how Killing spinors on S3 look in the different frames that we

introduced. The spinor covariant derivatives in the left and right invariant frames are

given, respectively, by

∇µ

∣∣∣∣
left inv.

= ∂µ +
i

2r
γµ , ∇µ

∣∣∣∣
right inv.

= ∂µ − i

2r
γµ . (A.32)

Let ξ(ℓ) and ξ(r) be spinors satisfying

∇µξ
(ℓ) =

i

2r
γµξ

(ℓ) , ∇µξ
(r) = − i

2r
γµξ

(r) . (A.33)

Then in the left invariant frame ξ(ℓ) is some constant spinor χ(ℓ), while ξ(r) is some constant

spinor χ(r) in the right invariant frame. In the stereographic frame one can check that

ξ(ℓ) = eΩ/2

(
1− i

2r
xiγi

)
χ(ℓ) , ξ(r) = eΩ/2

(
1 +

i

2r
xiγi

)
χ(r) . (A.34)
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B Closure of superconformal algebra

For any two spinors ξaȧ and ξ̃aȧ satisfying (2.3), the anti-commutator of supreconformal

transformations (2.4)–(2.9) acting on any field Φ closes up to equations of motion into

{δξ, δξ̃}Φ =
(
K̂ξ,ξ̃ + ĜΛ

)
· Φ+ e.o.m. . (B.1)

The operator K̂ξ,ξ̃ is defined as

K̂ξ,ξ̃ ≡ L̂v + R̂C + R̂H + ρ∆̂ , (B.2)

where

• Lv is the Lie derivative along vµ ≡ iξ̃aȧγµξaȧ.

• R̂C/H is an su(2)C/H transformation, acting on doublets with the matrices

R̄ȧḃ ≡ i(ξ̃c(ȧξ
′
|c|ḃ)

+ ξc(ȧξ̃
′
|c|ḃ)

) , (B.3)

Rab ≡ i(ξ̃(a
ċξ′b)ċ + ξ(a

ċξ̃′b)ċ) , (B.4)

such that, e.g., R̂Cψȧ = R̄ȧ
ḃψḃ, R̂Hqa = Ra

bqb, and with the obvious generalization

for triplets: R̂HDab = Ra
cDcb +Rb

cDac, etc.

• ρ is the dilation transformation parameter

ρ = i(ξ̃aḃξ′
aḃ

+ ξaḃξ̃′
aḃ
) . (B.5)

The components of the vectormultiplet (2.1) appear with dimensions ∆̂[V]=(0,32 ,1, 2),

and those of the hypermultiplet (2.2) have ∆̂[H] = (12 , 1).

• ĜΛ is a gauge transformation with parameter

Λ = (ξ̃cȧξcḃ)Φ
ȧḃ − vµAµ , (B.6)

such that, e.g., ĜΛAµ = DµΛ, ĜΛΦȧḃ = i[Λ,Φȧḃ], ĜΛqa = iΛqa, ĜΛq̃a = −iΛq̃a, etc.

C N = 4 algebras

C.1 Superconformal algebra

The 3d N = 4 superconformal algebra is osp(4|4), and its bosonic sub-algebra so(3, 2) ⊕
su(2)C ⊕ su(2)H consists of conformal and R-symmetry transformations. In flat space, the

conformal symmetry generators can be divided into translations Pµ, rotations Mµν , dilata-

tions D and special conformal transformations Kµ. The su(2)C and su(2)H R-symmetry

generators will be denoted by Ra
b and R̄ȧ

ḃ, respectively. The corresponding sub-algebra is

[Mα
β , Pγδ] = δγ

βPαδ + δδ
βPαγ − δα

βPγδ , (C.1)

[Mα
β ,Kγδ] = −δαγKβδ − δα

δKβγ + δα
βKγδ , (C.2)

[Mα
β ,Mγ

δ] = −δαδMγ
β + δγ

βMα
δ , [D,Pαβ ] = Pαβ , [D,Kαβ ] = −Kαβ , (C.3)

[Pαβ ,K
γδ] = 4δ(α

(γMβ)
δ) + 4δ(α

γδβ)
δD , (C.4)

[Ra
b, Rc

d] = −δadRc
b + δc

bRa
d , [R̄ȧ

ḃ, R̄ċ
ḋ] = −δȧḋR̄ċ

ḃ + δċ
ḃR̄ȧ

ḋ , (C.5)
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where we defined

Pαβ ≡ (γµ)αβPµ , Kαβ ≡ (γµ)αβKµ , Mα
β ≡ i

2
(γµγν)α

βMµν . (C.6)

The algebra (C.1)–(C.5) is represented on a dimension ∆ scalar primary operator Oaȧ(x)

in the (2,2) irrep of su(2)C ⊕ su(2)H as

[Pµ,Oaȧ(x)] = i∂µOaȧ(x) , [Kµ,Oaȧ(x)] = i(x2∂µ−2xµ(x·∂)−2∆xµ)Oaȧ(x) ,

[Mµν ,Oaȧ(x)] = i(xµ∂ν−xν∂µ)O(x) , [D,Oaȧ(x)] = (x·∂+∆)Oaȧ(x) ,

[Ra
b,Ocċ(x)] = δc

bOaċ−
1

2
δa

bOcċ , [R̄ȧ
ḃ,Ocċ(x)] = δċ

ḃOcȧ−
1

2
δȧ

ḃOcċ , (C.7)

The transformations of the odd generators in osp(4|4) can be read from the variations (2.4)–

(2.9) as follows. The solution of the conformal Killing spinor equation (2.3) on R3 is

ξaȧ = ǫaȧ + xiγiηaȧ , ξ′aȧ = ηaȧ . (C.8)

We then define the action of the Poincaré supercharges Qαaȧ and conformal supercharges

Sαaȧ by

δξO ≡ i

2
[ǫαaȧQαaȧ + ηαaȧSαaȧ,O] . (C.9)

The commutators of the odd generators Qαaȧ and Sαaȧ then follow by matching the action

of K̂ξ,ξ̃ defined in appendix B with (C.7). The resulting odd-odd and even-odd part of the

algebra is

{Qαaȧ,Qβbḃ}=4εabεȧḃPαβ , {Sα
aȧ,S

β
bḃ}=4εabεȧḃK

αβ , (C.10)

[Kαβ ,Qγaȧ] = i
(
δγ

αSβ
aȧ+δγ

βSα
aȧ

)
, [Pαβ ,S

γ
aȧ] =−i(δαγQβaȧ+δβ

γQαaȧ) , (C.11)

[Mα
β ,Qγaȧ] = δγ

βQαaȧ−
1

2
δα

βQγaȧ , [Mα
β ,Sγ

aȧ] =−δαγSβaȧ+
1

2
δα

βSγ
aȧ , (C.12)

[D,Qαaȧ] =
1

2
Qαaȧ , [D,Sα

aȧ] =−1

2
Sα

aȧ , (C.13)

[Ra
b,Qαcċ] = δc

bQαaċ−
1

2
δa

bQαcċ , [Ra
b,Sα

cċ] = δc
bSα

aċ−
1

2
δa

bSα
cċ , (C.14)

[R̄ȧ
ḃ,Qαcċ] = δċ

ḃQαcȧ−
1

2
δȧ

ḃQαcċ , [R̄ȧ
ḃ,Sα

cċ] = δċ
ḃSα

cȧ−
1

2
δȧ

ḃSα
cċ , (C.15)

and also

{Qαaȧ, S
β
bḃ} = 4i

[
εabεȧḃ

(
Mα

β + δα
βD
)
+ δα

β
(
εȧḃRab + εabR̄ȧḃ

)]
. (C.16)

C.2 Non-conformal N = 4 algebra on S
3

We will now construct the S3 N = 4 algebra su(2|1)ℓ⊕ su(2|1)r explicitly, as a sub-algebra

of the osp(4|4) superconformal algebra defined in (C.1)–(C.5) and (C.10)–(C.16). The

matrices ha
b and h̄ȧḃ in (2.13) are traceless and square to 1. Therefore, they can always

be decomposed into commuting spinors (“twistors”) ua± and ūȧ± as

ha
b = u+au

b
− + u−au

b
+ , h̄ȧḃ = ūȧ+ū−ḃ + ūȧ−ū+ḃ , (C.17)
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where (u+u−) = (ū+ū−) = 1. The decomposition to twistors (C.17) simplifies the con-

struction of the non-conformal sub-algebra, because it eliminates the need to carry the

su(2)C⊕su(2)H indices. The twistors u± and ū± are simply the eigenvectors of ha
b and h̄ȧḃ:

ua±ha
b = ±ub± , h̄ȧḃū

ḃ
± = ±ūȧ± . (C.18)

Let us parameterize the Cartan of su(2)C ⊕ su(2)H as35

R3
H ≡ 1

2
ha

bRb
a = (u+Ru−) , R3

C ≡ 1

2
h̄ȧḃR̄

ḃ
ȧ = (ū+R̄ū−) . (C.19)

The generators of the u(1)ℓ⊕u(1)r ⊂ su(2)C⊕su(2)H R-symmetry of the S3 N = 4 algebra

are then defined in terms of (C.19) to be

Rℓ = R3
H +R3

C , Rr = R3
H −R3

C . (C.20)

Furthermore, the odd generators of su(2|1)ℓ ⊕ su(2|1)r are given by

Q(ℓ±)
α ≡ 1+i

2
ua±ū

ȧ
±

(
Qαaȧ+

i

2r
Sαaȧ

)
, Q(r±)

α ≡ 1+i

2
ua±ū

ȧ
∓

(
Qαaȧ−

i

2r
Sαaȧ

)
. (C.21)

The relative coefficients between Qαaȧ and Sαaȧ in (C.21) can be fixed up to one con-

stant by demanding that Q(ℓ±) anti-commute with Q(r±). The only non-trivial odd-odd

commutators are

{Q(ℓ+)
α ,Q(ℓ−)

β } = −4i

r

(
J
(ℓ)
αβ +

1

2
εαβRℓ

)
, (C.22)

{Q(r+)
α ,Q(r−)

β } = −4i

r

(
J
(r)
αβ +

1

2
εαβRr

)
, (C.23)

where J
(ℓ)
αβ and J

(r)
αβ are the su(2)ℓ ⊕ su(2)r isometry generators of S3 defined by

J
(ℓ)
αβ = −r

2

(
Pαβ − 1

4r2
Kαβ − 1

r
Mαβ

)
, (C.24)

J
(r)
αβ =

r

2

(
Pαβ − 1

4r2
Kαβ +

1

r
Mαβ

)
. (C.25)

In particular, if we denote their components as

(J (ℓ))α
β =

(
J
(ℓ)
3 J

(ℓ)
+

J
(ℓ)
− −J (ℓ)

3

)
, (J (r))α

β =

(
J
(r)
3 J

(r)
+

J
(r)
− −J (r)

3

)
, (C.26)

then the only non-trivial even-even commutators are

[J
(ℓ)
3 , J

(ℓ)
± ] = ±J (ℓ)

± , [J
(ℓ)
+ , J

(ℓ)
− ] = 2J

(ℓ)
3 , (C.27)

[J
(r)
3 , J

(r)
± ] = ±J (r)

± , [J
(r)
+ , J

(r)
− ] = 2J

(r)
3 . (C.28)

35Recall that (u+u−) ≡ ua
+u−a and (u+Ru−) ≡ ua

+Ra
bu−b, etc.
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The action of the generators J (ℓ/r) on a scalar operator O(x) on S3 is given by

[J
(ℓ)
3 ,O(x)] = −L3O(x) , [J

(r)
3 ,O(x)] = −R3O(x) , (C.29)

[J
(ℓ)
± ,O(x)] = −(L1 ± iL2)O(x) , [J

(r)
± ,O(x)] = −(R1 ± iR2)O(x) , (C.30)

where Li and Ri were defined in (A.21)–(A.26).

Finally, the non-trivial even-odd commutators are

[Rℓ,Q(ℓ±)
α ] = ±Q(ℓ±)

α , [Rr,Q(r±)
α ] = ±Q(r±)

α , (C.31)

[(J (ℓ))α
β ,Q(ℓ±)

γ ] = δγ
δQ(ℓ±)

α − 1

2
δα

βQ(ℓ±)
γ , [(J (r))α

β ,Q(r±)
γ ] = δγ

δQ(r±)
α − 1

2
δα

βQ(r±)
γ .

(C.32)

For the choice of ha
b = −σ2 and h̄ȧḃ = −σ3, we can take

ua+ =
1

2

(
1− i

1 + i

)
, ua− =

1

2

(
1− i

−1− i

)
, ūȧ+ =

(
0

1

)
, ūȧ− =

(
1

0

)
. (C.33)

One then finds that

Q(r−)
1 +Q(ℓ+)

1 = Q112̇ +
1

2r
S2

22̇ , (C.34)

Q(ℓ−)
2 +Q(r+)

2 = Q211̇ +
1

2r
S1

21̇ , (C.35)

are the nilpotent supercharges used to define the Higgs branch cohomology in [7, 8].

D 1d Green’s function from 3d theory

The Green’s function (5.22) of the fundamental twisted Higgs branch operators (4.14)

inserted on the θ = π
2 circle in S3, can be calculated directly from the 3d Gaussian

action (5.10). Without loss of generality let us consider a U(1) gauge theory with one

hypermultiplet. The bosonic part of the action is

Sfree hyper =

∫
d3x

√
g q̃a(x)Da

b(x)qb(x) , (D.1)

where the operator Da
b(x) is defined by

Da
b(x) ≡

(
−∇2 + 3

4r2
+ σ2

r2
− σ

r2
σ
r2

−∇2 + 3
4r2

+ σ2

r2

)
. (D.2)

It is a straightforward exercise to determine the two-point function Ga
b(x, x′) =

〈qa(x)q̃b(x′)〉 by solving the differential equation

Da
c(x)Gc

b(x, x′) =
δba√
g(x′)

δ3(x− x′) . (D.3)
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The solution is

Ga
b(x, x′) = 〈qa(x)q̃b(x′)〉 =

1

8πr cosh(σπ)

(
cosh(σπ−σγ)

sin(γ/2)
sinh(σπ−σγ)

cos(γ/2)

− sinh(σπ−σγ)
cos(γ/2)

cosh(σπ−σγ)
sin(γ/2)

)
(D.4)

where γ is the relative angle between the points x and x′. In the coordinates (θ, τ, ϕ) used

previously, it is given by

cos γ = cos θ cos θ′ cos(τ − τ ′) + sin θ sin θ′ cos(ϕ− ϕ′) . (D.5)

In particular, when both x and x′ belong to the circle at θ = π/2, we have γ = |ϕ− ϕ′|.
Using the definition (4.14) of Q(ϕ) and Q̃(ϕ) in terms of the fields qa(x) and q̃

a(x) evaluated

on this circle, we have

〈Q(ϕ)Q̃(0)〉 = − cos
ϕ

2
G1

2(ϕ, 0)− sin
ϕ

2
G2

2(ϕ, 0) , (D.6)

which, when using (D.4), can be seen to agree precisely with (5.22).

E QH
β

BPS equations

In this section we will study the full set of BPS equations

δξλaȧ = δξ,νψȧ = δξ,νψ̃ȧ = 0 , (E.1)

where the transformations were defined in (2.5), (5.32) and (5.33), the Killing spinor ξ = ξHβ
is defined in (5.5), and νaȧ satisfies (5.34).

36 Here, we study the consequences of (E.1) before

the reality conditions are imposed on the fields.

Let us unpack the contents of these equations. The gaugino BPS equations, can be

used to solve for the auxiliary fields Dab. This solution can be written as

iDab =
1

µ

(
− i

4
εµνρvρµabFµν + µa

c(ξa
ȧγµξb

ḃ)DµΦȧḃ + 2µa
c(ξc

ȧξ′b
ḃ)Φȧḃ −

1

2
µabµ

ȧḃΦȧ
ċΦċḃ

)
,

(E.2)

where the symmetric matrices µab and µȧḃ are given by

µab = (ξa
ċξbċ) , µȧḃ = (ξcȧξcḃ) , µ ≡ det(µab) = det(µȧḃ) = β2 cos2(θ) , (E.3)

and vµ is the Killing vector generating translations along τ :

vµ ≡ iξaȧγµξaȧ . (E.4)

The remaining gaugino BPS equations imply that the fields are independent of τ up

to a field dependent gauge transformation. The result is more conveniently expressed in

terms of the twisted fields

Φ̃1̇1̇ ≡ eiτΦ1̇1̇ , Φ̃2̇2̇ ≡ e−iτΦ2̇2̇ , (E.5)

36In this section, we will always write ξ for the particular spinor ξHβ defined in (5.5) to avoid clutter.
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which satisfy [Z, Φ̃1̇1̇] = [Z, Φ̃2̇2̇] = 0, up to a gauge transformation, where Z was defined

in (5.36). The BPS configurations are naturaly expressed in terms of (E.5) since QH
β

squares to Z. Let us also define a modified connection D⋆
µ as37

D⋆
τ = Dτ +

ir

2
cos(θ)

(
βΦ̃1̇1̇ +

1

β
Φ̃2̇2̇

)
, D⋆

θ,ϕ = Dθ,ϕ . (E.6)

Using the definitions (E.5) and (E.6), one can show that δξλaḃ = 0 implies that

F ⋆
θτ = F ⋆

ϕτ = D⋆
τDab = D⋆

τ Φ̃1̇1̇ = D⋆
τ Φ̃2̇2̇ = D⋆

τΦ1̇2̇ = 0 , (E.7)

where F ⋆
µν = i[D⋆

µ,D⋆
ν ]. As implied by (E.7), the modified connection (E.6) actually satisfies

Dτ

(
βΦ̃1̇1̇ +

1
β Φ̃2̇2̇

)
= 0, and so is literally independent of τ up to a gauge transformation.

It then follows that all fields in V are similarly τ -independent.

The analysis of the H′ hypermultiplet BPS equations δξ,νψȧ = δξ,νψ̃ȧ = 0, is similar.

One first solves for the auxiliary fields:

Ga =
1

µ
µ
(ν)
ad

[
(νdȧγµξbȧ)Dµqb − (νdȧξbċ)Φ

ċ
ȧqb + (νdȧξ′bȧ)qb

]
, (E.8)

G̃a =
1

µ
µ
(ν)
ad

[
(νdȧγµξbȧ)Dµq̃b + (νdȧξbċ)q̃bΦ

ċ
ȧ + (νdȧξ′bȧ)q̃b

]
, (E.9)

where we defined µ
(ν)
ab ≡ (νa

ċνbċ). The remaining equations then imply that

D⋆
τGa = D⋆

τ G̃a = D⋆
τqa = D⋆

τ q̃a = 0 . (E.10)

Note that the solutions (E.8) and (E.9) for the auxiliary fields depend on the spinors νaȧ.

Nevertheless, the conditions these spinors satisfy (5.34) can be shown to imply that (E.10)

holds for any choice of νaȧ.

The solutions (E.2), (E.8), (E.9) for the auxiliary fields in terms of the dynamical

ones, together with the τ -independence conditions (E.7) and (E.10), comprise the full set

of restrictions that follow from the BPS equations (E.1) without imposing additional reality

conditions on the fields. These conditions are sufficient in order to show that the action

S′
hyper[H′] defined in (5.31) localizes to the 1d action (5.43). Indeed, after dimensional

reduction on τ , plugging (E.2), (E.8) and (E.9) in S′
hyper[H′], one can show that

S′
hyper[H′]

∣∣∣∣
QH

β
−BPS

=

∫

D2

d2x
√
gD2∇µ̄K

µ̄ , (E.11)

where

K µ̄ = −r cos(θ)
µ

(
iεµ̄ν̄τµȧḃ(ξbȧγτξ

c
ḃ)q̃bDν̄qc + µȧḃ(ξbȧγ

µ̄ξ′cḃ)q̃bqc + µac(ξc
ȧγµ̄ξbḃ)q̃aΦȧḃqb

)
,

(E.12)

where µ̄ runs over the coordinates θ and ϕ of D2. Using the explicit form of (E.12), one

can check that the boundary term left from (E.11) is precisely the 1d action (5.43). This

completes the derivation.

37Note that in our conventions (Φ1̇1̇)
† = −Φ2̇2̇, so the connection (E.6) is complex unless β is pure

imaginary.

– 78 –



J
H
E
P
0
3
(
2
0
1
8
)
1
3
8

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] S. Lee, S. Minwalla, M. Rangamani and N. Seiberg, Three point functions of chiral operators

in D = 4, N = 4 SYM at large N , Adv. Theor. Math. Phys. 2 (1998) 697 [hep-th/9806074]

[INSPIRE].

[2] E. D’Hoker, D.Z. Freedman, S.D. Mathur, A. Matusis and L. Rastelli, Extremal correlators

in the AdS/CFT correspondence, hep-th/9908160 [INSPIRE].

[3] M. Baggio, J. de Boer and K. Papadodimas, A non-renormalization theorem for chiral

primary 3-point functions, JHEP 07 (2012) 137 [arXiv:1203.1036] [INSPIRE].

[4] C. Beem, M. Lemos, P. Liendo, W. Peelaers, L. Rastelli and B.C. van Rees, Infinite Chiral

Symmetry in Four Dimensions, Commun. Math. Phys. 336 (2015) 1359 [arXiv:1312.5344]

[INSPIRE].

[5] C. Beem, L. Rastelli and B.C. van Rees, W symmetry in six dimensions, JHEP 05 (2015)

017 [arXiv:1404.1079] [INSPIRE].

[6] C. Beem, W. Peelaers, L. Rastelli and B.C. van Rees, Chiral algebras of class S, JHEP 05

(2015) 020 [arXiv:1408.6522] [INSPIRE].

[7] S.M. Chester, J. Lee, S.S. Pufu and R. Yacoby, Exact Correlators of BPS Operators from the

3d Superconformal Bootstrap, JHEP 03 (2015) 130 [arXiv:1412.0334] [INSPIRE].

[8] C. Beem, W. Peelaers and L. Rastelli, Deformation quantization and superconformal

symmetry in three dimensions, Commun. Math. Phys. 354 (2017) 345 [arXiv:1601.05378]

[INSPIRE].

[9] Y. Tachikawa, A brief review of the 2d/4d correspondences, J. Phys. A 50 (2017) 443012

[arXiv:1608.02964] [INSPIRE].

[10] T.T. Dumitrescu, An introduction to supersymmetric field theories in curved space, J. Phys.

A 50 (2017) 443005 [arXiv:1608.02957] [INSPIRE].

[11] D.R. Morrison, Gromov-Witten invariants and localization, J. Phys. A 50 (2017) 443004

[arXiv:1608.02956] [INSPIRE].

[12] S. Pasquetti, Holomorphic blocks and the 5d AGT correspondence, J. Phys. A 50 (2017)

443016 [arXiv:1608.02968] [INSPIRE].

[13] S. Kim and K. Lee, Indices for 6 dimensional superconformal field theories, J. Phys. A 50

(2017) 443017 [arXiv:1608.02969] [INSPIRE].

[14] V. Pestun and M. Zabzine, Introduction to localization in quantum field theory, J. Phys. A

50 (2017) 443001 [arXiv:1608.02953] [INSPIRE].

[15] K. Zarembo, Localization and AdS/CFT Correspondence, J. Phys. A 50 (2017) 443011

[arXiv:1608.02963] [INSPIRE].

[16] M. Mariño, Localization at large N in Chern-Simons-matter theories, J. Phys. A 50 (2017)

443007 [arXiv:1608.02959] [INSPIRE].

– 79 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.4310/ATMP.1998.v2.n4.a1
https://arxiv.org/abs/hep-th/9806074
https://inspirehep.net/search?p=find+EPRINT+hep-th/9806074
https://arxiv.org/abs/hep-th/9908160
https://inspirehep.net/search?p=find+EPRINT+hep-th/9908160
https://doi.org/10.1007/JHEP07(2012)137
https://arxiv.org/abs/1203.1036
https://inspirehep.net/search?p=find+EPRINT+arXiv:1203.1036
https://doi.org/10.1007/s00220-014-2272-x
https://arxiv.org/abs/1312.5344
https://inspirehep.net/search?p=find+EPRINT+arXiv:1312.5344
https://doi.org/10.1007/JHEP05(2015)017
https://doi.org/10.1007/JHEP05(2015)017
https://arxiv.org/abs/1404.1079
https://inspirehep.net/search?p=find+EPRINT+arXiv:1404.1079
https://doi.org/10.1007/JHEP05(2015)020
https://doi.org/10.1007/JHEP05(2015)020
https://arxiv.org/abs/1408.6522
https://inspirehep.net/search?p=find+EPRINT+arXiv:1408.6522
https://doi.org/10.1007/JHEP03(2015)130
https://arxiv.org/abs/1412.0334
https://inspirehep.net/search?p=find+EPRINT+arXiv:1412.0334
https://doi.org/10.1007/s00220-017-2845-6
https://arxiv.org/abs/1601.05378
https://inspirehep.net/search?p=find+EPRINT+arXiv:1601.05378
https://doi.org/10.1088/1751-8121/aa5df8
https://arxiv.org/abs/1608.02964
https://inspirehep.net/search?p=find+EPRINT+arXiv:1608.02964
https://doi.org/10.1088/1751-8121/aa62f5
https://doi.org/10.1088/1751-8121/aa62f5
https://arxiv.org/abs/1608.02957
https://inspirehep.net/search?p=find+EPRINT+arXiv:1608.02957
https://doi.org/10.1088/1751-8121/aa6f65
https://arxiv.org/abs/1608.02956
https://inspirehep.net/search?p=find+EPRINT+arXiv:1608.02956
https://doi.org/10.1088/1751-8121/aa60fe
https://doi.org/10.1088/1751-8121/aa60fe
https://arxiv.org/abs/1608.02968
https://inspirehep.net/search?p=find+EPRINT+arXiv:1608.02968
https://doi.org/10.1088/1751-8121/aa5cbf
https://doi.org/10.1088/1751-8121/aa5cbf
https://arxiv.org/abs/1608.02969
https://inspirehep.net/search?p=find+EPRINT+arXiv:1608.02969
https://doi.org/10.1088/1751-8121/aa5704
https://doi.org/10.1088/1751-8121/aa5704
https://arxiv.org/abs/1608.02953
https://inspirehep.net/search?p=find+EPRINT+arXiv:1608.02953
https://doi.org/10.1088/1751-8121/aa585b
https://arxiv.org/abs/1608.02963
https://inspirehep.net/search?p=find+EPRINT+arXiv:1608.02963
https://doi.org/10.1088/1751-8121/aa5f69
https://doi.org/10.1088/1751-8121/aa5f69
https://arxiv.org/abs/1608.02959
https://inspirehep.net/search?p=find+EPRINT+arXiv:1608.02959


J
H
E
P
0
3
(
2
0
1
8
)
1
3
8

[17] B. Willett, Localization on three-dimensional manifolds, J. Phys. A 50 (2017) 443006

[arXiv:1608.02958] [INSPIRE].

[18] J.A. Minahan, Matrix models for 5d super Yang-Mills, J. Phys. A 50 (2017) 443015

[arXiv:1608.02967] [INSPIRE].

[19] K. Hosomichi, N = 2 SUSY gauge theories on S4, J. Phys. A 50 (2017) 443010

[arXiv:1608.02962] [INSPIRE].

[20] T. Dimofte, Perturbative and nonperturbative aspects of complex Chern-Simons theory, J.

Phys. A 50 (2017) 443009 [arXiv:1608.02961] [INSPIRE].

[21] J. Qiu and M. Zabzine, Review of localization for 5d supersymmetric gauge theories, J. Phys.

A 50 (2017) 443014 [arXiv:1608.02966] [INSPIRE].

[22] V. Pestun, Review of localization in geometry, J. Phys. A 50 (2017) 443002

[arXiv:1608.02954] [INSPIRE].

[23] F. Benini and B. Le Floch, Supersymmetric localization in two dimensions, J. Phys. A 50

(2017) 443003 [arXiv:1608.02955] [INSPIRE].

[24] S.S. Pufu, The F-Theorem and F-Maximization, J. Phys. A 50 (2017) 443008

[arXiv:1608.02960] [INSPIRE].

[25] L. Rastelli and S.S. Razamat, The supersymmetric index in four dimensions, J. Phys. A 50

(2017) 443013 [arXiv:1608.02965] [INSPIRE].

[26] C. Closset, T.T. Dumitrescu, G. Festuccia, Z. Komargodski and N. Seiberg, Contact Terms,

Unitarity and F-Maximization in Three-Dimensional Superconformal Theories, JHEP 10

(2012) 053 [arXiv:1205.4142] [INSPIRE].

[27] C. Closset, T.T. Dumitrescu, G. Festuccia and Z. Komargodski, Supersymmetric Field

Theories on Three-Manifolds, JHEP 05 (2013) 017 [arXiv:1212.3388] [INSPIRE].

[28] E. Gerchkovitz, J. Gomis, N. Ishtiaque, A. Karasik, Z. Komargodski and S.S. Pufu,

Correlation Functions of Coulomb Branch Operators, JHEP 01 (2017) 103

[arXiv:1602.05971] [INSPIRE].

[29] K. Papadodimas, Topological Anti-Topological Fusion in Four-Dimensional Superconformal

Field Theories, JHEP 08 (2010) 118 [arXiv:0910.4963] [INSPIRE].

[30] M. Baggio, V. Niarchos and K. Papadodimas, Exact correlation functions in SU(2) N = 2

superconformal QCD, Phys. Rev. Lett. 113 (2014) 251601 [arXiv:1409.4217] [INSPIRE].

[31] M. Baggio, V. Niarchos and K. Papadodimas, tt∗ equations, localization and exact chiral

rings in 4d N = 2 SCFTs, JHEP 02 (2015) 122 [arXiv:1409.4212] [INSPIRE].

[32] M. Baggio, V. Niarchos and K. Papadodimas, On exact correlation functions in SU(N)

N = 2 superconformal QCD, JHEP 11 (2015) 198 [arXiv:1508.03077] [INSPIRE].

[33] N. Seiberg and E. Witten, Gauge dynamics and compactification to three-dimensions, in The

mathematical beauty of physics: A memorial volume for Claude Itzykson. Proceedings,

Conference, Saclay, France, June 5-7, 1996, pp. 333–366 (1996) [hep-th/9607163] [INSPIRE].

[34] K.A. Intriligator and N. Seiberg, Mirror symmetry in three-dimensional gauge theories, Phys.

Lett. B 387 (1996) 513 [hep-th/9607207] [INSPIRE].

[35] J. de Boer, K. Hori, H. Ooguri and Y. Oz, Mirror symmetry in three-dimensional gauge

theories, quivers and D-branes, Nucl. Phys. B 493 (1997) 101 [hep-th/9611063] [INSPIRE].

– 80 –

https://doi.org/10.1088/1751-8121/aa612f
https://arxiv.org/abs/1608.02958
https://inspirehep.net/search?p=find+EPRINT+arXiv:1608.02958
https://doi.org/10.1088/1751-8121/aa5cbe
https://arxiv.org/abs/1608.02967
https://inspirehep.net/search?p=find+EPRINT+arXiv:1608.02967
https://doi.org/10.1088/1751-8121/aa7775
https://arxiv.org/abs/1608.02962
https://inspirehep.net/search?p=find+EPRINT+arXiv:1608.02962
https://doi.org/10.1088/1751-8121/aa6a5b
https://doi.org/10.1088/1751-8121/aa6a5b
https://arxiv.org/abs/1608.02961
https://inspirehep.net/search?p=find+EPRINT+arXiv:1608.02961
https://doi.org/10.1088/1751-8121/aa5ef0
https://doi.org/10.1088/1751-8121/aa5ef0
https://arxiv.org/abs/1608.02966
https://inspirehep.net/search?p=find+EPRINT+arXiv:1608.02966
https://doi.org/10.1088/1751-8121/aa6161
https://arxiv.org/abs/1608.02954
https://inspirehep.net/search?p=find+EPRINT+arXiv:1608.02954
https://doi.org/10.1088/1751-8121/aa77bb
https://doi.org/10.1088/1751-8121/aa77bb
https://arxiv.org/abs/1608.02955
https://inspirehep.net/search?p=find+EPRINT+arXiv:1608.02955
https://doi.org/10.1088/1751-8121/aa6765
https://arxiv.org/abs/1608.02960
https://inspirehep.net/search?p=find+EPRINT+arXiv:1608.02960
https://doi.org/10.1088/1751-8121/aa76a6
https://doi.org/10.1088/1751-8121/aa76a6
https://arxiv.org/abs/1608.02965
https://inspirehep.net/search?p=find+EPRINT+arXiv:1608.02965
https://doi.org/10.1007/JHEP10(2012)053
https://doi.org/10.1007/JHEP10(2012)053
https://arxiv.org/abs/1205.4142
https://inspirehep.net/search?p=find+EPRINT+arXiv:1205.4142
https://doi.org/10.1007/JHEP05(2013)017
https://arxiv.org/abs/1212.3388
https://inspirehep.net/search?p=find+EPRINT+arXiv:1212.3388
https://doi.org/10.1007/JHEP01(2017)103
https://arxiv.org/abs/1602.05971
https://inspirehep.net/search?p=find+EPRINT+arXiv:1602.05971
https://doi.org/10.1007/JHEP08(2010)118
https://arxiv.org/abs/0910.4963
https://inspirehep.net/search?p=find+EPRINT+arXiv:0910.4963
https://doi.org/10.1103/PhysRevLett.113.251601
https://arxiv.org/abs/1409.4217
https://inspirehep.net/search?p=find+EPRINT+arXiv:1409.4217
https://doi.org/10.1007/JHEP02(2015)122
https://arxiv.org/abs/1409.4212
https://inspirehep.net/search?p=find+EPRINT+arXiv:1409.4212
https://doi.org/10.1007/JHEP11(2015)198
https://arxiv.org/abs/1508.03077
https://inspirehep.net/search?p=find+EPRINT+arXiv:1508.03077
https://arxiv.org/abs/hep-th/9607163
https://inspirehep.net/search?p=find+EPRINT+hep-th/9607163
https://doi.org/10.1016/0370-2693(96)01088-X
https://doi.org/10.1016/0370-2693(96)01088-X
https://arxiv.org/abs/hep-th/9607207
https://inspirehep.net/search?p=find+EPRINT+hep-th/9607207
https://doi.org/10.1016/S0550-3213(97)00125-9
https://arxiv.org/abs/hep-th/9611063
https://inspirehep.net/search?p=find+EPRINT+hep-th/9611063


J
H
E
P
0
3
(
2
0
1
8
)
1
3
8

[36] A. Hanany and E. Witten, Type IIB superstrings, BPS monopoles and three-dimensional

gauge dynamics, Nucl. Phys. B 492 (1997) 152 [hep-th/9611230] [INSPIRE].

[37] J. de Boer, K. Hori, H. Ooguri, Y. Oz and Z. Yin, Mirror symmetry in three-dimensional

theories, SL(2,Z) and D-brane moduli spaces, Nucl. Phys. B 493 (1997) 148

[hep-th/9612131] [INSPIRE].

[38] D. Gaiotto and E. Witten, S-duality of Boundary Conditions In N = 4 Super Yang-Mills

Theory, Adv. Theor. Math. Phys. 13 (2009) 721 [arXiv:0807.3720] [INSPIRE].

[39] A. Kapustin, B. Willett and I. Yaakov, Exact Results for Wilson Loops in Superconformal

Chern-Simons Theories with Matter, JHEP 03 (2010) 089 [arXiv:0909.4559] [INSPIRE].

[40] M. Bullimore, T. Dimofte and D. Gaiotto, The Coulomb Branch of 3d N = 4 Theories,

Commun. Math. Phys. 354 (2017) 671 [arXiv:1503.04817] [INSPIRE].

[41] D.L. Jafferis, The Exact Superconformal R-Symmetry Extremizes Z, JHEP 05 (2012) 159

[arXiv:1012.3210] [INSPIRE].

[42] N. Hama, K. Hosomichi and S. Lee, Notes on SUSY Gauge Theories on Three-Sphere, JHEP

03 (2011) 127 [arXiv:1012.3512] [INSPIRE].

[43] V. Pestun, Localization of gauge theory on a four-sphere and supersymmetric Wilson loops,

Commun. Math. Phys. 313 (2012) 71 [arXiv:0712.2824] [INSPIRE].

[44] V. Pestun, Localization of the four-dimensional N = 4 SYM to a two-sphere and 1/8 BPS

Wilson loops, JHEP 12 (2012) 067 [arXiv:0906.0638] [INSPIRE].

[45] N.A. Nekrasov, Seiberg-Witten prepotential from instanton counting, Adv. Theor. Math.

Phys. 7 (2003) 831 [hep-th/0206161] [INSPIRE].

[46] A. Lossev, N. Nekrasov and S.L. Shatashvili, Testing Seiberg-Witten solution, in proceedings

of Strings, branes and dualities, NATO Advanced Study Institute, Cargese, France, May

26–June 14, 1997, pp. 359–372 [hep-th/9801061] [INSPIRE].

[47] N.A. Nekrasov and S.L. Shatashvili, Quantization of Integrable Systems and Four

Dimensional Gauge Theories, in Proceedings, 16th International Congress on Mathematical

Physics (ICMP09), Prague, Czech Republic, August 3–8, 2009, pp. 265–289

[DOI:10.1142/9789814304634 0015] [arXiv:0908.4052] [INSPIRE].

[48] N. Berkovits, A Ten-dimensional superYang-Mills action with off-shell supersymmetry, Phys.

Lett. B 318 (1993) 104 [hep-th/9308128] [INSPIRE].

[49] B. Assel and J. Gomis, Mirror Symmetry And Loop Operators, JHEP 11 (2015) 055

[arXiv:1506.01718] [INSPIRE].

[50] O. Aharony, A. Hanany, K.A. Intriligator, N. Seiberg and M.J. Strassler, Aspects of N = 2

supersymmetric gauge theories in three-dimensions, Nucl. Phys. B 499 (1997) 67

[hep-th/9703110] [INSPIRE].

[51] S. Giombi and V. Pestun, Correlators of local operators and 1/8 BPS Wilson loops on S2

from 2d YM and matrix models, JHEP 10 (2010) 033 [arXiv:0906.1572] [INSPIRE].

[52] S. Giombi and V. Pestun, Correlators of Wilson Loops and Local Operators from

Multi-Matrix Models and Strings in AdS, JHEP 01 (2013) 101 [arXiv:1207.7083] [INSPIRE].

[53] N. Drukker and J. Plefka, Superprotected n-point correlation functions of local operators in

N = 4 super Yang-Mills, JHEP 04 (2009) 052 [arXiv:0901.3653] [INSPIRE].

– 81 –

https://doi.org/10.1016/S0550-3213(97)00157-0
https://arxiv.org/abs/hep-th/9611230
https://inspirehep.net/search?p=find+EPRINT+hep-th/9611230
https://doi.org/10.1016/S0550-3213(97)00115-6
https://arxiv.org/abs/hep-th/9612131
https://inspirehep.net/search?p=find+EPRINT+hep-th/9612131
https://doi.org/10.4310/ATMP.2009.v13.n3.a5
https://arxiv.org/abs/0807.3720
https://inspirehep.net/search?p=find+EPRINT+arXiv:0807.3720
https://doi.org/10.1007/JHEP03(2010)089
https://arxiv.org/abs/0909.4559
https://inspirehep.net/search?p=find+EPRINT+arXiv:0909.4559
https://doi.org/10.1007/s00220-017-2903-0
https://arxiv.org/abs/1503.04817
https://inspirehep.net/search?p=find+EPRINT+arXiv:1503.04817
https://doi.org/10.1007/JHEP05(2012)159
https://arxiv.org/abs/1012.3210
https://inspirehep.net/search?p=find+EPRINT+arXiv:1012.3210
https://doi.org/10.1007/JHEP03(2011)127
https://doi.org/10.1007/JHEP03(2011)127
https://arxiv.org/abs/1012.3512
https://inspirehep.net/search?p=find+EPRINT+arXiv:1012.3512
https://doi.org/10.1007/s00220-012-1485-0
https://arxiv.org/abs/0712.2824
https://inspirehep.net/search?p=find+EPRINT+arXiv:0712.2824
https://doi.org/10.1007/JHEP12(2012)067
https://arxiv.org/abs/0906.0638
https://inspirehep.net/search?p=find+EPRINT+arXiv:0906.0638
https://doi.org/10.4310/ATMP.2003.v7.n5.a4
https://doi.org/10.4310/ATMP.2003.v7.n5.a4
https://arxiv.org/abs/hep-th/0206161
https://inspirehep.net/search?p=find+EPRINT+hep-th/0206161
https://arxiv.org/abs/hep-th/9801061
https://inspirehep.net/search?p=find+EPRINT+hep-th/9801061
https://doi.org/10.1142/9789814304634_0015
https://arxiv.org/abs/0908.4052
https://inspirehep.net/search?p=find+EPRINT+arXiv:0908.4052
https://doi.org/10.1016/0370-2693(93)91791-K
https://doi.org/10.1016/0370-2693(93)91791-K
https://arxiv.org/abs/hep-th/9308128
https://inspirehep.net/search?p=find+EPRINT+hep-th/9308128
https://doi.org/10.1007/JHEP11(2015)055
https://arxiv.org/abs/1506.01718
https://inspirehep.net/search?p=find+EPRINT+arXiv:1506.01718
https://doi.org/10.1016/S0550-3213(97)00323-4
https://arxiv.org/abs/hep-th/9703110
https://inspirehep.net/search?p=find+EPRINT+hep-th/9703110
https://doi.org/10.1007/JHEP10(2010)033
https://arxiv.org/abs/0906.1572
https://inspirehep.net/search?p=find+EPRINT+arXiv:0906.1572
https://doi.org/10.1007/JHEP01(2013)101
https://arxiv.org/abs/1207.7083
https://inspirehep.net/search?p=find+EPRINT+arXiv:1207.7083
https://doi.org/10.1088/1126-6708/2009/04/052
https://arxiv.org/abs/0901.3653
https://inspirehep.net/search?p=find+EPRINT+arXiv:0901.3653


J
H
E
P
0
3
(
2
0
1
8
)
1
3
8

[54] E. Witten, A New Look At The Path Integral Of Quantum Mechanics, arXiv:1009.6032

[INSPIRE].

[55] E. Witten, Analytic Continuation Of Chern-Simons Theory, AMS/IP Stud. Adv. Math. 50

(2011) 347 [arXiv:1001.2933] [INSPIRE].

[56] M. Dedushenko, Violation of the phase space general covariance as a diffeomorphism

anomaly in quantum mechanics, JHEP 10 (2010) 054 [arXiv:1007.5292] [INSPIRE].

[57] A.S. Cattaneo and G. Felder, A path integral approach to the Kontsevich quantization

formula, Commun. Math. Phys. 212 (2000) 591 [math/9902090] [INSPIRE].

[58] E. Joung and K. Mkrtchyan, Notes on higher-spin algebras: minimal representations and

structure constants, JHEP 05 (2014) 103 [arXiv:1401.7977] [INSPIRE].

[59] A. Kapustin, B. Willett and I. Yaakov, Nonperturbative Tests of Three-Dimensional

Dualities, JHEP 10 (2010) 013 [arXiv:1003.5694] [INSPIRE].

[60] D.R. Gulotta, C.P. Herzog and S.S. Pufu, From Necklace Quivers to the F-theorem, Operator

Counting and T (U(N)), JHEP 12 (2011) 077 [arXiv:1105.2817] [INSPIRE].

[61] A. Kapustin and M.J. Strassler, On mirror symmetry in three-dimensional Abelian gauge

theories, JHEP 04 (1999) 021 [hep-th/9902033] [INSPIRE].

– 82 –

https://arxiv.org/abs/1009.6032
https://inspirehep.net/search?p=find+EPRINT+arXiv:1009.6032
https://arxiv.org/abs/1001.2933
https://inspirehep.net/search?p=find+EPRINT+arXiv:1001.2933
https://doi.org/10.1007/JHEP10(2010)054
https://arxiv.org/abs/1007.5292
https://inspirehep.net/search?p=find+EPRINT+arXiv:1007.5292
https://doi.org/10.1007/s002200000229
https://arxiv.org/abs/math/9902090
https://inspirehep.net/search?p=find+EPRINT+math/9902090
https://doi.org/10.1007/JHEP05(2014)103
https://arxiv.org/abs/1401.7977
https://inspirehep.net/search?p=find+EPRINT+arXiv:1401.7977
https://doi.org/10.1007/JHEP10(2010)013
https://arxiv.org/abs/1003.5694
https://inspirehep.net/search?p=find+EPRINT+arXiv:1003.5694
https://doi.org/10.1007/JHEP12(2011)077
https://arxiv.org/abs/1105.2817
https://inspirehep.net/search?p=find+EPRINT+arXiv:1105.2817
https://doi.org/10.1088/1126-6708/1999/04/021
https://arxiv.org/abs/hep-th/9902033
https://inspirehep.net/search?p=find+EPRINT+hep-th/9902033

	Introduction
	3d N=4 theories on S**(3)
	Actions with vectormultiplets and hypermultiplets
	Closure of the supersymmetry transformations
	Non-conformal supersymmetry algebra on S**(3)
	Action of S**(3) isometries
	Action of R-symmetries
	Action of supersymmetries

	Central extension of non-conformal supersymmetry algebra

	Cohomology in SCFTs
	SCFT in flat space
	SCFT on the sphere
	Twisted operators on S**(3) by stereographic map
	Interpretation in terms of su(2|1)(l) oplus su(2|1)(r) subalgebra


	Cohomology in non-conformal N=4 theories on S**(3)
	Operators in the cohomology of Q**(H) (i)
	Operators in the cohomology of Q**(C) (i)

	Localization
	Vectormultiplets and a non-renormalization theorem
	3d Gaussian theory coupled to a matrix model
	Localizing with Q(KWY)
	Localizing with Q**(C) (beta)
	Localizing with Q**(H) (beta)

	1d Gaussian theory for twisted Higgs branch operators
	1d theory from localization of hypermultiplet
	Off-shell closure
	1d action from BPS equations
	Hypermultiplet 1-loop determinant
	Integration cycle from localization

	Integration cycle from Morse theory

	Properties of twisted Higgs branch theory
	Brief summary
	Topological gauged quantum mechanics
	The conformal case
	Non-vanishing mass and FI parameters

	Correlators of twisted Higgs branch operators
	The conformal case
	Non-vanishing mass and FI parameters

	2- and 3-point correlators of Higgs branch operators of the SCFT
	Star product, Higgs branch chiral ring, and deformation quantization
	Operator mixing

	Applications to SCFTs
	SQED with N charged hypermultiplet flavors
	N-node quiver
	U(2) with adjoint hypermultiplet and fundamental hypermultiplet
	Free N=8 multiplet
	Free N=8 stress tensor multiplet
	Interacting N=8 stress tensor multiplet
	Four-point functions


	Applications to N=4 QFTs on S**(3) with non-vanishing mass and FI  parameters
	Deformation by FI parameters
	SQED with non-zero FI parameter
	N-node quiver with non-zero FI parameters

	Introducing mass parameters
	Mass-deformed N-node quiver
	Mass-deformed SQED


	Discussion
	Conventions
	Differential geometry on S**(3)

	Closure of superconformal algebra
	N=4 algebras
	Superconformal algebra
	Non-conformal N=4 algebra on S**(3)

	1d Green's function from 3d theory
	Q**(H) (beta) BPS equations

